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Abstract: Sim2Real (Simulation to Reality) techniques have gained prominence
in advancing robot grasping and manipulation, particularly in human-centered en-
vironments where adaptation to dynamic, unpredictable conditions is essential.
This paper introduces the Triple Regression framework, which uses a digital twin
in real time to enhance robot learning and interaction. The framework addresses
the reality gap in human-robot collaboration by: (1) mitigating projection errors
between real and simulated camera perspectives through dual regression models
and (2) detecting and compensating for discrepancies in robot control using a
third regression model. Experiments in picking up and pouring water from ran-
dom places, which are critical for collaborative robots in dynamic human envi-
ronments, demonstrate the effectiveness of our method with only the input of an
RGB camera. Our work enhances adaptive, real-time robotic decision making in
collaborative human-centered tasks and pushes the boundaries of robot learning
in both simulation and real-world scenarios.
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1 Introduction

Simulation plays a pivotal role in the development and validation of robotic systems. In human-
centered applications, the simulation environment can play a critical role in the design and testing of
robots. Creating such a simulation environment often encompasses (1) the creation of a digital twin
representing the actual manufacturing environment; (2) the planning and execution of various robot
decision trajectories within the simulation; (3) a thorough assessment of each trajectory’s outcomes;
and the deployment of the most effective trajectory in a real-world setting. The key is to improve
efficiency by automating the aforementioned stages.

Navigating simulation-to-reality (Sim2Real) applications presents two key challenges, often referred
to as the sim2real gap. First, it is difficult to build an accurate enough digital twin that captures the
real-world scenes in a simulation using sensor data (e.g. RGB images from cameras). Recent ad-
vances, such as 6D pose estimation [1, 2] and 3D scene reconstruction [3, 4], have made significant
strides in addressing this challenge. However, both approaches have limitations. The 6D pose esti-
mation method faces difficulties in generalizing to unfamiliar objects, while 3D scene reconstruction
[5], although capable of capturing intricate details in complex environments, often blurs the distinc-
tion between interactive and stationary objects, obscuring important object-specific details. The
second challenge, which arises from the unreal nature of simulated physics and dynamics, lies in the
seamless application of the simulation result in real-world situations [6].

To address the challenges above in Sim2Real and digital twin robotic applications, we introduce the
triple regression framework for cameras with undetermined intrinsic properties that include focal
length, camera resolution, and camera position.

• The first regression aligns the cameras in the real world with those in the simulated envi-
ronment.
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Figure 1: Text-to-action framework: Tasks described language are converted into a joint repre-
sentation which records spatial, and temporal information of the scene and task. A digital twin is
created based on semantic grounding and camera observation. Motions are planned in the simulator.
VQA is used to ascertain the success of the performed action

• The second regression estimates the target object’s position and subsequently places the
approximated object into the simulation space by leveraging image segmentation,

• The third regression is applied to compensate for errors originating from the simulated
robotic trajectory and dynamics.

Using the triple regression framework, we propose a practical framework for text-to-action tasks
as shown in Figure 1. The process begins with using semantic grounding to generate a joint task
representation, breaking the task down into multiple grab-and-place actions. Using the segmentation
modules [7], the dimensions and positions of these 3D objects are determined and integrated into a
simulation engine to create a digital twin in real time. Within the simulation, various trajectories are
created. A Visual Question Answering (VQA) model ensures task success. Subsequently, successful
simulations are implemented in the real world. This methodology offers an automated Sim2Real
workflow, notably requiring only a standard RGB camera and basic site measurements.

We conducted an experiment in which we pick up a jar at a random position and pour its water
into a cup at another random position. The success of the experiment requires the robot’s control
of rigid bodies and fluids and the plan to overcome random placement of the camera, robot, jar,
and cup. Experimental results show that our methodology provides an offline and zero-shot solution
(no training for the robot in real space) and improves the robot’s inference speed by at least 50%
compared to the state-of-the-art approach. Moreover, our methodology can improve the success rate
by 75% under the conditions of randomized object placement.

Our contribution can be summarized as (1) we present a systematic framework to tackle the reality
gap stemming from constructing real-time digital twins and migrating simulated trajectory to real-
ity; (2) we propose a Sim2Real solution for the robot manipulation tasks; (3) we demonstrate its
effectiveness through physical experiments on picking up and pouring tasks using a Kinova Gen 3
robot.

2 Method

2.1 Joint task planning module

The spatial-temporal-causal And-Or graph (STC-AOG) [8] is used as a task planning model to
represent the goal and the current cognitive state of the robot. This structure allows us to associate
spatial, temporal, and causal relationships within the task description. The task of pouring water
from a jar from a random position to a cup at another random position, is shown in Figure 2.

In general, an And-Or Graph consists of nodes and edges. The set of nodes includes Or node, And
node, and Terminal node. Each Or node specifies the Or relation: only one of its children nodes
would be performed at a given time. An And node represents the And relation and is composed
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Figure 2: Representation of pouring water from a jar to a cup with STC-AOG. The data struc-
ture reduces a sentence into subgoals for task planning.

of several children nodes. Each Terminal node represents a set of entities that cannot be further
decomposed. The edge represents the top-down sampling process from a parent node to its children
nodes. The root node of the And-Or tree is always an And node connected to a set of And/Or nodes.
Each And-node represents a sub-task which can be further decomposed into a series of sub-tasks or
atomic actions.

Causal relation. Causal knowledge represents the pre-conditions and the post-effects of atomic
actions. We define this knowledge as fluent changes caused by an action. Fluent can be viewed as
some essential properties in a state that can change over time, e.g., the temperature in a room and the
status of a heater. For each atomic action, there are pre-conditions characterized by certain fluents of
the states. For example, the water in the experiment should initially be in the jar and then transferred
to the cup.

Temporal relation. Temporal knowledge encodes the schedule for an agent to finish each sub-task.
It also contains the temporal relations between atomic actions in a low-level sub-task. The sub-task
of preparing in this study, for example, consists of picking up jar and pouring water from the jar to
the cup.

Spatial relation. Spatial knowledge represents the physical configuration of the environment that is
necessary to finish the task. In our case, to pick up the jar, the robot needs to know the location and
the rotation jar. This is determined by the following triple regression framework.

2.2 Triple Regression for Matching Simulation and Reality

The triple regression framework is designed to align the virtual environment with the real world. The
workflow is shown in Fig 3. The framework addresses reality gaps that are caused by (1) intrinsic
discrepancies between the real and simulated camera, (2) errors while comprehending scenes and
determining object locations, and (3) differences in executing planned trajectories between simulated
robot and real robot. Equation 1 gives a formal definition of aligning the parse graph in simulation,
pgs, with the parse graph in reality pgr, by aligning the camera, scene, and robot control separately.

P (pgs|pgr) =
∏

i∈{camera,scene,robot}

P (pgsi |pgri ) (1)

We define our symbols as follows. for a point p = (x, y, z) and its homogenous representation
p̃ = (x, y, z, 1), we define u = (xr, yr) to be the point in image captured by the real camera
and v = (xs, ys) to be the point in image captured by simulated camera. Their representations in
homogeneous coordinate is ũ = (xr, yr, 1) and ṽ = (xs, ys, 1).
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Figure 3: Workflow of triple regression framework. The framework creates digital twins by 1)
camera shots, 2) Semantic-based segmentation and contour extraction, 3) key point identification,
and 4) object placement in simulation. Plans are generated and simulated. Coordinates of successful
plans are corrected and executed in reality.

Camera alignment. The goal of the first regression is to align real and simulated cameras. In other
words, we aim to find a projection from v to u. In a projective camera model [9], this projection can
be modeled as in Equation 2, where M is defined in Equation 3.

ũ = M ṽ (2)

M =

[
A2×2 b2×1

c1×2 1

]
(3)

To estimate M , we construct a reference scene (table and camera) to mirror reality. 2D locations
of multiple reference points (eg. table corner and table center) captured in both simulated and real
cameras are recorded. M can then be derived with constrained multivariate regression.

Besides projective transformation, we also consider the 2D scaling and affine transformation. Ta-
ble 1 provides the final comparative analysis of the three regression methods.

Camera calibration and object allocation The goal of this phase is to estimate the intrinsics of the
simulated camera. Using this we can determine the 3D location of a point with 2D pixel locations.
Camera in the simulation environment can be modeled as a matrix C formed by multiplying intrinsic
I and extrinsic E defined in equation 4 and 5.

I =

[
fx 0 cx 0
0 fy cy 0
0 0 1 0

]
(4)

E =

[
R3×3 t
01×3 1

]
(5)

With this model, capturing an image can be modeled as transforming point world position p̃ to pixel
position ṽ as

ṽ = IEp̃ = Cp̃ (6)

The rotation matrix R and 3D translation t in Equation 5 can be obtained in the simulation envi-
ronment. By sampling multiple points in the simulation and camera, I can be estimated by solving
constrained least squares problems.

In our setup, all points were placed on planes (eg. table) with known normal n = (a, b, c). Com-
bining this constraint, we can solve for p̃ given ṽ in Equation 6 to determine the 3D location of a
point.
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Figure 4: Query fluent matching in robot execution. We select four crucial moments during the
execution of the robot in both simulation and reality and report GPT-4V’s VQA query answers for
the questionnaire: (1) Is the robot ready to pick up the jar? (2) Has the robot already picked up
the jar? (3) Is the jar above the cup? (4) Is the robot pouring water to the cup? Output from VQA
models and ground truths are shown

Segmentation modules are used to place the object. Anchor points and bounding boxes are generated
with pattern matching or text-to-image grounding models [10]. Contour lines of the objects are
extracted using [7] and key points are subsequently determined for cuboid and cylindrical objects.
We use these key points to align objects in simulation and reality.

Regression to accommodate miscellaneous errors. Another source of error is control discrepancy
and inaccuracy in constructing reference objects in the simulation. We employ another regression
model (Equation 7) to correct for robot movements. We collect points ps and manually adjust their
should-be position pr during robot execution. Coefficient D can be obtained by solving regression
problems. Note that p̃s and p̃r are the homogeneous representation of ps and pr

p̃s = Dp̃r (7)

2.3 Validating Sim2Real matching

Our approach to aligning simulation with reality during robot execution involves a multi-step strat-
egy.

Firstly, we emphasize the dynamic nature of conditions, termed as fluents, which can evolve over
time. To capture these evolving states, we continuously track changes in fluent at multiple time
points to ensure synchronization between the simulated and real-world environments.

Secondly, we introduce a structured questionnaire that prompts users to provide binary true-false
responses pertaining to the observed fluents. This questionnaire serves as a reliable ground truth ref-
erence, enabling us to quantitatively assess the correctness of simulation outputs. The questionnaire
consists of four questions. (1) Is the robot ready to pick up the jar? (2) Has the robot already picked
up the jar? (3) Is the jar above the cup? (4) Is the robot pouring water into the cup?

Lastly, we leverage advanced Visual Question Answering (VQA) models to analyze and interpret
the questionnaire responses. This model takes in an image of each fluent and answers the aforemen-
tioned prompts. An example of fluent matching is shown in 4

P (pgr|pgs) = exp(−
∑
i

|F r
i − F s

i |) (8)
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Given the parse graph in simulation pgs, its discrepancy with the parse graph, in reality, pgr is
estimated quantitatively by the hamming distance between fluents in reality and fluent in simulation
as shown in equation 8. F r

i (fluent in reality) and F s
i (fluent in simulation) are the VQA query

results (true/false) for each question i in the questionnaire above.

3 Experiment

The experiment section is organized into three parts: (1) ablation studies on the triple regression
framework, (2) grasp-and-pour experiments on a physical robot, and (3) comparisons of VQA mod-
els.

3.1 Ablation study on the triple regression framework

In this experiment, we validate the necessity of using the projective transformation model perspec-
tive discrepancy between real and simulated cameras. A consumer-grade Microsoft RGB camera
is mounted in some known location and direction above the table. The table is modeled in Nvidia
Omniverse corresponds to the real dimension, and the camera is placed with similar extrinsic that
mirror the reality. We align the cameras using three types of regression: full projective transforma-
tion, 2D scaling (A = 0 and c = 0 in Equation 3), and affine (c = 0 in Equation 3) A cube with
known dimension is placed at known locations both in reality and in simulation. We then compare
the pixel location of the 6 corners of the cube captured both in simulation and reality. Figure 1 sum-
marizes the correlation between the degree of freedom and the achieved Mean Square Error (MSE),
signifying the necessity of applying the projective transformation. Using this approach, errors from
Sim2Real point position mapping can be controlled as low as 2.7 pixels on average.

Table 1: Comparison of regression models used in camera alignment.

Regression method Degree of Freedom MSE
Simple linear 2 8.2± 4.3
Affine 6 5.1± 3.2
Projective 8 2.7± 2.8

3.2 Grasp and pour experiment

In this section, we first introduce our experiment settings. Subsequently, we explore multiple base-
line models for robot planning and control. We then compare our method with the baseline and
human performance, and finally, we summarize the results and failure cases.

(1) Setup: We conducted pick-and-pour experiments using a Kinova Gen3 7-dof robot, equipped
with a Robotiq 2f-85 gripper (jaw length 8.5cm), mounted on a table. The setup included a transpar-
ent jar (side length 6.5cm) and a blue cup (radius 8cm). For simulation purposes, we employed the
Isaac Sim platform powered by the PhysX engine, where we replicated the table and robotic arm.
To align the cameras, we compared their relative position in reality to that in Isaac Sim. Lula imple-
mentation of RRT (Rapidly-exploring random tree) [11] was used to generate multiple collision-free
paths. RMPflow was employed [12] to generate smooth policies to control the robot both in the real
world and in simulation. Following this, we input the command ”Pour water from the transparent
jar into the blue cup” into our Isaac Sim extension and monitored the outcome.

(2) Baseline models: We introduce two state-of-the-art models that serve as the robot motion plan-
ning module. The pre-trained 6D-CLIPort [13], which deals with multi-view observations and
language input and output a sequence of 6 degrees of freedom (DoF) actions. Another reinforce-
ment learning-based model planning (RL) [14], predicts the position and pose of the robot gripper
(end-effector) given the vision inputs and the target object name. We also consider the heuristic
results, i.e. to control the robot motion with the aid of human experts. This human-guided heuris-
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Table 2: Comparative analysis of four distinct methods’ performance of the pick-and-pour task.

Method Pick up Pour water Success
(soft)

Success
(hard)

CLIPort 5/20 5/20 5/20 4/20
RL 7/20 8/20 8/20 7/20
Ours 15/20 14/20 14/20 12/20

Heuristic 19/20 17/20 17/20 16/20

Table 3: VQA comparison: precision, recall, and F1 score by comparing the model prediction and
ground truth

Real scene Simulation Overall
P↑ R↑ F1 P↑ R↑ F1 P↑ R↑ F1 Consistency

ViLT 50.0% 46.2% 48.0% 42.9% 54.6% 48.0% 46.2% 50.0% 48.0% 87.5%
MiniGPT4 37.5% 46.2% 41.2% 50.0% 30.8% 38.1% 41.7% 38.5% 40.0% 75.0%
GPT-4V 85.7% 92.3% 88.9% 85.7% 85.7% 85.7% 85.7% 88.9% 87.3% 96.9%

tic not only serves as a benchmark of discernment but also offers a benchmark to compare human
mastery and our automated Sim2Real process.

(3) Result: The analysis of our experiment’s results reveals a compelling advancement in both the
realms of task execution speed and task success rate.

Figure 5: Task execution speed comparison. We compare our method with 6D-CLIPort, RL-based
robot motion planning, and human-guided heuristic control, and we measure the average execution
time for the whole task.

As shown in Figure 5, our method is remarkably time-saving, reducing the temporal requirements
by a significant margin. Specifically, compared by state-of-the-art RL [14] and 6D-CLIPort mod-
els [13], our methods exhibit a time reduction of 54.5%. Even compared with the human-guided
heuristic robot control, our methods exhibit a noteworthy 43.4% reduction in time requirements.
This substantial efficiency gain proves the efficacy of our approach in robotic decision-making and
manipulation.

In terms of task success rate (see Table 2), the 6D-CLIPort model exhibits a success rate of 25% for
both Pick up and Pour water tasks. Similarly, the RL model showcases slightly improved results,
with success rates of 35% for picking up and 40% for pouring water. In contrast, our proposed
method showcases a notable leap in performance, achieving a remarkable 75% success rate for
picking up and 70% for pouring water. This heightened performance substantiates the robustness
and efficacy of our approach in executing these intricate maneuvers.
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Furthermore, focusing on the Success (soft) (allowing a little bit of water leak) and Success (hard)
(not allowing water leak) metrics, our method again achieves a success rate of 70% and 60%, re-
spectively. While the 6DCLIPort and RL models exhibit success rates ranging from 20% to 40% in
these categories, our approach consistently demonstrates a superior ability to accomplish the task’s
objectives, even under more stringent conditions.

However, it’s crucial to acknowledge the human-guided heuristic method’s exceptional performance,
which stands out as a benchmark in this evaluation. With success rates of 95% for Pick up and 85%
for Pour water, as well as 85% and 80% success rates for Success (soft) and Success (hard).

(4) Failure cases: The major failure case (5 of 8) is when the cup or jar lies beyond the robot’s
configuration space. In such case, no plan generated inside the simulation environment reaches the
goal and thus no actions will be performed in the real world. Another failure case (3 of 8) is when
the segmentation module cannot output smooth contours for subsequent determination of key points,
causing our key point identification algorithm to generate inaccurate results.

In summation, the experiment results underscore our proposed method’s substantial advancements
in achieving successful task execution, positioning it as a promising contender against established
models. While the human-guided heuristic approach remains the gold standard, our approach show-
cases remarkable potential.

3.3 Comparison of VQA models

We delve into three VQA models to get query results from the questionnaire. The Vision-and-
Language Transformer (ViLT) [15] stands at the intersection of visual and linguistic understanding,
exhibiting a remarkable capability to seamlessly process and comprehend both visual and textual
information. On another model MiniGPT-4 [16] emerges as a compact yet potent architecture
consisting of the vision transform and large language models, showcasing impressive text generation
prowess within a more resource-efficient framework. Meanwhile, GPT-4 [17], the latest iteration
of the renowned GPT series, continues to push the boundaries of large-scale language modeling.
Boasting an extensive knowledge base, GPT-4 demonstrates an unparalleled aptitude for natural
language understanding, generation, and manipulation, thus serving as a pivotal milestone in the
progression of AI-driven language processing and generation. We apply the visual input API (GPT-
4V) of the GPT-4 for inference tasks.

Table 3 presents a comprehensive comparison of precision, recall, and F1 scores for query fluent re-
sults across real scenes, simulation, and overall performance. Notably, GPT-4V exhibits the highest
performance across multiple metrics, boasting an impressive precision, recall, and F1 score in both
real scene and simulation scenarios. ViLT and MiniGPT-4 also showcase varying degrees of per-
formance, with GPT-4V demonstrating superior consistency in matching simulation with reality, as
evidenced by its remarkable 96.9% consistency score. These results underline the efficacy of GPT-
4V in achieving a harmonious alignment between reality and simulation during robot execution.

4 Conclusion

To tackle the enduring challenges of connecting simulation to reality in robotic tasks, we intro-
duce the triple regression framework. This framework is designed to bridge the discrepancies aris-
ing from differences in camera parameters, projections, and control dynamics between simulated
and real-world settings. Utilizing this framework, we propose an innovative Sim2Real technique
for managing robotic grasping and manipulation. The robustness of our approach is demonstrated
through our grasp and pour experiments. Additionally, our integration of Vision-Language Mod-
els, And-Or graphs for task planning, and vision question and answering opens up new doors for
advancing future robotic applications.
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