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Abstract

Memory models play a pivotal role in elucidating the mechanisms through which bi-
ological and artificial neural networks store and retrieve information. Traditionally,
these models assume that memories are pre-determined, fixed before inference, and
stored within synaptic interactions. Yet, neural networks can also dynamically store
memories available only during inference within their activity. This capacity to
bind and manipulate variable information as variables enhances the generalization
capabilities of neural networks. Our research introduces and explores the concept
of "variable memories." This approach extends the conventional sequence memory
models, enabling information binding directly in network activity. By adopting this
novel memory perspective, we unveil the underlying computational processes in
the learned weights of RNNs on simple algorithmic tasks – a fundamental question
in the mechanistic understanding of neural networks. Our results underscore the
imperative to evolve memory models beyond the fixed memory assumption towards
more dynamic and flexible memory systems to further our understanding of neural
information processing.

1 Introduction

Associative memory models play a critical role in understanding modern neural network architectures
by unraveling their complex computational mechanisms. For instance, they have shed light on how
different activation functions affect the behavior of neural networks (Krotov and Hopfield, 2016)
and elucidated the powerful influence of the high-capacity attention mechanisms in transformer
architectures (Ramsauer et al., 2020). At the heart of these memory models is a fundamental
restrictive assumption: the memories, or the information the network uses to make predictions, are
fixed prior to inference, stored in synaptic interactions, and any retrieval process can only access these
pre-determined memories. This holds true in both single memory retrieval models (Hopfield, 1982;
Krotov and Hopfield, 2020) or the more recent extensions to sequence memory models (Karuvally
et al., 2022; Chaudhry et al., 2023). However, this fixed-memory assumption limits the purview of
memory models to address a limited set of questions pertaining to synaptic memory storage in neural
architectures. In addition to synaptic memory storage, neural networks can store memories in the
neural activity as a working memory. Although it might seem like the working memory does not
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Figure 1: Generalizable process on variable memories in an illustrative task of four variables,
each with five dimensions: A. The hidden state at time t has subspaces capable of storing external
information in their activities. The colors depict the vector components (or activity) of the hidden state
in the variable memory basis. The linear operator Φ acts on the hidden state such that these activities
are copied between variable memories except for Ψ4, which implements the a linear function f . B.
The N th variable contents are read during using appropriate linear operator Wr = Ψ∗

N .

rely on long term memories, they are essential in storing variable information for running abstract
computational processes stored in the long term memory. For instance, consider a neural network
learning to compute the sum of two numbers. With the fixed memory assumption, it would have
to store all possible pairings of numbers and their corresponding sums. But neural networks have
demonstrated the ability to learn and store the computational process of "addition" itself, instead of
storing individual outcomes for every possible input number pairs. Essentially, neural networks treat
the numbers as variables (stored in the neural activity), then a learned generalizable process (encoded
in the synapses) works on these variables to produce the necessary computation.

In this study, we address the limitation of fixed memories by proposing "variable memories", which
are memories stored in the activity of subspaces spanned by the fixed memories. We show how neural
networks use the inter-memory interactions of the sequence memory models to store computational
processes like variable addition which computes over the variables. This exploration not only offers
a new perspective on the memory paradigm but also opens up possibilities for the application of
memory models in the mechanistic interpretations of neural networks.

2 Related Works

Mechanistic Interpretability: Mechanistic interpretability seeks to reverse-engineer neural networks
to expose the underlying mechanisms enabling them to learn and adapt to previously unencountered
conditions. The prevailing strategy involves examining the networks’ internal “circuits" (Conmy et al.,
2023; Wang et al., 2022; Cammarata et al., 2020). Despite advancements, current approaches remain
confined to networks without a recurrent state like MLPs and transformers. Recurrent architectures,
which maintain and recursively update a hidden state for working memory storage, present a unique
challenge - information needs to be stored and processed over time (Cruse, 1996; Hochreiter and
Schmidhuber, 1997).

3 Variable Memories

We begin our discussion of variable memories by considering a discrete version of a recently
introduced sequence memory model with a pseudoinverse learning rule (Chaudhry et al., 2023) and a
readout layer. Specifically, we consider a discrete version of the Dense Sequence Memory Model
(Karuvally et al., 2022) under the following conditions: Tf = 1, Td = 0, and both the activation
functions σf , σh are identity functions. The activation σh is identity implies that the model is not
dense, and σf is identity means that the system is fully linear. It is essential to note that although
we formulate variable memories on a fully linear model, the mechanisms of information storage are
general enough to be applicable even in non-linear cases. Formally, we introduce variable memories
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in a linearized system defined by the following equations.

(1)
{
h(t) = ΞΦΞ† h(t− 1) ,

y(t) =Wr h(t) .

Here, Ξ,Φ,Wr are linear operators, h(t) is the hidden state, and y(t) is the output. We use a
simplifying assumption that Ξ has sufficient dimensions to represent all the variables required for
variable binding tasks. We further assume that h(0) is the zero vector. We define some terms that are
typical in the memory modeling literature. stored memories: The columns of the matrix Ξ are called
the stored memories. In memory modeling, these vectors represent the pre-determined memories that
are stored and retrieved from the system. inter-memory interactions: The Φ matrix in sequence
memory modeling is an adjacency matrix containing information about how the stored memories
interact over time. It is typically asymmetric which lends temporal behavior for the sequence memory
models.

To store variable information, we propose the stored memories as defining a vector space whose
activity is the necessary information to store. We make the assumption here that the stored memories
are linearly independent and has sufficient rank to encode the necessary information. To deal with this
new perspective on memories, we introduce the Dirac and Einstein notations from abstract algebra
(Appendix A.1). This new notation has two benefits - (1) the ability formalize variable binding
mechanisms independent of the basis, and (2) enables clear and concise representations. Formally,
we write any vector v as |v⟩ =

〈
ϵi
∣∣v〉 |ϵj⟩ = vi |ϵj⟩. |ϵj⟩ is the basis in which the vector has vector

components vi =
〈
ϵi
∣∣v〉. 〈ϵi∣∣ are the basis covectors defined such that

〈
ϵi
∣∣ϵj〉 = δij , and δij is the

Dirac delta function.

In the new notation, the model in Equation 1 evolving autonomously (without input) is reformulated
as follows.

|h(t)⟩ =
(
ξiµΦ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩ (2)

Here |ei⟩ is the standard basis vector which is typically used in simulations. To simplify this system
further, consider a new basis |ψµ⟩ = ξiµ |ei⟩.

|h(t+ 1)⟩ = (Φµν |ψµ⟩ ⟨ψν |) |h(t)⟩ (3)

In the new basis, the hidden state vector is |h(t)⟩ = hψµ |ψµ⟩. The new basis allows us to treat the
model as applying a single linear operator as opposed to three in the original formulation. Further,
the basis allows to view the stored memories as forming a vector space capable of storing variable
information in the hidden state activity.

A single fixed memory can store a real valued number as activity in its space. If we are required to
store a vector of real numbers, we need a collection of stored memories. This is a different notion of
memory storage where memories are stored in activity and not synapses meaning they can adapt to
different user inputs without change to any of the synapses. To highlight this difference in memory
storage, we call it the variable memory. The variable memory is a collection of stored memories
{Ψi} = {|ψµ⟩ : µ ∈ {(i− 1)d, . . . , id}} that forms a vector space storing memories as activity in
the space. Note that in the variable memory, the inter-memory interactions is encoding a process
which governs how the variables change over time rather than strict transition rules between fixed
memory items.

Example: Generalized Fibonacci Series. We consider a generalization of the Fibonacci sequence
where each element Fn ∈ Rd is a vector defined recursively as,

Fn =



u1 n = 1

u2 n = 2
...
us n = s∑n−1
t=n−s Ft n > s

(4)

For any ui ∈ Rd. In order to store this process of generating sequences of Fn, the vec-
tors u1, u2, . . . us needs to be stored as variables and recursively added to produce new out-
puts. In our framework, this can be accomplished by initializing the hidden state such that
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Task hidden size: 64 hidden size: 128
L2: 0.0 L2: 0.001 L2: 0.1 L2: 0.0 L2: 0.001 L2: 0.1

T1 — (0.97) — (0.88) — (0.50) 0.0005 (1.00) — (0.93) — (0.50)
T2 0.0075 (1.00) — (0.85) — (0.50) 0.0055 (0.98) 0.0031 (0.98) — (0.50)
T3 0.0026 (1.00) 0.0010 (0.97) — (0.50) 0.0031 (0.98) 0.0005 (1.00) — (0.50)
T4 0.0112 (0.94) 0.0011 (1.00) — (0.50) 0.0022 (1.00) 0.0006 (1.00) — (0.50)

Table 1: RNNs consistently converge to the theoretical Φ: The table shows the MAE in the
complex argument between the eigenspectrum of the predicted Φ from the variable binding circuit
and the empirically learned Whh in 4 tasks across 20 seeds under different RNN configurations. This
average error is indeterminate if the rank of the theoretical Φ is different from the empirical Whh.
Values in the brackets show the average test accuracy of the trained model. For models that have
high test accuracy (> 0.94), the error in the theoretically predicted spectrum is very low indicating
consistent convergence. A notable exception of this behavior is T1 with hidden size= 64 and L2 = 0,
where the restricted availability of dimensions forces the network to encode variables in bottleneck
superposition resulting in a low-rank representation of the solution.

|h(s)⟩ =
∑
i

∑
ψµ∈{Ψi} u

µ
i |ψµ⟩, that is each uµ is stored as activity of distinct subspaces of

the hidden state. To encode the Fibonacci process in Φ, we propose the following form for the
inter-memory interactions.

(5)Φ =

(s−1)d∑
µ=1

|ψµ⟩
〈
ψµ+d

∣∣+( d∑
µ=1

∣∣ψ(s−1)d+µ

〉(s−1∑
ν=0

〈
ψνd+µ

∣∣))
︸ ︷︷ ︸∑n−1

t=n−s Ft

.

This form of Φ has two parts. The first part implements a variable shift operation. The second part
implements the summation function of Fibonacci. Since the hidden state is initialized with all the
starting variables uµ, application of the Φ operator repeatedly, produces the next element in the
sequence. As of now, the hidden state contains all the elements in the sequence. The abstract algebra
notation allows proposing Wr which will extract only the required output. Formally,

Wr = Ψ∗
s =

sd∑
µ=(s−1)d+1

∣∣eµ−(s−1)d

〉
⟨ψµ| . (6)

It is the dual space operator which extracts the contents of the N th variable memory in the standard
basis. Note that the process works irrespective of the actual values of uµ. To summarize, we now
have a memory model encoding a generalizable process of fibonacci sequence generation (Figure 1).

4 Mechanistic Interpretation of RNNs

The concept of variable memories is intimately connected to the concept of feature representations
typically studied in the mechanistic interpretation of neural networks. A predominant hypothesis
in the mechanistic interpretability literature is the linear superposition hypothesis (Elhage et al.,
2022). The hypothesis states that neural networks represent features required for computation in
linear subspaces, and the neural activity exists as a superposition of activity in these subspaces. The
concept of variable memories provides a principled framework to rigorously deal with these types
of feature representations. To validate that the form of Φ we proposed in Equation 5 is general and
learned by practically trained RNNs, we trained Elman RNNs by backpropagation on four general
sequence generation tasks (Ti , i ∈ {1, . . . 4}) similar to the generalized Fibonacci (Equation 4) but
with more general linear functions than vector addition (see Appendix B.3 for details). We then
compared the eigenspectrum of the Jacobian of the RNN after linearization with the spectrum of the
theoretical Φ. The spectrum of the Jacobian helps in determining the long term behavior of dynamical
systems (Sussillo and Barak, 2013; Strogatz, 1994). Our results summarized in Table 1 reveal that
trained RNNs consistently converge to the theoretical mechanisms.
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5 Conclusion

We presented the novel concept of variable memories - a formal approach to dealing with memories
that are stored in the activation of neurons. We showed how the fixed memory assumption is lifted
by treating the stored memories of memory models as defining a basis for the storage of variable
information. By demonstrating its applicability in trained RNNs, we point to its applicability in
practical scenarios. We envision that the theory will provide a new path forward for memory modeling
and increase its purview to the fundamental challenge of the mechanistic interpretation of learned
neural networks.
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A Theoretical Models of Variable Binding

A.1 Mathematical Preliminaries

The core concept of the episodic memory theory is basis change, the appropriate setting of the stored
memories. Current notations lack the ability to adequately capture the nuances of basis change. Hence,
we introduce abstract algebra notations typically used in theoretical physics literature to formally
explain the variable binding mechanisms. We treat a vector as an abstract mathematical object
invariant to basis changes. Vectors have vector components that are associated with the respective
basis under consideration. We use Dirac notations to represent vector v as - |v⟩ =

∑
i v
i |ei⟩.

Here, the linearly independent collection of vectors |ei⟩ is the basis with respect to which the
vector |v⟩ has component vi ∈ R. Linear algebra states that a collection of basis vectors |ei⟩ has
an associated collection of basis covectors

〈
ei
∣∣ defined such that

〈
ei
∣∣ej〉 = δij , where δij is the

Kronecker delta. This allows us to reformulate the vector components in terms of the vector itself as
|v⟩ =

∑
i

〈
ei
∣∣v〉 |ei⟩. We use the Einstein summation convention to omit the summation symbols

wherever the summation is clear. Therefore, vector |v⟩ written in basis |ei⟩ is

(7)|v⟩ = vi |ei⟩
=
〈
ei
∣∣v〉 |ei⟩ .

The set of all possible vectors |v⟩ is a vector space spanned by the basis vectors |ei⟩. A subspace of
this space is a vector space that is spanned by a subset of basis vectors {

∣∣e′j〉 : ∣∣e′j〉 ⊆ {|ei⟩}}.
The RNN dynamics presented in Equation ?? represented in the new notation is reformulated as:

(8)|h(t)⟩ = σf
((
ξiµΦ

µ
ν (ξ

†)νj |ei⟩
〈
ej
∣∣) |h(t− 1)⟩

)
= σf

(
Whh h⃗(t− 1)

)
.

The greek indices iterate over memory space dimensions {1, 2, . . . , Nh}, alpha numeric indices
iterate over feature dimension indices {1, 2, . . . , Nf}. Typically, we use the standard basis in our
simulations. For the rest of the paper, the standard basis will be represented by the collection of
vectors |ei⟩ and the covectors

〈
ei
∣∣. The hidden state at time t in the standard basis is denoted as

|h(t)⟩ =
〈
ej
∣∣h(t)〉 |ei⟩. 〈ej∣∣h(t)〉 are the vector components of |h(t)⟩ we obtain from simulations.

A.2 Example: Repeat Copy (T1)

Repeat Copy is a task typically used to evaluate the memory storage characteristics of RNNs since
the task has a deterministic evolution represented by a simple algorithm that stores all input vectors
in memory for later retrieval. Although elementary, repeat copy provides a simple framework to work
out the variable binding circuit we theorized in action. For the repeat copy task, the linear operators
of the RNN has the following equations.

Φ =
∑(s−1)κ
µ=1 |ψµ⟩ ⟨ψµ+κ|+

∑sκ
µ=(s−1)κ+1 |ψµ⟩

〈
ψµ−(s−1)κ

∣∣
Wuh = Ψs
Wr = Ψ∗

s

(9)

This ϕ can be imagined as copying the contents of the subspaces in a cyclic fashion. That is, the
content of the ith subspace goes to (i− 1)th subspace with the first subspace being copied to the N th

subspace. The dynamical evolution of the RNN is represented at the time step 1 as,

(10)|h(1)⟩ =
∣∣ψ(s−1)κ+j

〉 〈
ej
∣∣ui(1) |ei⟩

(11)|h(1)⟩ = ui(1)
∣∣ψ(s−1)κ+j

〉 〈
ej
∣∣ei〉

(12)|h(1)⟩ = ui(1)
∣∣ψ(s−1)κ+j

〉
δij
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Kronecker delta index cancellation

(13)|h(1)⟩ = ui(1)
∣∣ψ(s−1)κ+i

〉
At time step 2,

(14)|h(2)⟩ = ui(1)Φ
∣∣ψ(s−1)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉
Expanding Φ

(15)|h(2)⟩ = ui(1)

(s−1)κ∑
µ=1

|ψµ⟩
〈
ψµ+κ

∣∣+ sκ∑
µ=(s−1)κ+1

|ψµ⟩
〈
ψµ−(s−1)κ

∣∣∣
 ∣∣ψ(s−1)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉
(16)|h(2)⟩ = ui(1)

∣∣ψ(s−2)κ+i

〉
+ ui(2)

∣∣ψ(s−1)κ+i

〉
At the final step of the input phase when t = s, |h(s)⟩ is defined as:

(17)|h(s)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ(µ−1)κ+i

〉
For t timesteps after s, the general equation for |h(s+ t)⟩ is:

(18)|h(s+ t)⟩ =
s∑

µ=1

ui(µ)
∣∣ψ[((µ−t−1 mod s)+1)κ+i]

〉
From this equation for the hidden state vector, it can be easily seen that the µth variable is stored in
the [(µ− t− 1 mod s) + 1]

th subspace at time step t. The readout weights Wr = Ψ∗
s reads out the

contents of the sth subspace.

B Experiments

B.1 Variable Binding Tasks

Simple algorithmic tasks are very useful for mechanistic interpretability as they provide a controllable
empirical setup compared to complex and noisy real-world scenarios. We formulate a class of tasks
with input and output phases. At each timestep of the input phase, external information is provided to
the RNN. During the output phase, the RNN needs to utilize this external information to synthesize
novel outputs at each time step that are subsequently read from the network as output. This simple
two-phase setup closely matches the behavior of NLP tasks like translation and conditional generative
modeling where the noisy real-world features are abstracted out. Formally, the input phase consists of
s total timesteps where at each timestep t, a vector of d dimensions u(t) =

(
u1(t), u2(t), . . . , ud(t)

)⊤
is input to the model. We call the vector components ui(t) the external information that needs to
be stored in the RNN hidden state. After the input phase is complete, the zero vector is continually
passed as input to the model, so we say the RNN evolves autonomously (without any external input)
during the output phase. The future states of the system during output phase evolve according to the
following equation.

u(t) = f(u(t− 1), u(t− 2), . . . u(t− s)), t > s. (19)

For analytical tractability, we add two restrictions to the variable binding tasks: (1) the composition
function f is a linear function of its inputs. (2) the codomain of f and the domain of the inputs is
binary ∈ {−1, 1}.
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B.2 Data

We train RNNs on the variable binding tasks described in the main paper with the following restrictions
- the domain of u at each timestep is binary ∈ {−1, 1} and the function f is a linear function of
its inputs. We collect various trajectories of the system evolving accoding to f by first sampling
uniformly randomly, the input vectors. The system is then allowed to evolve with the recurrent
function f over the time horizon defined by the training algorithm.

B.3 Training Details

Architecture We used single layer Elman-style RNNs for all the variable binding tasks. Given
an input sequence (u(1), u(2), ..., u(T )) with each u(t) ∈ Rd, an Elman RNN produces the output
sequence y = (y(1), ..., y(T )) with y(t) ∈ RNout following the equations

h(t+ 1) = tanh(Whhh(t) +Wuhu(t)) , y(t) =Wrh(t) (20)

Here Wuh ∈ RNh×Nin , Whh ∈ RNh×Nh , and Wr ∈ RNout×Nh are the input, hidden, and readout
weights, respectively, and Nh is the dimension of the hidden state space.

The initial hidden state h(0) for each model was not a trained parameter; instead, these vectors were
simply generated for each model and fixed throughout training. We used the zero vector for all the
models.

Task Dimensions Our results presented in the main paper for the repeat copy (T1) and compose
copy (T2) used vectors of dimension d = 8 and sequences of s = 8 vectors to be input to the model.

Training Parameters We used PyTorch’s implementation of these RNN models and trained
them using Adam optimization with MSE loss. We performed a hyperparameter search for the best
parameters for each task — see table 2 for a list of our parameters for each task.

Repeat Copy (T1) Compose Copy (T2)
Input & output dimensions 8 8
Input phase (# of timesteps) 8 8

training horizon 100 100
Hidden dimension Nh 128 128
# of training iterations 45000 45000

(Mini)batch size 64 64
Learning rate 10−3 10−3

applied at iteration 36000
Weight decay (L2 regularization) none none

Gradient clipping threshold 1.0 1.0
Table 2: Architecture, Task, & Training Parameters

Curriculum Time Horizon When training a network, we adaptively adjusted the number of
timesteps after the input phase during which the RNN’s output was evaluated. We refer to this
window as the training horizon for the model.

Specifically, during training we kept a rolling average of the model’s loss by timestep L(t), i.e.
the accuracy of the model’s predictions on the t-th timestep after the input phase. This metric
was computed from the network’s loss on each batch, so tracking L(t) required minimal extra
computation.

The network was initially trained at time horizon H0 and we adapted this horizon on each training
iteration based on the model’s loss by timestep. Letting Hn denote the time horizon used on training
step n, the horizon was increased by a factor of γ = 1.2 (e.g. Hn+1 ← γHn) whenever the model’s
accuracy L(t) for t ≤ Hmin decreased below a threshold ϵ = 3 · 10−2. Similarly, the horizon was
reduced by a factor of γ is the model’s loss was above the threshold (Hn+1 ← Hn/γ). We also
restricted Hn to be within a minimum training horizon H0 and maximum horizon Hmax. These where
set to 10/100 for the repeat copy task and 10/100 for the compose copy task.
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We found this algorithm did not affect the results presented in this paper, but it did improve training
efficiency, allowing us to run the experiments for more seeds.

B.4 Repeat Copy: Further Examples of Hidden Weights Decomposition

This section includes additional examples of the hidden weights decomposition applied to networks
trained on the repeat copy task.

A B

C D

Figure 2: Additional Experimental Results of Repeat Copy Task with 16 vectors, each of 5
dimensions: A. Whh visualized in the variable memory basis reveals the variable memories and
their interactions. B. After training, the eigenspectrum of Whh with a magnitude ≥ 1 overlaps
with the theoretical Φ. The boxes show the number of eigenvalues in each direction. C. During
inference, "3141" is inserted into the network in the form of binary vectors. This input results in
the hidden state evolving in the standard basis, as shown. How this hidden state evolution is related
to the computations cannot be interpreted easily in this basis. D. When projected on the variable
memories, the hidden state evolution reveals the contents of the variables over time. Note that in
order to make these visualization clear, we needed to normalize the activity along each variable
memory to have standard deviation 1 when assigning colors to the pixels. The standard deviation of
the memory subspaces varies due to variance in the strength of some variable memory interactions.
These differences in interaction strengths does not impede the model’s performance, however, likely
due to the nonlinearity of the activation function. Unlike the linear model, interaction strengths well
above 1 cannot cause hidden state space to expand indefinitely because the tanh nonlinearity restricts
the network’s state to [−1, 1]Nh . This property appears to allow the RNN to sustain stable periodic
cycles for a range of interaction strengths above 1.
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A B

C D

Figure 3: Nonlinear Variable Memories Learned for the Repeat Copy Task with 16 vectors,
each of 5 dimensions. A. Eigenspectrum of Whh after training. The learned eigenvalues cluster
into 16 groups equally spaced around the unit circle, but there are only 3-4 eigenvectors per cluster
(indicated in red). Compare this to the theorized linear model, which has 5 eigenvalues per cluster
(indicated in black). The task requires 16· = 5 = 80 bits of information to be stored. Linearization
about the origin predicts that the long-term behavior of the model is dictated by the eigenvectors with
eigenvalue outside the unit circle because its activity along other dimensions will decay over time.
The model has only 16 · 4− 1 = 63 eigenvectors with eigenvalue near the unit circle, so this results
suggests the model has learned a non-linear encoding that compresses 80 bits of information into 63
dimensions. B: Whh visualized in the variable memory basis reveals the variable memories and their
interactions. Here, the variable memories have only 4 dimensions because the network has learned
only 63 eigenvectors with eigenvalue near the unit circle. The variable memory subspaces also have
non-trivial interaction with a few of the the non-memory subspaces. C. During inference, "3141" is
inserted into the network in the form of binary vectors. This input results in the hidden state evolving
in the standard basis, as shown. How this hidden state evolution is related to the computations cannot
be interpreted easily in this basis. D. When projected on the variable memories, the hidden state
evolution is still not easily interpreted for this network, likely due to a nonlinear variable memories.
As in the previous figure, we normalized the activity along each variable memory to have standard
deviation 1 when assigning colors to the pixels.
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Figure 4: Additional Experimental Results of Repeat Copy Task with 8 vectors, each of 8
dimensions. This figure was included to show the decomposition applied to other values of s and
d for the Repeat Copy task. A: Whh visualized in the variable memory basis reveals the variable
memories and their interactions. B. After training, the eigenspectrum of Whh with a magnitude
≥ 1 overlaps with the theoretical Φ. The boxes show the number of eigenvalues in each direction.
C. During inference, "3141" is inserted into the network in the form of binary vectors. This input
results in the hidden state evolving in the standard basis, as shown. How this hidden state evolution
is related to the computations cannot be interpreted easily in this basis. D. When projected on the
variable memories, the hidden state evolution reveals the contents of the variables over time. As in the
previous figures, we normalized the activity along each variable memory to have standard deviation 1
when assigning colors to the pixels.
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B.5 Uniform vs. Gaussian Parameter Initialization

We also tested a different initialization scheme for the parameters Wuh,Whh, and Why of the
RNNs to observe the effect(s) this would have on the structure of the learned weights. The results
presented in the main paper and in earlier sections of the Supplemental Material used PyTorch’s
default initialization scheme: each weight is drawn uniformly from [−k, k] with k = 1/

√
Nh. Fig. 5

shows the resulting spectrum of a trained model when it’s parameters where drawn from a Gaussian
distribution with mean 0 and variance 1/Nh. One can see that this model learned a spectrum similar
to that presented in the main paper, but the largest eigenvalues are further away from the unit circle.
This result was observed for most seeds for networks trained on the repeat copy task with s = 8
vectors of dimension κ = 4 and κ = 8, though it doesn’t hold for every seed. We also find that the
networks whose spectrum has larger eigenvalues usually generalize longer in time than the networks
with eigenvalues closer to the unit circle.

(a) Uniform Initialization (b) Gaussian Initialization

Figure 5: An effect of parameter initialization for the Repeat Copy Task with s = 8 vectors,
each of dimension d = 4. A: Spectrum (in red) of the learned hidden weights Whh for a network
whose parameters where initialized from a uniform distribution over [−k, k] with k = 1/

√
Nh. This

network has 32 eigenvalues that are nearly on the unit circle. These eigenvalues are clustered into
groups of 4, each group being an angle of θ = 2π/s apart from each other. These eigenvalues
coincide with the eigenvalues of the linear model for solving the repeat copy task. B: Spectrum (in
blue) of the learned hidden weights Whh for a network whose parameters where initialized from a
Gaussian distribution with mean 0 and variance 1/Nh. This network has 32 eigenvalues outside the
unit circle, but they are a larger radii than the model initialized using the uniform distribution. These
eigenvalues still cluster into eight groups of four, and the average complex argument of each group
aligns with the complex arguments of the eigenvalues for the linear model.
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