
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING QUIC DYNAMICS: A LARGE-SCALE
DATASET FOR ENCRYPTED TRAFFIC ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

QUIC, a new and increasingly used transport protocol, addresses and resolves the
limitations of TCP by offering improved security, performance, and features such
as stream multiplexing and connection migration. These features, however, also
present challenges for network operators who need to monitor and analyze web
traffic. In this paper, we introduce VisQUIC, a labeled dataset comprising over
100, 000 QUIC traces from more than 44, 000 websites (URLs), collected over
a four-month period. These traces provide the foundation for generating more
than seven million images, with configurable parameters of window length, pixel
resolution, normalization, and labels. These images enable an observer looking at
the interactions between a client and a server to analyze and gain insights about
QUIC encrypted connections. To illustrate the dataset’s potential, we offer a use-
case example of an observer estimating the number of HTTP/3 responses/requests
pairs in a given QUIC, which can reveal server behavior, client–server interactions,
and the load imposed by an observed connection. We formulate the problem as a
discrete regression problem, train a machine learning (ML) model for it, and then
evaluate it using the proposed dataset on an example use case 1.

1 INTRODUCTION

The rapid adoption of Quick UDP Internet Connections (QUIC) (Gratzer et al., 2016) as a transport
protocol offers significant enhancements over traditional TCP, including improved security, perfor-
mance, and features such as stream multiplexing and connection migration. These advancements,
however, also introduce challenges for network monitoring and analysis, particularly in the context
of encrypted traffic. Traditional methods of traffic analysis are less effective with QUIC due to its
encryption, necessitating innovative approaches to follow and managing network performance as
well as its effects on latency, error rates, and congestion control. Consequently, the development of a
comprehensive and diverse dataset composed of QUIC traffic to various web servers is essential for
thorough research. This paper introduces a large-scale dataset for QUIC traffic, representing a major
step forward in understanding QUIC dynamics, especially given the limitations of traditional traffic
monitoring techniques in the face of QUIC’s encryption.

This paper proposes a dataset that considers the case of an observer listening to the channel between
the QUIC client and server. The observer sees data packets being sent in both directions. The proposed
dataset contains more than 100, 000 QUIC traces collected from more than 44, 000 websites during a
four-month period, from various vantage points, using a page request workload. The proposed dataset
offers significant value in both the networking and ML domains.

To demonstrate the dataset’s potential, we present a use case of estimating the number of
HTTP/3 (Bishop, 2022) objects a QUIC connection carries. This information can be useful for
various applications. The most important application is HTTP/3 load balancing. A load balancer can
successfully balance the load it assigns to different machines if it is able to estimate the load imposed
by each connection (Shahla et al., 2024). This is difficult with HTTP/3, because the load balancer
does not know how many requests are sent by a client to the server on different QUIC streams 2.

1The dataset and the supplementary material can be provided upon request.
2This is also difficult with HTTP/2, because multiple requests can also be sent by an HTTP/2 client over one

TCP connection. In this case, different streams are implemented by HTTP and not by QUIC. The same approach
proposed here for HTTP/3 over QUIC is applicable for HTTP/2 over TCP.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Image	generation	pipeline

(a)	Time	series	statistics
captures (b)	Number	of	packets	to	time	bins (c)	RGB	image

Figure 1: Generation of an image representing observed QUIC packets. The captured connection
trace is windowed into overlapping temporal intervals. In each temporal window, the number of
packets sent by the client and the server are binned into time bins. The obtained two-dimensional
histograms (number of packets vs. time) are represented as an RGB image, with the green channel
representing the packets sent by the client, the red channel representing the packets sent by the server,
and the blue channel being unused.

The scheme presented in this paper can help to address this problem. Another use case is detecting
HTTP/3 flood attack (Chatzoglou et al., 2023). In this attack, multiple HTTP/3 requests were sent to
the server over a single connection. As indicated in Chatzoglou et al. (2023), identifying such an
attack is challenging, because the attack pattern is almost identical to that of the normal traffic.

To address this aforementioned obstacle, this paper proposes a novel method for generating images
from collected QUIC traffic traces, resulting in the VisQUIC dataset. By transforming QUIC data into
a sequence of images, this approach enables ML models to analyze and predict network behaviors.
The images are generated by “windowing” the connection traces into overlapping temporal intervals,
binning the number of packets into time bins, and representing the resulting histograms as RGB
images. The images’ red and green channels indicate server-to-client and client-to-server packets,
respectively, while the blue channel is unused. This technique enables the use of deep learning (DL)
models to predict the number of HTTP/3 responses or requests in a given QUIC connection, as
illustrated in Figure 1.

VisQUIC is created using more than 100, 000 QUIC traces collected from more than 44, 000 websites
over a four-month period, resulting in a collection of over seven million images using two different
window lengths. The length is a configurable parameter that can be fine-tuned when more images are
added to the dataset. Having this dataset available facilitates increased comprehensive research on
the behavior of HTTP/3 and QUIC, one of which, in the form of a use case, is presented in this work:
estimating the number of HTTP/3 responses in the encrypted QUIC packets seen by an observer. The
key contributions to our work are as follows:

• We release a dataset comprised of real-world 100, 000 traces from over 44, 000 websites
page requests captured during a four-month period from various vantage points, using a
page-request workload.

• We release and explain in detail how to generate learnable, customizable RGB images from
real-world captured QUIC traces and create labels for them, resulting in over seven million
labeled images.

• We demonstrate a glimpse of the potential use of the proposed dataset and provide a baseline
algorithm to estimate the number of HTTP/3 responses in QUIC connections. The dataset
can also be used for additional ML tasks.

The rest of this paper is organized as follows: Section 2 describes the dataset and image generation
process. Section 3 defines the problem settings, and shows a baseline algorithm for estimating the
number of responses in HTTP/3 traces using the proposed dataset. Section 4 reviews related work,
and Section 5 concludes the paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 DATASET DESCRIPTION

2.1 PROBLEM SETTINGS

We consider an observer who can see the QUIC encrypted packets transmitted from the client to the
server and vice versa. For each packet, the observer knows its direction, length, and the observed
time. With this information in hand, the QUIC traces can be converted into representative colored
images, which are then suitable for training ML models. To convert the captured QUIC traces into
time-series data, the sliding window technique Frank et al. (2001) is used. This technique requires
two parameters: the window length and the overlap between consecutive windows. Both parameters
are configurable.

2.2 TRACE COLLECTION AND IMAGE GENERATION

The process starts with HTTP/3 (Bishop, 2022) GET requests that are generated to various web
servers that support HTTP/3, each hosting multiple websites. Requests are issued for up to 26,000
different websites per web server. Headless Chrome (chromium, 2017) is used in incognito mode
with the application cache disabled, and the websites are requested sequentially. Table 1 displays
the exact numbers for each web server and more detailed statistics broken down per web server for
each class are provided in Appendix A.3. The generated network traffic traces are captured using
Tshark (Merino, 2013) in packet capture (PCAP) format. These traces include only QUIC packets
and cover the duration of the website request. For each PCAP file the corresponding SSL keys are
stored to be used later to decrypt the traffic. The SSL keys are also provided in the dataset’s materials.

Once we retain the time-series captured traces, the image datasets generation process can start
for these traces. By Converting network traffic data—such as packet arrival times, packet sizes,
packet density, and packet directions—into images the data is transformed into a format that is more
compatible with DL models.

The use of images enhances pattern recognition abilities (Farrukh et al., 2023; Golubev & Novikova,
2022; Shapira & Shavitt, 2019; Tobiyama et al., 2016; Velan et al., 2015). Images enable the capture
of complex interactions between features like packet sizes and arrival times within a two-dimensional
space (server-to-client and client-to-server). This spatial representation allows DL models to identify
intricate patterns that might be missed by traditional statistical or time-series analysis methods. For
instance, correlations between packet bursts and response delays may become more discernible when
visualized as variations in pixel intensity within an image.

Figure 1 shows an example of the construction steps for an image with a window length of 0.3
seconds from a trace. During step (a), some of the trace statistics are collected: the time when the
observer sees this packet, the packet’s length, and the packet’s direction. For a 0.3-second window,
each bin contains 9.375 milliseconds. Step (b) shows histograms with M = 32 time bins for the
considered window. The upper one is for the packets sent by the server and the lower one is for
packets sent by the client. The horizontal axis represents the time bins and the vertical axis represents
the number of packets received during each bin. For example, in the 8-th time bin (boxed in orange),
the server sent 10 packets and the client sent 19 packets. Step (c) shows the image constructed for the
considered example. The image represents the packet length statistics and the number of packets.

Figure 2 shows an example of the constructed image. The image is constructed on an M × N
equispaced grid. The horizontal dimension represents different time window locations, while the
vertical dimension represents different packet lengths. Thus, each packet is binned into one of the
M × N bins according to its length and time. In the resulting image, the pixel at location (i, j)
represents the normalized number of packets whose length falls within the j-th bin received during
the temporal span of the i-th time bin. The pixel’s RGB values represent the normalized number of
packets (i.e., density) sent from the server to the client (red) and from the client to the server (green).
The blue channel is unused. The time interval spanned by the i-th bin is [i∆t, (i + 1)∆t), where
∆t = T/M and T denotes the window length. In our experiments, we used T = 0.1 and T = 0.3
seconds. To be counted in length bin j, the length of a packet should be in the range of [j∆l, (j+1)∆l]
with ∆l = L/N and L = 1, 500 bytes denoting the maximum transmission unit (MTU). Histogram
counts are normalized per channel window-wise using min-max normalization (Patro & Sahu, 2015),
xnrm = (x−xmin)/(xmax−xmin), where x and xnrm are the original and normalized packet counts,
respectively, and xmin and xmax are the minimum and maximum values of the packet count for the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

specific direction in the considered window, respectively. The normalized value is multiplied by 255
to fit an 8-bit image format. If there is no traffic for a specific window, all pixels will contain the
value zero. Note that the shortest QUIC packet is longer than what is represented by the first length
bin. Therefore, the first row of the image grid consistently exhibits pixels with a value of zero.

Figure 2 shows different densities for each channel. For example, during time bin i = 7, different
shades of green are displayed. This indicates that the client sent packets of five different lengths,
which fall into bins j = 2, 6, 12, 27, and 28. The five pixels are purely green, indicating that all the
packets observed during bin i = 7 were sent by the client. The brightness of a pixel increases as its
value approaches 255. Pixel (7, 12) is the brightest across the whole window in the green channel
and it represents 8 packets. This means that the largest number of packets sent by the client during
the window is observed during time bin i = 7, when their length fell in bin j = 12. The other green
pixels represent between 2 to 5 packets that are sent by the client. At time bin i = 23, the server sent
packets of four different lengths, which are classified, based on their length, into bins j = 7, 10, 15,
and 17. The four pixels are purely red, indicating that during time bin i = 23, only packets sent
by the server are observed. Pixel (23, 10), representing 18 packets, is the brightest within the red
channel across the entire window. The rest of the red pixels represent between 3 and 15 packets sent
by the server. Pixel (9, 26) is a combination of green and red, indicating that during time bin i = 9,
packets from both the client and the server are observed and their length puts them into bin j = 26.

1 105 15 20 25 30 Time

32	equal-sized
packet	length
bins

32	equal-sized	time	bins Window	length:	T=0.3/0.1	seconds

1

5

10

15

20

25

30

Normalized
Packet	length

pixel	(7,12)
brightest
green

pixel	(23,10)
brightest	red

pixel	(9,26)
shared	pixel

Red	channel:	Server-to-Client
Green	channel:	Client-to-Server

Figure 2: An image template, representing QUIC
connection activity. Pixel positions represent his-
togram bins (horizontal and vertical axes corre-
sponding to time and packet length, respectively).
The values of the red and green channels represent
normalized, per-window, histogram counts of the
response and request packets, respectively.

The image construction is an extension of the
technique proposed by FlowPic (Shapira &
Shavitt, 2019), which transforms network flows
into images. For each flow, FlowPic creates an
image from the packet lengths and the packet
observed time. The goal of FlowPic is to con-
struct a greyscale image using a flow-based
two-dimensional histogram. FlowPic’s single-
channel approach, while providing a general
traffic overview, is insufficient for more nuanced
analysis, particularly in the context of QUIC. In
QUIC, distinguishing between client-to-server
and server-to-client traffic is critical due to the
multiplexed nature of HTTP/3 requests and re-
sponses. Furthermore, QUIC’s inherent com-
plexity—stemming from stream multiplexing
and independent packet handling—necessitates
a more detailed examination of traffic directions.
For those reasons we build upon the FlowPic
technique and enhance it. We introduce a density
factor for the packets’ count in a given window
and a configurable number of bins; in addition,
we also separate channels, one for each direc-
tion. The result is an RGB image. Figure 4
shows different images using a different number
of pixels. Using a higher number of pixels leads
to more detailed representation of the captured information. For example, a yellow pixel in Figure
4(a) which contains packets in both directions (a combination of the red and green channels), is split
into more pixels as the resolution level is increased (Figures 4(b) and 4(c)), resulting in solely red or
green pixels.

2.3 DATASET CREATION

For the creation of the image dataset in our example use case, several key parameters were defined:
the sliding window length, normalization method, and pixel resolution. Specifically, we generated
two image datasets with the following configurations: (1) two different sliding window lengths of
T = 0.1 and T = 0.3 seconds; (2) images sized at M = N = 32, selected as a balance between
resolution and computational cost. Using finer bins increased both the training and inference time
with minimal accuracy improvement, while coarser bins negatively impacted model performance;

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and (3) normalization applied per window rather than per trace. For the baseline example, we utilized
a 90% overlap between consecutive windows during training, with no overlap during evaluation. The
resulting labeled image dataset originates from over 100,000 traces collected from more than 44,000
websites, generating over seven million images.

Labeling the images: Each image in this dataset is labeled with the number of observed HTTP/3
responses; namely, the number of responses that have started to arrive within every time window. To
this end, the SSL keys are used to decrypt the packets in a trace and reveal the packets’ payloads. The
HTTP/3 frames then are analyzed and HTTP/3 HEADERS frames are identified. Similarly, instead
of labeling the images with the number of responses, the number of requests can be used as a label
instead.

2.4 TRAINING AND TEST SETS

The dataset can be split into two different settings: when the web servers are known to the observer
and when they are not. In the former case, training and evaluation phases are done exclusively on
the QUIC traces pertaining to the web servers assumed at inference time, using a 80 : 20 ratio,
ensuring out-of-training-sample evaluation. In the latter case, a leave-x-servers-out evaluation can be
performed. For the provided use-case we show for the first setting results.

26.6%

29.0%

16.1%

8.5%

5.8%

3.9%

2.2%

1.6%

1.4%
0.9%
0.9%
0.6%

0.4%
0.3%

0.3%

1.5%Training Data Set

26.3%

29.7%

16.1%

8.6%

5.8%

3.8%

2.2%

1.5%

1.4%
0.9%
0.9%
0.6%

0.4%
0.3%

0.2%
1.5%Test Data Set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-20

(a) T = 0.1 window dataset

10.0%20.7%

16.4%

10.3%

7.8%
5.9%

4.5%

4.7%

4.7%

2.9%

2.5%

2.1%

1.5%

1.1%

1.1%

3.7%Training Data Set

9.6%21.7%

16.6%

10.3%

7.6%
5.7%

4.5%

4.6%

4.7%

2.9%

2.5%

2.1%

1.4%

1.1%

1.1%

3.6%Test Data Set

(b) T = 0.3 window dataset

Figure 3: Response distribution for training and evaluation datasets with two sliding window lengths
(T = 0.1 and T = 0.3 seconds).

Figure 3 shows the images distribution for the created datasets. Both datasets are significantly skewed.
As the figure demonstrates, images whose class values are 10 or more are infrequent in both datasets.
In the T = 0.1-second window dataset, labels 0, 1 and 2 make up roughly 75% of the data, with the
higher classes being represented in smaller proportions. Conversely, in the T = 0.3-second window
dataset, there is a more even distribution, with labels 0, 1 and 2 comprising only about 47% of the
total dataset.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.5 DISCUSSION:

Selecting the window length: The window length determines the temporal span each image rep-
resents, which directly impacts the data granularity. Shorter window lengths, such as 0.1 seconds,
capture fine-grained temporal details of the network traffic, allowing for detailed analysis of short-term
interactions between the client and server. This high granularity level is very useful for identifying
subtle variations and transient behaviors in the traffic. Using shorter windows, however, also means
generating a larger number of images per trace, leading to increased computational requirements.
Conversely, longer window lengths, such as 0.3 seconds or more, offer a more aggregated view of
the traffic, encapsulating longer sequences of packet interactions within each image. This approach
reduces the number of images generated, thereby decreasing computational demands. Longer win-
dows are beneficial for capturing broader trends and interactions over extended periods, which can be
advantageous for understanding overall traffic patterns and behaviors. The trade-off between short
and long window lengths is a potential loss of fine-grained details, which might be critical for certain
types of predictions. The choice of window length, therefore, should balance the need for temporal
resolution with the practical considerations of computational efficiency.

(a) 16× 16 (b) 32× 32 (c) 64× 64

(d) 128× 128 (e) 256× 256

Figure 4: Five examples of the image representation of QUIC flows using T = 0.1-second windows
and different pixels level.

Choosing the Resolution Level: Selecting the image size involves balancing resolution, compu-
tational efficiency, and the ability of ML models to extract meaningful features. Common image
sizes, such as 32 × 32, 64 × 64, and 256 × 256 pixels, each offer specific trade-offs. A 32 × 32
image is highly efficient in terms of computation, storage, and processing speed, making it ideal for
real-time analysis or situations with limited resources. However, the lower resolution may fail to
capture complex network behaviors, which could limit model accuracy. Increasing the resolution to
64× 64 pixels strikes a better balance between detail and computational efficiency. This resolution
captures more intricate traffic features—such as packet inter-arrival times, traffic pattern variations,
burstiness, and transmission rate changes—while keeping the processing overhead manageable. On
the higher end, 256× 256 images provide the finest level of detail, making them suitable for tasks
requiring high precision and sensitivity to subtle variations in traffic. However, this higher resolution
comes at the cost of increased computational demands, longer processing times, and greater storage
requirements, which may be impractical for real-time or large-scale applications. Additionally, the
interpretation of each pixel’s resolution varies with window length, as each “bin” represents a portion
of that window. Thus, the choice of resolution must be carefully aligned with the specific analysis
goals and computational constraints.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Normalizing per window versus per trace: Normalizing the number of packet counts per window
involves scaling the packet counts within each temporal window independently. This ensures that
each window’s data are scaled relative to its own range, which is beneficial for highlighting short-term
variations and dynamics in network traffic. By normalizing per window, the resulting images maintain
a consistent scale regardless of the overall trace length or variability across different windows or web
servers. This approach helps mitigate the impact of outliers within individual windows, enabling
the model to detect subtle differences in traffic behavior more effectively. However, normalizing
per window can obscure broader trends and interactions that span across multiple windows, as each
window is treated independently. In contrast, normalizing per trace involves scaling the packet
counts across the entire trace before segmenting them into bins. This provides a uniform scale for all
windows within a trace, preserving the relative differences across the entire connection. Normalizing
per trace is advantageous for capturing long-term patterns and trends that persist throughout the trace.
However, this may reduce sensitivity to short-term fluctuations, as the normalization is influenced
by the extremes across the entire trace. Additionally, this form of normalization requires an offline
analysis, making it unsuitable for online algorithms.

Potential uses of the dataset: The proposed dataset offers significant value not only in the networking
domain but also in the ML field. From a ML perspective, it provides a novel way to represent complex,
real-world phenomena—such as network traffic—through images. As outlined in this work, these
images can be generated with varying resolutions, enabling researchers to study how different levels
of granularity affect the performance of DL models, particularly those designed for image recognition.
This aspect of the dataset opens up opportunities to investigate the optimal image resolution required
for detecting intricate patterns in network traffic. For instance, researchers could generate an image
from a trace using a set of parameters, X, and compare it with another image from the same trace, using
a different set of parameters, Y (e.g., resolution, density, normalization). Another key contribution is
the structured nature of the dataset. Based on real-world QUIC traffic traces, it exhibits characteristics
not commonly found in standard datasets, such as significant class imbalance, with certain labels
appearing at very low frequencies (e.g., as low as 0.001%). Additionally, the dataset is well-suited
for ordinal regression tasks, where the order of the labels is crucial. As demonstrated with our
custom loss function (see A.1), predicting a label of 18 for a true value of 19 is closer to the correct
answer than predicting 17 or 21, emphasizing the importance of maintaining label order. This unique
structure makes the dataset valuable for exploring new methodologies and loss functions in ML
research.

From a networking perspective, the contributions are even more direct. The dataset can be applied
to a wide range of network-related analyses, from detecting DDoS attacks and traffic anomalies to
examining symmetric and asymmetric flows, which could help identify the types of applications
in use. It also holds promise for round-trip time (RTT) estimation and assisting load balancers
in optimizing the distribution of network traffic, ultimately improving network management and
performance.

3 ESTIMATING THE NUMBER OF HTTP/3 RESPONSES IN A QUIC
CONNECTION

Estimating the number of HTTP/3 responses in a QUIC connection can assist a load balancer in
making more informed decisions. By monitoring connections and estimating the number of responses
within each connection, the load balancer can determine if a connection is considered heavy and
adjust its decision on the selected server accordingly (Shahla et al., 2024).

To evaluate the use of the proposed dataset, we formulate the problem of estimating the number of
responses in a QUIC connection as a discrete regression problem. It is not a classic classification
task, because the misclassification errors depend on the distance between the categories. For example,
consider an image with 17 responses. Estimating this number as 16 is better than estimating it as
15 or 19. It is also not a standard regression task, as the target categories are discrete. To address
this issue, we developed a dedicated loss function coupled with data augmentation that considers: (1)
the imbalanced dataset, which is derived from real-world QUIC traces and (2) rewarding the model
for correctly predicting classes that are closer to the actual label than those that are farther away.
Appendix A.1 explains the discrete regression loss function in more detail.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35 40
True Labels

0

5

10

15

20

25

30

35

40

Pr
ed

ict
io

ns

Perfect Prediction

Within ±3: 92.6%

(a) Window length T = 0.1 second

0 10 20 30 40 50 60 70 80 90
True Labels

0

10

20

30

40

50

60

70

80

90

Pr
ed

ict
io

ns

Perfect Prediction

Within ±3: 71.0%

(b) Window length T = 0.3 second

Figure 5: Scatter plots demonstrating the predictive results, where each point represents the summed
predictions of a trace compared to its true label, with transparency set to 0.05 to distinguish point
density in overlapping areas.

We present a quantitative evaluation example of the proposed framework when the web servers are
known to the observer, on a subset of the dataset, which was not present during training. A set of
models were trained and evaluated exclusively on the QUIC traces pertaining to the web servers
assumed at inference time. Two different models were trained with windows of T = 0.1 and T = 0.3
seconds. Classes with labels non-superior to 20 constitute 90% of the traces in the T = 0.3-second
window dataset and 95% of the traces in the T = 0.1-second window dataset. Due to their scarceness,
classes above 20 were excluded from the training and test sets.

To mitigate class imbalance, we developed a dedicated loss function and implemented a data augmen-
tation technique. A grid search was performed to find the optimal values of α, β, and γ of the loss
function . The values considered were α ∈ {0.3, 0.5, 0.7}, β ∈ {0.4, 0.6}, and γ ∈ {1, 2, 3}. The
optimal combination was chosen based on the lowest validation loss seen during the training process.
The optimal values for T = 0.3 seconds were found to be α = 0.7, β = 0.4, and γ = 2, while for
T = 0.1 seconds, γ = 3 produced the best results with the same values of α and β. The training
was performed with a batch size of 64 images using the Adam optimizer (Kingma & Ba, 2014) with
the ReduceLROnPlateau learning rate scheduler with a 30% reduction in the learning rate, during
the training phase. To reduce the risk of overfitting, an early stopping technique was used, with a
patience parameter of six epochs. The performance is measured on an AMD Ryzen Threadripper
PRO 3955WX 16C CPU 3.9G running at 64MB cache, 64GB of CRUCIAL CT8G4DFRA32A RAM
clocked at 3200MHz and an NVIDIA GTX-4090 GPU.

The results presented are for estimating the total number of HTTP/3 responses in a complete trace.
The images were fed sequentially through the trained models whose predictions were summed and
compared to the sums of the trace’s true label. Figure 5 shows prediction results on the using the
evaluation traces, using the T = 0.1- and T = 0.3-second subdivisions. Both figures present a scatter
plot in which the parameter θ, ranging between 0 and 1, modulates the transparency of the plot. At
θ = 0, a point placed in the plot is fully transparent, whereas at θ = 1, it is opaque. In these plots θ
is set to 0.05 to ensure high transparency and optimize the visual distinction between areas of high
and low point density in cases of significant overlap among the roughly 12, 000 data points in each
plot. In this plot, each point represents the summed labels or predictions over the images of a trace.
For example, if a trace is composed of five non-overlapping images whose true labels are 1, 0, 2, 4
and 1, then the true label of that trace is 8; if the model’s predictions are 1, 0, 3, 4 and 1, for the same
images, then the summed prediction is 9, and that trace is represented in the plot as the (8, 9) point,
with θ = 0.05 density. If another trace has the same aggregated values and is placed at the same
(8, 9) point, then it is placed on top of the previous point, thus making that point darker.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Additionally, we introduce a Cumulative Accuracy Profile (CAP) metric, which provides a refined
measure of classification accuracy by incorporating a tolerance level for each prediction. Unlike
traditional metrics such as confusion matrices that require exact matches between predicted and true
labels, CAP allows for a specified degree of tolerance, accommodating predictions that are close to
the correct class. Formally, it is defined as: CAP±k(y, ŷ) =

1
n

∑n
i=1 1(|yi − ŷi| ≤ k), where y

represents the vector of true class labels, ŷ denotes the model’s predictions, k specifies the tolerance
level (e.g., ±1 or ±2 classes), n is the total number of samples, and 1(·) is the indicator function that
evaluates to 1 if the condition is met and 0 otherwise. This metric thus quantifies the proportion of
samples where the model’s predictions fall within the allowed tolerance around the true class.

Figure 5(a) illustrates the scatter plot for predictions from the ML model trained using T = 0.1-
second window images, while Figure 5(b) displays results for T = 0.3-second window. The test
dataset includes 12, 520 traces with an average of 21.2 images per trace for T = 0.1-second window
images and 12, 142 traces with an average image of 7.5 per trace for T = 0.3 seconds. The figures
highlight significant improvements in the performance of the two ML models: first, the T = 0.3-
second ML model has 71% of predictions within ±3 (CAP) of a perfect prediction, whereas the
T = 0.1-second model achieves 92.6%, demonstrating a nearly 20% improvement in accuracy across
entire traces. We use a ±3 tolerance level because for both window lengths, the points represent the
aggregated prediction sum and, thus, the aggregated errors as well. The average number of images
per trace is 7.5 and 21.2 for the T = 0.3-second and T = 0.1-second, respectively. Secondly, the
predictions of the model that was trained using a T = 0.1-second window are notably more aligned
along the diagonal, showing less deviation compared to those of the model that was trained using a
T = 0.3-second window, suggesting that finer timing resolutions enhance the performance for the
cumulative prediction.

Figures 5(a) and 5(b) illustrate a notable difference in predictive behavior between models that were
trained and evaluated with T = 0.3− and T = 0.1−second window sizes. Specifically, they show the
presence of diagonal patterns in the predictions of the T = 0.3 model on the test set that are absent
in the T = 0.1 predictions. This phenomenon exists for several reasons: (1) When using a T = 0.1
subdivision, a very high percentage of the images’ true labels have lower class values, and the model
that was trained using the T = 0.1 window dataset is very accurate for low value classes, whereas a
T = 0.3 subdivision yields images with higher class values, hence increasing the variance of the true
labels, when both models perform worse for the higher value classes as opposed to the lower class
value; and (2) any incorrect prediction by either model contributes to an increase in the cumulative
predictions for the remainder of the considered trace, thereby elevating the overall predicted values.

4 RELATED WORK

The study of QUIC and its impact on network traffic has gained significant traction in recent
years due to its potential to enhance web performance and security. QUIC, developed by Google,
aims to improve upon the limitations of traditional TCP by leveraging UDP for faster connection
establishment and reduced latency (Almuhammadi et al., 2023). Numerous studies have explored
various aspects of QUIC, including its interactions with encrypted DNS protocols such as DoT, DoH,
and DoQ, and its integration with HTTP/3 (Zhou et al., 2022). These works have highlighted the
performance benefits and challenges associated with adopting QUIC in diverse network environments.
Other research has focused on the classification and analysis of QUIC traffic using advanced ML
techniques. For example, ensemble learning models have been employed to classify QUIC network
traffic with high accuracy, addressing the complexities introduced by QUIC’s encryption features
(Almuhammadi et al., 2023). Additionally, the implementation of QUIC in satellite communication
has demonstrated its ability to improve performance metrics such as page load time and goodput,
particularly when used in conjunction with performance enhancing proxies (Kosek et al., 2022).

CESNET-QUIC22 (Luxemburk et al., 2023) is a QUIC traffic dataset collected from backbone
lines of a large internet service provider. It contains over 153 million connections and 102 service
labels from one month of traffic. The dataset is fairly diverse, but lacks various important features.
First, the metadata provided for packets such as direction, inter-packet time, and size is restricted
solely to the first 30 packets of each connection, lacking comprehensive data for the entirety of the
connections. Second, the lack of information regarding the HTTP/3 protocol renders it inadequate for
tasks concerning studies focusing on the HTTP/3 protocol. In Smith (2021), a combined dataset of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TCP and QUIC traces is proposed. The traces were collected from three different VPN gateways
worldwide. Our dataset contains traces collected from a single point, ensuring consistency in the
dataset and allowing for a fair comparison between different traces and web servers. Additionally, we
provide image representations for the dataset.

CAIDA (CAIDA, 2024) proposes a dataset composed of traffic trace collected from monitors on
a commercial backbone link. However, the payload is removed from all packets, and only header
information up to layer 4 (the transport layer) is kept. This again defies our purpose, as our dataset
includes both the packet payload and the HTTP/3 protocol data.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced VisQUIC, a labeled dataset of QUIC traffic traces designed to facilitate
advanced network behavior analysis, and ML tasks on real world data. By transforming QUIC
connection data into sequences of RGB images, we leveraged DL models to effectively predict and
analyze network traffic. We detailed the key decisions made during the dataset creation process,
such as the selection of window length and image size, and emphasized the trade-offs between data
granularity and computational efficiency. Our experimental results highlighted the effectiveness of the
proposed approach, achieving accurate predictions of HTTP/3 responses within QUIC connections
using image-based models. With normalized images per window, our models attained up to 97% CAP
accuracy in scenarios where the web server was known. Additionally, we estimated the total number
of HTTP/3 responses associated with each QUIC connection across more than 12,000 traces with a
high accuracy of 92.6%. These findings demonstrated the power of image-based data representation
for capturing complex network traffic patterns and improving network performance analysis. This
method not only enhanced the ability to monitor and manage encrypted traffic but also paved the way
for future research in network security and optimization. By offering a detailed and high-resolution
perspective of QUIC traffic, the VisQUIC dataset served as a valuable resource for developing scalable
and robust network analysis tools, driving innovation in the field.

Limitations: The dataset contains traces that are a result of web page requests done sequentially,
one at a time. We use a page request workload because the number of web servers streaming video
over QUIC is limited, leading to a dataset lacking diversity from the server perspective. We note that
video streaming traffic patterns differ significantly from page requests, as they are heavily influenced
by the streaming algorithms used by servers and not only the network conditions. Future work should
study various bandwidths, using not only Chrome (Developers, 2023), but other browsers that support
QUIC.

REFERENCES

Sultan Almuhammadi, Abdullatif Alnajim, and Mohammed Ayub. Quic network traffic classification
using ensemble machine learning techniques. Applied Sciences, 13(8):4725, 2023.

Yuri Sousa Aurelio, Gustavo Matheus De Almeida, Cristiano Leite de Castro, and Antonio Padua
Braga. Learning from imbalanced data sets with weighted cross-entropy function. Neural process-
ing letters, 50:1937–1949, 2019.

Mike Bishop. HTTP/3. RFC 9114, June 2022. URL https://www.rfc-editor.org/info/
rfc9114.

CAIDA. The caida passive monitored traces dataset. https://www.caida.org/catalog/
datasets/passive_dataset/, 2024. Accessed: 2024-05-30.

Efstratios Chatzoglou, Vasileios Kouliaridis, and Georgios Kambourakis. A hands-on gaze on
http/3 security through the lens of http/2 and a public dataset. Computers and Security, 125:
103051, 2023. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2022.103051. URL https:
//www.sciencedirect.com/science/article/pii/S0167404822004436.

chromium. chromium, 2017. URL https://chromium.googlesource.com/chromium/
src/+/lkgr/headless/.

10

https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.sciencedirect.com/science/article/pii/S0167404822004436
https://www.sciencedirect.com/science/article/pii/S0167404822004436
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19–67, 2005.

Chromium Developers. Netlog design document. https://www.chromium.org/
developers/design-documents/network-stack/netlog/, 2023. Accessed: 6 Au-
gust 2023.

Yasir Ali Farrukh, Syed Wali, Irfan Khan, and Nathaniel D Bastian. Senet-i: An approach for
detecting network intrusions through serialized network traffic images. Engineering Applications
of Artificial Intelligence, 126:107169, 2023.

Eibe Frank and Mark Hall. A simple approach to ordinal classification. In Machine Learning: ECML
2001: 12th European Conference on Machine Learning Freiburg, Germany, September 5–7, 2001
Proceedings 12, pp. 145–156. Springer, Springer, 2001.

Ray J Frank, Neil Davey, and Stephen P Hunt. Time series prediction and neural networks. Journal
of intelligent and robotic systems, 31:91–103, 2001.

Sergei Golubev and Evgenia Novikova. Image-based intrusion detection in network traffic. In
International Symposium on Intelligent and Distributed Computing, pp. 51–60. Springer, 2022.

Florian Gratzer, Sebastian Gallenmüller, and Quirin Scheitle. Quic-quick udp internet connections.
Future Internet and Innovative Internet Technologies and Mobile Communications, 2016.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector learning for ordinal regression.
IEEE, 1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mike Kosek, Luca Schumann, Robin Marx, Trinh Viet Doan, and Vaibhav Bajpai. Dns privacy with
speed? evaluating dns over quic and its impact on web performance. In Proceedings of the 22nd
ACM Internet Measurement Conference, pp. 44–50, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.
IEEE, 2017.

Jan Luxemburk, Karel Hynek, Tomáš Čejka, Andrej Lukačovič, and Pavel Šiška. Cesnet-quic22: A
large one-month quic network traffic dataset from backbone lines. Data in Brief, 46:108888, 2023.

Kiran Maharana, Surajit Mondal, and Bhushankumar Nemade. A review: Data pre-processing and
data augmentation techniques. Global Transitions Proceedings, 3(1):91–99, 2022.

Borja Merino. Instant traffic analysis with Tshark how-to. Packt Publishing Ltd, 2013.

SGOPAL Patro and Kishore Kumar Sahu. Normalization: A preprocessing stage. arXiv preprint
arXiv:1503.06462, 2015.

Robert J. Shahla, Reuven Cohen, and Friedman Roy. Trafficgrinder: A 0-rtt-aware quic load balancer.
In 2024 IEEE 32st International Conference on Network Protocols (ICNP). IEEE, 2024.

Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification is as easy as image
recognition. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 680–687. IEEE, 2019.

Jean-Pierre Smith. Website fingerprinting in the age of quic. 2021, 2021.

Junjiao Tian, Niluthpol Chowdhury Mithun, Zachary Seymour, Han-pang Chiu, and Zsolt Kira.
Recall loss for imbalanced image classification and semantic segmentation. Neural processing
letters, 2020.

Shun Tobiyama, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and Takeshi Yagi. Malware
detection with deep neural network using process behavior. In 2016 IEEE 40th annual computer
software and applications conference (COMPSAC), volume 2, pp. 577–582. IEEE, 2016.

11

https://www.chromium.org/developers/design-documents/network-stack/netlog/
https://www.chromium.org/developers/design-documents/network-stack/netlog/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey of methods for encrypted
traffic classification and analysis. International Journal of Network Management, 25(5):355–374,
2015.

Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss functions in machine
learning. Annals of Data Science, pp. 1–26, 2020.

Mengying Zhou, Yang Chen, Shihan Lin, Xin Wang, Bingyang Liu, and Aaron Yi Ding. Dissecting
the applicability of http/3 in content delivery networks. environments, 11:12, 2022.

A APPENDICES

A.1 DEDICATED LOSS FUNCTION

For showing a use of our proposed dataset, we formulated the problem of estimating the number of
HTTP/3 responses in QUIC connection as a discrete regression problem. The proposed loss function
is,

L = αFL + (1− α) ((βORL + (1− β)DBL) . (1)
It comprises an aggregate of three terms: (1) a focused loss (FL) term, intended to alleviate class
imbalance by minimizing the relative loss for well-classified cases while emphasizing difficult-to-
classify ones; (2) a distance-based loss (DBL) term penalizing the model according to the predicted
class’s distance from the true label; and (3) an ordinal regression loss (ORL) term that introduces
higher penalties for misclassifications that disrupt the natural ordinal sequence of the dataset, where
lower class values occur more frequently.

The FL term (Lin et al., 2017) builds on the weighted cross-entropy loss (De Boer et al., 2005) by
adding a focusing parameter, γ, which adjusts the influence of each sample on the training process
based on the classification confidence. This parameter, γ, modifies the loss function by scaling the
loss associated with each sample by (1− pt)

γ , where pt is the predicted probability of the true class
y. This scaling reduces the loss from easy examples (where pt is high), thereby increasing it for hard,
misclassified examples, focusing training efforts on samples where improvement is most needed.
Accordingly, the term is:

FL(x,y) = E(x,y)

[
−w(y) · (1− ŷy(x))

γ · yT log ŷ(x)
]
, (2)

where x denotes the input sample, y is the one-hot encoded ground truth label, ŷ(x) represents the
model’s output of class probabilities, ŷy(x) denotes the predicted probability of the true class y, and
w(y) is a weight inversely proportional to the class frequency of y in the training dataset. By assigning
a higher weight to less frequent classes, the model places more emphasis on accurately classifying
these classes during training. It is an effective strategy for dealing with class imbalance (Aurelio
et al., 2019; Tian et al., 2020; Lin et al., 2017). FL thus minimizes the relative loss for well-classified
examples, while emphasizing difficult-to-classify ones.

The DBL term (Wang et al., 2020)

DBL = E(x,y)

[∑
i

ŷi(x) · |i− y|

]
, (3)

with y denoting the ground truth class, is essentially a discrete regression loss that penalizes the
model’s output according to the predicted class’s distance from the true label. The distance is
computed as the absolute difference between the class indices and the target class.

Finally, the ORL term (Herbrich et al., 1999; Frank & Hall, 2001) is given by

ORL = E(x,y)

[
−yT log σ(ŷ)− (1− y)T log σ(−ŷ)

]
, (4)

with σ denoting the sigmoid function saturating the input between 0 and 1. ORL uses a binary
cross-entropy loss function, which compares the activation of each output neuron to a target that
shows if the true class is greater than or equal to each class index, thus helping the model determine
the order of the classes. Both DBL and ORL consider the relations between classes; they do so
in different ways: DBL penalizes predictions based on the numerical distance, while ORL makes

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 1: Summary statistics of QUIC traces and the number of images per dataset for each web server.
Each web server containing multiple websites (URLs).

Web Server Websites Traces T = 0.1 T = 0.3
youtube.com 399 2,109 139,889 54,659
semrush.com 1,785 9,489 474,716 221,477
discord.com 527 7,271 623,823 235,248

instagram.com 3 207 17,003 7,112
mercedes-benz.com 46 66 9,987 2,740
bleacherreport.com 1,798 8,497 781,915 331,530

nicelocal.com 1,744 1,666 148,254 48,900
facebook.com 13 672 25,919 10,988
pcmag.com 5,592 13,921 1,183,717 385,797

logitech.com 177 728 56,792 28,580
google.com 1,341 2,149 81,293 29,068

cdnetworks.com 902 2,275 207,604 85,707
independent.co.uk 3,340 3,453 176,768 68,480

cloudflare.com 26,738 44,700 1,347,766 341,488
jetbrains.com 35 1,096 34,934 18,470
pinterest.com 43 238 6,465 2,360
wiggle.com 4 0 0 0

cnn.com 27 2,127 91,321 59,671

explicit use of the classes’ order. It focuses on preserving the correct order among predictions rather
than the numerical distance between them.

The parameters α, β, and γ in the aggregated loss are used to balance the contributions of these three
components to the combined loss. α is a parameter that controls the balance between the FL term
and the ORL and DBL combination. A higher value of α gives more weight to the FL term, while
a lower value gives more weight to the ORL and DBL combination. β is a parameter that controls
the balance between the ORL and DBL terms. A higher value of β gives more weight to the ORL
term, while a lower value gives more weight to the DBL term. γ is a parameter used inside the FL
component to adjust the focusing effect of the FL term. A higher γ increases the effect of the focusing
mechanism. This means the model pays more attention to correcting its worst mistakes, which is
useful in highly imbalanced scenarios. Lower γ values reduce the impact, making the loss more like
a standard cross-entropy loss where each misclassification is weighted more uniformly.

A.2 DATA AUGMENTATION:

Since the images are generated from QUIC traces that are formatted into a 32× 32 pixel grid, each
pixel corresponds to a unique feature of network traffic over a specific period. Any disruption in the
temporal dependencies present in each image, such as through non-order-preserving modifications,
may result in the loss of critical information, reducing the ML model’s ability to estimate correctly.
Thus, data augmentation is only applied to the minority classes (classes whose values are between 10
and 20), incorporating a minimal noise level (Maharana et al., 2022). We used noise with the standard
deviation of σ = 2.55 corresponding to 1% of the pixel value, ensuring that the added noise does
not drastically alter the image appearance or disrupt the temporal dependencies. The noise serves,
however, to imitate minor variations, increasing the model robustness and generalization capabilities.

A.3 EXTENDED STATISTICS

A.4 MOTIVATION

This dataset was created to study RTT estimation in the context of QUIC traffic over HTTP/3. To
try to estimate RTT estimation, one needs to obtain information about response or request and to
gather real QUIC traffic from various web servers, which currently is not researched a lot. QUIC is
an encrypted protocol developed by Google, which is ran under Chrome browser.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 2: T = 0.1-second window dataset: Images per class value, per server.

Class youtube.com semrush.com discord.com instagram.com mercedes-benz.com bleacherreport.com nicelocal.com facebook.com pcmag.com logitech.com google.com cdnetworks.com independent.co.uk cloudflare.com jetbrains.com
0 68,730 113,947 190,942 10,340 4,255 421,728 113,581 9,345 996,908 14,435 37,501 40,332 126,199 417,474 10,993
1 32,180 137,842 156,369 2,958 1,154 190,606 103,038 4,503 141,714 14,785 18,567 50,600 37,183 506,356 5,392
2 13,426 53,672 126,360 1,215 661 39,619 119,751 2,219 29,480 9,181 7,584 39,329 6,004 192,943 4,285
3 7,961 32,087 63,141 621 523 19,860 71,226 1,374 4,330 4,206 4,637 21,876 1,890 120,638 2,202
4 5,733 23,880 37,571 314 449 33,013 42,885 922 2,996 5,166 3,899 14,017 1,138 54,700 1,579
5 9,184 17,406 21,260 359 442 20,144 28,455 349 2,145 1,620 2,484 8,940 811 33,681 1,692
6 1,210 10,376 8,374 472 443 14,649 18,191 545 2,429 1,238 1,576 6,523 1,129 16,264 1,811
7 751 7,981 5,235 338 281 9,473 16,304 4,143 1,788 719 1,572 4,522 522 3,397 1,154
8 488 7,624 3,342 171 339 17,508 12,342 326 813 338 998 3,417 383 987 1,616
9 111 7,292 2,757 140 237 3,735 11,027 324 339 417 493 2,421 290 326 2,635

10 39 8,132 2,251 66 209 7,510 10,050 383 213 348 345 2,040 240 195 745
11 14 8,308 1,143 9 171 2,587 5,406 275 249 370 297 1,847 171 165 764
12 9 5,557 1,264 0 145 272 2,861 289 84 801 261 1,706 163 98 66
13 11 5,109 768 0 129 230 1,397 332 148 462 200 1,569 123 113 0
14 7 4,211 683 0 151 270 736 136 8 717 218 1,289 108 80 0
15 4 4,964 685 0 91 184 342 313 5 464 146 1,415 109 96 0
16 6 6,328 318 0 68 201 123 48 41 473 169 1,437 68 74 0
17 8 6,029 311 0 83 176 125 55 18 441 99 1,229 64 55 0
18 4 5,442 348 0 83 73 87 26 21 221 77 1,014 65 41 0
19 8 4,797 271 0 40 47 31 56 8 211 76 998 38 16 0
20 5 3,732 430 0 33 30 23 36 1 141 44 1,152 42 26 0

Sum 139,889 474,716 623,823 17,003 9,987 781,915 557,981 25,999 1,183,738 56,754 81,243 207,673 176,740 1,347,725 34,934

Table 3: T = 0.3-second window dataset: Images per class value, per server.

Class youtube.com semrush.com discord.com instagram.com mercedes-benz.com bleacherreport.com nicelocal.com facebook.com pcmag.com logitech.com google.com cdnetworks.com independent.co.uk cloudflare.com jetbrains.com
0 11,185 23,751 26,130 2,942 1,082 107,871 19,851 1,537 316,252 3,990 7,031 8,530 31,494 45,521 3,100
1 12,954 56,849 22,566 1,081 214 70,024 21,724 1,510 35,476 5,041 6,702 13,318 26,392 86,815 1,713
2 6,569 34,403 31,911 655 168 37,090 23,963 640 21,239 4,459 4,465 11,463 4,968 84,493 1,622
3 4,651 18,272 33,139 359 105 18,401 23,611 917 5,272 2,663 1,954 7,993 2,075 37,014 1,005
4 3,447 13,116 33,214 286 78 11,685 18,049 768 1,427 2,261 1,617 7,114 928 22,280 722
5 6,307 12,567 23,249 143 71 7,682 15,305 312 768 1,629 912 6,084 491 14,270 732
6 3,745 7,098 17,279 237 88 6,711 12,300 167 1,077 2,182 860 5,844 292 13,965 741
7 2,918 5,823 18,919 541 67 8,433 9,786 2,254 1,114 739 1,293 5,140 363 12,478 532
8 1,439 4,921 13,591 238 76 22,045 8,065 193 1,047 511 979 4,414 246 10,979 1,025
9 815 3,624 4,322 189 71 12,548 7,170 63 468 477 529 3,350 153 7,975 1,642

10 230 3,917 2,848 190 78 13,965 7,394 69 358 342 370 2,717 117 2,784 1,505
11 166 5,221 1,651 167 62 10,530 7,527 61 551 335 396 2,024 173 954 2,383
12 80 4,704 1,261 77 50 2,464 8,338 114 267 360 373 1,754 103 641 1,677
13 46 3,430 882 7 50 478 9,361 185 103 289 317 1,336 125 443 71
14 24 2,194 988 0 66 248 10,034 713 169 982 274 1,055 110 290 0
15 29 2,725 775 0 71 341 7,660 293 75 549 273 909 133 152 0
16 14 3,827 669 0 62 232 5,217 192 25 444 188 752 58 125 0
17 10 4,288 431 0 60 369 3,471 185 33 516 169 626 51 88 0
18 10 3,641 479 0 75 170 2,207 356 50 387 152 469 71 93 0
19 11 3,300 408 0 77 104 1,177 424 14 262 132 375 78 80 0
20 9 3,806 536 0 69 139 759 35 12 162 82 440 59 48 0

Sum 54,659 221,477 235,248 7,112 2,740 331,530 222,969 10,988 385,797 28,580 29,068 85,707 68,480 341,488 18,470

A.5 COMPOSITION

Each instance is an image associated with a label of the number of responses within that image. Each
image in this dataset is labeled with the number of observed HTTP/3 responses; namely, the number
of responses that have started to arrive within every time window. To this end, the HTTP/3 frames are
analyzed and HTTP/3 HEADERS frames are identified. Similarly, instead of labeling the images
with the number of responses, the number of requests can be used as a label instead.

Tables 1, 2 and 3 contain statistics for all images with a label of 20 or less. The files also contain
images with high-class labels, and from the captured traces, additional images and labels can be
generated. We publish the whole traces dataset, which contains 100, 664 traces in PCAP format, and
outline the traces counts in Table 1. The traces were collected from various locations. The label for
each image presented in the dataset is the number of responses observed during that time window of
the image. Further studies can generate more images and more labels.

When using the traces or images in the dataset for training purposes, one should check if high-
class labels of images are present on specific web servers before splitting the traces into sets of
out-of-sample web servers. Some web servers lack images with high class values.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.6 COLLECTION PROCESS

The process starts with HTTP/3 (Bishop, 2022) GET requests that are generated to various web
servers that support HTTP/3, each hosting multiple websites. Requests are issued for up to 3, 176
different websites per web server. Headless Chrome (chromium, 2017) is used in incognito mode
with the application cache disabled, and the websites are requested sequentially. The generated
network traffic traces are captured using Tshark (Merino, 2013) in packet capture (PCAP) format.
These traces include only QUIC packets and cover the duration of the website request. Once we
retain the time series captured traces, the image datasets generation process can start for these traces.
The SSL keys are stored for each trace in a separate file (and are provided in the dataset). These keys
are use to decrypt the relevant QUIC packets.

A.7 PREPROCESSING/CLEANING/LABELING

Images whose class labels were above 20 responses were not part of the training or evaluation for
estimating the number of responses in a QUIC connection, due to their rarity in the data. Besides
that, the raw data contains all of the data, unfiltered. Preprocessing was done by filtering out packets
that are not QUIC packets. Furthermore, a large number of images were identical, and all of the
duplicate images were removed. Before the filtering there was 21, 100, 925 images, and after there
was 5, 040, 459 images. We upload the full dataset including the duplicates. The raw data (captured
traces) are saved and will also be available along with the images, upon the paper’s acceptance using
a link.

A.8 OTHER USES

The dataset can be used for various communication tasks involving QUIC protocol, such as fin-
gerprinting websites, estimating the number of requests in each connection, estimating the load
on specific web servers, predicting server-client interactions over QUIC sessions, estimating RTT
between a server and a client etc.

A.9 MAINTENANCE

Both authors are maintaining the dataset on Github and on relevant links. The dataset can be
updated and more labels can be added, for example, requests for each image in addition to responses.
Moreover, the dataset can evolve to contain more images using different window lengths. Currently,
the dataset contains two window lengths of 0.1 and 0.3 seconds. Errors may be submitted via the
bugtracker on Github. More extensive augmentations may be accepted at the authors’ discretion.

15

	Introduction
	Dataset Description
	Problem settings
	Trace collection and image generation
	Dataset creation
	Training and test sets
	Discussion:

	Estimating the Number of HTTP/3 Responses in a QUIC Connection
	Related Work
	Conclusion and Limitations
	Appendices
	Dedicated Loss Function
	Data Augmentation:
	Extended Statistics
	Motivation
	Composition
	Collection Process
	Preprocessing/cleaning/labeling
	Other Uses
	Maintenance

