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Abstract

We model sensory streams as observations from high-dimensional stochastic dy-
namical systems and conceptualize sensory neurons as self-supervised learners of
compact representations of such dynamics. From prior experience, neurons learn
coherent sets—regions of stimulus state space whose trajectories evolve cohesively
over finite times—and assign membership indices to new stimuli. Coherent sets are
identified via spectral clustering of the stochastic Koopman operator (SKO), where
the sign pattern of a subdominant singular function partitions the state space into
minimally coupled regions. For multivariate Ornstein–Uhlenbeck processes, this
singular function reduces to a linear projection onto the dominant singular vector
of the whitened state-transition matrix. Encoding this singular vector as a receptive
field enables neurons to compute membership indices via the projection sign in a
biologically plausible manner. Each neuron detects either a predictive coherent
set (stimuli with common futures) or a retrospective coherent set (stimuli with
common pasts), suggesting a functional dichotomy among neurons. Since neurons
lack access to explicit dynamical equations, the requisite singular vectors must be
estimated directly from data, for example, via past–future canonical correlation
analysis on lag-vector representations—an approach that naturally extends to non-
linear dynamics. This framework provides a novel account of neuronal temporal
filtering, the ubiquity of rectification in neural responses, and known functional
dichotomies. Coherent-set clustering thus emerges as a fundamental computation
underlying sensory processing and transferable to bio-inspired artificial systems.

Neurons in early sensory areas are traditionally thought to extract from recent inputs low-dimensional
latent variables that are maximally informative about the near future [1, 2, 3, 4]. Such extraction
exploits statistical regularities acquired over evolutionary, developmental, and behavioral timescales
from previously encountered natural stimuli [5, 6, 7]. To formalize this intuition for temporally
correlated sensory stimuli, we postulate that they are generated by high-dimensional, potentially
nonlinear, stochastic dynamical processes, and conceptualize neurons as self-supervised learners of
coherent sets—regions of the stimulus state space that evolve cohesively over finite time intervals [8,
9]—thus enabling compact representations of sensory dynamics.

Coherent sets can be uncovered via spectral clustering of the stochastic Koopman operator (SKO)—a
linear, albeit infinite-dimensional, operator that evolves observables over a finite time interval [9, 10].
The sign of the first non-trivial (subdominant) singular function of the SKO partitions state space into
two minimally interacting coherent sets (Fig. 1a). Accordingly, a neuron can compute a membership
index of a new input by evaluating the sign of a subdominant singular function. Because singular
values and functions remain real even for irreversible dynamics, this approach generalizes metastable
set detection beyond the reversible cases that eigenfunction methods require [11].
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We demonstrate that for multivariate Ornstein–Uhlenbeck (OU) process [12]—a canonical example
of linear stochastic dynamics and a reasonable model of summed input to a neuron [13, 14]—a
subdominant singular function of the SKO corresponds to a projection of the input onto a singular
vector of the whitened finite-time transition matrix, Fig. 1b. A neuron that stores this singular vector
in its synaptic weights and temporal filter can compute the corresponding membership index via the
sign of the weighted sum of the inputs. Although the conventional spectral clustering framework
assumes stability, our singular function results extend to unstable systems by focusing on singular
values closest to one. In addition to projecting on the right singular vector predicting near-future
inputs (Fig. 1b), projecting on the left one is also possible—retrospecting the recent past (Fig.
1c). Because such projections require different synaptic weights and temporal filters they must be
implemented by distinct neurons.

Recognizing that the underlying dynamical equations are not available to neurons, a biologically
plausible detection of coherent sets requires a data-driven algorithm that can infer them directly from
observations. This can be done using past-future canonical correlation analysis (CCA) [15, 10] which
can be implemented locally [16]. This algorithm has the additional advantage of being applicable to
nonlinear dynamics: it relies on estimating a Galerkin projection of the SKO onto a chosen functional
basis via Monte Carlo integration over observed data. If the upstream neurons implement such
projection, the post-synaptic neuron could then locally learn a requisite singular vector and compute
a membership index via the sign of the weighted sum of the inputs.

Viewing neurons as coherent set detectors sheds light onto several longstanding neurophysiological
observations. First, temporal receptive fields of neurons emerge naturally as subdominant singular
vectors projecting input lag-vector representations of dynamical states. Second, the ubiquity of
response rectification in neurons, exemplified by the well-known ON/OFF segregation in early
visual circuits, is interpreted as a principled clustering mechanism. Finally, the theory predicts
complementary neuronal classes that predict near future using predictive coherent sets or retrospect
recent past using retrospective ones, consistent with known neuronal functional dichotomies such
as tufted versus mitral cells in the olfactory bulb or non-lagged versus lagged cells in the lateral
geniculate nucleus (LGN). Thus, the detection of coherent sets can serve as a powerful algorithmic
primitive for neural computation supporting prediction and retrospection. This offers insights into
biological processes and could inspire future artificial neural networks.

The remainder of the paper is organized as follows. Section 1 discusses related work. Section 2
reviews the definition of transfer operators, coherent sets and their connection to spectral clustering
through the singular functions of the SKO. In Section 3, we derive the central result: under OU
dynamics, the subdominant singular functions of the SKO correspond to dot products between the state
and the singular vectors of the whitened transition matrix. Section 4 reviews a data-driven algorithm
for identifying subdominant singular functions, which extends naturally to nonlinear dynamics and
defines neuronal units rectifying positive or negative parts of the subdominant singular function.
Section 5 analyzes and reviews several experimental datasets, interpreting temporal receptive fields
through the hypothesis that biological neurons cluster coherent sets.

Figure 1: Subdominant SKO singular functions partition states into coherent sets (blue vs red). (a)
For a one-dimensional double-well potential (black) the dominant singular function corresponds to
a stationary distribution (yellow) and the subdominant singular function (red-blue) partitions the
state space to minimize the leakage between the coherent sets. Left (b) and right (c) subdominant
singular functions partition the state space near a 2D saddle point based on shared future and past,
respectively. Black lines indicate attractive and repulsive invariant manifolds approximated by the
linear subspaces in the vicinity of the saddle point (circle). Left (green) and right (black) singular
vectors of the finite-time whitened transfer matrix, [u1u2]Λ[v1v2]

⊤. As the forecast horizon grows,
v1 becomes orthogonal to the stable subspace and u2 becomes orthogonal to the unstable subspace.
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1 Related Work

Viewing early sensory processing as efficient or predictive coding of natural stimuli has a long
tradition [5, 6, 7, 17, 2]. Closest to our work is the information bottleneck (IB) framework [1, 2, 3, 4],
which for Gaussian variables reduces to past–future CCA [18]. Extending IB to dynamical systems
and restricting compression to one bit corresponds to encoding the sign of the subdominant singular
function of the SKO. Compared to slow feature analysis [19, 20], we incorporate an explicit dynamical-
systems formulation and introduce a natural nonlinearity that enables hierarchical architectures
without hand-crafted features. Predictive and retrospective neuron classes have appeared in a lattice
filter model of the visual pathway [21], though that work was limited to linear processing. Relative
to predictive coding models [22, 23, 24, 21], where neurons emit prediction errors, our neurons
encode coherent-set memberships. While the ON/OFF division has been attributed to metabolic
efficiency [25], we propose a computational explanation. Our account of lagged and non-lagged LGN
cells differs from earlier models [26] by not relying on nonlinearity, suggesting that these types can
emerge alongside ON/OFF segregation.

Prediction and retrospection in saddle-point dynamics have been discussed in the context of un-
stable periodic orbits of chaotic attractors using the dominant mode of the local SKO (and its
adjoint) [27, 28], whereas we focus on a subdominant singular function defining a coherent set
pair [29, 9]. Saddle point analysis based on eigenfunctions instead of singular functions predicted
neuronal filters orthogonal to growing exponentials, yielding predictive neurons without considering
retrospection [30].

Clustering has been previously proposed as a model of static neuronal computation on temporally
uncorrelated inputs [31], capturing rectification and sparsity but not temporal receptive fields or
sensory dynamics. Probabilistic coding frameworks such as the Bayesian brain hypothesis [32]
have been widely studied although we are not aware of the suggestion that single neurons represent
eigenfunctions or singular functions of the SKO. Self-supervised learning has been applied to visual
networks [33], but these models typically omit analysis on the neuronal level. Koopman-based
objectives have recently been incorporated into deep architectures to extract predictive features [34].
In contrast, we use SKO singular functions to define coherent sets [29, 9], providing a direct
explanation for rectification and a principled division into predictive and retrospective neurons.

Estimation of singular functions from data originated in molecular dynamics as the VAMP frame-
work [11]. VAMPnets [35] learn such functions with deep ReLU networks trained by backpropagation.
In our model, features arise from rectified projections onto singular vectors within each neuron and
can be hierarchically composed without backpropagation.

2 Discovering coherent sets via spectral clustering of transfer operators

We begin with the concept of coherent sets, which are regions of state space that tend to move as a
whole under the stochastic dynamics over finite time intervals [29, 9]. Formally, a pair of sets (A,B)
is coherent if a state that begins in A at time t is very likely to be found in B at time t+ τ :

P[X(t+ τ) ∈ B | X(t) ∈ A] ≈ 1,

where P[X|Y ] is a probability of X given Y , X(t) ∈ X denotes the random state of the system at
time t. If in addition the probabilities of visiting A at time t and B at time t+ τ are equal, then this
relation works in both directions: observing the system in B at time t+ τ makes it likely that it was
in A at time t. Thus, membership in coherent sets, A and B, can be used to predict the future and
retrospect the past, respectively, of a stochastic process.

To compute coherent sets we utilize the stochastic Koopman operator (SKO), which encodes how
observables evolve in expectation [29, 9, 10], see the Supplement, Section 1 for a concise introduction.
An observable is any scalar function of X with a finite expectation value over the stochastic process.
For instance, from the neuron’s perspective, each synaptic input can be thought of as such an
observable of stimuli. The SKO acts on an observable f

Kτf(x) = E[f(X(t+ τ))|X(t) = x], (1)

i.e. it maps the present observable to its expected value τ units of time later. Linearity of the
expectation makes Kτ a linear operator.
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Let µ(x) and ν(x) denote the probability densities of the system’s state at times t and t + τ ,
respectively [29, 9, 10]. For any measurable region A ⊆ X ,

P[X(t) ∈ A] =

∫
A
µ(x) dx, P[X(t+ τ) ∈ A] =

∫
A
ν(x) dx. (2)

These densities define inner products between functions f and g as

⟨f, g⟩µ =

∫
X
f(x)∗g(x)µ(x) dx, ⟨f, g⟩ν =

∫
X
f(x)∗g(x) ν(x) dx. (3)

When the state space is divided into two pairs of regions, identifying the most coherent ones amounts
to maximizing the following objective [9, 10]:

max
A,B

{
P
[
X(t+ τ) ∈ B

∣∣∣X(t) ∈ A
]
+ P

[
X(t+ τ) ∈ Bc

∣∣∣X(t) ∈ Ac
]}

= max
A,B

{
⟨1A ,Kτ1B⟩µ
⟨1A ,1A⟩µ

+
⟨1Ac ,Kτ1Bc⟩µ
⟨1Ac ,1Ac⟩µ

}
,

subject to
∫
A
µ(x) dx = P[X(t) ∈ A] = P[X(t+ τ) ∈ B] =

∫
B
ν(x) dx,

(4)

where (A,B) are measurable subsets of the state space X , and (Ac,Bc) denote their complements.
The indicator function 1A(x) equals 1 if x ∈ A and 0 otherwise. Large values of the objective
correspond to pairs of regions that remain coherent under the dynamics—that is, regions that are least
dispersive over the time interval τ .

In practice, the maximizers of this quotient are well-approximated by certain singular functions of
the SKO [29, 9, 10]. To see this, note that Kτ has an adjoint operator K†

τ , defined so that

⟨f,Kτg⟩µ = ⟨K†
τf, g⟩ν . (5)

The finite-time forward-backward and backward-forward operators

Fτ = KτK†
τ , Bτ = K†

τKτ (6)

are then self-adjoint and, under mild assumptions, compact [10, 15]. As such, each admits a countable
spectral decomposition in terms of orthonormal basis

Fτ =

D∑
i=0

λ2
i vi ⟨vi, ·⟩µ, Bτ =

D∑
i=0

λ2
i ui ⟨ui, ·⟩ν , (7)

where D may be infinite. The functions ui(x) and vi(x) are the singular functions of Kτ , satisfying

[Kτui](x) = λivi(x), [K†
τvi](x) = λiui(x). (8)

Pairs of singular functions with large λi are approximate maximizers of (4). Moreover, the sets

V±
i = {x : ±vi(x) > 0}, U±

i = {x : ±ui(x) > 0}, (9)

approximate coherent sets, where U±
i is approximately the image of V±

i under the dynamics.

The principal singular functions of the SKO are trivial, u0(x) = v0(x) = 1: they define the trivial
coherent set, U0 = V0 = X . The subdominant singular functions define the least dispersive non-trivial
coherent set pair of the dynamics, (V±

i ,U±
i ). We propose that the neurons compute membership

indices by evaluating the signs of such singular functions. Left singular functions look forward in
time predicting the future. Right singular functions look backward in time allowing to retrospect
past events. Both types of measurements are important in ascertaining the state of partially observed
dynamical systems, and we predict the existence of both predictive and retrospective neurons.

3 Koopman singular functions for Ornstein-Uhlenbeck processes

Identifying coherent sets through the subdominant singular functions of the SKO provides a rigorous
theoretical framework, whose application requires computing these singular functions. In this section,
we attempt to provide an intuitive picture by considering a linear stochastic dynamical system — OU
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process — for which subdominant SKO singular functions can be found in the closed form providing
much needed intuition. The temporal dynamics of neuronal input currents elicited by sensory stimuli
has long been approximated by the OU process [13, 14]:

dx(t)

dt
= Ax(t) + ξ(t), (10)

where ⟨ξ(t)ξ(t′)⊤⟩ = Dδ(t − t′). Here, we assume that A is a real matrix with real eigenvalues
and eigenvectors. We are particularly interested in saddle-point OU for the following reasons. If a
critical point is purely repulsive, it will not be visited by the autonomous dynamics and, hence, will
be physically irrelevant. Applying this approach to nearly isotropic attractive critical points gives
partitions that are not ‘distinguished’ [9], i.e. do not represent a genuine clustering of states which
could describe qualitatively different parts of the phase space.

The probability density of the state variable x, p(x, t), evolves according to the forward Kolmogorov
equation (aka the Fokker-Planck equation) utilizing the forward Kolmogorov operator L [36]:

∂p(x, t)

∂t
= L p(x, t) ≡ −∇ · (Ax p(x, t)) +

1

2
∇ · (D∇p(x, t)). (11)

The dynamics of measurement expectation g(x, t) = E[g(X(t))|X(0) = x] are given by the
backward Kolmogorov equation:

∂g(x, t)

∂t
= L†g(x, t) ≡ (Ax) · ∇ g(x, t) +

1

2
∇ · (D∇g(x, t)), (12)

where L† is the adjoint of the forward Kolmogorov operator with respect to the standard Euclidean
inner product, serving as the generator of the SKO:

Kτ = exp (L†τ). (13)

The stationary distribution of probability density under L, satisfying Lρ0 = 0, is derived in the
Supplement, Section 2:

ρ0(x) ∼ exp

(
−1

2
x⊤Σ−1x

)
, (14)

where x ∈ Rn and Σ is a solution of the Lyapunov equation,

AΣ+ΣA⊤ = −D. (15)

For attractive dynamics, where all eigenvalues of A have negative real parts, Eq. (15) has a unique
positive-definite solution corresponding to the covariance matrix, Σ = E

[
xx⊤]. For repulsive or

saddle-point dynamics, Eq. (15) is a Sylvester equation, which has a unique solution if and only if
A has no eigenvalues related by sign reversal [37]. Thus, for a generic choice of A, Eq. (15) has
a unique solution that is symmetric, real, and invertible. For repulsive directions, corresponding to
eigenvalues of A with positive real parts, Eq. (14) characterizes how fast the density grows away
from the fixed point [38].

Under stationarity, µ(x) = ν(x) = ρ0(x), the adjoint of Kτ with respect to ρ0(x) is given by

K†
τ = diag(ρ0)−1 exp (Lτ)diag(ρ0), (16)

which is termed the reweighted Perron-Fronbenius operator and can also be interpreted as the SKO
of the reverse-time dynamics. We then search for the eigenfunctions of the operators Fτ and Bτ , Eq.
(6), which are well defined on short time scales.

We find (see the Supplement, Section 3) a family of eigenfunctions of Fτ ,Bτ that can be expressed
in terms of the linear projection of the state vector, x:

Fτ (vi
⊤x) = λ2

i (vi
⊤x), Bτ (ui

⊤x) = λ2
i (ui

⊤x), (17)

where ui and vi satisfy the following matrix eigenvector equations (see the Supplement, Section 3):

eA
⊤τΣ−1eAτΣvi = λ2

ivi, Σ−1eAτΣeA
⊤τui = λ2

iui. (18)

Eigenvalues of transfer operators for expanding maps could be greater than one [39]. Since ideal
coherent sets with zero leakage correspond to a unity eigenvalue, in this paper a subdominant
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eigenfunction refers to the non-trivial eigenfunction associated with an eigenvalue closest to one.
That is, the subdominant eigenfunction for attractive (repulsive) dynamics is associated with the
second largest (smallest) eigenvalue. We proved that the subdominant eigenfunctions belong to the
linear family Eq. (17) for attractive and repulsive dynamics. Other eigenfunctions of Fτ ,Bτ are either
a constant, associated with the eigenvalue one, that does not change sign, or represent higher-order
polynomials in x, associated with less dominant eigenvalues (see the Supplement, Section 3, which,
however, does not consider saddle points). Therefore, to identify the least dispersive coherent sets, it
is sufficient to focus on the eigenfunctions in Eqs. (17). The pair of minimally leaking coherent sets
is given by the solution of Eqs. (18) with λ2

i closest to unity. To obtain the coherent set membership
indices, we recover indicator functions, Eq. (4), by taking the sign of these singular functions.

Eigenvectors vi and ui play a complementary role in prediction and retrospection. As the operator
Fτ propagates observables forward then backward in time, neurons projecting inputs onto vi are
predictive (Fig. 1b). As the operator Bτ propagates the observable backward then forward in time,
neurons projecting inputs onto ui are retrospective (Fig. 1c). In the case of 2D saddle-point OU (Fig.
1b,c), when the shared past and future refer to other fixed points, the coherent sets of interest are the
expanding coherent set for prediction (v1) and the contracting coherent set for retrospection (u2).
In Section 4 of the Supplement, we analytically prove that, as the forecast horizon goes to infinity,
singular vectors v1 and u2 converge to the top and bottom left eigenvector of A which are orthogonal
to the stable and unstable invariant subspaces, respectively.

So far we considered fully observable OU processes. However, in reality, the OU process is often
only partially observed for example via a linear projection of the state onto a scalar variable,

y(t) = Cx(t). (19)

Neurally, such projection can be an input to a single-synapse neuron or a summed total synaptic
current. Assuming observability, the state can be represented by an n-dimensional lag vector [40]:

x̂(t) = [y(t), y(t− 1), . . . , y(t− n+ 1)]⊤, (20)

evolving via a companion matrix, equivalent to the following auto-regressive model:

y(t+ 1) = a1y(t) + a2y(t− 1) + · · ·+ any(t− n+ 1) + ξ(t). (21)

4 Coherent sets from data

The infinite-dimensional stochastic Koopman operator (SKO) can be approximated by a Galerkin
projection onto a finite set of basis functions (or features), {ϕi(x) }di=1 [41, 10]. In the data-driven
formulation, the SKO matrix representation under this basis is [15, 10] (see Supplement, Section 5):

Kτ = Σ−1
0 Στ , (22)

where Σ0 and Στ are the covariance matrices:

[Σ0]ij ≈
1

S

S∑
s=1

ϕi(X(ts))ϕj(X(ts)), [Στ ]ij ≈
1

S

S∑
s=1

ϕi(X(ts))ϕj(X(ts + τ)), (23)

and describe the correlation between measurement functions i and j measured instantaneously, or
with delay τ , respectively.

Such matrices are well defined if the process is stationary which may not be true for neurons. A
common workaround is to assume local stationarity, that is, the distribution of inputs changes slowly
compared to the timescale of the dynamics. In this case, the neuron can continuously update the
estimate of the dynamics using exponential forgetting [42]. Our method can accommodate this type
of non-stationarity by computing Eqs. (23) locally in time, using a temporal filter that discounts
older observations. This allows the estimated covariances to track gradual changes in the underlying
distribution without assuming global stationarity.

As a direct consequence of Eq. (5), the adjoint of Kτ is K†
τ = Σ−1

0 K⊤
τ Σ0. The forward and

backward operators have matrix representations [15, 10]:

Fτ = KτΣ
−1
0 K⊤

τ Σ0 = Σ−1
0 ΣτΣ

−1
0 Σ−τ , Bτ = Σ−1

0 K⊤
τ Σ0Kτ = Σ−1

0 Σ−τΣ
−1
0 Στ , (24)
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which reduce to Eq. (18) for attractive OU processes (see the Supplement, Section 6). The singular
functions of the SKO within the Galerkin projection are given by

vi(x) = v⃗i · ϕ⃗(x), ui(x) = u⃗i · ϕ⃗(x), (25)

where v⃗i and u⃗i are eigenvectors of the matrices Fτ and Bτ , respectively. Notice that v⃗i and u⃗i are
precisely the solution of past-future CCA.

By representing these eigenvectors in synaptic weights and temporal filters, a neuron may compute a
leading singular function of the SKO restricted to the linear span of its input features. By indicating
the sign of the singular function, the neuron then computes the membership index for each input. For
the sake of simplicity, below we only consider the temporal component of the singular vector. Even
if the neuron has access to only a single synapse, it can retain a history of that synapse’s activity over
d consecutive time steps. This construction—known as delay embedding or delay coordinates [43]—
yields also a Galerkin approximation. We take x ∈ Rd to be a lag vector of the input current to the
neuron over the previous d intervals of time, such that X(t) = (I(t), I(t−∆t), . . . , I(t−(d−1)∆t)),
where I(t) is the observed current at time t. In this regime, the basis functions are given by

ϕi(x) = xi, (26)

i.e. ϕ⃗(x) is the identity function. Singular vectors act as temporal filters over the delayed signal, to

r±,i
pre(t) = H (±vi(X(t))) = H

(
±

d−1∑
k=0

[v⃗i]kI(t− k∆t)

)
,

r±,i
ret (t) = H (±ui(X(t))) = H

(
±

d−1∑
k=0

[u⃗i]kI(t− k∆t)

)
, (27)

where u⃗i and v⃗i are singular vectors (cf. Eq. (25)), and the Heaviside function, H(x) = 1 for x ≥ 0,
and H(x) = 0 for x < 0.

Therefore, sensory streams can be clustered into coherent sets via data-driven Galerkin approximations
of the SKO. By learning the singular vectors from the features represented by the activity of the
upstream neurons and encoding them in the synaptic weight and temporal filters, biological neurons
can cluster inputs using integrate-and-fire dynamics.

5 Coherent set clustering perspective on neurophysiology

Here we apply the coherent set clustering framework to biological neurons focusing on three ob-
servations: temporal receptive fields, neuronal rectification and predictive/retrospective properties.
We restrict our consideration to the processing of a scalar time series viewed as a one-dimensional
projection of a multidimensional state-space dynamics, Eq. (27). Such a scalar time series could
represent an input to a single-input neuron or the total synaptic current into a multi-input neuron.
Here, inspired by our result for OU processes that the relevant singular functions lie in the span of a
lag vector basis, we choose Eq. (26) even in the data-driven, non-linear setting. Even such simple
basis choice produces tangible results.

5.1 Temporal receptive fields

We consider early visual processing where a natural stimulus can be generated by emulating the
movement of the retinal image due to self-motion or saccades by scanning a natural image or its
model. In turn, natural images are commonly modeled by the "dead leaves" model partitioning the
space into patches of different but uniform luminance with sharp transitions between them [44].
Therefore, the resulting input time series is a set of plateaus at different levels with sharp transitions
between them, Fig. 2a. Such scalar time series models input to post-photoreceptor neurons for
invertebrates such as Drosophila, where initial processing is segregated between adjacent "pixels" or
total current in a vertebrate bipolar cell.

We view this scalar time series as a linear projection of a high-dimensional dynamical system.
Thus, we perform past-future CCA on the lag-vectors formed from the scalar time series. The
canonical correlations reveal a spectral gap following the top two. The lag-vector space is partitioned
into a pair of coherent sets in a canonical direction. The top right singular vector amounts to a

7



low-pass filter (Fig. 2b) similar to sustained bipolar cells of the vertebrate retina or L3 neuron in
Drosophila [45]. The second canonical direction acts as a smoothed temporal derivative (Fig. 2b)
in general agreement with experimentally reported filters of transient bipolars in vertebrates, Fig.
2c or L1 and L2 cells in Drosophila [22, 45]. Because the stimulus is symmetric with respect to
time-reversal, the complementary left singular vectors are obtained by simply inverting the time axis
(and inverting the sign for the second singular vector).

We further characterize the experimentally measured temporal responses by interpreting them from
the perspective of predictive and retrospective coherent sets. To make this connection, we take
advantage of the observation that a practical predictive filter must be significantly aligned with an
unstable eigendirection and a practical retrospective filter must be significantly aligned with a stable
eigendirection, Fig. 1b,c. Moreover, for a two-dimensional (hyperbolic) saddle point, the linear
temporal filter of the predictive neuron must be orthogonal to the attractive subspace, while the linear
temporal filter of the retrospective neuron must be orthogonal to the repulsive subspace, Fig. 1b,c,
see Section 3 and the Supplement, Section 4. Repulsive modes in the lag-vector space are expanding
exponentials in real time and attractive modes are contracting exponentials, suggesting a simple way
to interpret linear temporal receptive fields by computing the cosine similarity, S, with exponentials
or, equivalently, computing normalized Laplace transforms, Fig. 2c,d. The experimentally measured
temporal filter is orthogonal to a contracting exponential and aligned with the expanding exponential
(Fig. 2c,d), indicating a predictive neuron. For details, see the Supplement, Section 7.

Figure 2: Data-driven temporal filters learned on the scalar time series from the natural image
model compared with that of a bipolar cell. (a) Stimulus produced by the "dead leaves" model
of natural images [44] (green), stimulus filtered through first (dashed black) and second (solid
black) right singular vectors. (b) First (dashed) and second (solid) right singular vectors from Eq.
(24) corresponding to predictive neurons. (c) Black: experimentally measured flash response of
the salamander retinal bipolar cell (D.B. Kastner & S.A. Baccus, personal communication) on the
inverted time axis approximates its linear filter. Compare this with with the second singular vector
(solid) in b. Note that the decay of the filter at zero time delay (absent in the theoretical result without
additional constraints) is a consequence of causality and continuity of the filter implementation by a
biological system. The maximally aligned (red) and the orthogonal (blue) exponentials are overlaid.
(d) Cosine similarities of the temporal filters with a battery of exponentials. Blue dot indicates
orthogonality and red triangle indicates maximum alignment. Closer alignment with expanding
exponentials and orthogonality to a contracting exponential indicates the neuron’s predictive nature.

5.2 Neuronal rectification exemplified by ON and OFF cells

Our coherent set clustering perspective suggests that neurons determine membership indices by
applying a Heaviside step-function to the SKO singular function (or its sign-inverse), Eq.(27). Such
non-linearity could be naturally implemented by the spiking mechanism and correspond to the ON
and OFF ganglion cells of the vertebrate retina, named this way because they respond to luminance
increments and decrements, respectively. However, neurons post-synaptic to photoreceptors, bipolar
cells in vertebrates and large monopolar cells in flies, are non-spiking. Neuronal activity is represented
by continuously varying graded potentials that determine a non-negative synaptic vesicle release rate.
Many such neurons thus rectify their input and are also classified as either ON or OFF cell. Such
rectified response to luminance variation is graded and could be viewed as soft clustering by using
not only the sign but also the magnitude of the singular function, Fig. 1, resulting in a rectified linear
unit (ReLU)-like operation.

5.3 Predictive and retrospective properties of biological neurons

In this Subsection, we analyze and review large datasets of experimentally measured temporal
receptive fields from the perspective of predictive and retrospective coherent sets.
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Tufted and mitral cells of the mammalian olfactory bulb. In mammals, information from olfactory
sensory neurons is relayed to the rest of the brain by two neuron classes: tufted cells (TCs) and mitral
cells (MCs). We analyzed a dataset of the temporal receptive fields of 204 TCs and MCs recorded
blindly from the rat olfactory bulb [46] from the coherent set clustering perspective. As described
above (5.1, Temporal Receptive Fields), we computed the cosine similarity of experimentally mea-
sured temporal filters with a battery of growing and decaying exponentials. In addition to identifying
the orthogonal exponential, we also identified the sign of the exponent which has the highest cosine
similarity with the temporal filter: positive exponents correspond to predictive neurons, and negative
to retrospective. As a result, we found a mixture of predictive and retrospective properties, Fig. 3.
Approximately half of the recorded cells had temporal filters orthogonal to decaying exponentials
and, therefore, were likely predictive. About 4% were orthogonal to growing exponentials and,
hence, were likely retrospective. About one-third were orthogonal to both growing and decaying
exponentials suggesting that they analyze a higher- than 2-dimensional dynamics and could be either
retrospective or predictive. See the Supplement, Section 7 for details.

We speculate that TCs and MCs are mostly predictive and retrospective, respectively, based on the
existing literature. First, they respond at different phases of the sniff cycle as monitored by air
flow [47]: TCs are preferentially active during the exponential growth phase and silent during the
exponential decay phase. Conversely, MCs are preferentially active during the exponential decay
phase and silent during the exponential growth phase. Second, MC responses lag relative to TCs
suggesting they play a different role [47, 48, 49, 50], but see [51, 52]. Finally, TCs and MCs differ
in their responses to synaptic inputs from the electrophysiologically stimulated olfactory sensory
neurons [53]: TCs receive direct inputs and respond with an immediate biphasic profile typical of
prediction, while MCs are activated indirectly with a delay characteristic of retrospection.

Figure 3: Temporal receptive fields of olfactory bulb and retinal neurons interpreted through the lens
of coherent sets exhibit predictive and retrospective properties. (a) Linear temporal filters (black) from
three rat olfactory bulb tufted/mitral neurons [46]. Solid colored lines are orthogonal exponentials;
dotted colored lines are aligned exponentials. Top insets show the cosine similarity, S, of the temporal
filter with exponentials. Orthogonal and aligned values are marked by dots and triangles, respectively.
Bottom insets show convolution of the filter with a step pulse. The first neuron is orthogonal to a
decaying and aligned with expanding exponentials and interpreted as predictive. The second neuron
is orthogonal to an expanding and aligned with decaying exponentials and interpreted as retrospective.
The third neuron is orthogonal to both a decaying and expanding exponential but aligned to an
expanding one. (b) Left, for each tufted/mitral cell, the α value yielding an orthogonal exponential is
plotted against the α that is maximally aligned. Filled dots indicate neurons orthogonal to a single α.
Open dots indicate neurons orthogonal to two α values. Right, The proportion of cells orthogonal to
a negative exponential only, a positive exponential only, both, or neither is shown in the bar graph.
95% confidence intervals of the mean obtained through a binomial fit are plotted as black lines. (c)
Same as b but for retinal ganglion cells (RGCs). See Fig. S1 for example temporal receptive fields.
Note that very few RGCs are orthogonal to expanding exponentials.

Retinal ganglion cells (RGCs). To explore whether the distributions of predictive and retrospective
neurons vary across sensory modalities, we analyzed a large dataset of temporal receptive fields
of 1345 RGCs from dissociated vertebrate retina [54], Figs. S1, 3C. In vertebrates, signals from
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differentially stimulated photoreceptors are combined in the retina and, therefore, an RGC’s receptive
field has a spatial component. Here, we only focus on the temporal component obtained by a rank-1
decomposition of the spatio-temporal receptive field. The majority of RGCs’ receptive fields were
orthogonal to decaying exponentials and aligned with expanding exponentials, hence predictive,
though 1% of cells were retrospective, Fig. 3C. See the Supplement, Section 7 for details.

Lagged and non-lagged cells in the Lateral Geniculate Nucleus. RGCs project to the Lateral
Geniculate Nucleus (LGN) [55], in which two classes of relay cells have been described in cat
[56, 57, 58], monkey [59], and mouse [60]: one with the temporal receptive fields of predictive
cells and one with retrospective properties, Fig. S2. Because the firing of the latter class of neurons
substantially lags a step stimulus onset, they were termed "lagged cells". Comparing the response
profiles of our dataset of tufted/mitral cells to a step stimulus provides insight into how lagged cells
may manifest, Fig. 3A. Note that the middle, retrospective, neuron is initially inhibited by the positive
step response, but overcomes this inhibition due to the delayed positive filter lobe. Thus, we identify
non-lagged and lagged neurons with predictive and retrospective units, respectively.

6 Discussion

We propose that neurons act as coherent–set detectors: each unit computes a linear projection of
its input onto a singular vector of a whitened finite–time transition matrix and then takes the sign
or rectifies its positive or negative part. We derive this mechanism analytically for saddle–point
Ornstein–Uhlenbeck (OU) dynamics and suggest that it extends to nonlinear systems via Galerkin
projection on a chosen feature basis. In practice, a leading singular function can be learned directly
from data, providing a path toward biologically plausible implementations (e.g., local weight updates).
This perspective captures several physiological regularities, including rectification and selective sensi-
tivity to temporally extended (finite–time) structure in stimuli as well as predictive and retrospective
neuron types.

Open issues:
(i) Unstable modes and reference measures. Section 3 characterizes SKO singular functions for
the OU model, but linking them to the spectral clustering framework of Section 2 under instability
requires a reference measure that decays away from the saddle neighborhood. Practically, this sug-
gests finite–time localization (windowing), exponential discounting, or committor/Doob–transformed
weights so that the inner product prioritizes trajectories that remain near the saddle. Interpreting
the OU model as a local description then would render the spectral objects well posed on that
neighborhood.
(ii) Data–driven estimation along unstable directions. The Galerkin procedure of Section 4 matches
the OU analysis for stable modes; extending it to unstable modes likely requires modified for-
ward–backward compositions over short horizons so that finite–time expansion (singular values (>1))
is preserved rather than suppressed by whitening. Establishing a rigorous equivalence in this regime
remains open.
(iii) Beyond 2D saddles. The correspondence between finite–time singular vectors and eigenvectors
shown for 2D saddles may not extend to higher dimensions, especially with multiple unstable direc-
tions. Systematic analysis in higher–dimensional settings is needed.
(iv) Circuit feedback loops. While many early sensory pathways are predominantly feedforward
and fall within our framework, feedback is ubiquitous in deeper circuits. Incorporating explicit
closed–loop interactions—for example, via the controller perspective of [61]—could unify coher-
ent–set detection with action selection and behavior generation.
(v) Intra–neuronal feedback. In our current account, rectification follows linear projection and does
not influence learning of synaptic weights or temporal filters. In reality, synaptic plasticity may
depend on rectified output via dendritic backpropagation. Incorporating such output into projection
learning could provide the needed windowing for local learning mechanisms.

Societal impact. By linking biological neural computation to finite-time dynamical structure, this
work advances our understanding of brain function and may inform approaches to mental health and
neurological disorders. It could also inspire biologically grounded, self-supervised architectures for
artificial neural networks operating in dynamical settings.
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Justification: Error bars in Figure 3C indicate 95% confidence intervals of the mean, obtained574

through a binomial fit. No statistical tests were performed.575

Guidelines:576

• The answer NA means that the paper does not include experiments.577
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-578

dence intervals, or statistical significance tests, at least for the experiments that support579

the main claims of the paper.580

• The factors of variability that the error bars are capturing should be clearly stated (for581

example, train/test split, initialization, random drawing of some parameter, or overall582

run with given experimental conditions).583

• The method for calculating the error bars should be explained (closed form formula,584

call to a library function, bootstrap, etc.)585

• The assumptions made should be given (e.g., Normally distributed errors).586

• It should be clear whether the error bar is the standard deviation or the standard error587

of the mean.588

• It is OK to report 1-sigma error bars, but one should state it. The authors should589

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis590

of Normality of errors is not verified.591

• For asymmetric distributions, the authors should be careful not to show in tables or592

figures symmetric error bars that would yield results that are out of range (e.g. negative593

error rates).594

• If error bars are reported in tables or plots, The authors should explain in the text how595

they were calculated and reference the corresponding figures or tables in the text.596

8. Experiments compute resources597

Question: For each experiment, does the paper provide sufficient information on the com-598

puter resources (type of compute workers, memory, time of execution) needed to reproduce599

the experiments?600

Answer: [Yes]601

Justification: The modest compute requirements are described in the supplemental material.602

Guidelines:603

• The answer NA means that the paper does not include experiments.604

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,605

or cloud provider, including relevant memory and storage.606

• The paper should provide the amount of compute required for each of the individual607

experimental runs as well as estimate the total compute.608

• The paper should disclose whether the full research project required more compute609

than the experiments reported in the paper (e.g., preliminary or failed experiments that610

didn’t make it into the paper).611

9. Code of ethics612

Question: Does the research conducted in the paper conform, in every respect, with the613

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?614

Answer: [Yes]615

Justification: Our work conforms in every respect with the NeurIPS Code of Ethics616

Guidelines:617

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.618

• If the authors answer No, they should explain the special circumstances that require a619

deviation from the Code of Ethics.620

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-621

eration due to laws or regulations in their jurisdiction).622

10. Broader impacts623

Question: Does the paper discuss both potential positive societal impacts and negative624

societal impacts of the work performed?625

Answer: [Yes]626

Justification: Discussed at the end of the paper. The work is foundational research that can627

facilitate our understanding of the brain and facilitate designing biologically inspired neural628

networks.629
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Guidelines:630

• The answer NA means that there is no societal impact of the work performed.631

• If the authors answer NA or No, they should explain why their work has no societal632

impact or why the paper does not address societal impact.633

• Examples of negative societal impacts include potential malicious or unintended uses634

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations635

(e.g., deployment of technologies that could make decisions that unfairly impact specific636

groups), privacy considerations, and security considerations.637

• The conference expects that many papers will be foundational research and not tied638

to particular applications, let alone deployments. However, if there is a direct path to639

any negative applications, the authors should point it out. For example, it is legitimate640

to point out that an improvement in the quality of generative models could be used to641

generate deepfakes for disinformation. On the other hand, it is not needed to point out642

that a generic algorithm for optimizing neural networks could enable people to train643

models that generate Deepfakes faster.644

• The authors should consider possible harms that could arise when the technology is645

being used as intended and functioning correctly, harms that could arise when the646

technology is being used as intended but gives incorrect results, and harms following647

from (intentional or unintentional) misuse of the technology.648

• If there are negative societal impacts, the authors could also discuss possible mitigation649

strategies (e.g., gated release of models, providing defenses in addition to attacks,650

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from651

feedback over time, improving the efficiency and accessibility of ML).652

11. Safeguards653

Question: Does the paper describe safeguards that have been put in place for responsible654

release of data or models that have a high risk for misuse (e.g., pretrained language models,655

image generators, or scraped datasets)?656

Answer: [NA]657

Justification: Our paper poses no such risks.658

Guidelines:659

• The answer NA means that the paper poses no such risks.660

• Released models that have a high risk for misuse or dual-use should be released with661

necessary safeguards to allow for controlled use of the model, for example by requiring662

that users adhere to usage guidelines or restrictions to access the model or implementing663

safety filters.664

• Datasets that have been scraped from the Internet could pose safety risks. The authors665

should describe how they avoided releasing unsafe images.666

• We recognize that providing effective safeguards is challenging, and many papers do667

not require this, but we encourage authors to take this into account and make a best668

faith effort.669

12. Licenses for existing assets670

Question: Are the creators or original owners of assets (e.g., code, data, models), used in671

the paper, properly credited and are the license and terms of use explicitly mentioned and672

properly respected?673

Answer: [Yes]674

Justification: Datasets from two previously published studies were used to create Figure675

3. These papers are appropriately cited, but the datasets were obtained directly from their676

creators, and are not publicly licensed assets.677

Guidelines:678

• The answer NA means that the paper does not use existing assets.679

• The authors should cite the original paper that produced the code package or dataset.680

• The authors should state which version of the asset is used and, if possible, include a681

URL.682
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.683

• For scraped data from a particular source (e.g., website), the copyright and terms of684

service of that source should be provided.685

• If assets are released, the license, copyright information, and terms of use in the686

package should be provided. For popular datasets, paperswithcode.com/datasets687

has curated licenses for some datasets. Their licensing guide can help determine the688

license of a dataset.689

• For existing datasets that are re-packaged, both the original license and the license of690

the derived asset (if it has changed) should be provided.691

• If this information is not available online, the authors are encouraged to reach out to692

the asset’s creators.693

13. New assets694

Question: Are new assets introduced in the paper well documented and is the documentation695

provided alongside the assets?696

Answer: [NA]697

Justification: This paper does not release new assets.698

Guidelines:699

• The answer NA means that the paper does not release new assets.700

• Researchers should communicate the details of the dataset/code/model as part of their701

submissions via structured templates. This includes details about training, license,702

limitations, etc.703

• The paper should discuss whether and how consent was obtained from people whose704

asset is used.705

• At submission time, remember to anonymize your assets (if applicable). You can either706

create an anonymized URL or include an anonymized zip file.707

14. Crowdsourcing and research with human subjects708

Question: For crowdsourcing experiments and research with human subjects, does the paper709

include the full text of instructions given to participants and screenshots, if applicable, as710

well as details about compensation (if any)?711

Answer: [NA]712

Justification: We do not crowdsource nor use human subjects.713

Guidelines:714

• The answer NA means that the paper does not involve crowdsourcing nor research with715

human subjects.716

• Including this information in the supplemental material is fine, but if the main contribu-717

tion of the paper involves human subjects, then as much detail as possible should be718

included in the main paper.719

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,720

or other labor should be paid at least the minimum wage in the country of the data721

collector.722

15. Institutional review board (IRB) approvals or equivalent for research with human723

subjects724

Question: Does the paper describe potential risks incurred by study participants, whether725

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)726

approvals (or an equivalent approval/review based on the requirements of your country or727

institution) were obtained?728

Answer: [NA]729

Justification: We do not crowdsource nor use human subjects.730

Guidelines:731

• The answer NA means that the paper does not involve crowdsourcing nor research with732

human subjects.733
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• Depending on the country in which research is conducted, IRB approval (or equivalent)734

may be required for any human subjects research. If you obtained IRB approval, you735

should clearly state this in the paper.736

• We recognize that the procedures for this may vary significantly between institutions737

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the738

guidelines for their institution.739

• For initial submissions, do not include any information that would break anonymity (if740

applicable), such as the institution conducting the review.741

16. Declaration of LLM usage742

Question: Does the paper describe the usage of LLMs if it is an important, original, or743

non-standard component of the core methods in this research? Note that if the LLM is used744

only for writing, editing, or formatting purposes and does not impact the core methodology,745

scientific rigorousness, or originality of the research, declaration is not required.746

Answer: [NA]747

Justification: The core development in this research does not involve LLMs in any aspect.748

Guidelines:749

• The answer NA means that the core method development in this research does not750

involve LLMs as any important, original, or non-standard components.751

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)752

for what should or should not be described.753
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