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Abstract

Testing a hypothesized causal model against observational data
is a key prerequisite for many causal inference tasks. A natu-
ral approach is to test whether the conditional independence
relations (CIs) assumed in the model hold in the data. While a
model can assume exponentially many CIs (with respect to the
number of variables), testing all of them is both impractical
and unnecessary. Causal graphs, which encode these CIs in
polynomial space, give rise to local Markov properties that
enable model testing with a significantly smaller subset of
CIs. Model testing based on local properties requires an al-
gorithm to list the relevant CIs. However, existing algorithms
for realistic settings with hidden variables and non-parametric
distributions can take exponential time to produce even a sin-
gle CI constraint. In this paper, we introduce the c-component
local Markov property (C-LMP) for causal graphs with hid-
den variables. Since C-LMP can still invoke an exponential
number of CIs, we develop a polynomial delay algorithm to
list these CIs in poly-time intervals. To our knowledge, this
is the first algorithm that enables poly-delay testing of CIs
in causal graphs with hidden variables against arbitrary data
distributions. Experiments on real-world and synthetic data
demonstrate the practicality of our algorithm.

Code — https://github.com/CausalAILab/
ListConditionalIndependencies

1 Introduction
Causal models are the daily bread of many fields of research
(Pearl 2000; Spirtes, Glymour, and Scheines 2001), but tools
for testing them are lacking. In various studies, researchers
posit a causal model and use it to compute causal effects from
data (Tennant et al. 2020; Hoover 1990; King et al. 2004;
Sverchkov and Craven 2017; Robins, Hernan, and Brumback
2000; Rotmensch et al. 2017). The model imposes testable
constraints on the statistics of the data collected. Before using
the model for causal inference, it’s crucial to test if these
constraints are met, and adjust the model as needed (Pearl
1995, 2000; Bareinboim and Pearl 2016; Malinsky 2024;
Ankan and Textor 2022).

Causal directed acyclic graphs (DAGs) are one popular
model for causal assumptions (Pearl 2000; Spirtes, Glymour,
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and Scheines 2001). Conditional independencies (CIs) are
the most basic constraint that a causal DAG imposes on ob-
servational data. The study of CIs in the context of graphical
models dates back to at least the 1980’s (Pearl 1988; Dawid
1979; Spirtes et al. 1998; Pearl 1998; Pearl and Meshkat
1999; Pearl 2000). A classic problem in this line of research
is: given observational data and a hypothesized causal graph,
do all the CIs implied by this graph hold in the data? If the
answer is no, the DAG may be revised.

A key idea in the early literature of graphical models was
to use a DAG to represent the constraints of probability distri-
butions. A multivariate probability distribution may encode
exponentially many CIs with respect to the number of vari-
ables. A DAG can encode these CIs in polynomial space. The
d-separation criterion allows us to derive the CIs encoded in
a DAG (Pearl 1988). The global Markov property of a DAG
is the set of all CIs encoded in it (Pearl 1988). There is also
a well-known local Markov property for DAGs (Pearl 1988;
Lauritzen et al. 1990), which states that each variable must
be conditionally independent of its non-descendants given its
parents. Since the CI relation is a semi-graphoid, the linearly
many CIs of the local Markov property together imply the
exponentially many CIs of the global Markov property. This
means that to test a DAG against observational data, it suffices
to perform a linear number of CI tests as given by the local
Markov property. For concreteness, consider the DAG G1 in
Fig. 1a and assume all variables {A,B, . . . ,H, U1, U2, U3}
are observed. Though G1 encodes 35787 CIs, only 11 need
testing by the local Markov property. For example, if we
test that F ⊥⊥ {A,B} | {C}, we do not need to test that
F ⊥⊥{A} | {B,C}, since the former implies the latter by the
weak union axiom.

Unobserved confounding is a widespread phenomenon in
real-world settings (Fisher 1936). It occurs when a hidden
variable causally affects two or more observed variables. The
local Markov property can be used to test Markovian causal
DAGs, which represent models without unobserved con-
founding. However, it cannot be used to test non-Markovian
DAGs, which represent models with unobserved confound-
ing. This is because if the parents of a variable are partially
unobserved, we cannot test CIs that require conditioning on
these parents (Fig. 1a). Since the assumption of no unob-
served confounding rarely holds in practice, alternative ways
to test non-Markovian DAGs have been developed (Tian and
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Pearl 2002b; Kang and Tian 2009; Geiger and Meek 1998,
1999; Richardson 2003, 2009; Hu and Evans 2023). Despite
their power, these works either (a) make strong assumptions
on the DAG or probability distribution, or (b) do not provide
an algorithm to query their required CI tests in poly-time
intervals, with naive algorithms taking exponential time to
output a single CI constraint.
Summary of contributions. We give the first efficient al-
gorithm for testing causal DAGs with hidden variables via
conditional independencies. This enables researchers to test
their causal assumptions using observational data prior to
inference. Importantly, our approach extends to arbitrary data
distributions and networks of unobserved confounding.

This result builds on a newer, fine-grained characteriza-
tion of CIs in graphs based on a new construct called ances-
tral c-components (i.e., connected components in the bidi-
rected skeleton). In particular, we show that O(n2s) CI tests
(Prop. 1) are required to test a DAG on n variables whose
largest c-component has size s. This is an exponential im-
provement over naively testing all Θ(4n) CI constraints en-
coded in the DAG. The upshot is largest for DAGs with many
variables but small c-components. For instance, the DAG G2
in Fig. 1b implies 753 CIs, but only 5 really need testing.
More specifically, our contributions are as follows:

1. We introduce the c-component local Markov property, or
C-LMP (Def. 5). We show that C-LMP and the global
Markov property are equivalent, admitting the same set of
probability distributions for a given DAG. We then show
an important property of C-LMP: a one-to-one mapping
between the CI constraints it invokes and ancestral c-
components (Thm. 2).

2. Building on this characterization, we develop the first
algorithm (LISTCI) capable of listing all testable CI
constraints of C-LMP in polynomial delay (Thm. 3).
On a DAG with n nodes and m edges, LISTCI takes
O(n2(n+m)) time to return each new CI constraint, if
one exists, or exit when it has exhausted all CI constraints.

Experiments with synthetic data and a real-world protein
signaling dataset (Sachs et al. 2005) corroborate the theoret-
ical findings. For the sake of space, proofs are provided in
Appendix C.

2 Preliminaries
Notation. We use capital letters to denote variables (X),
small letters for their values (x), and bold letters for sets of
variables (X) and their values (x). The probability distribu-
tion over a set of variables X is denoted by P (X). We consis-
tently use P (x) as abbreviations for probabilities P (X = x).
For disjoint sets of variables X,Y,Z, we use X⊥⊥Y | Z to
denote that X and Y are conditionally independent given Z.

Structural causal models. The basic framework of our
analysis rests on structural causal models (SCMs) (Pearl
2000, Def. 7.1.1). An SCM M is a quadruple M =
⟨V,U,F , P (u)⟩ where V and U are sets of endogeneous
and exogeneous variables, respectively. F is a set of func-
tions: each V ∈ V is a function fV (PAV,UV) of its endo-
geneous and exogeneous parents, PAV ⊆ V and UV ⊆ U

A B C

E F H
U1

U3

D
U2

(a) G1

A B C

E F H

D

(b) G2

Figure 1: (a) A causal DAG G1 in which the local Markov
property implies the CI: H⊥⊥{A,B,C,E, F} | {D,U1, U3}.
If U1 and U3 are unobserved, we cannot test this CI. (b) We
project G1 onto its observed variables to get G2. In G2, the
c-component local Markov property invokes the testable CI:
H ⊥⊥ {A,E, F} | {B,C,D}.

respectively. P (u) is a joint distribution over U. Each SCM
M induces an observed distribution P (v) over V. An SCM
is said to be Markovian if UV ,UW are independent for ev-
ery distinct V,W ∈ V, and non-Markovian otherwise. For
a more detailed survey on SCMs, we refer to (Pearl 2000;
Bareinboim et al. 2022).

Causal graphs. The causal graph G for an SCM M =
⟨V,U,F , P (u)⟩ is constructed as follows: (1) add a vertex
for every V ∈ V (2) add an edge Vi → Vj for every Vi, Vj ∈
V if Vi ∈ PAVj

(3) add a dashed bidirected edge between
Vi, Vj if Ui,Uj are correlated or Ui ∩Uj ̸= ∅. G is said to
be Markovian if it contains only directed edges, and semi-
Markovian otherwise.

We denote the sets of parents, ancestors, and descen-
dants of X (including X itself) in G as Pa(X),An(X), and
De(X), respectively. The set of non-descendants of X in G
is denoted Nd(X) = V \De(X), which does not include X
itself. The set of spouses of X in G is Sp(X) =

⋃
X∈X{Y |

Y ↔ X}. X is said to be an ancestral set if it contains
its own ancestors, i.e., X = An(X). We use GX to denote
the induced subgraph of G on X ⊆ V. A subscript G′, e.g.,
An(X)G′ indicates that the set is computed from the sub-
graph G′. We omit the subscript when clear from context. An
ordering V≺ on variables V is said to be consistent with G
(i.e., a topological ordering) if for any X,Y ∈ V, X ≺ Y im-
plies Y /∈ An(X)G . Let V≤X = {Y | Y ≺ X or Y = X}.

Semi-Markovianity vs Non-Markovianity. A non-
Markovian causal DAG G can be constructed for a
non-Markovian SCM by making the exogenous variables
U explicit. A non-Markovian DAG with arbitrary hidden
variables can be ‘projected’ onto a semi-Markovian causal
DAG G′ which imposes exactly the same CI constraints
over the observed variables (Tian and Pearl 2002b). In G′,
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each unobserved variable is (i) a parent of at most two
observed variables and (ii) made implicit by adding a dashed
bidirected edge between its two children. The complexity
of the latent structure is irrelevant to the CIs over observed
variables. Therefore, we work with semi-Markovian graphs
for model testing.

d-separation. A node W on a path π is said to be a collider
on π if W has converging arrows into W in π, e.g.,→W ←
or ↔ W ←. π is said to be blocked by a set Z if there
exists a node W on π satisfying one of the following two
conditions: 1) W is a collider, and neither W nor any of its
descendants are in Z, or 2) W is not a collider, and W is in
Z (Pearl 1988). Given disjoint sets X,Y, and Z in G, Z is
said to d-separate X from Y in G if and only if Z blocks
every path from a node in X to a node in Y according to
the d-separation criterion (Pearl 1988). If Z d-separates X
from Y in G (written X ⊥d Y | Z), then X is conditionally
independent of Y given Z in any observational distribution
consistent with G (Pearl 1988; Richardson 2003).

Definition 1. (C-component) (Tian and Pearl 2002a) A set
of variables C ⊆ V in a causal graph G is said to be a
confounded component (c-component, for short) if there is
a path of only bidirected edges connecting any Vi, Vj ∈ C,
and C is maximal.

For a variable X ∈ V, C(X)G denotes the c-component
containing X in G.

Previously, we have referred to the set of all CIs encoded
in a DAG. We define this formally.

Definition 2. (Global Markov Property (GMP)) (Pearl 1988;
Geiger, Verma, and Pearl 1989) A probability distribution
P (v) over a set of variables V is said to satisfy the global
Markov property for a causal graph G if, for arbitrary disjoint
sets X,Y,Z ⊂ V with X,Y ̸= ∅,

X ⊥d Y|Z =⇒ X⊥⊥Y|Z in P (v).

Various local Markov properties have been developed
which identify a subset of the CIs invoked by GMP that
imply all others. A prominent example is the local Markov
property for Markovian DAGs.

Definition 3 (The Local Markov Property (LMP) (Pearl 1988;
Lauritzen et al. 1990; Lauritzen 1996)1). A probability dis-
tribution P (v) over a set of variables V is said to satisfy the
local Markov property for a given Markovian DAG G if, for
any variable X ∈ V,

X ⊥⊥ Nd({X}) \ Pa({X}) | Pa({X}) \ {X} in P (v).

Example 1. Consider Fig. 1b. {C,D,H} is a c-component,
and C(H)G2 = {C,D,H}. Since {B,C,D} d-separates H
from {A,E, F} in G2, G2 implies the CI: H ⊥⊥ {A,E, F} |
{B,C,D}.

3 The C-component Local Markov Property
In this section, we motivate and introduce the c-component
local Markov property for causal DAGs with unobserved

1Note that this property is referred to as the directed local
Markov property in (Lauritzen et al. 1990).

confounders. In Sec. 3.1, we demonstrate the limitations of
the traditional local Markov property (LMP) when applied
to non-Markovian DAGs. In Sec. 3.2, to solve this problem,
we present the c-component local Markov property (C-LMP)
for semi-Markovian DAGs and establish its equivalence with
GMP. In Sec. 3.3, we provide a useful property of C-LMP
that makes its CIs amenable to listing.

3.1 A Naive Approach to Testing Non-Markovian
Graphs

First, we show the limitations of the well-known LMP
(Def. 3) in testing non-Markovian DAGs. For each variable
X in a given graph, LMP states that X is independent of
its non-descendants conditioning on its parents. Intuitively,
the parents of X form a minimal set separating X from its
non-descendants.

Example 2. Consider Fig. 1a. The DAG G1 contains
only directed edges; assuming all variables are ob-
served, G1 is Markovian. LMP invokes 11 CIs for
G1: A ⊥⊥ {U1, U2, U3}, B ⊥⊥ {U1, U2, U3} | {A},
C⊥⊥{A,E,U1, U2} | {B,U3}, D⊥⊥{A,B,E, F, U1, U3} |
{C,U2}, E ⊥⊥ {A,C,D, F,H,U1, U2, U3} |
{B}, F ⊥⊥ {A,B,E,D,H,U1, U2, U3} | {C},
H ⊥⊥ {A,B,C,E, F, U2} | {D,U1, U3}, U1 ⊥⊥
{A,B,C,D,E, F, U3} | {U2}, U2 ⊥⊥ {A,B,C,E, F, U3},
U3 ⊥⊥ {A,B,E,U1, U2}. All 11 CIs are testable using
samples from the distribution P (a, b, c, d, e, f, h, u1, u2, u3).

LMP fails trivially for semi-Markovian DAGs since, for
example, a variable may be connected to a non-descendant by
a bidirected edge. One could think to instead apply LMP to
the ‘unprojected’ non-Markovian DAG underlying the given
semi-Markovian DAG. The non-Markovian DAG would con-
tain no bidireced edges since the unobserved parents are made
explicit. However, LMP does not extend to non-Markovian
DAGs either, as we show in the following example.

Example 3. Continuing Ex. 2. Assume we are given
the non-Markovian DAG G1 shown in Fig. 1a. If U1, U2

and U3 are unobserved, only samples from P (v) =∫
u1,u2,u3

P (a, b, c, d, e, f, h, u1, u2, u3) du1du2du3 are
available, where V = {A,B,C,D,E, F,H} denotes the ob-
served variables. All 11 CIs invoked by LMP for G1, listed in
Ex. 2, require samples from P (a, b, c, d, e, f, h, u1, u2, u3).
Hence, none of these CIs can be tested using P (v).

One approach to try salvaging these 11 CIs is to consider
only those CIs in which {U1, U2, U3} appear before the con-
ditioning bar. In such CIs, {U1, U2, U3} can be removed
using the decomposition axiom. However, only two of the 11
CIs can be modified in this way, i.e.,

E ⊥⊥ {A,C,D, F,H} | {B}, (1)
F ⊥⊥ {A,B,E,D,H} | {C}. (2)

These two CIs do not suffice to derive the GMP for G1. To
witness, consider a graph G′ over the same variables as G1 but
with only one edge H → A. Say we have an observational
distribution P (v) faithfully induced by G′. Then, the CIs in
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Eqs. (1,2) both hold in P (v). However, G1 implies that

H ⊥⊥ {A,E, F} | {B,C,D} (3)

which does not hold in P (v) since G′ contains an edge
H → A. Only testing the two CIs in Eqs. (1,2) would lead
to the false conclusion that P (v) is consistent with G1. As a
result, it is insufficient to use only those CIs which invoke
{U1, U2, U3} outside the conditioning set.

As in the example, to test a non-Markovian DAG, one
can not simply ‘filter out’ CIs that require conditioning on
unobserved variables. This is because such CIs can entail
testable CIs over the observed variables. The remaining op-
tion is to derive all these entailed CIs using the semi-graphoid
axioms, and test those which invoke only observed variables.
This is the GMP (Def. 2) of the non-Markovian DAG, which
can invoke Θ(4n) CIs for a DAG with n observed variables
(Prop. C.3.1). This approach fails to exploit any locality in
the graph, and requires a prohibitive number of CI tests, many
of which are redundant. This suggests the need for alternative
compatibility properties for semi-Markovian (equivalently,
non-Markovian) DAGs. We next introduce our contribution,
the c-component local Markov property.

3.2 C-LMP: A Local Markov Property for
Semi-Markovian DAGs

In a semi-Markovian graph, the observed parents of a variable
do not suffice to separate it from its non-descendants. There-
fore, a surrogate of the parents is needed to restore locality.
The construct of a c-component (Def. 1) was introduced for
this purpose (Bareinboim et al. 2022), which we explain via
an example.

Example 4. Continuing Ex. 2, assume {U1, U2, U3} are un-
observed in G1 (Fig. 1a). The second graph G2 (Fig. 1b) is the
semi-Markovian projection of G1. Note that the conditional
independence H ⊥⊥ {A,B,C,E, F} | {D,U1, U3} cannot
be tested from the data since {U1, U3} are not observed. This
means that a different conditioning set is needed to make H
independent of its observed non-descendants.

One might condition on the observed descendants of
{U1, U3} that are closest to U1, U3, i.e., {C,D}. These vari-
ables are not separable from H without conditioning on
U1, U2 or U3, which is not an option. {C,D} have bidi-
rected edges to H in G2, the semi-Markovian projection of
G1. {C,D} are now active on any paths on which {C,D}
they are colliders: for instance, on the paths E ← B →
C ← U3 → H and A → B → C ← U3 → H . To block
some of these paths, we also condition on the (remaining)
observed parents of {C,D}, i.e., {B}. Firstly, conditioning
on {C,D} already makes B and its ancestors active on any
paths where they are colliders; secondly, B is connected to
H when conditioning on {C,D}. Therefore, conditioning on
{B} does not introduce any new active paths to X . Condition-
ing on {B} additionally blocks paths to H containing B on
which B is not a collider. Therefore, we have the condition-
ing set Pa(C)\{H} = {B,C,D}. The CI over observables
H ⊥⊥ {A,E, F} | {B,C,D} is thus derived.

Ex. 4 is relatively simple since the c-component of H is
used to generate the given CI. However, the c-components of
a variable do not always give rise to CIs.

Example 5. Consider, as an example DAG, a bidirected path
of the form V1 ↔ V2 · · · ↔ Vn on variables V. For each Vi,
the c-component including Vi is the entire graph. Therefore,
conditioning on the c-component results in the ‘vacuous’
CI: Vi ⊥⊥ ∅ | V \ Vi. Clearly, from this set of vacuous CIs,
we cannot derive non-vacuous CIs encoded the graph, such
as those of the form Vi ⊥⊥ {Vj}, ∀i, j s.t. |i − j| > 1 (e.g.,
V1 ⊥⊥ {V3}).

A useful insight due to (Richardson 2003) is that subsets of
a variable’s c-component can give rise to distinct ‘surrogates’
for its parents and hence distinct CIs. This is because condi-
tioning on a certain variable in a c-component closes some
paths while opening others. We generalize c-components to
ancestral c-components to define these ‘surrogates.’2

Definition 4. (Ancestral C-component (AC)) Given a causal
graph G and a consistent ordering V≺, let X be a variable
in V≺. A set of variables C is said to be an ancestral c-
component relative to X if there exists an ancestral set S ⊆
V≤X containing X such that C(X)GS

= C. The collection
of all such C is denoted:

ACX = {C | C is an ancestral c-component relative to X}.

Unlike c-components, there may be many ancestral c-
components with respect to a given variable.

Example 6. Consider the graph G in Fig. 2 with ordering
A ≺ B ≺ · · · ≺ X ≺ J ≺ K. For the variable X , {X} is
an AC relative to X induced by the ancestral set S = {X};
{B,X} is an AC relative to X induced by the ancestral set
S = {B,C,D,E,X}. {X,A,D,E} is not an AC relative
to X since the exclusion of B and/or H disconnects the
variables in question. For the variable J , {J} is not an AC
relative to J since it excludes the ancestor X to which J is
connected by a bidirected edge; {X, J} is an AC induced by
the ancestral set {X, J}.

We use ACs to define the c-component local Markov prop-
erty, which generalizes LMP to semi-Markovian DAGs using
this new notion of local independence.

Definition 5. (The C-component Local Markov Property (C-
LMP)) A probability distribution P (v) over a set of variables
V is said to satisfy the c-component local Markov property
for a causal graph G with respect to the consistent ordering
V≺, if, for any variable X ∈ V≺ and ancestral c-component
C ∈ ACX relative to X ,

X⊥⊥ S+ \ Pa(C) | (Pa(C) \ {X}) in P (v), where

S+ = V≤X \De(Sp(C) \ Pa(C)).

Example 7. Continuing Ex. 6. We give a few examples of
CIs invoked by C-LMP for the variable X .

2Ancestral c-components can be shown to be equivalent to an-
cestrally closed districts as defined in (Richardson 2009). We thank
Robin Evans for bringing this to our attention.
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(a) X is separated from C but not
A when conditioning on B.
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(b) X is separated from A but not
C when not conditioning on B.

X

H

A

B

K
J

C

E

F

D

I

(c) X is separated from F, I but not
D when conditioning on {H,E}.

Figure 2: Three ACs relative to the variable X in the (same) causal DAG G. Assume an ordering A ≺ B ≺ · · · ≺ X ≺ J ≺ K.
The ACs relative to X (excluding {X} itself), shown in blue, separate it from the variables shown in green.

1. The AC C = {X,B} gives the CI X ⊥⊥ {C,D,E, F} |
{B} (Fig. 2a), since

Pa(C) = Pa({X,B}) = {X,B}

S+ = V≤X \De(Sp({X,B} \ Pa({X,B})))
= {A,B,C,D,E, F,H, I,X} \De({A,H})
= {A,B,C,D,E, F,H, I,X} \ {A,H, I}
= {B,C,D,E, F,X}

2. The AC C = {X,H} gives the CI X⊥⊥{A,D, I} | {H}
(Fig. 2b), since

Pa(C) = Pa({X,H}) = {X,H}

S+ = V≤X \De(Sp({X,H} \ Pa({X,H})))
= {A,B,C,D,E, F,H, I,X} \De({B,E})
= {A,B,C,D,E, F,H, I,X} \ {B,C,E, F}
= {A,D,H, I,X}.

3. The AC C = {X,H,E} gives the CI X ⊥⊥ {A,F, I} |
{H,E} (Fig. 2c), since

Pa(C) = Pa({X,H,E}) = {X,H,E}

S+ = V≤X \De(Sp({X,H,E} \ Pa({X,H,E})))
= {A,B,C,D,E, F,H, I,X} \De({B,D})
= {A,B,C,D,E, F,H, I,X} \ {B,C,D,E}
= {A,E, F,H, I,X}

As a sanity check, let us examine the CIs C-LMP implies
for a Markovian DAG G, where all c-components are single-
tons. There is exactly one AC C = {X} relative to a given
variable X . Moreover, Pa(C) = Pa({X}),Sp({X}) = ∅
and S+ = V≤X \De(∅) = V≤X . Therefore, the CI invoked
by C-LMP for X is

X ⊥⊥V≤X \ Pa({X}) | Pa({X}) \ {X} (4)
Thus, C-LMP reduces to the local well-numbering Markov

property (Lauritzen et al. 1990) for a Markovian DAG G.3

3The local well-numbering Markov property was shown to be
equivalent to LMP in (Lauritzen et al. 1990). A subtle difference is
that LMP tests the independence of X from its all non-descendants,
not just V≤X for a given ordering V≺.

In semi-Markovian DAGs, c-components are not necessarily
singletons. Comparing the CIs invoked by LMP and C-LMP
for a given variable X , we see that C-LMP generalizes two
concepts:

1. The conditioning set Pa({X}) \ {X} stated in LMP is
replaced with Pa(C) \ {X} in C-LMP, using an AC C
relative to X .

2. The conditioning set Pa(C)\{X} renders X independent
of S+\Pa(C) where S+ = V≤X\De(Sp(C) \ Pa(C)),
as stated by C-LMP. The set S+ \ Pa(C) replaces the set
Nd({X}) \ Pa({X}) in LMP.

In Ex. 4, we gave intuition for the generalised conditioning
set Pa(C)\{X} (Case 1). Next, we explain the construction
of S+ (Case 2) used to compute the maximal set of variables
in V≤X that are independent of X given Pa(C) \ {X}.
Consider what happens to a variable Y ∈ V≤X \ Pa(C)
when conditioning on Pa(C) \ {X}.

• If Y is a descendant (or an ancestor) of some node W ∈
Pa(C), we have a directed path π from W to Y (or vice-
versa). Conditioning on Pa(C) \ {X} blocks π (since
Y ̸∈ Pa(C)), and hence any path from X to Y which
contains π as a sub-path. For example, in Fig. 2a, taking
C = {X,B}, W = B and Y = C, conditioning on {B}
blocks the path X ↔ B → C.

• If Y is connected by a bidirected path to some node in
C, but Y is not in Sp(C), then some node V ∈ Sp(C) \
Pa(C) ‘intercepts’ this path, i.e., V is a closed collider
and thus blocks the path from X to Y . For example, in
Fig. 2a, taking C = {X,B}, V = H and Y = E, H
blocks the path X ↔ H ↔ E.

• If Y is in Sp(C) \ Pa(C), is an active bidirected path
from X to Y when conditioning on C\{X}. For example,
in Fig. 2a, taking C = {X,B} and Y = A, conditioning
on {B} opens the path X ↔ B ↔ A.

Analogous to how, for a given variable X , different con-
ditioning sets give rise to different CIs from X , different
ACs also give rise to different CIs from X . The upshot of
defining ACs is that they carve out a relatively small set of
CIs (commonly known as a ‘basis’ (Bareinboim et al. 2022))
from which all CIs encoded in the given graph can be derived.
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The main result of this section, given below, establishes that
GMP and C-LMP are equivalent.

Theorem 1 (Equivalence of C-LMP and GMP). Let G be a
causal graph and V≺ a consistent ordering. A probability
distribution over V satisfies the global Markov property for
G if and only if it satisfies the c-component local Markov
property for G with respect to V≺.

As a corollary of Thm. 1, we can conclude that C-LMP
is equivalent to Richardson’s ordered local Markov property
(Richardson 2003), since the latter is equivalent to GMP
(Richardson 2003, Thm. 2, Section 3.1).

Corollary 1 (Equivalence of C-LMP and the Ordered Local
Markov Property). Let G be a causal graph and V≺ a con-
sistent ordering. A probability distribution over V satisfies
the ordered local Markov property (Richardson 2003) for G
with respect to V≺ if and only if it satisfies the c-component
local Markov property for G with respect to V≺.

In Appendix B, we further develop the connection between
C-LMP and the ordered local Markov property. In fact, in
Thm. B.2.1, we show that these two properties induce the
exact same set of CIs for a given DAG and a consistent
ordering. Thm. B.2.1 thus provides another way to obtain
Thm. 1 as a corollary.

The equivalence of C-LMP and GMP means that the CIs
invoked by C-LMP for a given causal DAG can be used to
test the DAG against observational data.

3.3 Uniqueness Property of C-LMP
By definition, each CI invoked by C-LMP is generated from
an AC. We further show that each CI can be generated from
exactly one AC.

Theorem 2 (Unique AC for each CI Invoked by C-LMP).
Let G be a causal graph, V≺ a consistent ordering, and X a
variable in V≺. For every conditional independence relation
invoked by the c-component local Markov property of the
form X⊥⊥W | Z, there is exactly one ancestral c-component
C ∈ ACX such that W = V≤X\((De(Sp(C) \ Pa(C)))∪
Pa(C)) and Z = Pa(C) \ {X}.

The one-to-one correspondence between ACs and CIs in-
voked by C-LMP allows us to give bounds on the latter num-
ber that are tight in the exponent.

Proposition 1 (Number of CIs Invoked by C-LMP). Given a
causal graph G and a consistent ordering V≺, let n and s ≤ n
denote the number of variables and the size of the largest
c-component in G respectively. Then, the c-component local
Markov property for G with respect to V≺ invokes O(n2s)
conditional independencies implied by G over V. Moreover,
there exists a graph G and a consistent ordering V≺ for which
the property induces Ω(2n) conditional independencies.

This result shows that C-LMP offers an exponential im-
provement on the Θ(4n) CIs invoked by GMP. However,
C-LMP can still invoke an exponential number of CIs. For
example, in Gex (Fig. 3a) with 2n nodes, there are 2n+(n−3)
CIs invoked by C-LMP.

The main upshot of the one-to-one correspondence be-
tween ACs and CIs invoked by C-LMP is that to list such

...

...

B1 B2 B3

A1 A2 A3

B4

A4

Bn

An

(a) Gex

F

AC B

D

E H J

(b) G3

Figure 3: (a) An example showing that C-LMP may invoke
an exponential number of CIs. (b) A causal graph used to
show the execution of LISTCI in Ex. 9.

CIs, it suffices to enumerate ACs. We study the problem of
listing CIs in the next section.

4 Listing CIs
Our goal in this section is to develop an algorithm that lists
CIs invoked by C-LMP. In the worst case, there may exist
exponentially many such CIs, requiring exponential time to
list them all. In such cases, we look for algorithms that run in
polynomial delay (Johnson, Yannakakis, and Papadimitriou
1988). Poly-delay algorithms output the first solution (or
indicate none is available) in poly-time, and take poly-time
to output each consecutive solution.

However, not all CIs invoked by C-LMP are useful for
model testing. C-LMP invokes some ‘vacuous’ CIs of the
form X ⊥⊥ ∅ | Z, which do not need testing. Therefore, we
constrain the problem by requiring that we list only non-
vacuous CIs, as defined below.

Definition 6 (Vacuous CI and Admissible AC (AAC)). Given
a conditional independence relation invoked by C-LMP of
the form X ⊥⊥W | Pa(C) \ {X}, where W = S+ \Pa(C)
(by Def. 5), if W ̸= ∅, the conditional independence relation
is said to be non-vacuous and C is said to be an admissible
ancestral c-component relative to X .

Example 8. Consider the causal graph G3 (Fig. 3b). The AC
{J} relative to J is admissible. Given S+ = V \{F,H}, we
have W = S+ \ {J} = {A,B,C,D,E}. However, the AC
{F, J} relative to J is not admissible. Since S+ = {F, J},
W = S+ \ {F, J} = ∅.

Listing only non-vacuous CIs is important since C-LMP
may invoke exponentially many vacuous CIs. To witness,
consider a bidirected clique on n nodes such that no two vari-
ables are independent of each other given any conditioning
set. Every set Z ⊆ V \ {X} forms an AC, resulting in Ω(2n)
vacuous CIs (see Ex. D.3.1 in Appendix D.3 for details).

Our bounds on the number of CIs invoked by C-LMP are
also tight for the number of non-vacuous CIs (Prop. 1). We
develop the algorithm LISTCI (Alg. 1) to list all non-vacuous
CIs invoked by C-LMP in poly-delay.

Example 9. Consider the causal graph G3 (Fig. 3b) with
V≺ = {A,B,C,D,E, F,H, J}. LISTCI(G3,V≺) lists 11
non-vacuous CIs invoked by C-LMP: C ⊥⊥ {A} | {B}, D⊥⊥
{A} | {B,C}, E ⊥⊥ {A,B,C} | {D}, F ⊥⊥ {B} | {A},
F⊥⊥{E} | {A,B,C,D}, H⊥⊥{A,B,C,D,E} | {F}, J⊥⊥
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Algorithm 1: LISTCI (G,V≺)

1: Input: G a causal diagram; V≺ an ordering consistent
with G.

2: Output: Listing non-vacuous CIs invoked by C-LMP
for G with respect to V≺.

3: for each X ∈ V≺ do
4: I← C(X)GAn({X}) ,R← C(X)G

V≤X

5: LISTCIX(GV≤X , X,V≤X , I,R)

{A,B,C,D,E}, J⊥⊥{B} | {A,F}, J⊥⊥{B} | {A,F,H},
J⊥⊥{E} | {A,B,C,D, F}, J⊥⊥{E} | {A,B,C,D, F,H}.
After, LISTCI terminates as there are no more non-vacuous
CIs.

4.1 Listing CIs for a Given Variable
The algorithm LISTCI iterates over each variable X ∈ V≺

and lists all non-vacuous CIs invoked by C-LMP for X . By
Defs. 5, 6 and Thm. 2, listing non-vacuous CIs reduces to
enumerating AACs. In this section, we show how to enumer-
ate AACs relative to a given variable X ∈ V≺ using the
procedure LISTCIX (Alg. 2).

LISTCIX adopts a divide-and-conquer strategy similar
to the algorithm of (Takata 2010). LISTCIX implicitly con-
structs a binary search tree for X using a depth-first approach.
Tree nodes of the form N (I′,R′) represents the collection
of all AACs C with I′ ⊆ C ⊆ R′. The top-level call of
LISTCIX, at the root node N (I,R), represents all AACs C
relative to X . This is due to the construction on line 4 of
LISTCI so that I is contained in and R contains all possible
AACs relative to X . Thus, the top-level call can generate all
CIs for X .

Subsequent recursive calls expand this tree by shrinking
the range I′ ⊆ R′ one variable at a time. One require-
ment of the poly-delay property is that each AAC should
appear exactly once in the enumeration. To expand the tree
from N (I′,R′), LISTCIX constructs two ‘disjoint’ children
(lines 10-11: a chosen variable S ∈ V≺ cannot be in any
AAC from the left child but must be in every AAC from the
right child.

As another requirement of the poly-delay property, we ex-
pand the tree from a node N (I′,R′) if and only if the expan-
sion is guaranteed to produce a non-vacuous CI. Equivalently,
there must exist at least one AAC C such that I′ ⊆ C ⊆ R′.
If there is no such C, we prune the tree and back-track to the
previous tree node. To perform this check for the existence of
an AAC in poly-time, LISTCIX calls the function FINDAAC
(Alg. 3). We explain FINDAAC in the next subsection.

Finally, a leaf node is reached when I = R. LISTCIX
outputs a non-vacuous CI generated from the AAC C = I
using Def. 5.

Example 10. Expanding Ex. 9 to demonstrate the con-
struction of the search tree T 3 (Fig. 4) generated by run-
ning LISTCI(G3,V≺) for X = J . With I = {J} and
R = {A,C,D, F,H, J} constructed on line 4, the initial
search starts from the root nodeN (I,R) on line 5. On line 3
of LISTCIX, FINDAAC returns {J}. With S = F and

Figure 4: T 3 a search tree illustrating the running of LISTCI
in Ex. 9 for X = J .

R′ = {J}, the recursive call LISTCIX(G3, J,V≺, I,R′)
is made at line 10, spawning a child N1({J}, {J}). The
search continues from N1. FINDAAC returns {J}. N1 is a
leaf node, and LISTCIX outputs a CI: J ⊥⊥ {A,B,C,D,E}
on line 6. The rest of the search tree for J is shown in T 3.
The full set of search trees is shown in Fig. D.3.1 in Appendix
D.3.

4.2 Finding an AAC
In this section, we address the following subproblem, needed
for LISTCIX to run in poly-delay: given a variable X ∈ V≺,
and two ACs I,R relative to X , how do we find an AAC
C such that I ⊆ C ⊆ R (or indicate that there is none) in
poly-time?

The poly-time constraint on solving this subproblem rules
out the brute-force approach: namely, iterating over all sub-
sets C such that I ⊆ C ⊆ R until we find some C that is
an AAC (or conclude that there is none). We find that this
exponential search is not necessary. The key idea behind our
solution is to reduce this search to a verification of whether a
particular AAC is admissible.

To elaborate, assume there exists an AAC C such that I ⊆
C ⊆ R. It is possible that C = I, in which case we are done.
Otherwise, consider what it means for I not to be admissible.
When conditioning on Pa(I) \ {X}, every variable in V≤X

has an active path to X . This means that every such variable
(outside the conditioning set) is a descendant of Sp(I)\Pa(I)
(Def. 5). Since C is admissible, then there must be some
descendant of Sp(I) \ Pa(I), say D, which has an active
path to X when conditioning on Pa(I) \ {X} but not when
conditioning on Pa(C)\{X}. We show that the AAC C can
exist if and only if there exists any set Z separating X from
some such D, with the restriction that Pa(I) \ {X,D} ⊆
Z ⊆ Pa(R)\{X,D}. Z need not be an AAC. We can check
if such Z exists (line 6) in poly-time using the function
FINDSEPARATOR (Fig. C.2.2 in Appendix C.2).
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Algorithm 2: LISTCIX (GV≤X , X,V≤X , I,R)

1: Input: GV≤X a causal diagram; X a variable; V≤X an
ordering consistent with G; I and R ACs relative to X .

2: Output: Listing non-vacuous CIs invoked by C-LMP
associated with X and AACs C under the constraint
I ⊆ C ⊆ R.

3: if FINDAAC(GV≤X , X,V≤X , I,R) ̸=⊥ then
4: if I = R then
5: S+ ← V≤X \De(Sp(I) \ Pa(I))
6: Output X ⊥⊥ S+ \ Pa(I) | Pa(I) \ {X}
7: return
8: T← R ∩ (Sp(I) \ I), S ← Any node in T
9: I′ ← C(X)GAn(I∪{S}) ,R

′ ← C(X)GR\De({S})

10: LISTCIX(GV≤X , X,V≤X , I,R′)
11: LISTCIX(GV≤X , X,V≤X , I′,R)

Example 11. Expanding Ex. 10 to illustrate the usage of
FINDAAC. Let X = J , V≺ = V≤J , I = {J}, and
R = {A,C,D, F,H, J}. FINDAAC(G3, J,V≤J , I,R) re-
turns C = {J} since there exists an AAC C relative to J
with I ⊆ C ⊆ R. With I = {F, J} and R = {F,H, J},
FINDAAC(G3, J,V≤J , I,R) returns ⊥ since none of the
ACs C relative to J with I ⊆ C ⊆ R are admissible.

Lemma 1 (Correctness of FINDAAC). Given a causal graph
G, a consistent ordering V≺, and a variable X ∈ V≺, let
I,R be ancestral c-components relative to X such that I ⊆
R. FINDAAC(GV≤X , X,V≤X , I,R) outputs an admissible
ancestral c-component C relative to X such that I ⊆ C ⊆ R
if such a C exists, and ⊥ otherwise.

Lemma 2 (Correctness of LISTCIX). LISTCIX
(GV≤X , X,V≤X , I,R) enumerates all and only all
non-vacuous conditional independence relations invoked
by the c-component local Markov property associated with
X and admissible ancestral c-components C relative to X
where I ⊆ C ⊆ R. Further, LISTCIX runs in O(n2(n+m))
delay where n and m represent the number of nodes and
edges in G, respectively.

Our results are summarized in the following theorem,
which provides the soundness, completeness, and poly-delay
complexity of the proposed algorithm.

Theorem 3 (Correctness of LISTCI). Let G be a causal
graph and V≺ a consistent ordering. LISTCI(G,V≺) enu-
merates all and only all non-vacuous conditional indepen-
dence relations invoked by the c-component local Markov
property in O(n2(n+m)) delay where n and m represent
the number of nodes and edges in G, respectively.

5 Experiments
In this section, we first demonstrate the runtime of LISTCI
on benchmark DAGs of up to 100 nodes from the bnlearn
repository (Scutari 2010). Next, we apply LISTCI to model
testing on a real-world protein signaling dataset with an
expert-provided graph (Sachs et al. 2005). Third, we pro-
vide analysis of the total number of non-vacuous CIs invoked

Algorithm 3: FINDAAC (GV≤X , X,V≤X , I,R)

1: Input: GV≤X a causal diagram; X a variable; V≤X an
ordering consistent with G; I and R ACs relative to X .

2: Output: An AAC C relative to X under the constraint
I ⊆ C ⊆ R, if such C exists; ⊥ otherwise.

3: if ISADMISSIBLE(GV≤X , X,V≤X , I) then
4: return I
5: for each D ∈ De(Sp(I) \ Pa(I)) do
6: Z← FINDSEPARATOR(GV≤X , {X}, {D},

Pa(I), Pa(R))

7: if Z ̸=⊥ then
8: return C(X)GAn(I∪Z)

9: return ⊥

by C-LMP, using LISTCI for the analysis. The details of the
three experiments are shown in Appendix F.

Experiment 1 (Comparison of LISTCI with other algo-
rithms). We compare the runtime of LISTCI with two base-
lines: LISTGMP (Fig. E.0.1 in Appendix E) and LISTCIBF
(Alg. B.1.1 in Appendix B.1)4. LISTGMP lists all CIs in-
voked by GMP (Def. 2); LISTCIBF iterates over ancestral
sets to list CIs invoked by the ordered local Markov prop-
erty (Richardson 2003). The algorithms were run on DAGs
that describe real-world scenarios from the bnlearn reposi-
tory. Since the graphs are Markovian, non-Markovian graphs
were generated by randomly assigning U% of nodes to be
unobserved for U ∈ {0, 10, 20, . . . , 90}. For each U , we
generated 10 random samples. For a given graph, algorithm,
and U , if any one sample timed out (> 1 hour), no further
samples are tested. Fig. 5 shows the average runtime of the
algorithms, with further details in Fig. F.1.1.

The results corroborate our theoretical conclusion that
LISTCI outperforms the other algorithms. For LISTGMP,
the algorithm did not timeout on graphs with n < 10 nodes.
For LISTCIBF, we have mixed results. The algorithm did
not time out for some graphs with up to n = 35 nodes, but
there were other graphs with n = 25 where the algorithm
did time out. For LISTCI, the algorithm did not timeout for
many graphs up to n = 80, but did time out for some graphs
with n = 70.

Experiment 2 (Application to model testing). A real-
world protein signaling dataset (Sachs et al. 2005) has been
used to benchmark causal discovery methods (Cundy, Grover,
and Ermon 2021; Zantedeschi et al. 2023). The dataset (853
samples) comes with an expert-provided ground-truth DAG
(11 nodes, 16 edges). Using LISTCI, we test to what ex-
tent this graph is compatible with the available data. We use
a kernel-based CI test from the causal-learn package
(Zheng et al. 2024) with p-value p = 0.05 (for the null hy-
pothesis of dependence).

4Our implementation of LISTCIBF can be improved by gener-
ating ancestral sets more efficiently. Regardless, we know LISTCI
performs better in theory (Sec. 3), and have strong evidence that
it is also better in practice to this more efficient implementation of
LISTCIBF.
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Figure 5: Plot of runtimes of the algorithms LISTGMP, LIST-
CIBF, and LISTCI on graphs of various sizes. A colored box
indicates the interval of n on which the relevant algorithm
has timed out on some graphs with n nodes. The y-axis uses
a logarithmic scale.

For our chosen topological order, seven out of ten CIs
invoked by C-LMP resulted in p > 0.05. This suggests the
ground-truth DAG may need revision before use as a bench-
mark for structure learning. The exact local CIs that are
violated may guide experts in this revision process.

Experiment 3 (Analysis of C-LMP). We use LISTCI to
understand the total number of non-vacuous CIs invoked by
C-LMP. Let CI denote this number. CI is also the number of
CIs that need to be tested from a given semi-Markovian causal
DAG. Based on experiments with random graphs shown in
Appendix F.3, we conclude that the graph topology associated
with c-components plays a major role in CI. More specif-
ically, two factors related to c-components are of primary
interest:

1. s ≤ n: the size of the largest c-component, and
2. The sparsity of c-components, a proxy for which is the

number of bidirected edges.

As we add bidirected edges, while c-components are
sparse, CI increases exponentially with s, as given by the
bound O(n2s). As c-components become more dense, CI
decays exponentially with the number of bidirected edges.
As an illustrative example, please refer to Fig. F.3.1 and the
discussion on Case 1 in Appendix F.3.

6 Conclusions
In this paper, we introduced a new conditional independence
property for causal models with unobserved confounders,
namely, the c-component local Markov property (C-LMP,
Def. 5). Given a DAG G, C-LMP identifies a small subset
of conditional independence constraints (CIs) that together
imply all other CIs encoded in G. We showed that C-LMP is
equivalent to the global Markov property (Thm. 1), and that
each CI that C-LMP invokes can be generated from a unique

ancestral c-component (Thm. 2). Building on this foundation,
we developed the first algorithm LISTCI (Alg. 1) capable
of listing all CIs invoked by C-LMP in polynomial delay
(Thm. 3). Reducing the number of CI tests needed to evalu-
ate a causal model is important as it improves runtime per-
formance and helps mitigate concerns about statistical power
and multiple hypothesis testing. We hope our work will help
researchers test their causal assumptions using observational
data prior to inference.
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