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Abstract

The ability to simulate the effects of future actions on the world is a crucial ability of
intelligent embodied agents, enabling agents to anticipate the effects of their actions
and make plans accordingly. While a large body of existing work has explored
how to construct such world models using video models, they are often myopic
in nature, without any memory of a scene not captured by currently observed
images, preventing agents from making consistent long-horizon plans in complex
environments where many parts of the scene are partially observed. We introduce
a new persistent embodied world model with an explicit memory of previously
generated content, enabling much more consistent long-horizon simulation. During
generation time, our video diffusion model predicts RGB-D video of the future
observations of the agent. This generation is then aggregated into a persistent
3D map of the environment. By conditioning the video model on this 3D spatial
map, we illustrate how this enables video world models to faithfully simulate both
seen and unseen parts of the world. Finally, we illustrate the efficacy of such a
world model in downstream embodied applications, enabling effective planning
and policy learning.

1 Introduction

By training on vast and diverse datasets from the internet, large video generation models have
demonstrated impressive capabilities that expand the horizons of computer vision and AI [2, 5, 12, 39].
Such models are especially useful in embodied settings, where they can serve as world models,
enabling simulation of how the dynamics of the world will evolve given actions [6, 37]. Such an
embodied world model can then significantly benefit tasks like path planning and navigation, enabling
agents to make decisions based on simulated interactions before acting in the real world and enabling
agents to be purely trained on simulated real-world interactions.

However, a fundamental challenge exists for embodied world models: the underlying state of the
world is represented as a single image or chunk of images, preventing existing world models from
consistently simulating full 3D environments where much of the generated world remain unobserved
at any given moment [16]. As a result, models are myopic and often generate new elements that
conflict with its historical context—thereby harming the internal consistency required for real-world
fidelity. These contradictions undermine the world models’ capacity to track evolving environments
and plan over extended horizons, ultimately constraining their utility for navigation, manipulation,
and other tasks demanding stable, long-term interaction. As illustrated in Figure 1, given a context
video defining a 3D scene, the world model without 3D memory fails to retain the unobserved regions
once they move out of view. Compared to the ground truth frames, not only do items like the painting
and table disappear, but the room structure turns into an entirely different space—showcasing a
contradiction with the provided context.

To solve this issue, we present Persistent Embodied World Model, an approach to learning an
accurate embodied world model by explicitly incorporating a 3D memory into world models. Real-
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Figure 1: 3D Persistent Video Generation. Given the context video that defines the top-left 3D
scene, the baseline world model deviates from this layout and introduces contradictory elements.
In contrast, with 3D memory, our approach preserves observed structures and generates content
consistent with the original context.

world scenes naturally unfold in three dimensions, so our model constructs a volumetric memory
representation by populating 3D grids with DINO features [22] representing previously generated
video frames, thereby capturing the spatial relationships within the environment. To enable accurately
capture and generate the 3D geometry in an environment, our model processes and generates RGB-D
data to preserve critical geometric cues in the memory’s 3D structure. To enable 3D consistent
simulation, our model converts an agent’s actions into a corresponding relative camera pose change
in the map, enabling effective retrieval from the 3D memory and ensuring consistent viewpoints
and content across frames. By uniting 3D-structured memory, depth-aware generation, and precise
camera control, our model not only predicts future observations under action control but also faithfully
reconstructs past scenes with a high degree of spatial coherence. In Figure 1, the 3D memory module
allows our method to preserve previously observed 3D structure, maintaining coherent scene content
throughout generation. In contrast, a model without the 3D memory progressively deviates from the
given context.

Our empirical results show significant enhancement for both the visual quality and consistency of
video generation, highlighting the effectiveness of our proposed model and its associated memory
mechanisms. In particular, these results confirm that incorporating a 3D memory promotes 3D
persistence of embodied video generation, ensuring consistency with both previously generated and
observed frames. Additionally, this persistence offers substantial advantages for the downstream
robotic applications, including ranking the sampled action trajectories, planning with model predictive
control, and policy training in the video simulators.

In summary, our contributions are as follows:

1. We propose the Persistent Embodied World Models, an embodied world model system which
incorporates 3D memory into video diffusion models, enabling persistent video generation.

2. We empirically demonstrate that our model offers significant improvement for both the
visual quality and consistency of video generation.

3. We show how our model can be used in downstream embodied application such as planning
and policy training.

2 Method

In this section, we present our proposed method in detail. We first give some formulations about
world models with memory and action-driven video generation models in Section 2.1. We then
propose our 3D memory approach, which introduces the capability of 3D spatial understanding and
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Figure 2: Overview of our framework. (a) Our model takes the current RGB-D observation, action,
and 3D memory as input and synthesizes an RGB-D video. (d) The memory is incrementally updated
after each video generation. (b, c) We train the memory blocks only and freeze DiT blocks of the
video models in the second training stage.

3D map features into the video models in Section 2.2. Finally, we describe the training pipeline and
potential applications of our model for robotics in Section 2.3.

2.1 Formulation

World Models with Memory. We formulate our proposed model as action-guided video generation
models with a 3D feature map memory. Specifically, our model takes the current image observations
Ot, agent actions At and 3D feature map memory M as input, and then predicts the future observations
{Ot+1, · · · , Ot+H} that the agent will see if it executes the given action At. In this paper, the
observations Ot refer to RGB images and depths. Agent’s actions At refer to the navigation commands
(e.g., move forward/backward, turn left/right) and interaction commands (e.g., pick objects, move
objects). The 3D feature map memory M is initialized to all zero values, and then is incrementally
updated given the observations of the agent. The memory M enables our model to not only imagine
unknown areas but also maintain consistent generations in previously seen areas.

Action Representation. In this paper, we convert action commands At into a corresponding relative
camera pose transformation C*. We then explicitly condition video generation on the computed
relative camera pose of each action. Each relative camera pose is represented as the intrinsic matrix
K and extrinsic matrix E = [R|t]. However, some works [14] indicate that direct conditioning video
generation on the raw camera poses complicates the correlation between these values and image
pixels, restricting the ability to control visual details precisely. To more accurately condition on
relative camera transform, we use the Plücker embedding [29] to represent each camera transform
(more details in Appendix A.2).

Action-Driven Video Generation. To leverage the pre-trained generation abilities, we use
CogVideoX [39] as the backbone of our model. Previous works [14] mostly utilize cross-attention for
the action-driven and camera-control. However, we found that directly concatenating Plücker camera
embeddings with input image channels is better for precise pixel-wise control for CogVideoX.

Given a video of shape T ×H ×W , 3D VAE of CogVideoX will compress the video and generate
the video latent of shape T

q ×
H
p ×

W
p . We also downsample the Plücker camera embeddings with the

same compression rate using UnPixelShuffle layers [28]. We concatenate the downsampled camera
embeddings with video latent and extend the original patch embeddings to accept new channels.

2.2 Video Generation with 3D Map

To enhance the representation of scene information, we create a volumetric memory representation by
filling 3D grids with DINO features [22]. Constructing a 3D map from one or several images includes

* Parts of an action that do not correspond to a camera pose transformation can be encoded separately
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several steps: (1) feature extraction, (2) feature unprojection, (3) aggregation. We first extract image
features F via DINO-v2 [22], a pre-trained image encoder, for each image I . Then, we lift 2D image
feature F into the 3D space. We unproject each pixel to a 3D grid in the world coordinate space
using depth, intrinsic and extrinsic matrix. Finally, we aggregate each grid in the DINO-Map through
max-pooling. For efficiency, we extract the meaningful grids from the 3D map. To maintain 3D
spatial relations, we then concatenate each grid with corresponding 3D sinusoidal absolute position
embeddings.

A key challenge in combining video models with the 3D spatial feature map is that most video
models are limited in the abilities of 3D spatial understanding. In order to accurately model such
relationships, we inject depth information into the video models. We generate RGB-D videos instead
of only RGB videos to introduce 3D-aware information into the video latent. With generating and
processing depth information, our model can maintain the 3D geometry and spatial information.
Drawing from TesserAct [42], we separately encode RGB and depth with 3D VAE. We concatenate
RGB and depth and extend the input and output layers to accept and output depth channels.

To inject DINO-Map into the video diffusion models, we design the cross-attention expert block as
our memory block. We additionally concatenate camera embeddings C to the video hidden states H
such that the model has the information of both camera pose and depth. Thus, the model is able to
correlate the hidden states with the corresponding 3D feature grids. Drawing from the CogVideoX,
we use expert adaptive layernorms to improve the alignment across two feature spaces. We regress
the different scale and shift parameters α, β, and γ from the time embeddings t for the video latent
and map latent separately. Specifically, we define our memory blocks as:

Hnorm,Mnorm, αH , αM = norm1(H,M, t)

H = H + αMAttn(Hnorm,Mnorm)

H = H + αHff(norm2(H))

(1)

where norm1 is expert adaptive layernorm, norm2 is layernorm, Attn is the cross-attention layer
and ff is the feed forward layer. As illustrated in Figure 2, we inject the memory blocks after each
original transformer block.

2.3 Training and Application

Training. Training large video diffusion models directly on 3D feature maps is computationally
prohibitive. To address this, our approach involves two training stages. We begin by fine-tuning
CogvideoX without the memory block on our dataset. The training objective of this stage is:

L = Ezi,i,ϵ[∥ϵθ(zi, i|ot, at, c)− ϵ∥2] (2)

where ϵθ is video models, zi is video latents, and ot, at, c represent observation, action and camera
pose. We use superscripts i ∈ [0, N ] to denote diffusion steps (for example, zi) and ϵ as the added
noise. The aim of this training stage is threefold: 1) Adapt pre-trained video models to the specific
domain of our dataset. 2) Integrate action-conditioned controls to enable precise guidance over the
generated video. 3) Optimize video models to generate RGB-D videos, producing both color (RGB)
and depth (D) frames simultaneously, which is critical for further map construction.

Next, in the second training stage, we train the memory blocks only and freeze other parameters. The
training objective of this stage is formulated as:

L = Ezi,i,ϵ[∥ϵθ(zi, i|ot, at, c,M)− ϵ∥2] (3)

where M is the 3D feature map. This process teaches the model to exploit the information in maps
but also maintains the generation abilities of the original model.

Applications in Embodied Domains. We next describe how to leverage our model in downstream
embodied applications such as model predictive control (Algorithm 1 (c)) or policy training. Overall,
our model with memory serves as a temporally consistent dynamics model to simulate agent-
environment interactions.

To enable an agent to accurately choose actions in an environment, we can combine our model with
model predictive control. Given a reward function R(V ) that the agent is optimizing, we can optimize
an action

a∗ = argmax
a

R(V ), (4)
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Table 1: Video Generation Results. Our model outperforms baselines in both visual quality and
consistency.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ DreamSim ↓ SRC ↑
NWM 17.5±0.05 0.66±0.01 0.31±0.01 194±4.3 0.247±0.006 63.4±0.56

Image Memory 19.0±0.25 0.68±0.01 0.27±0.01 124±3.7 0.184±0.009 69.4±0.72

Ours (w/o depth) 20.6±0.12 0.67±0.01 0.22±0.01 114±2.5 0.118±0.002 77.8±0.24

Ours (w/ 2D-Map) 21.6±0.15 0.75±0.01 0.17±0.01 98±2.3 0.097±0.002 79.2±0.22

Ours 22.5±0.05 0.76±0.01 0.16±0.01 92±2.0 0.086±0.001 81.7±0.10
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Figure 3: Qualitative Comparison of Ours with baselines. Given 3D memory and camera trajectory,
the videos generated by our model are high-quality and closely match the ground truth, while
NWM [2], without the memory mechanism, generates new contents that conflict with the ground
truth. We use green boxes to show consistency and red boxes to show conflict.

which we then execute in the environment. The above optimization objective searches for sequences
of actions a so that the image observations in the generated video V from our method maximizes the
reward function r(s). When optimizing Equation 4, we can either use sampled action chunks from
a pre-trained policy [23] or directly search in the space of the actions using optimization methods
such as the cross entropy method [9]. In comparison to directly learning a policy, using MPC to
obtain actions enables the agent to more precisely select actions subject to the dynamics of the world,
where the addition of memory in our model enables more faithful optimization in partially observable
embodied environments.

Alternatively, our model can also be used as a grounded simulator to generate data for policy learning
in unseen environments. In this setting, we initialize the map M from a few-shot images of the
unseen environment we wish to adapt to. We can then simulate trajectories of interaction in this
environment by repeatedly using the policy to generate actions, using our video model to generate
future observations given these actions, and then updating the map M with these observed future
observations. We can then use hindsight relabeling [36] to label trajectories with goals and rewards,
and use the downstream data to train and improve the policy iteratively.

3 Experiment

We describe the experimental setting and our design choices and compare our model to previous
approaches. We report the results using three random seeds.

3.1 Dataset

We collect our dataset in the Habitat Simulation [32] with about 1,000 scenes from HM3D [24].
We split the scenes into training scenes and test scenes. Though the visual quality of Habitat is not
perfect, the reason we still choose this is that the scenes from Habitat include multi-rooms and are
much larger than the real-world dataset [3, 45]. In addition, Habitat supports the potential to collect
data that how the agents interact with the environment. Our dataset includes about 50k trajectories
with the most 500 steps. Additional details are included in Appendix A.1.
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Figure 4: Qualitative Results of Consistency Generation. We autoregressively generate videos four
times and present the final images from each generation. Our model can generate consistent content
after revisiting the same location.

3.2 Video Generation

We first evaluate the capability of our model and other baselines to generate temporally coherent and
geometrically consistent videos from memory.

Baselines. We compare our model with several baselines:

• Navigation World Model (NWM) [2]†. NMW is a controllable egocentric video generation model.
It predicts future observations based on past observations and actions.

• Image Memory. This baseline is drawn from 3D-Mem [38], which is previous used for VQA. It
leverages a compact set of informative snapshot images as 3D scene representation. We adopt the
snapshot images as the image memory for the video models.

• Ours (w/o depth). This is an ablative baseline trained with RGB videos without depth information.
• Ours (w/ 2D-Map). This is also an ablative baseline trained with 2D feature maps.

Evaluation. We evaluate the overall performance of video generate according to FVD [33]. To
assess the persistence of the scene information between the videos and memories, we use peak
signal-to-noise ratio (PSNR), SSIM [34], LPIPS [41] and DreamSim [11] to measure the frame-wise
similarity between the generation and ground truth. We mainly focus on how well our model and
other baselines generate coherent and consistent content from memory. Thus, we construct maps
based on the previously visited observations as memory. For a fair comparison, all baseline models
were configured to have an equal number of parameters. And NWM would take an empty memory as
the conditioning input.

Generation Results. We first assess the effectiveness of our model. The results are highlighted
in Table 1. Our method gains a significant improvement over the baseline without memories
(NWM) and surpasses all other baselines with memories across all metrics. Specially, our model
reaches a notable FVD score of 92, significantly lower than those of other methods, such as NWM
(194) and Image Memory (124). Furthermore, the better PSNR and SSIM scores also reflect
that our model excels in visual fidelity. The poor performance of NWM highlights the critical
importance of incorporating memory mechanisms, with baselines with an underlying memory
mechanism substantially outperforming it. Image Memory and ours (with 2D-Map), which consider
2D representations for the memory, lack 3D spatial awareness, resulting in the degradation of the
performance. Comparison with ours (w/o depth) indicates that incorporating depth information
enhances the correlation between the hidden states of the video and 3D feature grids. As shown

† Since the original paper has not released the codes and the architecture of NMW is a conditional diffusion
transformer model, similar to our backbone CogvideoX [39]., we implemented it based on our backbone.
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Figure 5: Qualitative Examples of Long Video Generation. Our model can generate long videos
with memory.

in Figure 3, NWM generates new elements that conflict with the real scene while our model can
accurately replicate elements.

Persistent Generation. Next, we evaluate models using the metric Scene Revisit Consistency (SRC)
from SlowFast [16] to access the consistency of a video observed in the same location when revisited
through reverse actions. SRC is determined by calculating the cosine similarities between visual
features of the first visit and subsequent visits. We use DINO-v2 [22] to extract the visual features.
The results are highlighted in Table 1. We find that baselines with memory mechanisms all have a
better performance than NWM, among which our model achieves the best performance. Figure 4
shows the quantitative results of our model and baselines without memory. Our model maintains long
consistent generations after turning left twice and right back.

Table 2: Experimental Results of Ranking Trajectories. Our model exhibits superior performance
compared with baselines.

Method ATE ↓ RPE ↓ SIM ↑
NoMaD 4.94±0.2 4.86±0.4 36.8±1.2

NWM (×8) 4.82±0.2 3.62±0.2 59.7±3.5

Ours (×8) 4.80±0.1 3.58±0.1 62.5±3.5

NWM (×16) 4.54±0.1 3.51±0.1 68.7±1.4

Ours (×16) 4.47±0.1 3.28±0.1 70.8±1.7

3.3 Planning with World Models

In this section, we describe how our model can help improve the performance of robotic navigation
policies as illustrated in Section 2.3. One major challenge for the previous world model approaches is
that they don’t have ability to capture the 3D structure of the entire environment, leading to unreliable
guidance to the robotic policies. Our model, with 3D persistent memory map, can ground generated
videos to the real environment. Similar to NWM [2], we plan with the world models by generating
videos of length 8.

Ranking Trajectories. We leverage the video models to rank the multiple trajectories generated by
an existing policy. We use NoMaD [30], a state-of-the-art diffusion policy for robotic navigation, to
sample N = 8, 16 action trajectories. We use video models to generate future observations under the
action trajectories. We rank trajectories by computing the cost function, which is LPIPS similarity
between the goal observation and the last frame of the generated videos.

We use Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) [2, 31] to access the global
consistency and local accuracy of the final predicted action trajectories. We also evaluate the similarity
(SIM) between the final pose and final rotation after executing the action trajectories and real pose
and rotation. As shown in Table 2, our model outperforms navigation policies and the baselines
without memory mechanisms, demonstrating the efficacy of our approach.

Model Predictive Control. We assess how our model can be used with MPC. For simplicity, we
use the discrete actions (e.g., move forward, turn left/right). We initialize the uniform distribution
over the action space. We randomly sample N = 60 action chunks from the current distributions.
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Figure 6: Experimental Results of MPC and Policy Learning. (a) Through generating more
samples, our model with MPC achieves a 17% performance gain compared to ranking action
trajectories. (b) By leveraging few-shot images stored as memory prior, our model significantly
enhances policy learning performance.
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Figure 7: Qualitative Examples of Unseen Persistent Generation. Our model can generate
persistent videos even in unseen environments.

We generate the potential observations given each action chunk through our model and compute the
cost function. We select the top k = 30% action chunks to update the distributions. The metrics
ATE and RPE measure the trajectory-level distance and are not suitable for MPC since two different
trajectories can reach a similar final goal. Thus, we only report SIM metrics. The results are shown in
Figure 6a. After about 350 iterations, our model with MPC can achieve results similar with ours with
NoMad. Our model with MPC achieves competitive results, SIM of 87.5 after about 720 iterations.

Policy Learning in New Environment. As described in Section 2.3, our proposed model has the
ability to support the policy training in a new environment with few-shot images. Then, we provide a
proof-of-concept by fine-tuning the previous agent policies in the new environments. The results are
shown in Figure 6b. Our model can boost policy learning.

3.4 Additional Video Generation Results

Finally, we demonstrate the additional capabilities of our model, particularly in generating extended
video sequences and generalizing to novel scenes.

Long Video Generation. We find that our approach is able to synthesize very long video trajectories
while maintaining 3D consistency across extended time horizons by incrementally updating memory.
To illustrate this, we generate a total of 112 video frames autoregressively in Figure 5.

Simulation in Unseen Scenes. We further illustrate how our approach can generalize well and
simulate new unseen scenes. The results are shown in Figure 7, while a modest decline in visual
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fidelity occurs compared to training domains, the framework robustly preserves object permanence
and scene consistency, underscoring its adaptability to novel scenes.

4 Related work

Embodied World Models. Significant research efforts have developed generation models as world
models in gaming [1, 6], autonomous driving [12, 20], and robotics [4, 8, 23, 36, 43]. Prior works [17,
44] have primarily focused on training models using low-dimensional state and action representations
on simulation data. These approaches leverage trajectory generation to enable robot planning.
However, such methods face significant challenges in scaling to high-dimensional observation spaces.
UniPi [10], addresses this limitation by employing a video diffusion model to directly predict
future visual frames subsequently coupled with an inverse dynamics model to infer action. Uni-
Sim [36] and Genie [6] demonstrate the utility of world models for training agents by enabling policy
learning without direct environmental interaction during training. However, existing world model
frameworks in robotics remain largely restricted to simplified settings, such as table-top manipulation
tasks, limiting their applicability in real-world scenarios requiring complex spatial reasoning. Some
works [18, 19] propose visual world models for the indoor navigation tasks. Most similar to our work,
Navigation World Models [2] introduces a controllable video generation framework conditioned on
navigation commands to simulate environment dynamics. While promising, this method lacks an
explicit memory architecture, leading to scene inconsistency. Our framework integrates a memory
mechanism that enables consistent long-horizon imagination, ensuring coherence with previously
generated content.

Video Generation and Memory. A fundamental challenge in persistent video generation stems
from computational memory limitations, which restrict the number of frames processed in a single
forward pass. Previous approaches [13, 15, 26, 37] condition each generated video chunk solely on
its immediate predecessor, creating truncated context windows that discard prior scene history. This
results in temporal fragmentation and inconsistencies when revisiting earlier spatial contexts. Recent
work [16], utilizes a temporary LoRA module that embeds the episodic memory in its parameters
in video diffusion models. However, it requires additional training time during inference, and its
reliance on 2D latent representations neglects 3D spatial priors. Persistent Nature [7] models the 3D
world as a 2D terrain and render the video via NeRF [21]. Alternative approaches like InfiniCube [20]
leverage structured high-definition (HD) maps to enforce geometric consistency in long videos, but
such maps are inherently static, simplistic, and confined to autonomous driving. To overcome these
limitations, we propose a 3D feature map that serves as a dynamic memory buffer, explicitly encoding
semantic attributes and spatial geometry to maintain coherent environmental representations across
extended temporal horizons.

5 Conclusion

In conclusion, we present the Persistent Embodied World Model, a novel framework that integrates
3D memory structures into video diffusion models to achieve persistent, spatially coherent video
generation. Our model demonstrates significant advancements in both visual fidelity and temporal
consistency for generation. Crucially, the system not only synthesizes plausible content for unexplored
environments but also maintains geometric and semantic coherence in previously observed scenes.
Furthermore, we showcase the practical utility of our model in embodied AI to enhance robotic
planning and policy training.

Limitations and Future Works. One limitation of our work is that we need the data with depth. Most
datasets either don’t include depth information [45] or are limited in the diversity of trajectories. [3,
40]. To apply our approach to larger real-world datasets, one direction is to leverage pre-trained depth
estimation models (e.g., Depth Anything [35]) to estimate depth in videos. We can further use a
mixture of simulation data and real-world data to further improve data diversity.

Additionally, our constructed 3D maps of the environment do not model the dynamic evolution of the
environment over time. This prevents our approach from simulating dynamics of many embodied
environments where the surroundings in the environment are constantly changing – i.e. moving cars
in traffic or other inhabitants in a house. Further learning an additional dynamics model on top of the
3D spatial memory to model such changes would be an interesting direction of future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 1, we conclude our main contribution in the last paragraph: we
learn the embodied world model with 3D memory to generate persistent content, enabling
effective planning and policy learning.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations and future work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We don’t include any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in the Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code and dataset in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bars calculated as standard deviation across three random
seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computing resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe broader impacts in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper about the backbone and the simulation that
we used to generate the data and provide the licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We provide the experimental details in the paper and will release the code and
dataset in the future.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Details

Figure 8: Detailed Implementation of the Memory Block.

A.1 Dataset

We compare different datasets in Table 3. Our dataset collected from HM3D is a large dataset
satisfying multi-room and depth support. Though our dataset mainly includes navigation actions, it’s
feasible to be extended to interaction commands since is collected from the simulation Habitat [32]‡.

We collect our dataset by randomly sampling start and goal positions in the scene and following the
shortest path at most 500 steps.

Sometimes, the agent would already have much information about the scenes. Thus, the agent has
possibility to turn around to get scene information initially when collecting data.

Table 3: Comparison with Other Datasets.

Dataset Num. Videos Room Depth Allowed Interaction
Ours 50K Many ✔ ✔
RealEstate10K [45] 10K Many ✘ ✘
Scannet++ [40] 1.8K Many ✔ ✘
ARKitScenes [3] 3.1K Few ✔ ✘

Table 4: Details about 3D VAE.

RGB or Depth Camera

Input 9× 512× 512× 3 9× 512× 512× 6
Compression 3D VAE Mean-Pooling & UnPixelShuffle
Latent 3× 64× 64× 16 3× 64× 64× 24

A.2 Implementation Details

We use CogVideoX [39]§ as our backbone. CogVideoX is a transformer-based architecture. We
modify the PatchEmbed Layer to accept the depth latents and camera embeddings. In particular, we
expand the input channel of the original convolution network (or MLP in CogVideoX 1.5) and copy
the original weights. Expanded parameters are zero initialized. Similarly, we modify the output layer
to output the depth latents.

The architecture of our memory block is illustrated in Figure 8. We concatenate video hidden states
with camera embedding. Similarly to CogvideoX [39], we normalize the hidden states and 3D
‡ https://github.com/facebookresearch/habitat-lab; MIT license. § https://github.com/THUDM/CogVideo;
Apache-2.0 license
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Figure 9: Consistency Results.

memory via the expert adaptive layernorm separately. Instead of 3D full attention of CogvideoX, we
use Cross-Attention Layer for efficiency. The number of additional parameters for all memory blocks
is nearly 1B.

3D VAE. We use 3D VAE from CogVideoX to compress RGB-D videos to video latents. We feed
RGB and depth separately to 3D VAE, which compresses 9×512×512 frames to 3×64×64 latents.
We also downsample the plücker embedding with the same compression rate. In particular, we use
mean-pooling to downsample the spatial dimension and UnPixelShuffle layers [28] to compress the
temporal dimension.

Memory. we create a volumetric memory representation by filling 3D grids with DINO features. The
shape of 3D grid map is 256×32×256×384 and the size of each grid is 0.25m×1m×0.25m. We
first extract image features F via DINO-v2 [22] and upsample the features by bilinear interpolation.
Then, we lift 2D image feature F into the 3D space. We unproject each pixel to a 3D grid in the
world coordinate space using depth, intrinsic and extrinsic matrix. Finally, we aggregate each grid in
the DINO-Map through max-pooling.

Our memory can be easily extended to outdoor environments. We can maintain a large and unbounded
grid map and extract the local map that is fed into the video diffusion models based on the camera
pose. We leave it for future work.

Action Representation. To more accurately condition on relative camera transform, we use the
Plücker embedding [29] to represent each camera transform. Specifically, an intrinsic matrix K and
extrinsic matrix E is encoded as an image P ∈ Rh×w×6. The value of pixel (u, v) in the image is
represented as a concatenated tuple (o× d, d) where o is the ray origin for the pixel and d(u,v) is the
ray direction for the pixel. Specifically, o is the camera center in the world coordinate space, which is
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Figure 10: Generation Results.

Algorithm 1 Persistent Embodied World Model.
(a) Video Generation

1: Definition: Video Model pθ, Map M , Action Chunk at, Observation with Depth ot, State st,
Generated Video with Depth V , Future Camera Poses {c}

2: Generate video V ← pθ(ot, at,M)
3: Compute camera pose {c} through st and at
4: Construct new map M̃ from the generated video V and camera poses {c}
5: Update map M with M̃

(b) Construct Map
1: Input: Video V , Camera Poses c, Image Encoder E
2: Output: 3D Feature Map M
3: RGB {I}, Depth {D} ← V
4: Image feature FI ← E(I)
5: Compute 3D grid {G} via {D} and camera poses c
6: Compute 3D feature F via FI and G and concatenate with 3D position embedding p
7: Construct Map M by aggregating F
8: Return: M

(c) Model Predictive Control
1: Requirement: Video Model pθ, 3D Feature Map M , Agent Policies π, MPC Distributions P
2: Sample action chunks {at} from the agent policies π or the distributions P from MPC
3: Generate videos V ← pθ(ot, at,M)
4: Calculate the cost functions for each sampled video V
5: Rank action chunks {at}, update the distributions P or policies π

t, and d(u,v) is calculated as:
d(u,v) = RK−1(u v 1)T + t (5)

This image representation of actions enables more accurate 3D spatial control from the video model.

A.3 Training Details

We train our models with frame skip, where training video clips are subsampled by a specific stride.
We use various frame stride from 1 to 3 to help the model learn various camera poses. We use
AdaM optimizer, with linear warmup and a learning rate of 1e − 4. Additionally, we utilize bf16
precision for computational efficiency and clip gradients to a maximum norm of 1.0 to stabilize
training. We utilized 8 H100 GPUs for training video diffusion models in approximately 3 days. We
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adopt v-prediction [27] and use the DDIM sampler [25]. The inference sampling step is set to 50,
and the inference time for generating the videos of 9 frames is 5 seconds.

A.4 Training and Application

We illustrate the process of training and application in Algorithm 1.

B Additional Experimental Results

B.1 Ablation Study on Voxel Size

We evaluated the model with different voxel sizes, as shown in the table 5. Our results indicate that
when the voxel size is 256 or larger, model performance remains stable. However, when the voxel
size is set below 256, we observe a slight decrease in performance.

Table 5: Ablation Study on Voxel Size.
Voxel Size LPIPS ↓ PSNR ↑ SSIM ↑
128 0.20 20.6 0.73
256 (ours) 0.16 22.5 0.76
384 0.16 22.2 0.77

B.2 Ablation Study on Representations

We evaluate the model with different 3D representation methods, as shown in the table 6. Compared
to point cloud representations and the use of CLIP features, our proposed 3D memory approach using
DINO features consistently achieves the best performance.

Table 6: Ablation Study on Representations.
Representation LPIPS ↓ PSNR ↑ SSIM ↑
point cloud 0.20 21.2 0.73
clip 0.18 21.5 0.75
DINO (ours) 0.16 22.5 0.76

C Additional Qualitative Examples

We show more examples about visual quality and consistency in Figure 9 and 10.

D Broader Impacts

This paper introduces research aimed at pushing the boundaries of Machine Learning in the realm of
robots. There is a potential risk of collisions with objects and people if the robot system is not properly
configured in the real world. Implementing collision detection strategies is a possible approach to
mitigate this risk.
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