
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

AO-DETR: Anti-Overlapping DETR for X-Ray
Prohibited Items Detection

Mingyuan Li , Tong Jia , Hao Wang , Bowen Ma , Hui Lu , Shuyang Lin , Da Cai , and Dongyue Chen

Abstract— Prohibited item detection in X-ray images is one
of the most essential and highly effective methods widely
employed in various security inspection scenarios. Considering
the significant overlapping phenomenon in X-ray prohibited item
images, we propose an anti-overlapping detection transformer
(AO-DETR) based on one of the state-of-the-art (SOTA) gen-
eral object detectors, DETR with improved denoising anchor
boxes (DINO). Specifically, to address the feature coupling
issue caused by overlapping phenomena, we introduce the
category-specific one-to-one assignment (CSA) strategy to con-
strain category-specific object queries in predicting prohibited
items of fixed categories, which can enhance their ability to
extract features specific to prohibited items of a particular
category from the overlapping foreground–background features.
To address the edge blurring problem caused by overlapping
phenomena, we propose the look forward densely (LFD) scheme,
which improves the localization accuracy of reference boxes
in mid-to-high-level decoder layers and enhances the ability
to locate blurry edges of the final layer. Similar to DINO,
our AO-DETR provides two different versions with distinct
backbones, tailored to meet diverse application requirements.
Extensive experiments on the PIXray, OPIXray, and HIXray
datasets demonstrate that the proposed method surpasses the
SOTA object detectors, indicating its potential applications in
the field of prohibited item detection. The source code will be
available at: https://github.com/Limingyuan001/AO-DETR.

Index Terms— Iterative refinement boxes, label assignment,
object detection, X-ray inspection.

I. INTRODUCTION

SECURITY inspection is one of the most vital and cru-
cial measures to uncovering the potential risks in public
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Fig. 1. Localized X-ray images with prohibited items. The phenomenon of
overlap in images, to varying extents, leads to the overlapping of foreground
and background as well as the blurring of object boundaries. (a)–(d) Index of
X-ray image example.

spaces, such as airports, train stations, subway stations, and
sensitive departments. Currently, a predominant approach to
contraband detection involves the acquisition of X-ray images
of luggage through a security scanning machine, followed by a
meticulous manual inspection conducted by security staff who
have undergone specialized training. With the advancement
of computer vision technology, authors [1], [2], [3], [4], [5],
[6], [7], [8], and [9] have attempted to apply models from
the general field of image classification, object detection,
and semantic segmentation to the realm of X-ray prohibited
item detection, aiming to assist security staff in auxiliary
inspections. However, as shown in Fig. 1, X-ray images exhibit
the overlapping phenomenon. The overlapping phenomenon
leads to two issues, including the feature coupling issue
and the edge blurring problem. These, in turn, cause the
model to inaccurately perceive the semantic information of the
prohibited item categories and to inaccurately locate the edges.

Recently, several works have been studied for alleviating
the above issue. Specifically, regarding the feature coupling
issue, GADet [10] proposes an IAA label assignment strat-
egy, taking a comprehensive consideration of the intersection
over union (IoU) between positive samples and ground-truth
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Fig. 2. t-SNE dimensionality reduction comparison. (a) Original X-ray image contains a gun, SCs, and a knife. (b) and (c) Distributions visualization of
t-SNE dimensionality reduction of the object queries from the last decoder layer in DINO and AO-DETR, respectively.

labels. Xdet [4] proposes a hard-negative-sample selection
scheme (HSS) label assignment strategy that effectively selects
hard negative samples from complex backgrounds to train
the proposed prohibited object detection network. The two
label assignment methods mentioned above essentially aim
at providing high-quality supervision information during the
training phase, which directly augments the capacity of the
model to discern features of all foreground categories amidst
overlapping features. However, the two methods are relatively
crude, as they treat each prohibited item category uniformly,
whereas the nature and pattern of coupling between each cat-
egory and the background differ. Regarding the edge blurring
problem, some multistage regression methods are conducive
for the model to achieve accurate positioning results. For
example, deformable detection transformer (DETR) [11] pro-
poses an iterative refinements boxes paradigm guided by the
look forward once (LFO) scheme to obtain excellent local-
ization results. DETR with improved denoising anchor boxes
(DINO) [12] improves upon the LFO strategy in deformable
DETR by proposing a look forward twice (LFT) scheme.
These methods essentially involve repeatedly using the differ-
ence between predicted boxes and location labels to supervise
and correct the model parameters. However, they have not
clearly analyzed the reasons why LFT is superior to LFO,
and the utilization of the location supervision signal is not
sufficiently thorough.

In this article, we try to improve the anti-overlapping
capability of the detector without changing the architecture
of model DINO [12] and without adding any computational
complexity. In addition, to pursue the optimal performance in
X-ray image prohibited item detection field, we introduce a
novel object detection model named Anti-overlapping DETR
(AO-DETR), based on DINO, which is the state-of-the-art
(SOTA) DETR-like model in natural image object detection
field.

Specifically, to alleviate the adverse effects caused by
the ambiguity of category semantics in object queries due
to the overlapping of foreground and background in X-ray
images, as illustrated in Fig 2(b), we propose a category-
specific one-to-one assignment (CSA) strategy. Through CSA,
the category-specific object queries will be stably assigned
to ground-truth labels and reference boxes of the specific
category of prohibited items, enabling it to specialize in
extracting features of specific category of prohibited items
from overlapping foreground and background. In addition,
to mitigate the blurred boundary problem caused by overlap-

ping phenomena, after conducting a detailed analysis of why
LFT is more suitable for precise boundary localization than
LFO, we propose the look forward densely (LFD) scheme,
which can localize the edges of foreground objects more
accurately. LFD is capable of transmitting gradients densely to
multiple decoder layers, allowing low-level decoder layers to
provide more reliable reference boxes to deformable attention
in high-level decoder layers. This helps high-level decoder
layers focus on learning how to predict accurate location
information from blurry edges.

To prove the efficiency of our proposed methods, we con-
duct comprehensive experiments on the PIXray [3] dataset,
OPIXray [2] dataset, and HIXray [13] dataset. The evaluation
results demonstrate that our proposed model is superior to the
SOTA object detector.

Our main contributions are summarized as follows.
1) We propose a powerful end-to-end object detector for

overlapping phenomena in X-ray images, AO-DETR.
To the best of the authors’ knowledge, this is the
first DETR-like model in the field of prohibited item
detection. Experimental results show that our model
achieved the best performance on multiple datasets.

2) We propose a CSA strategy, which enhances the
anti-overlapping feature extraction capability for specific
category foregrounds by constraining the object classes
assigned to category-specific queries during the training
phase.

3) The proposed LFD scheme improves the accuracy of
reference boxes predicted by mid-level and high-level
decoder layers through dense gradient transmission, ulti-
mately enhancing the perception ability of blurry edges
of models.

The remainder of this article is as follows. Initially,
Section II provides a review of the relevant methods. This
is followed by Section III, where we describe our proposed
method in detail. Section IV then presents and discusses
the results of our experiments. This article concludes with
Section V, summarizing our key findings and observations.

II. RELATED WORKS

We briefly summarize some SOTA object detection methods
that have achieved remarkable results. In addition, we intro-
duce existing methods for enhancing anti-overlapping feature
extraction capabilities from two pathways: accurate label
assignment and multistage regression.
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A. General Object Detector

Recently, the object detectors based on convolutional neural
networks, such as Faster regions with CNN features (R-
CNN) [14], Cascade R-CNN [15], FCOS [16], ATSS [17],
and YOLOX [18], are gradually overtaken by detectors with
detection transformer framework. DETR [19] first proposes
an end-to-end detection transformer framework while requir-
ing no hand-crafted nonmaximum suppression (NMS) [20].
Deformable DETR [11] presents the deformable attention
to accelerate convergence of DETR, which combines the
advantage of the sparse spatial sampling of deformable con-
volution, and the global modeling capability of Transformers.
DAB-DETR [21] presents a new query formulation and
using dynamic anchor boxes for DETR. DN-DETR [22] and
DINO [12] enhance DETR-like models from the perspectives
of denoising queries and anchor boxes, respectively. Co-
DETR [23] combines some traditional label assignment strate-
gies and Hungarian matching to mitigate the sparse supervi-
sion problem caused by the one-to-one set matching strategy.

B. Label Assignment

Labeling anchors as positive or negative samples is crucial
in detector training, which can mitigate the foreground–
background class imbalance problem in X-ray images. Tradi-
tional anchor-based detectors like YOLOv3 [24], SSD [25],
Faster R-CNN [14], and RetinaNet [26] use IoU for label
assignment. Anchor-free detectors, such as FCOS [16] and
Foveabox [27], employ center sampling strategies. How-
ever, these methods are suboptimal due to their fixed rules.
Some advanced label assignment strategies, e.g., OTA [28],
ATSS [17], PAA [29], and SimOTA [18] offer dynamic
positive sample selection. OTA [28] views label assignment
globally, treating it as an optimal transportation problem.
ATSS [17] uses top-k anchors for threshold determination,
while PAA [29] applies a probabilistic method. SimOTA [18]
focuses on overall cost for better positive sample selection.

Recently, DETR [19] pioneered the use of global matching
cost and the Hungarian algorithm to achieve a unique pre-
diction result for each object in images. This represents the
first successful application of a one-to-one label assignment
scheme. However, the bipartite graph matching is unstable
in the early stage of the training phase. DN-DETR [22]
introduces noised bounding boxes and labels that bypass the
need for Hungarian matching, thereby mitigating the issue
of unstable assignments. DINO [12] further put forward con-
trastive denoising (CDN) training to accelerate convergence.
Group-DETR uses a groupwise one-to-many label assignment,
akin to the hybrid matching of H-DETR [30], for multiple
positive object queries. Conversely, Co-DETR introduces a
collaborative optimization approach for one-to-one set match-
ing, differing from these follow-ups. Recently, some research,
such as SP [31] and BCNet [32], has proposed an unsupervised
pretraining strategy based on saliency prompt to provide prior
knowledge for queries and kernels, thereby enhancing model
performance.

However, in the object detection domain, the role of
the learned queries in DETR is still not fully understood

or utilized. We are experimenting with enabling queries to
specifically target information from certain categories, thereby
enhancing their ability to extract features in overlapping
scenarios.

C. Multistage Regression

One-stage architectures such as YOLO [24], [33], [34]
and SSD [25], [35], [36] series, designed for real-time per-
formance. These models forgo separate region proposals of
the R-CNN framework, processing the image in one pass.
Although faster than region-based models, they initially faced
challenges with lower detection accuracy. Two-stage detec-
tors, such as Fast R-CNN [37], Faster R-CNN [14], and
R-FCN [38] utilize a dual-step approach in object detection.
Initially, they generate region proposals or candidate bounding
boxes likely to contain objects. Subsequently, these proposals
are classified and refined for the final detection outcome.
Cascade R-CNN [15], a multistage detection system, tackles
challenges by using detectors trained with increasing IoU
thresholds. This approach allocates different IoU threshold
proposals as positive samples at each stage, enabling the
refinement of regression progressively. Deformable DETR [11]
designed a simple iterative mechanism for bounding box
refinement to improve detection performance, where each
decoder layer refines the boxes based on the output of the
prior layer. To overcome the shortsightedness of refining boxes
in each decoder layer, while keeping the advantages of fast
convergence, DINO introduces a novel LFT scheme, where
the updated parameters are corrected using predictions from
the current layer and the next lower layer. Recent works in
other fields, such as EfficientNet [39] and DNTDF [40], have
proposed utilizing dense connections to explore the efficient
use of mid-to-high-level semantic features.

In this work, we seek to extend this approach, allowing
the gradient of the prediction results from the current layer to
propagate to the current layer and each lower decoder layer.

D. X-Ray Object Detection

Some CNN-based object detectors [1], [2], [3], [4], [5],
[6], [7], [8], [9] have contributed significantly to security
inspection. SIXray [1] introduces a class-balanced hierarchical
refinement to address X-ray image complexities and class
imbalance. OPIXray [2] develops a deocclusion attention
module for X-ray image occlusions, enhancing feature maps
with distinct item appearances. PIXray [3] offers a dataset
with diverse prohibited items and proposes a dense deoverlap
attention snake for segmentation. Xdet [4] first statistically
analyzes the physical size distribution of different prohibited
object categories and found that their physical sizes exhibit
clear distinctions. However, GADet [10] points out that the
areas of objects obtained by the Otsu [41] algorithm are not
accurate enough in Xdet [4], and the area is not as robust as
the diagonal length in X-ray images. Thereby, they introduce
the physical diagonal length constraint (PDLC), which can
utilize this underlying relationship to align classification and
localization tasks in object detection. Although these methods
utilize CNN frameworks, we aim to enhance DETR-like
models specifically for X-ray prohibited item detection.
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Fig. 3. Architecture of AO-DETR. The backbone, encoder, decoder, and CDN modules are the same as DINO [12]. For the CSA strategy, we match
the category-specific high-quality reference boxes obtained from category-specific select mechanism (CSM) with their corresponding category-specific object
queries before inputting them into the decoder module for prediction. We further employ an additional k-category-specific Hungarian matching mechanism to
conduct one-to-one matching on the predicted results. This process serves to enhance the semantic clarity of the object query categories.

III. PROPOSED METHOD

The proposed AO-DETR incorporates CSA strategy on the
basis of DINO. The overview of the model system is illustrated
in Fig. 3. For the CSA strategy, we match high-quality
reference boxes of specific categories obtained from CSM
and their corresponding specific category object queries and
then input them into the decoder module used for prediction.
We further adopted an additional k-class-specific Hungarian
matching mechanism to predict the results. This process is
used to enhance the semantic clarity of object query categories.

A. Revisit the Match Part Label Assignment of DINO

In the DINO framework, the encoder outputs a large number
of prediction results P , encompassing classification results C ,
and localization results or reference boxes R. Similar to the
decoding process of most deformable DETR series models,
they randomly initialize Npred object queries Q0, to guide the
corresponding number of reference boxes R0 selected from
R to predict objects, where sets Q0 and R0 will be used
by the decoder layer 0 for subsequent predictions. Then, the
selection mechanism in DINO picks the top Npred prediction
results, denoted by P0, which have the highest classification
confidence scores among the set P . In addition, they are
then assigned one-to-one to each q0, where q0

∈ Q0, in the
descending order of classification confidence. This establishes
the pairing relationship between the reference box and the
object query for the decoder. For ease of description, we uti-
lize the index i to represent the pairing relationship among
reference box, classification confidence, object query, and
ground truth. Elements with the same subscript i possess a
pairing relationship. To obtain the i th pair of object query and
reference box in layer l, where q l

i ∈ Ql and r l
i ∈ Rl , the

decoder procedure of lth layer decoder layer can be expressed
in the following form:

q l
i , r l

i , cl
i = Ll(q l−1

i , r l−1
i , X; θ l) (1)

where l ∈ {x | x ∈ Z, 0 < x ≤ L}, representing the layer
index, and L = 6 denotes the total number of layers. θ l is the
parameters in lth layer and X denotes the multiscale features
extracted by the encoder.

To establish the one-to-one correspondence between the
ground-truth labels G and the prediction results P l from the
lth layer of the decoder, it is necessary to compute a matching
cost matrix M ∈ RNpred,Ngt . Ngt and Npred represent the numbers
of ground truths and predictions, respectively. The specific
method for computing this cost matrix can be referenced from
DETR. Then, they apply the Hungarian algorithm for bipartite
graph matching, and the process can be represented as follows:{

pl
i , q l

i , gi | q ∈ Z, 0 ≤ q < Ngt
}
= Hl(P l , Ql , G

)
. (2)

With this step, the algorithm establishes the pairing among the
reference boxes, classification confidences, object queries, and
ground truths, which can be represented by the subscript “i .”

B. Category-Specific One-to-One Assignment

Although the aforementioned method has achieved signifi-
cant success, the issue of the unclear categorical significance
of queries remains unresolved. As shown in Fig. 2, upon
processing X-ray images with significant overlap, the queries
in the final layer of the decoder, after being reduced in
dimensionality, exhibit a high degree of coupling and are
scattered all over the plane. This indicates that the queries
have extracted an extensive array of diverse backgrounds
information and that a single query is unable to extract
the features of a category-specific foreground object from
the overlapping foreground and background. We propose a
CSA strategy to alleviate the issue of unclear categorical
significance in queries, while simultaneously enhancing the
anti-overlapping capabilities of feature extraction of queries.
The four main components of the strategy are as follows.
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1) Category-Specific Object Queries: Specifically, we ini-
tialize a category-specific object query prototype library at
random, denoted by set C Q, each category-specific query
prototype q0

k ∈ C Q. For the kth category, we define the
category-specific query group Q0

k , which contains Nk identical
q0

k . Due to the presence of positional encoding and the
allocation of different ground truths, each query q0

k,i within
the kth query group gradually diverges during the training
phase. Since each of them is trained from the same prototype,
this naturally leads to an effect where queries within the same
category become similar, while those from different categories
become increasingly dissimilar.

2) Category-Specific Select Mechanism: In decoders with
deformable attention, queries guide networks in feature extrac-
tion from areas near reference box centers to refine these
boxes. Aligning the categories of queries and reference boxes
is crucial. Queries adept in detecting category A, denoted
by Qk=A, when paired with reference boxes of category B,
denoted by Rk=B might lead to network confusion. Specif-
ically, the region within Rk=B containing only class B
foregrounds and overlapping backgrounds cannot provide the
feature of class A for Qk=A. Similarly, Qk=A cannot effectively
direct the network to extract features of class B in the region
with Rk=B for object detection. Hence, keeping the category
of reference boxes and queries consistent aids the network in
extracting relevant foreground features from overlapping back-
grounds, enhances the anti-overlapping capability of feature
extraction of the model.

In mainstream DETR detectors such as deformable DETR
and DINO, the select strategy directly chooses the top N
reference boxes with the highest confidence scores from all
encoder predictions and then arranges them in sequence with
the object queries in the decoder. This approach, in fact,
overlooks the consistency between the categories of the queries
and the categories of the reference boxes. To address this issue,
we propose a CSM that provides reference boxes correspond-
ing to each category-specific query group, thereby resolving
the aforementioned problem of category inconsistency. The
specific process is as illustrated in Algorithm 1. Given all
the results P predicted by the last layer of the encoder, the
number of categories K , and the number of reference boxes N
required for all categories, this algorithm can filter out the top
Nk predictions with the highest confidence for each category,
which are category-specific reference predictions of class k,
denoted by P0

k . This process can be denoted as follows:

P0
=
{

P0
k | k ∈ Z, 0 ≤ k < K

}
= CSM(P, N , K ) (3)

where P0 represents all category-specific prediction
results, including category-specific reference boxes R0 and
category-specific classification score C0.

3) Reference Box and Object Query Matching: Before
decoding, to align the categories of reference boxes and
object queries, we perform one-to-one matching between the
category-specific reference boxes selected by CSM and the
category-specific query group with the same category k. Then,
we obtain the i th pair object query q0

k,i ∈ Q0
k and reference

box r0
k,i ∈ R0

k , and i represents the matching pair index.
This matching relation ensures that a category-specific query

for a specific class consistently guides the prediction of the
reference box containing the corresponding class throughout
the training process. Furthermore, we obtain the i-th pair of
object query and reference box in category k for layer l, where
q l

k,i ∈ Ql
k and r l

k,i ∈ Rl
k , and the procedure of lth each decoder

layer can be expressed in the following form:

q l
k,i , r l

k,i , cl
k,i = Ll(q l−1

k,i , r l−1
k,i , X; θ l) (4)

if l = 1, q l−1
k,i ∈ Q0

k and r l−1
k,i ∈ R0

k , which can be obtained by
category-specific query library and CSM.

4) Category-Specific Hungarian Matching: To effectively
establish a one-to-one correspondence in category k between
the ground truth G and the prediction results of the
l-th decoder layer P l

k , we compute the category-specific
matching cost matrix Mk ∈ RNk,pred,Nk,gt . Here, Nk,pred and
Nk,gt represent the number of ground truths and predictions
for category k, respectively. Then, we utilize the Hungarian
algorithm for bipartite graph matching for each category, and
the process can be represented as follows:{

pl
k,i , q l

k,i , gi | q ∈ Z, 0 ≤ q < Ngt
}
= Hl

k

(
P l

k , Ql
k, G

)
. (5)

At this point, our CSA strategy establishes the pairing
among reference boxes, classification scores, object queries,
and ground truths in each category k. As shown in Fig. 2(c),
in technique is a variation of stochastic neighbor embed-
ding (t-SNE) dimensionality reduction visualization of all
category-specific object queries in the last decoder layer of
AO-DETR, which utilizes CSA strategy, category-specific
queries responsible for gun, scissor (SC), and knife in the last
decoder layer converge to distinct corners. They exhibit both
intra-class clustering and interclass repulsion characteristics.
This indicates that our CSA strategy has trained queries to
extract specific foreground features for particular categories,
demonstrating strong antioverlapping features.

Algorithm 1 CSM
Require:

N is the number of all queries;
P is the prediction results of the last encoder layer, which
including the classification scores C and reference boxes R;
K is the number of categories;

Ensure:
build empty set for classification scores: C0

← ∅;
build empty set for reference boxes: R0

← ∅;
Nk = N/K ;
for ∀ category-specific predication results Pk ∈ P do

C0
k ← select Nk reference box pk,p from Pk with highest

ck,p;
Ik ← obtain the index of c0

k in Set Ck ;
R0

k ← get the corresponding reference boxes by Ik ;
C0
= C0

∪ C0
k ;

R0
= R0

∪ R0
k ;

end for
P0
= R0

∪ C0;
return P0;
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Fig. 4. (a)–(c) Comparing the structures of LFO, LFT, and LFD. (d) APs of LFO, LFT, and LFDD in each decoder layer. “LFO,” “LFT,” and “LFD” are
the corresponding abbreviations.

C. Look Forward Densely

As shown in Fig. 1, due to the presence of overlapping
phenomenon, the edges of the firework in (a), as well as
the handle of the screwdriver in (b), exhibit significant edge
blurring phenomenon. Therefore, the overlapping phenomenon
in X-ray images leads to issues of inaccurate localization,
and precise regression and localization of edges are of critical
importance.

Deformable DETR [11] was the pioneer in introducing an
iterative bounding box refinement mechanism in the decoder,
assisting the decoder layers in iteratively locating the edges of
objects. The changes in the predicted boxes during the process
have been shown in Fig. 4(a), and can be represented by the
following equations. Given normalized localization boxes Rl−1

predicted by the (l − 1)th decoder, they first stop the gradient
as follows:

R̂l−1
= B

(
Rl−1) (6)

where B(·) represents blocking gradient propagation, a main-
stream approach when paired with layer-specific auxiliary
loss [42]. Then, the obtained R̂l−1 are used as the input
reference box for the lth decoder layer as follows:

1Rl
= Ll

reg

(
Ql−1, R̂l−1, X; θ l) (7)

where Ll
reg(·) represents the regression prediction process at

the lth layer. 1Rl denotes the predicted offset, including
x, y, w, and h [11]. Finally, R̂l−1 and 1Rl are utilized for
obtaining the normalized localization results of the lth decoder
layer, denoted by Rl , as follows:

Rl
= σ

(
σ−1(R̂l−1)

+1Rl) (8)

where σ(·) and σ−1(·) denote the sigmoid and inverse sig-
moid functions, respectively. It is important to note that this
box update approach is designed to ensure that the updated
boxes have normalized x, y, w, and h values, which range
between 0 and 1. In the aforementioned method, to obtain
lth layer reference boxes Rl , the deviation predicted by the

lth layer 1Rl serves only to correct the reference box of
(l − 1)th layer R̂l−1, and the parameters for lth layer θ l are
updated based exclusively on the corresponding layer-specific
auxiliary loss. Consequently, this approach has been termed
the LFO strategy by some researchers [12]. DINO introduces a
better LFT scheme, which utilizes 1Rl to guide the prediction
processes of both Rl and Rl−1. LFT scheme tends to degrade
the prediction results of the previous layer while improving
those of the current layer. This refinement process of reference
boxes of layer l can be described as follows:

Rl
= σ

(
σ−1(R̂l−1)

+1Rl
+1Rl+l). (9)

Analyzing the influence of the predicted offset of a single
layer that uses the LFT strategy, the offset of the current
layer will interfere with the localization results of one lower
layer, while directly improving the accuracy of the localization
results of the current layer and indirectly improving the
accuracy of the localization results of the all higher layers.
Therefore, the current layer with the LFT strategy is negatively
influenced by one higher layer while positively influenced
by one lower layer. In a holistic view, the lowest layer is
only negatively influenced, whereas the highest layer receives
only positive guidance. The middle layers are subjected to
both positive and negative influences. Since the offsets from
the higher layers are generally smaller, for one layer, the
negative guidance from the higher layer tends to be weaker
than the positive guidance from the current layer. As a result,
the lower layers suffer, the middle layers benefit marginally,
and the upper layers gain significantly. During the network
inference, the network outputs only the predictions of the
highest layer, making the LFT strategy advantageous for
precise regression at the edges of objects. However, LFT
is relatively conservative. We attempt to further extend this
strategy into a more dense form of guidance, termed LFD.
The LFD allows the offset predicted by the current layer to
participate in the prediction of the reference boxes of all lower
layers. The prediction process of reference boxes in layer l can
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be represented in the following form:

Rl
S,E = σ

(
σ−1(R̂l−1)

+

L∑
n=l

1Rl

)
(10)

where subscripts “S” and “E” represent the sum with equaling
weighting factor. The current layer with the LFD strategy
is negatively influenced by all higher layers while positively
influenced by all lower layers. Compared with LFT, the lowest
layer is negatively influenced by other all layers, and the
highest layer receives positive guidance from other all layers.
The middle layers obtain benefits more times than LFT. As a
result, compared with LFT, the lower layers suffer more, the
middle layers benefit more, and the upper layers gain more.
This results in localization by the final layer being more
precise, effectively countering the inaccuracies caused by edge
blurriness. In comparison with the LFT strategy, as shown in
Fig. 4(d), our LFD further enhances the predictive outcomes of
both the middle and the higher layers. Furthermore, we further
explore the effects of geometrically scaling the offsets from
different layers, either by amplifying or diminishing them
in a proportional manner, as demonstrated in the following
equation:

Rl
S,A = σ

(
σ−1(R̂l−1)

+

L∑
n=l

1Rl/2L−l

)
(11)

Rl
S,D = σ

(
σ−1(R̂l−1)

+

L∑
n=l

1Rl/2l

)
(12)

where subscripts “A” and “D” represent the amplifying and
diminishing weighting, respectively. Finally, we also attempted
to apply the averaging operation separately to each of the
aforementioned three methods, denoted by Rl

V,E , Rl
V,A, and

Rl
V,D , where subscript “V ” means the average operation.

The most effective form among them is Rl
V,D . For detailed

experimental results, please refer to Section IV, where a
comprehensive analysis and presentation of the outcomes are
provided.

D. Foreground Instability Score (FIS)

The Hungarian matching algorithm utilizes the globally
optimal solution of the cost matrix for label assignment. How-
ever, during the training of the network, distinct ground truth
objects may be assigned to a specific query at different epochs.
This variability leads to instability in label assignments for
queries, manifesting in two aspects: instability in foreground
categories assignment and instability in foreground objects
assignment. In order to quantitatively evaluate the instability
of foreground label assignment, we designed a metric named
FIS as follows. For one training image, decoders of model
predict objects P j

= {P j
0 , P j

1 , . . . , P j
Npred−1}, where Npred rep-

resents the number of predicted objects, and the ground-truth
objects are denoted as G = {G j

0, G j
1, . . . , G j

Ngt−1}, where
Ngt represents the number of ground-truth objects. After
label assignment, we compute an index vector V j

=

{V j
0 , V j

1 , . . . , V j
Npred−1} to store the ground-truth object

assignment results for epoch j as follows:

V j
n =

{
m, if P j

n matches Gm

−1, if P j
n matches nothing.

(13)

Similar, we compute an index vector T j
= {T j

0 , T j
1 , . . . ,

T j
Npred−1} to store the ground-truth object assignment results

for epoch j as follows:

T j
n =

{
c, if P j

n matches c-th category Gm

−1, if P j
n matches nothing.

(14)

We define the foreground category instability of epoch j for
one training image as the difference between its T j

0 and T j−1
1

as follows:

FCS j
=

Npred∑
n=0

1
(
T j

n ̸= T j−1
n

)
· 1
(
T j

n ̸= −1 ∧ T j−1
n ̸= −1

)
(15)

where 1(x) is 1 if x is true and 0 otherwise, and the symbol
“∧” represents logical AND. 1(T j

n ̸= −1 ∧ T j−1
n ̸= −1) =

1 means that T j
n and T j−1

n are both responsible for foreground
objects. Similar, we define the foreground objects instability
of epoch j for one training image as the difference between
its V j

0 and V j−1
1 as follows:

FOS j
=

Npred∑
n=0

1
(
V j

n ̸= V j−1
n

)
· 1
(
V j

n ̸= −1 ∧ V j−1
n ̸= −1

)
.

(16)

Finally, we take the average of both and normalize it by the
number of predicted objects Npred

FIS j
=

FCS j
+ FOS j

2 · Npred
. (17)

The instability of epoch j for the entire dataset is averaged
over the instability numbers for all images. We omit the image
index for notation simplicity in (13)–(17).

FIS comprehensively considers the instability of both fore-
ground category assignments and object assignments, the
lower the FIS value, the more stable the label assignment
between object queries and foreground objects. In Section IV,
we will analyze the impact of CSA on the model training
process using our FIS metric and the instability score (IS)
metric [22].

IV. EXPERIMENTS

In this section, we first conduct comprehensive ablation
experiments on ResNet-50 [43] and Swin-L [44] backbone
networks to analyze the compatibility of CSA and LFD. Then,
we analyze the impact of CSA on the model training process
using our FIS metric and the IS metric [22]. Subsequently,
we explore six schemes of dense guidance in LFD. Finally,
we design extensive experiments on the PIXray, OPXray, and
HIXray datasets to assess the performance of our model.
We compare our model with SOTA models from both general
detectors and prohibited items detectors in a unified envi-
ronment. Furthermore, we commence with a visual analysis
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of the sampling points of the decoder layer in AO-DETR
equipped with CSA. Finally, we visualize the results of base-
line on images with severe overlapping phenomena and draw
conclusion.

A. Experimental Setup

1) Datasets and Evaluation Metrics: The PIXray [3] dataset
consists of 5046 X-ray images of prohibited items, with
4046 images used for training and 1000 images for testing.
The dataset covers 15 categories of prohibited items, including
bat, knife, gun, wrench, pliers, hammer, scissors, saw blade,
dart, razor blade, battery, screwdriver, lighter, fireworks, and
pressure vessel.

The OPIXray [2] dataset contains 8885 X-ray images of
prohibited items, with 7019 images used for training and
1776 images for testing. The dataset covers five categories of
prohibited items, all of which are knives, including folding,
stralight, SC, utility, and multitool (MU).

The HiXray [13] dataset contains a total of 45 364 X-ray
images, with 36 295 images used for training and 9069 images
for testing. The dataset includes eight categories of items:
portable charger 1, portable charger 2, mobile phone, laptop,
tablet, cosmetic, water, and nonmetallic lighter.

For the PIXray dataset [3], we utilize the COCO [45]
evaluation metrics. The primary challenge metric is the mean
average precision (mAP), computed across ten IoU thresholds
ranging from 0.5 to 0.95 with a step size of 0.05. AP50
represents the mAP calculated at a single IoU threshold of
0.5, while AP75 represents the mAP at a single IoU threshold
of 0.75. In addition, APS , APM , and APL represent the AP
for small objects (area < 322), medium objects (322 < area <

962), and large objects (962 < area), respectively.
For OPIXray and HiXray, we adopt the VOC [46] eval-

uation metric. AP is calculated from the area under the
precision–recall curve of one category at the IoU threshold of
0.5. The mAP (mAP) is then computed as the average of AP
of all categories. mAP serves as a comprehensive evaluation
criterion, effectively representing the accuracy and recall of
the detector. It provides a holistic assessment that captures the
performance strengths and weaknesses of the detector.

2) Implementation Details: For the sake of fair compar-
ison, we ensure that all models are trained under identical
conditions. Each model utilizes the ImageNet [47] pretrained
model, including ResNet-50 [43], ResNeXt-101 [48], and
Swin-L [44]. The convolutional models employ the SGD
optimizer with a learning rate of 0.01, momentum of 0.9,
and weight decay of 0.1, while transformer models, such
as DINO utilize the AdamW optimizer with a learning rate
of 0.0001, and weight decay of 0.0001. All models undergo
12 training epochs and are implemented based on the MMDe-
tection framework. For warm-up scheme of convolutional
models, during the initial 500 iterations, the learning rate
gradually increases in a linear fashion with a warming-up
ratio of 0.001. Following this warm-up phase, the learning
rate undergoes a stepwise decrement, with specific adjustments
occurring at the 8-th and 11-th epoch. For DETR-like models,
following Deformable DETR [11], the learning rate is decayed

TABLE I
ABLATION RESULTS OF THE PROPOSED CSA AND LFD ON THE

PIXRAY [3] DATASET. “CSA” AND “LFD,” RESPECTIVELY,
REPRESENT THE PROPOSED CSA

STRATEGY AND LFD SCHEME

Fig. 5. (a) AP curve of DINO [12] and AO-DETR on PIXray [3] dataset.
(b) Loss convergence curve of DINO and AO-DETR on PIXray [3] dataset.

at the 11th epoch by a factor of 0.1. Our AO-DETR utilizes
l1 and GIoU [49] losses for box regression and quality
focal loss [50] for classification. All training is conducted
on a uniform computer platform equipped with an NVIDIA
GeForce RTX 4090 GPU, an Intel Core i9-13900K CPU,
64-GB memory, Windows 10 system, and PyTorch 1.13.1.

B. Ablation Study

1) Ablation Study of AO-DETR: As shown in Table I,
we conducted ablation experiments on the PIXray dataset
using ResNet-50 and Swin-L backbones, respectively. These
experiments aimed to analyze the impact of our CSA and LFD
on the baseline detection performance and assess the compat-
ibility between the two methods. CSA and LFD, respectively,
improve the AP of DINO with ResNet-50 from 64.3% to
65.0% and 65.2%, which demonstrates their effectiveness.
Simultaneously integrating both CSA and LFD, AO-DETR
achieves the highest AP of 65.6%, APS of 23.9%, APM of
50.7%, and APL of 74.8%. This underscores the exceptional
performance of AO-DETR and highlights the complementary
nature of CSA and LFD.

In addition, we also compare the AP and loss convergence
curves of AO-DETR and DINO, as shown in Fig. 5. In terms
of the AP curve, AO-DETR consistently outperforms the
baseline throughout the entire process. Regarding the loss
curve, AO-DETR demonstrates a faster convergence in the
early stages and stable convergence in the later stages.

2) Ablation Study of CSA: To comprehensively analyze the
impact of CSA on the model training process, we analyze the
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Fig. 6. (a) IS [22] of DINO, DINO+CSA, and DINO+CSA+LFD
(AO-DETR) on PIXray [3] dataset. (b) FIS of them.

instability of models during the training process using the IS
metric [22] in conjunction with our FIS metric. IS [22] is an
indicator that evaluates the instability of object assignments
without considering whether the predicted results of object
queries are allocated to background objects. The lower the IS
value, the more stable the label assignment between object
queries and all objects including foreground and background.
As illustrated in Fig. 6, with the training of DINO, the IS
value decreases. This is attributed to the network’s improved
ability to discern whether a query is suitable for foreground
object responsibility, reducing the probability of erroneously
assigning low-capacity queries to predict foreground objects.
However, due to the inherent randomness in the original
Hungarian matching method, queries are uncertain about their
responsibility for a specific category or object in the fore-
ground. This confusion deepens as the network undergoes
training, ultimately leading to an increase in the FIS metric.

In contrast, CSA alleviates this confusion significantly by
constraining the object classes assigned to category-specific
queries during the training phase. Therefore, with the incorpo-
ration of CSA, this confusion faced by object queries is greatly
mitigated, and both IS and FIS metrics consistently maintain
at lower levels. As the object queries become responsible
for fixed categories, they can specialize in the features of
objects belonging to those categories, thereby enhancing the
anti-overlapping feature extraction capability of the network.

3) Ablation Study of LFD: To fully explore the potential
of the LFD scheme, we design and compare six different
dense guidance terms, employing equaling (E), amplifying
(A), and diminishing (D) strategies in both averaging (V ) and
summing (S) modes. The specific formulas can be referred
to in (10)–(12). As shown in Table II, we initially assess the
impact of employing equaling, amplifying, and diminishing
strategies under the summing strategy on the AP. We observe
that Rl

S,D achieves a superior AP of 64.9% compared with
Rl

S,A and Rl
S,E with 63.9% and 64.8%, respectively. Subse-

quently, under the averaging strategy, we compare the AP for
employing equaling, amplifying, and diminishing strategies.
Here, the AP of Rl

V,D at 65.2% outperforms the AP of
Rl

V,A and Rl
V,E , which are 64.8% and 64.5%, respectively.

In summary, “V ” is superior to “S,” “D” is superior to both
“A” and “E ,” and the overall performance of mode Rl

V,D is
the best, demonstrating the highest detection accuracy.

TABLE II
ABLATIONS FOR DIFFERENT TYPES OF LFD STRATEGY

ON THE PIXRAY [3] DATASET

C. Comparison With SOTA Methods

1) Comparison With General Detectors: To validate the
superior performance of the proposed model for X-ray image
prohibited item detection compared with general object detec-
tors, we compare AO-DETR with ResNet-50 and AO-DETR
with Swin-L against SOTA detectors in mainstream prohibited
item datasets PIXray [3], OPIXray [2], and HIXray [13],
as well as general-domain detectors. These general detec-
tors include models based on convolutional neural networks,
such as Faster R-CNN [14], Mask R-CNN [51], Cascade
R-CNN [15], GFLv1 [50], ATSS [17], and models based
on Transformers, such as deformable DETR and DINO. For
fairness, all models are trained for 12 epochs, which are
all reimplemented by MMDetection [58], and images are
resized to 320 × 320. The number of object queries in
DINO and category-specific object queries of our AO-DETR
remains consistent, both being twice the number of cate-
gories. As shown in Table III, our AO-DETR with Swin-L
achieves the highest detection accuracy on the PIXray dataset,
with an AP of 73.9%, surpassing other general detectors
significantly. To balance real-time requirements, we introduce
a lightweight version, AO-DETR with ResNet-50, reducing
PARAMS from 229 to 58.38 M, GFLOPs from 156 to 26.89 G,
and improving frame rate from 40 to 54 frames/s. The AP
remains high at 65.6%, surpassing the best general detector
GFLv1 at 57.5%, with the exception of DINO. Further-
more, AO-DETR, compared to the baseline model DINO,
shows no increase in required GFLOPs and PARAMs during
the inference process, and there is no decrease in FPS.
This indicates that our approach does not require additional
computational resources during inference. While maintaining
inference speed, the detection accuracy of the smaller model
improves from 64.3% and 72.8% to 65.6% and 73.9%,
respectively.

To demonstrate the robustness of our method, we perform a
comparative analysis on two other mainstream prohibited item
detection datasets, OPIXray and HIXray. The results, as shown
in Tables IV and V, align with the conclusions mentioned
above, indicating the consistent performance of AO-DETR
across different datasets. Specifically, the AO-DETR model,
which uses the Swin-L model as its backbone, achieved the
highest core indicator mAP values on the OPIXray and HIXray
datasets, with 80.8% and 75.8%, respectively, demonstrating
its stability and superiority.
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TABLE III
COMPARISON WITH SOTAGENERAL DETECTORS ON PIXRAY [3]. BS, PARAMS, GFLOPS, AND FPS REPRESENT BATCH SIZE, THE TOTAL NUMBER

OF PARAMETERS, THE GIGA FLOATING POINT OPERATIONS, AND THE NUMBER OF INFERENCES THE
MODEL CAN PERFORM PER SECOND, RESPECTIVELY

TABLE IV
COMPARISON WITH SOTA GENERAL DETECTORS ON OPIXRAY [2]. FO, ST, SC, UT, AND MU REPRESENT FOLDING KNIFE,

STRAIGHT KNIFE, SCISSOR, UTILITY KNIFE, AND MULTITOOL KNIFE, RESPECTIVELY

TABLE V
COMPARISON WITH SOTA GENERAL DETECTORS ON HIXRAY [13]. PO1, PO2, WA, LA, MP, TA, CO, AND NL DENOTE “PORTABLE CHARGER 1

(LITHIUM-ION PRISMATIC CELL),” “PORTABLE CHARGER 2 (LITHIUM-ION CYLINDRICAL CELL),” “WATER,”
“LAPTOP,” “MOBILE PHONE,” “TABLET,” “COSMETIC,” AND “NONMETALLIC LIGHTER”

2) Comparison With Prohibited Items Detectors: To vali-
date the superiority of AO-DETR over other prohibited item
detectors, we conducted comparisons on the OPIXray dataset.
In order to challenge the performance limits of AO-DETR,
we extend the number of training epochs from 12 to 15,
increase the object query quantity from the default twice
the number of categories to 20 times the number of cate-
gories, and enlarge the image input size from 320 × 320 to
640 × 640. In addition, we change the pretrained model from
ResNet-50 and Swin-L on the ImageNet dataset to the entire
DINO (ResNet-50) and DINO (Swin-L) on the COCO dataset.

The relevant parameters for other prohibited item detectors
were referenced from their respective papers. The results,
as shown in Table VI, demonstrate that our AO-DETR with
Swin-L detector, trained on lower resolution images for only
15 epochs, achieves an mAP surpassing other SOTA models
trained at higher resolutions, such as POD-F and MCIA-FPN.

D. Visualization Analysis

1) Visualization Analysis of Sampling Points: As shown
in Fig. 7, we take three X-ray images containing different
categories of prohibited items as examples. From the last
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TABLE VI
COMPARISON WITH SOTA PROHIBITED ITEM DETECTORS ON OPIXRAY [2]. IJON STANDS FOR THE JOURNAL NEUROCOMPUTING. MAX REPRESENTS

THE MODEL TRAINED UNTIL IT NO LONGER CONVERGES. “—” INDICATES THAT THE DATA ARE NOT PUBLISHED
OR CANNOT BE OBTAINED DUE TO THE MODEL NOT BEING OPEN SOURCE

layer of the decoder, we select one category-specific object
query from each of the four category-specific object query
groups responsible for batteries, pressure vessels, fireworks,
and razor blades. Then, we visualize their corresponding
sampling points, reference points, and localization results.
Overall, the category-specific object query prioritizes per-
ceiving and focusing on regions in the images that exhibit
the highest similarity to the features of prohibited items of
its responsible category. Taking the category-specific object
query for batteries as an example, it recognizes batteries in
row (a) and row (c), while in row (b), it attends to the top
of a pressure vessel, which bears the highest similarity to
a battery. Thanks to category-specific one-to-one matching,
even though the category-specific object query for batteries
observes the top of a pressure vessel in row (b), it can still
discern that the features it attends to do not belong to a
battery, leading to the decision to withhold output predic-
tions. Furthermore, the stability of category-specific object
queries for category matching is remarkably high. In Fig. 7,
there is no occurrence of a category-specific object query
for category A focusing on and predicting prohibited items
of category B. In row (a) and row (c), fireworks overlap
significantly with background features, yet they are still accu-
rately covered by the sampling points of the corresponding
category-specific query. Moreover, when looking at the overall
distribution of sampling points, those for batteries and razor
blades are consistently densely concentrated in small areas,
while those for fireworks and pressure vessels are consis-
tently sparsely distributed in larger regions. This suggests that
category-specific object queries extract features based on the
size and shape characteristics of their responsible categories
during the prediction process. In conclusion, we have suc-
cessfully clarified the category semantics of object queries,
using this as an opportunity to assist the network in iden-
tifying target objects in overlapping foreground–background
scenarios.

2) Visualization Analysis of SOTA Comparison: As shown
in Fig. 8, we conduct detection tests on three images using

the SOTA general model YOLOX [18], the SOTA prohibited
item detector GADet [10], and our AO-DETR. The detec-
tion results have been visualized for comparative analysis.
The SOTA general object detector YOLOX, after being fine-
tuned, still produces numerous false positives and misses in
detecting items against overlapping backgrounds. For instance,
in row (a), miscellaneous items are incorrectly identified as
razor blades; in row (b), a razor blade is overlooked; and in
row (c), fireworks are missed, and a hammer is mistakenly
identified as pliers. Moreover, there are cases of redundant
detection results, such as a hammer being detected multiple
times in row (c). The SOTA prohibited item detector GADet
alleviates some of the false positives and misses in detecting
contraband against overlapping backgrounds, but severe over-
laps still lead to detection issues. For example, a battery in
row (a) is still missed, and the location of the razor blade
in row (b) is not accurate enough. In addition, GADet fails
to detect fireworks in row (c), and the localization of the
wrench is imprecise. In comparison, AO-DETR delivers highly
accurate detection results, managing to accurately perform
both classification and localization tasks even in the presence
of overlapping backgrounds.

3) Visualization Analysis of Ablation Study: We conduct
an ablation analysis of CSA and LFD using visualization of
the detection results of four X-ray images containing different
prohibited items, as shown in Fig. 9. We enumerate two
adverse effects caused by overlapping phenomena. One is the
feature coupling resulting from the overlap of prohibited items
and the background, leading to missed detections. For instance,
in column (a), a pair of pliers is missed by DINO due to
the overlap. The other effect is the edge blurring caused by
overlap, subsequently leading to inaccurate edge localization.
In column (b), DINO inaccurately locates the overlapping
part of fireworks and a screwdriver with a baseball bat. Col-
umn (c) and column (d) depicts scenarios where both missed
detections and inaccurate localization occur simultaneously.
The CSA strategy enhances the perception of category-specific
object queries for particular types of contraband, thereby
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Fig. 7. Visualization of deformable attention sampling points and reference points of corresponding category-specific object queries in the last decoder layer.
Each sampling point is depicted as a filled circle, with its color reflecting its corresponding attention weight. The reference point is represented by a green
cross marker. The predicted bounding boxes whose confidence scores are over threshold value have been shown with category-specific color. (a)–(c) Index of
X-ray image examples too.

Fig. 8. Visualization comparison of detection results from SOTA models. In comparison with the SOTA general detector YOLOX and the SOTA prohibited
item detector GADet, our AO-DETR achieves the best detection performance. (a)–(c) Index of X-ray image examples too.

reducing the model’s false negative and false positive rates.
“DINO+CSA” can detect Pliers and Razor blades in the
column (a), pressure vessels in the column (c), and fireworks
in the column (d), which cannot detected by the baseline
model DINO. The LFD strategy improves the perception of
the edges of contraband items, and “DINO+LFD” achieves

more accurate localization results than DINO alone, as seen
with the Fireworks in the column (b) and the lighter in the
column (c). Moreover, the CSA and LFD strategies do not
interfere with each other. AO-DETR demonstrates the best
detection performance, avoiding false negatives and positives
while providing more accurate localization.
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Fig. 9. Detection results visualization analysis for “CSA” and “LFD” on the PIXray [3] dataset. The row “GT” represents four typical X-ray prohibited
item images with overlapping phenomenon, each with annotated ground truth boxes. The rows “DINO,” “DINO+CSA,” “DINO+LFD,” and “AO-DETR”
correspond to their respective detection results. To achieve optimal display effectiveness, we have standardized the color and category relationships between
ground-truth boxes and predicted boxes. For instance, yellow boxes denote fireworks, while bright red boxes signify razor blades. (a)–(d) Index of X-ray
image example.

V. CONCLUSION

In this article, we first conduct an in-depth analysis of the
two major challenges in the field of X-ray image prohibited
item detection. Subsequently, we explore how to enhance
general object detectors based on the characteristics of X-ray
images. Overall, we improve the SOTA DETR-like model in
the general object detection domain, DINO, and introduce the
AO-DETR series models. Specifically, we propose the CSA
strategy to enhance the anti-overlapping feature extraction
capability for specific category foregrounds by constraining
the object classes assigned to category-specific queries during
the training phase. Furthermore, by employing the proposed
LFD scheme, we enhance the accuracy of reference boxes
predicted by mid-level and high-level decoder layers through
dense gradient transmission, ultimately improving the ability
to perceive blurry edges of models. Extensive experiments on

the PIXray, OPIXray, and HIXray datasets demonstrate that
our two novel methods can significantly enhance detection
performance. In addition, our AO-DETR series models out-
perform SOTA detectors for various requirements.
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