
Under review as a conference paper at ICLR 2024

CONTINUAL NONLINEAR ICA-BASED REPRESENTA-
TION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised identification of disentangled representations remains a challenging
problem. Recent progress in nonlinear Independent Component Analysis (ICA)
provides a promising causal representation learning framework by separating latent
sources from observable nonlinear mixtures. However, its identifiability hinges on
the incorporation of side information, such as time or domain indexes, which are
challenging to obtain adequately offline in real-world scenarios. In this paper, we
develop a novel approach for nonlinear ICA that effectively accommodates contin-
ually arriving domains. We first theoretically demonstrate that model identifiability
escalates from subspace to component-wise level with the increment of domains.
It motivates us to maintain prior knowledge and progressively refine it using new
arriving domains. Upon observing a new domain, our approach optimizes the
model by satisfying two objectives: (1) reconstructing the observations within the
current domain, and (2) preserving the reconstruction capabilities for prior domains
through gradient constraints. Experiments demonstrate that our method achieves
performance comparable to nonlinear ICA methods trained jointly on multiple
offline domains, demonstrating its practical applicability in continual learning
scenarios.

1 INTRODUCTION

Causal representation learning aims at recovering high-level semantic variables from low-level
observations and their casual relations. Compared with current deep learning models which are
trained as black-box functions, it is more explainable and generalizable by the identification of
the underlying causal generation process. A well-established theoretical result demonstrates that
reconstructing these latent variables in a fully unsupervised way is impossible without further
assumptions (Hyvärinen & Pajunen, 1999). Among multiple efforts towards this problem (Xie et al.,
2020; Silva et al., 2006), nonlinear ICA attracts a lot of attention by providing a promising framework
and demonstrating an identification guarantee.

Nonlinear ICA focuses on recovering independent latent variables from their nonlinear mixtures.
Denote an observed n-dimensional vector by x, which is generated by a number of independent
latent variables z through an arbitrary invertible mixing function g as x = g(z). The objective of
nonlinear ICA is to reconstruct the latent variables z by discovering the inverse function g−1 based
on the observation x only in an unsupervised manner. Apparently, without additional constraints, we
can never find out a meaningful solution. More rigorously, the identifiability of nonlinear ICA cannot
be guaranteed when only relying on independence assumption (Hyvärinen & Pajunen, 1999).

To address this problem, existing works focus on adding constraints on the mixing function (Gresele
et al., 2021; Buchholz et al., 2022; Zheng et al., 2022), or most popularly, benefiting from the non-
stationary of source data (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2018; Khemakhem
et al., 2019) to advance the identifiability. By introducing auxiliary variable u and assuming the
non-i.i.d sources are conditionally independent given u, the latent variables can be estimated up to
component-wise identifiable. Although current research on nonlinear ICA has made great progress, it
still relies on observing sufficient domains simultaneously, which limits its application to scenarios
where changing domains may arrive sequentially. Specifically, the model trained with sequential
arrival of domains without making adjustments is equivalent to the scenario where only one domain
is observed. Consequently, the model becomes unidentifiable.
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In this paper, we present a novel approach to learning causal representation in continually arriving
domains. Distinct from traditional continual classification tasks, continual causal representation
learning (CCRL) requires that the model leverages the changes in distribution across varying domains.
This implies that the problem cannot be segregated into discrete local learning tasks, such as learning
causal representation within individual domains and subsequently fusing them. In this context, we
conduct a theoretical examination of the relationships between model identification and the number
of observed domains. Our research indicates that the identifiability increases with the inclusion
of additional domains. In particular, subspace identification can be achieved with n + 1 domains,
while component-wise identification necessitates 2n+ 1 domains or more. This indicates that when
the domain count is inadequate (n+ 1), we can only identify the manifold spanned by a subset of
latent variables. However, by utilizing the new side information in the distribution change of arriving
domains, we can further disentangle this subset.

This discovery motivates us to develop a method that retains prior knowledge and refines it using
information derived from incoming domains, a process reminiscent of human learning mechanisms.
To realize causal representation learning, we employ two objectives: (1) the reconstruction of
observations within the current domain, and (2) the preservation of reconstruction capabilities for
preceding domains via gradient constraints. To accomplish these goals, we apply Gradient Episodic
Memory (GEM) (Lopez-Paz & Ranzato, 2017) to constrain the model’s gradients. GEM aligns the
gradients of the new domain with those of prior domains by eliminating factors within the current
domain that are detrimental to previous domains. Through empirical evaluations, we demonstrate
that our continual approach delivers performance on par with nonlinear ICA techniques trained
jointly across multiple offline domains. Importantly, the guarantee of identifiability persists even
when incoming domains do not introduce substantial changes for partial variables. Furthermore, we
demonstrate that the sequential order of domains can maintain the identification process of partial
variables in causal representation learning.

2 RELATED WORK

Causal representation learning. Beyond conventional representation learning, causal representation
learning aims to identify the underlying causal generation process and recover the latent causal
variables. There are pieces of work aiming towards this goal. For example, it has been demonstrated
in previous studies that latent variables can be identified in linear-Gaussian models by utilizing the
vanishing Tetrad conditions (Spearman, 1928), as well as the more general concept of t-separation
(Silva et al., 2006). Additionally, the Generalized Independent Noise (GIN) condition tried to identify
a linear non-Gaussian causal graph (Xie et al., 2020). However, all of these methods are constrained
to the linear case while nonlinear ICA provides a promising framework that learns identifiable latent
causal representations based on their non-linear mixture. However, the identifiability of nonlinear
ICA has proven to be a challenging task (Hyvärinen & Pajunen, 1999), which always requires further
assumptions as auxiliary information, such as temporal structures (Sprekeler et al., 2014), non-
stationarities (Hyvarinen & Morioka, 2016; 2017), or a general form as auxiliary variable (Hyvarinen
et al., 2018). These methods indicate that sufficient domains (changes) are crucial for ensuring the
identifiability of nonlinear ICA. In this paper, we consider the scenario that changing domains may
arrive not simultaneously but sequentially or even not adequately.

Continual learning. In conventional machine learning tasks, the model is trained on a dedicated
dataset for a specific task, then tested on a hold-out dataset drawn from the same distribution. However,
this assumption may contradict some real-world scenarios, where the data distribution varies over time.
It motivates researchers to explore continual learning to enable an artificial intelligence system to
learn continuously over time from a stream of data, tasks, or experiences without losing its proficiency
in the ones it has already learned. The most common setting is class incremental recognition (Rebuffi
et al., 2017; Hou et al., 2019; Van De Ven et al., 2021), where new unseen classification categories
with different domains arrive sequentially. To solve this problem, existing methods are commonly
divided into three categories. Regulization-based methods (Riemer et al., 2018; Zeng et al., 2019;
Farajtabar et al., 2020; Saha et al., 2021; Tang et al., 2021; Wang et al., 2021) add the constraints
on the task-wise gradients to prevent the catastrophic forgetting when updating network weights
for new arriving domains. Memory-based methods (Robins, 1995; Rebuffi et al., 2017; Lopez-Paz
& Ranzato, 2017; Chaudhry et al., 2018; 2019; Hu et al., 2019; Kemker & Kanan, 2017; Shin
et al., 2017; Pellegrini et al., 2020; Van De Ven et al., 2021) propose to store previous knowledge
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in a memory, such as a small set of examples, a part of weights, or episodic gradients to alleviate
forgetting. Distillation-based methods (Li & Hoiem, 2017; Rebuffi et al., 2017; Hou et al., 2019;
Castro et al., 2018; Wu et al., 2019; Yu et al., 2020; Tao et al., 2020; Liu et al., 2020; Mittal et al.,
2021) remember the knowledge trained on previous tasks by applying knowledge distillation between
previous network and currently trained network. Please note that CCRL is distinct from conventional
class incremental recognition. It is because CCRL needs to leverage the domain change (comparing
two domains) to identify the latent variables. This implies that the problem cannot be divided into
discrete local learning tasks, such as learning causal representation within individual domains and
then merging them together, while training separate networks for different tasks will definitely reach
state-of-the-art performance in a continual classification learning scenario. Thus, we introduce a
memory model to store the information of previous domains and use it to adjust the model parameters.

3 IDENTIFIABLE NONLINEAR ICA WITH SEQUENTIALLY ARRIVING
DOMAINS

In this section, we conduct a theoretical examination of the relationship between model identification
and the number of domains. Initially, we introduce the causal generation process of our model (in
Section 3.1), which considers the dynamics of changing domains. Subsequently, we demonstrate
that model identifiability improves with the inclusion of additional domains. More specifically, we
can achieve component-wise identification with 2n + 1 domains (in Section 3.2.1), and subspace
identification with n + 1 domains (in Section 3.2.2). Building on these theoretical insights, we
introduce our method for learning causal representation in the context of continually emerging
domains (in Section 3.3).

3.1 PROBLEM SETTING

As shown in Figure 1, we consider the data generation process as follows:

zc ∼ pzc
, z̃s ∼ pz̃s

, zs = fu(z̃s), x = g(zc, zs), (1)

Figure 1: Data generation
process. x is influenced by
variables zs (change with dif-
ferent domains u) and invari-
ant variables zc.

where x ∈ X ⊆ Rn are the observations mixed by latent variables
z ∈ Z ⊆ Rn through an invertible and smooth nonlinear function
g : Z → X . The latent variables z can be partitioned into two
groups: changing variables zs ∈ Zs ⊆ Rns whose distribution
changes across domains u , and invariant variables zc ∈ Zc ⊆ Rnc

which remains invariant. Given T domains in total, we have
pzs|uk

̸= pzs|ul
, pzc|uk

= pzs|ul
for all k, l ∈ {1, . . . , T}, k ̸= l.

We parameterize the influence of domains u for changing variables
zs as the function of u to its parent variables z̃s, i.e. zs = fu(z̃s).
One can understand this setting with the following example: sup-
pose the higher level variables follow Gaussian distribution, i.e.,
z̃s ∼ N (0, I), and u could be a vector denoting the variance of the
distribution. The combination of u with z̃s will produce a Gaussian
variable with different variances at different domains. In this paper, we assume z̃s follows the
Gaussian distribution to make it tractable.

The objective of nonlinear ICA is to recover the latent variables zs and zc given the observation x
and domain variables u by estimating the unmixing function g−1. In this paper, we consider the
case where domains arrive sequentially, i.e., we aim to recover the latent variables by sequentially
observing x|u1,x|u2, . . . ,x|uT .

3.2 IDENTIFIABILITY THEORY OF NONLINEAR ICA

The identifiability is the key to nonlinear ICA to guarantee meaningful recovery of the latent variables.
Mathematically, the identifiability of a model is defined as

∀(θ,θ′) : pθ(x) = pθ′(x) =⇒ θ = θ′, (2)

where θ represents the parameter generating the observation x. That is, if any two different choices
of model parameter θ and θ′ lead to the same distribution, then this implies that θ and θ′ are equal
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(Khemakhem et al., 2019). For our data generation defined in equation 1, we have θ = (g, zc, zs),
and θ′ = (ĝ, ẑc, ẑs) which denotes the estimated mixing function, estimated invariant variables, and
estimated changing variables respectively. Thus, a fully identifiable nonlinear ICA needs to satisfy at
least two requirements: the ability to reconstruct the observation and the complete consistency with
the true generating process. Unfortunately, current research cannot achieve this level of identifiability
without further assumptions that are considerably restrictive. Therefore, existing works typically
adopt a weaker notion of identifiability. In the following, we discuss two types of identifiability
for the changing variable, and show that the identifiability progressively increases from subspace
identifiability to component-wise one by incorporating more domains.

In this work, we follow (Kong et al., 2022) and assume our estimated latent process (ĝ, ẑc, ẑs) could
generate observation x̂ with identical distribution with observation x generated by the true latent
process (g, zc, zs), i.e.,

px|u(x
′|u′) = px̂|u(x

′|u′), x′ ∈ X ,u′ ∈ U . (3)

3.2.1 COMPONENT-WISE IDENTIFIABILITY FOR CHANGING VARIABLE

First, we show that the changing variable can be identified up to permutation and component-wise
invertible transformation with sufficient changing domains. Specifically, for the true latent changing
variable zs, there exists an invertible function h = g−1 ◦ ĝ : Rns → Rns such that zs = h(ẑs),
where h is composed of a permutation transformation π and a component-wise nonlinear invertible
transformation A, i.e., ĝ = g ◦ π ◦A 1. That is, the estimated variable ẑj and the true variable zi have
a one-to-one correspondence with an invertible transformation for ∀i, j ∈ {1, . . . , ns}. We have the
following lemma from (Kong et al., 2022).

Lemma 1 Suppose that the data generation process follows equation 1 and that the following
assumptions hold:

1. The set {z ∈ Z | p(z) = 0} has measure zero.

2. The probability density given each domain should be sufficiently smooth. i.e., pz|u is at least
second-order differentiable.

3. Given domain u, every element of latent variable z should be independent with each other.
i.e., zi ⊥⊥ zj |u for i, j ∈ {1, . . . , n} and i ̸= j.

4. For any zs ∈ Zs, there exists 2ns + 1 values of u, such that for k = 1, . . . , 2ns, i =
1, . . . , ns, the following matrix is invertible:

ϕ′′
1 (1,0) . . . ϕ′′

i (1,0) . . . ϕ′′
ns
(1,0) ϕ′

1(1,0) . . . ϕ′
i(1,0) . . . ϕ′

ns
(1,0)

...
. . .

...
...

...
...

...
. . .

...
...

ϕ′′
1 (k,0) . . . ϕ′′

i (k,0) . . . ϕ′′
ns
(k,0) ϕ′

1(k,0) . . . ϕ′
i(k,0) . . . ϕ′

ns
(k,0)

...
. . .

...
...

...
...

...
. . .

...
...

ϕ′′
1 (2ns,0) . . . ϕ′′

i (2ns,0) . . . ϕ′′
ns
(2ns,0) ϕ′

1(2ns,0) . . . ϕ′
i(2ns,0) . . . ϕ′

ns
(2ns,0)

 ,

where

ϕ′′
i (k,0) :=

∂2 log(pz|u(zi|uk))

∂z2
i

− ∂2 log(pz|u(zi|u0))

∂z2
i

, ϕ′
i(k,0) :=

∂ log(pz|u(zi|uk))

∂zi
− ∂ log(pz|u(zi|u0))

∂zi

are defined as as the difference between second-order derivative and first-order derivative
of log density of zi between domain uk and domain u0 respectively,

Then, by learning the estimation ĝ, ẑc, ẑs to achieve equation 3, zs is component-wise identifiable. 2

The proof can be found in Appendix A1.2. Basically, the theorem states that if the distribution of
latent variables is "complex" enough and each domain brings enough changes to those changing
variables, those changing variables zs are component-wise identifiable.

1More formally "component-wise nonlinear identifiability" as it doesn’t require exactly identify each element.
2We only focus on changing variables zs in this paper. One may refer (Kong et al., 2022) for those who are

interested in the identifiability of zc.
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Repeated distributions of partially changing variables. Previous works assume that when the
domain changes, the changing variables will undergo a distribution shift. However, this assumption
may be overly restrictive for practical scenarios, because there is no guarantee or clear justification
that the data distribution of all changing variables will change when the domain changes. Specifically,
there may exist domains with the same distribution for partial variables:

pz|u(zi|uk) = pz|u(zi|ul) ∃k, l ∈ {0, . . . , 2ns}, k ̸= l, i ∈ {1, . . . , ns}. (4)

In practical human experience, we frequently encounter novel information that enhances or modifies
our existing knowledge base. Often, these updates only alter specific aspects of our understanding,
leaving the remainder intact. This raises an intriguing question about model identifiability: Does such
partial knowledge alteration impact the invertibility of the matrix, as delineated in Assumption 4 of
Lemma 1? In response to this issue, we present the following remark, with further details provided in
Appendix A1.3.

Remark 1 For ns ≥ 2 and we use |Si| to denote the cardinality of non-repetitive distributions of
latent changing variable zi (1 ≤ |Si| ≤ T ). If Lemma 1 hold, then |Si| ≥ 3 for every i ∈ {1, . . . , ns}.

3.2.2 SUBSPACE IDENTIFIABILITY FOR CHANGING VARIABLE

Although component-wise identifiability is powerful and attractive, holding 2ns+1 different domains
with sufficient changes remains a rather strong condition and may be hard to meet in practice. In this
regard, we investigate the problem of what will happen if we have fewer domains. We first introduce
a notion of identifiability that is weaker compared to the component-wise identifiability discussed in
the previous section.

Definition 1 (Subspace Identifiability of Changing Variable) We say that the true changing vari-
ables zs are subspace identifiable if, for the estimated changing variables ẑs and each changing
variable zs,i, there exists a function hi : Rns → R such that zs,i = hi(ẑs).

We now provide the following identifiability result that uses a considerably weaker condition (com-
pared to Lemma 1) to achieve the subspace identifiability defined above, using only ns + 1 domains.

Theorem 1 Suppose that the data generation process follows equation 1 and that Assumptions 1,
2, and 3 of Lemma 1 hold. For any zs ∈ Zs, we further assume that there exists ns + 1 values of u
such that for i = 1, . . . , ns and k = 1, . . . , ns, the following matrix

ϕ′
1(1,0) . . . ϕ′

i(1,0) . . . ϕ′
ns
(1,0)

...
. . .

...
...

...
ϕ′
1(k,0) . . . ϕ′

i(k,0) . . . ϕ′
ns
(k,0)

...
...

...
. . .

...
ϕ′
1(ns,0) . . . ϕ′

i(ns,0) . . . ϕ′
ns
(ns,0)


is invertible, where

ϕ′
i(k,0) :=

∂ log(pz|u(zi|uk))

∂zi
−

∂ log(pz|u(zi|u0))

∂zi

is the difference of first-order derivative of log density of zi between domain uk and domain u0

respectively. Then, by learning the estimation ĝ, ẑc, ẑs to achieve equation 3, zs is subspace identifi-
able.

The proof can be found in Appendix A1.1. Basically, Theorem 1 proposes a weaker form of
identifiability with relaxed conditions. With ns + 1 different domains, each true changing variable
can be expressed as a function of all estimated changing variables. This indicates that the estimated
changing variables capture all information for the true changing variables, and thus disentangle
changing and invariant variables. It is imperative to emphasize that, within our framework, the
subspace identifiability of changing variables can lead to block-wise identifiability (Kong et al.,
2022; von Kügelgen et al., 2021). We provide detailed proof of this in Appendix A1.1. Moreover,
it is worth noting that if there is only one changing variable, such subspace identifiability can lead
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to component-wise level. When integrated with the continual learning scenario, we uncover the
following interesting properties.

New domains may impair original identifiability of partial changing variables. Consider a
toy case where there are three variables with four domains in total as shown in the top case of
Figure 2. The first variable z1 changes in domain u1 and both z1 and z2 change in domain u2. When
considering only domains u0, u1, z1 can achieve subspace identifiability according to Theorem 1.

𝑧!

𝑧"

𝒖𝟎 𝒖𝟏 𝒖𝟐

𝑧&

Figure 2: A toy example with
three variables and three do-
mains. z1 changes in u1,u2,
z2 changes in u2

It is imperative to recognize that, due to the absence of variabil-
ity in the remaining variables within these domains, this subspace
identifiability inherently aligns with component-wise identifiability.
However, when considering domains u0,u1,u2, the component-
wise identifiability for z1 can’t be guaranteed anymore, and instead,
we can only promise subspace identifiability for both z1 and z2. In
this case, information from domain u2 can be viewed as "noise" for
z1. Contrasted with the traditional joint learning setting, where the
data of all domains are overwhelmed, the continual learning setting
offers a unique advantage. It allows for achieving and maintaining
original identifiability, effectively insulating it from the potential
"noise" introduced by newly arriving domains. In Section 4, we
empirically demonstrate that the causal representation of z1 obtained
through continual learning exhibits better identifiability compared
to that obtained through joint training. In addition, another straight-
forward property is discussed in the Appendix A2.2.

3.3 METHOD

In this section, we leverage the insight of the identifiability theory from previous section to develop
our estimation method.

Generative model. As shown in Lemma 1 and Theorem 1, we are aiming at estimating causal
process ĝ, ẑc, ẑs to reconstruct the distribution of observation. As shown in Figure 3, we construct a
Variational Autoencoder (VAE) with its encoder qĝ−1

µ ,ĝ−1
Σ

(ẑ|x) to simulate the mixing process and the
decoder ĝ to reconstruct a matched distribution x̂ = ĝ(ẑ). Besides, as introduced in data generation
in Equation 1, the changing latent variable is generated as the function of high-level invariance ˆ̃zs
with a specific domain influence u. Assuming the function is invertible, we employ a flow model to
obtain the high-level variable ˆ̃zs by inverting the function, i.e., ˆ̃zs = f̂−1

u (ẑs). To train this model,
we apply an ELBO loss as:

L(ĝ−1
µ , ĝ−1

Σ , f̂u, ĝ) = ExEẑ∼q
ĝ
−1
µ ,ĝ

−1
Σ

1

2
∥x− x̂∥2 + αKL(qĝ−1

µ ,ĝ−1
Σ

(ẑc|x)∥p(zc))

+βKL(qĝ−1
µ ,ĝ−1

Σ ,f̂u
(ˆ̃zs|x∥p(z̃s)),

(5)

where α and β are hyperparameters controlling the factor as introduced in (Higgins et al., 2017). To
make the equation 5 tractable, we choose the prior distributions p(z̃s) and p(zc) as standard Gaussian
N (0, I).

Continual casual representation learning. The subspace identifiability theory in Section 3.2.2
implies that the ground-truth solution lies on a manifold that can be further constrained with more
side information, up to the solution with component-wise identifiability. Consequently, it is intuitive
to expect that when we observe domains sequentially, the solution space should progressively narrow
down in a reasonable manner.

It motivates us to first learn a local solution with existing domains and further improve it to align
with the new arriving domain without destroying the original capacity. Specifically, to realize causal
representation learning, we employ two objectives: (1) the reconstruction of observations within
the current domain, and (2) the preservation of reconstruction capabilities for preceding domains.
In terms of implementation, this implies that the movement of network parameters learning a new
domain should not result in an increased loss for the previous domains.

To achieve this goal, we found the classical technique GEM (Lopez-Paz & Ranzato, 2017) enables
constraining the gradient update of network training to memorize knowledge from previous domains.
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Figure 3: Overall framework. For the data from new domain x|ui, we calculate the gradients ∆
and ∆′ of our model with both current data and previous memory. Then, we project the gradient
∆ to ∆̃ using Equation 7 when the angle between ∆ and ∆′ is larger than 90 degrees. Finally, we
randomly sample a part of the data in the current domain and add them to the memory bank.

The basic intuition of the algorithm can be illustrated with the following toy example: suppose data
from those two domains are denoted as {x|u1,x|u2} and the parameter of the network θ and the
loss calculated on data from kth domain is denoted as l(θ,x|uk). At the moment of finishing the
learning of the first domain, if we don’t make any constraints, the model should start the training
using data from the second domain with the direction ∂l(θ,x|u2)

∂θ .

At this moment, if the direction ∂l(θ,x|u2)
∂θ happens to have the property that ⟨∂l(θ,x|u2)

∂θ , ∂l(θ,x|u1)
∂θ ⟩ >

0, the current direction will contribute to both domains and we remain the direction. Once
the ⟨∂l(θ,x|u2)

∂θ , ∂l(θ,x|u1)
∂θ ⟩ < 0 happens, we project the ∂l(θ,x|u2)

∂θ to the direction where
⟨∂l(θ,x|u2)

∂θ , ∂l(θ,x|u1)
∂θ ⟩ = 0, the orthogonal direction to ∂l(θ,x|u1)

∂θ where no loss increment for
previous domains. However, there are infinite possible directions satisfying the orthogonal direction
requirement. e.g., we can always use the vector containing all zeros. To make the projected gradient
as close as the original gradient, we solve for the projected gradient ∂l(θ,x|u2)

∂θ

′
that minimizes the

objective function∥∥∥∥∂l(θ,x|u2)

∂θ
− ∂l(θ,x|u2)

∂θ

′∥∥∥∥2 s. t.
∂l(θ,x|u2)

∂θ

T
∂l(θ,x|u1)

∂θ

′
≥ 0. (6)

Extend into the general case for multiple domains, we consider the following quadratic programming
problem w.r.t. vector v′:

min
v′
∥v − v′∥2 s. t. Bv′ ≥ 0, (7)

where v denotes the original gradient, v′ denotes the projected gradient, B is the matrix storing
all gradients of past domains. Note that practically, we only store a small portion of data for each
domain, thus Bi is the row of B storing the memory gradient ∂l(θ,M|ui)

∂θ , where M|ui ∈ x|ui. We
provide the complete procedure in Appendix A3.

4 EXPERIMENTS

In this section, we present the implementing details of our method, the experimental results, and the
corresponding analysis.

4.1 EXPERIMENT SETUP

Data. We follow the standard practice employed in previous work (Hyvarinen et al., 2018; Kong
et al., 2022) and compare our method to the baselines on synthetic data. We generate the latent
variables zs for both non-stationary Gaussian and mixed Gaussian with domain-influenced variance
and mean, while zc for standard Gaussian and mixed Gaussian with constant mean and variance. The
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mixing function is estimated by a 2-layer Multi-Layer Perception(MLP) with Leaky-Relu activation.
More details can be found in Appendix A5.

Evaluation metrics. We use Mean Correlation Coefficient (MCC) to measure the identifiability of
the changing variable zs. However, as the identifiability result can only guarantee component-wise
identifiability, it may not be fair to directly use MCC between ẑs and zs (e.g. if ẑs = z3s, we will
get a distorted MCC value). We thus separate the test data into the training part and test part, and
further train separate MLP to learn a simple regression for each ẑs to zs to remove its nonlinearity on
the training part and compute the final MCC on the test part. We repeat our experiments over 5 or 3
random seeds for different settings.

4.2 EXPERIMENTAL RESULTS
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Figure 4: Comparison of MCC for all four datasets with the
number of domains from 2ns−1 to 2ns+7. In this instance,
the number of training and the number of testing domains are
equated, which differs from the investigation for increasing
domains.

Comparison to baseline and joint
training. We evaluate the efficacy
of our proposed approach by compar-
ing it against the same model trained
on sequentially arriving domains and
multiple domains simultaneously, re-
ferred to as the baseline and theo-
retical upper bound by the contin-
ual learning community. We employ
identical network architectures for all
three models and examine four dis-
tinct datasets, with respective param-
eters of zs being Gaussian and mixed
Gaussian with ns = 4, n = 8, as well
as ns = 2, n = 4. Increasing num-
bers of domains are assessed for each
dataset. Figure 4 shows our method
reaches comparable performance with
joint training. Further visualization
can be found in Appendix A4.

Increasing domains. For dataset
ns = 4, n = 8 of Gaussian, we save
every trained model after each domain
and evaluate their MCC. Specifically,
we evaluated the models on the orig-
inal test dataset, which encompasses data from all 15 domains. As shown in part (a) of Figure 5,
remarkably, increasing domains lead to greater identifiability results, which align with our expecta-
tions that sequential learning uncovers the true underlying causal relationships as more information is
revealed. Specifically, we observe that the MCC reaches a performance plateau at 9 domains and the

Figure 5: (a) MCC for increasing domains with models tested on all 15 domains after training of each
domain. (b) MCC for models trained with repeated distributions for partial changing variables.
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extra domains(from 9 to 15) don’t provide further improvement. This appears to be consistent with
the identifiability theory that 2ns + 1 = 9 domains are needed for identifiability.

Repeated distributions for partial changing variables. For dataset ns = 2, n = 4 of Gaussian,
we test the case that zs,1 have changing distributions over all domains while zs,2 only holds three
different distributions across domains. As shown in part (b) of Figure 5, our method outperforms both
joint train and baseline. It may be because our method has the ability to maintain the performance
learned from previous domains and prevents potential impairment from new arriving domains with
repeated distributions. For this instance, our method exhibits more robust performance than joint
training against negative effects from 8, 9th domains.

Discussion: is joint training always better than learning sequentially? Not necessar-
ily. As discussed in Section 3.2.2, the new domain may impair the identifiability of par-
tial variables. While joint training always shuffles the data and doesn’t care about the order
information, learning sequentially to some extent mitigates the impairment of identifiability.

𝒛𝟏

𝒛"𝟏

Ours Joint

Figure 6: Comparison of identifiability for z1 using
Joint training and our method qualitatively and
quantitatively.

Specifically, we conducted an experiment in
which both z1 and z2 are Gaussian variables.
The variance and mean of z1 change in the sec-
ond domain, while the other variable changes in
the third domain. We then compare our method
with joint training only for latent variable z1.
We repeat our experiments with 3 random seeds
and the experiment shows that the MCC of our
method for z1 reaches up to 0.785 while joint
training retains at 0.68 as shown in Figure 6. In
terms of visual contrast, the scatter plot obtained
using our method on the left of Figure 6 exhibits
a significantly stronger linear correlation com-
pared to joint training. Further discussions and
propositions are provided in Appendix A2.1

T=3 T=5 T=7 T=9
n̂s = 2 0.782 0.868 0.890 0.880
n̂s = 3 0.781 0.835 0.836 0.834
n̂s = 4 0.830 0.861 0.838 0.868

Table 1: mean MCC comparison for different pre-
set value of the number of changing variables n̂s

Ablation study on prior knowledge of chang-
ing variables. A major limitation of our ap-
proach is the requirement for prior knowledge
of the number of changing variables. Devel-
oping a method to automatically determine the
number of changing variables is nontrivial in the
continual learning scenario. Therefore, we turn
to conducting an ablation study to investigate
the sensitivity of this prior knowledge. We im-
plemented the ablation study on mixed Gaussian
case with n = 4, ns = 2 five times with different seeds. The results as shown in Table 1 indicate that
our method exhibits relative stability, with a discernible performance decline observed when there is
a mismatch between the actual and estimated numbers.

5 CONCLUSION

In this paper, we present a novel approach for learning causal representation in continually arriving do-
mains. Through theoretical analysis, we have examined the relationship between model identification
and the number of observed domains. Our findings indicate that as additional domains are incorpo-
rated, the identifiability of changing variables escalates, with subspace identification achievable with
ns + 1 domains and component-wise identification requiring 2ns + 1 domains or more. Besides,
we briefly show that a carefully chosen order of learning leads to meaningful disentanglement after
each domain is learned, and the introduction of new domains does not necessarily contribute to all
variables. To realize CCRL, we employed GEM to preserve prior knowledge and refine it using
information derived from incoming domains, resembling human learning mechanisms. Empirical
evaluations have demonstrated that our approach achieves performance on par with nonlinear ICA
techniques trained jointly across multiple offline domains, exhibiting greater identifiability with
increasing domains observed.
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A1 PROOF AND DISCUSSION

We divide our proof into the following parts. First, we start from the matched distribution of the
estimated observation and the real observation, then we show the the true latent variables can be
expressed as invertible transformations of the estimated variables. We then use derivatives to construct
component-wise relations between the estimated variables with the true latents. We finally show, with
enough domains, we can construct the matrix whose invertibility will force the changing variables
subspace identifiable with ns + 1 domains and component-wise identifiable with 2ns + 1 domains.

We start from the matched distribution as introduced in Equation 3: for u′ ∈ U

px|u = px̂|u. (8)

will imply
pg(z)|u = pĝ(ẑ)|u. (9)

according to the function of transformation, we can get

pg−1◦g(z)|u|J−1
g | = pg−1◦ĝ(ẑ)|u|J−1

g |. (10)

Let h := g−1 ◦ ĝ to express the transformation from estimated latent variables to real latent variables,
i.e., z = h(ẑ). As long as both ĝ and g are invertible, the transformation h should also be invertible.
We can then get the following

pz|u = ph(ẑ)|u. (11)

13
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according to the conditional independence(assumption 3) and nonzero densities(assumption 1) in
Lemma 1, the log density of each marginal distribution can be expressed as

log pz|u(z) =

n∑
i=1

log pzi|u(zi);

log pẑ|u(z) =

n∑
i=1

log pẑi|u(ẑi).

(12)

Thus, from Equation 11 and according to the function of transformation

pz|u = p(ẑ)|u|Jh−1 |. (13)

Take log density on both sides,
n∑

i=1

log pzi|u(zi) =

n∑
i=1

log pẑi|u(ẑi) + log |Jh−1 |. (14)

Simplify the notation as qi(zi,u) = log pzi|u(zi), q̂i(ẑi,u) = log pẑi|u(ẑi), the above equation is
n∑

i=1

qi(zi,u) =

n∑
i=1

q̂i(ẑi,u) + log |Jh−1 |. (15)

From Equation 15, we can see
n∑

i=1

qi(zi,u) + log |Jh| =
n∑

i=1

q̂i(ẑi,u) (16)

Until now, we have constructed the relationship between all true latent variables and all estimated
variables. In the following sections, we will show how to use the technique of derivatives to establish
component-wise relationships between them and how to utilize multi-domain information to eliminate
the intractable Jacobian term.

In Section A1.1, we show the proof of Theorem 1 and the Proposition 1 inspired by it. In Section A1.2,
we show the proof of Lemma 1. In Section A1.3, we discuss the case where there are repeated
distributions across different domains for partial changing variables and show if there are two or more
changing variables, at least three non-repetitive distributions are required for each variable.

A1.1 SUBSPACE IDENTIFIABILITY WITH ns + 1 DOMAINS

Take the derivative of Equation 16 with estimated invariant variable ẑj where j ∈ {ns+1, . . . , n}. We
can get

n∑
i=1

∂qi(zi,u)

∂zi

∂zi
∂ẑj

+
∂ log |Jh|

∂ẑj
=

∂q̂j(ẑj ,u)

∂ẑj
(17)

The equation allows us to construct the component-wise relation between true latent variable z with
estimated invariant variables ẑc as expressed using ∂zi

∂ẑj
. However, the Jacobian term ∂ log |Jh|

∂ẑj
is

intractable as we have no knowledge about h(once we have, everything is solved). If we have multiple
domains u = u0, . . . ,uns , we have ns + 1 equations like equation above. We can remove the
intractable Jacobian by taking the difference for every equation u = u1, . . . ,uns with the equation
where u = u0:

n∑
i=1

(
∂qi(zi,uq)

∂zi
− ∂qi(zi,u0)

∂zi
)
∂zi
∂ẑj

=
∂q̂j(ẑj ,uq)

∂ẑj
− ∂q̂j(ẑj ,u0)

∂ẑj
(18)

As long as the j ∈ {ns+1, . . . , n}, the distribution of estimated variable ẑj doesn’t change across all
domains. The right-hand side of the equation above will be zero. Thus,

n∑
i=1

(
∂qi(zi,uk)

∂zi
− ∂qi(zi,u0)

∂zi
)
∂zi
∂ẑj

= 0 (19)
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Similarly, qi(zi,u) remains the same for i ∈ {ns+1, . . . , n}
ns∑
i=1

(
∂qi(zi,uk)

∂zi
− ∂qi(zi,u0)

∂zi
)
∂zi
∂ẑj

= 0 (20)

Thus, we can have the linear system:
∂q1(z1,u1)

∂z1
− ∂q1(z1,u0)

∂z1
. . .

∂qns (zns ,u1)
∂zns

− ∂qns (zns ,u0)
∂zns

... . . .
...

∂q1(z1,uns )
∂z1

− ∂q1(z1,u0)
∂z1

. . .
∂qns (zns ,uns )

∂zns
− ∂qns (zns ,u0)

∂zns




∂z1
∂ẑj
...

∂zns

∂ẑj

 = 0 (21)

If the matrix above is invertible, its null space will only contain all zeros. Thus, ∂zi
∂ẑj

= 0 for any

i ∈ {1, . . . , ns}, j ∈ {ns+1, . . . , n}. That is, ∂zs

∂ẑc
= 0. Simplify the notation and define

ϕ′
i(k) :=

∂ log(pz|u(zi|uk))

∂zi
−

∂ log(pz|u(zi|u0))

∂zi

If the matrix 
ϕ′
1(1) . . . ϕ′

i(1) . . . ϕ′
ns
(1)

...
. . .

...
...

...
ϕ′
1(k) . . . ϕ′

i(k) . . . ϕ′
ns
(k)

...
...

...
. . .

...
ϕ′
1(ns) . . . ϕ′

i(ns) . . . ϕ′
ns
(ns)

 (23)

is invertible, we can get ∂zs

∂ẑc
= 0.

We further look back into the Jacobian matrix which captures the relation true latent variables z with
the estimated variables z:

Jh =

[
∂zc

∂ẑc

∂zc

∂ẑs
∂zs

∂ẑc

∂zs

∂ẑs

]
. (24)

As long as the transformation h is invertible, the Jacobian matrix Jh should be full rank. Thus, The
∂zs

∂ẑc
means that the bottom row of Jacobian above can only contain non-zero in ∂zs

∂ẑs
. That is, for each

true changing variable zs,i, it can be written as the function hi of the estimated changing variables ẑs
such that zs,i = hi(ẑs), which accomplishes the proof.

Proposition 1 If Theorem 1 holds, for the estimated changing variables ẑs and true changing
variables zs, there exist an invertible function hs : Rns → Rns such that zs = ẑs (block-wise
identifiability).

Proof We follow the result that ∂zs

∂ẑc
= 0 and recall the large Jocabian matrix Jh is invertible,

according to the property of invertible block matrix that

det

[
A B
0 D

]
= det(A) det(D). (25)

Thus, we can derive the determinant of Jh is

det(Jh) = det(
∂zc
∂ẑc

) det(
∂zs
∂ẑs

). (26)

As long as det(Jh) ̸= 0 (Jh is full rank), neither det(∂zc

∂ẑc
) nor det(∂zs

∂ẑs
) should equal to 0. Thus, the

transformation from zs to ẑs should be invertible, which accomplishes the proof.
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Remark 2 We know that ∂zs

∂ẑc
= 0, which is kind of trivial intutively as zs is changing while ẑc

remains the same distribution. However, as the Jacobian matrix Jh is invertible, we can utilize its
property that the inverse of a block matrix is[

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(27)

Thus, for the inverse of the Jacobian matrix above

Jh
−1 =

[
∂ẑc

∂zc

∂ẑc

∂zs
∂ẑs

∂zc

∂ẑs

∂zs

]
(28)

The bottom left term ∂ẑs

∂zc
must be zero. This provides more valuable insight, stating that the estimated

changing variables cannot be expressed as the function of true invariant variables.

A1.2 COMPONENT-WISE IDENTIFIABILITY FOR 2ns + 1 DOMAINS

Differentiating both sides of Equation 16 with respect to ẑj , j ∈ {1, . . . , n}, we can get

∂q̂j(ẑj ,u)

∂ẑj
=

n∑
i=1

∂qi(zi,u)

∂zi

∂zi
∂ẑj

+
∂ log |Jh|

∂ẑj
. (29)

Further differentiate with respect to ẑq , q ∈ {1, . . . , n}, q ̸= j, according to the chain rule,

0 =

n∑
i=1

∂2qi(zi,u)

∂z2i

∂zi
∂ẑj

∂zi
∂ẑq

+
∂qi(zi,u)

∂zi

∂2zi
∂ẑj∂ẑq

+
∂2 log |Jh|
∂ẑj∂ẑq

. (30)

This equation allows us to have the component-wise relation between ẑ with z. Following the
same ideas, and introducing multiple domains come into play to remove the Jacobian term. Using
assumption 4 in Lemma1, for u = u0, . . . ,u2ns , we have 2ns + 1 equations like Equation 30.
Therefore, we can remove the effect of the Jacobian term by taking the difference for every equation
u = u1, . . . ,u2ns with the equation where u = u0:

n∑
i=1

(
∂2qi(zi,uk)

∂z2i
− ∂2qi(zi,u0)

∂z2i
)
∂zi
∂ẑj

∂zi
∂ẑq

+ (
∂qi(zi,uk)

∂zi
− ∂qi(zi,u0)

∂zi
)

∂2zi
∂ẑj∂ẑq

= 0. (31)

For invariant variables zc, their log density doesn’t change across different domains. Thus, we can
get rid of invariant parts of the equation above and have

ns∑
i=1

(
∂2qi(zi,uk)

∂z2i
− ∂2qi(zi,u0)

∂z2i
)
∂zi
∂ẑj

∂zi
∂ẑq

+ (
∂qi(zi,uk)

∂zi
− ∂qi(zi,u0)

∂zi
)

∂2zi
∂ẑj∂ẑq

= 0. (32)

Simplify the notation as ϕ′′
i (k) :=

∂2qi(zi,uk)
∂z2

i
− ∂2qi(zi,u0)

∂z2
i

, ϕ′
i(k) :=

∂qi(zi,uk)
∂zi

− ∂qi(zi,u0)
∂zi

and
rewrite those equations above as a linear system, we have


ϕ′′
1(1) . . . ϕ′′

i (1) . . . ϕ′′
ns
(1) ϕ′

1(1) . . . ϕ′
i(1) . . . ϕ′

ns
(1)

...
. . .

...
...

...
...

...
. . .

...
...

ϕ′′
1(k) . . . ϕ′′

i (k) . . . ϕ′′
ns
(k) ϕ′

1(k) . . . ϕ′
i(k) . . . ϕ′

ns
(k)

...
. . .

...
...

...
...

...
. . .

...
...

ϕ′′
1(2ns) . . . ϕ′′

i (2ns) . . . ϕ′′
ns
(2ns) ϕ′

1(2ns) . . . ϕ′
i(2ns) . . . ϕ′

ns
(2ns)





∂z1
∂ẑj

∂z1
∂ẑq

...

∂zns

∂ẑj

∂zns

∂ẑq

∂2z1
∂ẑj ẑq

...

∂2zns

∂ẑj ẑq



= 0.

(33)
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Thus, if the above matrix is invertible according to assumption 4 in Theorem 1, we will leave its null
space all zero. i.e., ∂z2

i

∂ẑj ẑq
= 0 and ∂zi

∂ẑj
∂zi
∂ẑq

= 0 for all i ∈ {1, . . . , ns}, j, q ∈ {1, . . . , n}, j ̸= q. We
further use the property that the h is invertible, which means for the Jacobian matrix of transformation
h:

Jh =

[
∂zc

∂ẑc

∂zc

∂ẑs
∂zs

∂ẑc

∂zs

∂ẑs

]
. (34)

the [∂zs

∂ẑc
, ∂zs

∂ẑs
] contains only one non zero value in each row. As proven in Appendix A1.1, we can get

∂zs

∂ẑc
= 0 with number of domains larger or equal to ns+1. Thus, ∂zs

∂ẑs
is an invertible full rank-matrix

with only one nonzero value in each row. The changing variable zs is component-wise identifiable.

A1.3 DISCUSSION OF COMPONENT-WISE IDENTIFIABILITY OF REPEATED DISTRIBUTION FOR
PARTIAL CHANGING VARIABLES

In this section, we start with an example to discuss the possible scenarios where there are repeated
distributions for partially changing variables among different domains. Based on this example, we
proceed to provide an intuitive proof of Remark 1.

Let’s follow the proof of component-wise identifiability of changing variables. We directly look into
the equation

0 =

n∑
i=1

∂2qi(zi,u)

∂z2i

∂zi
∂ẑj

∂zi
∂ẑq

+
∂qi(zi,u)

∂zi

∂2zi
∂ẑj∂ẑq

+
∂2 log |Jh|
∂ẑj∂ẑq

. (35)

Our goal is to produce the matrix containing ∂2qi(zi,u)
∂z2

i
and ∂qi(zi,u)

∂zi
whose null space only contains

zero vector. However, we can’t ensure every arrived domain will bring enough change. In this case,
distributions of the same variable on different domains may be the same. i.e., qi(zi,ul) = qi(zi,uk)
where l ̸= k. Our discussion will mainly revolve around this situation.

Let’s start with the simplest case where there are only two changing variables z1 and z2 and no
invariant variables. We know from Theorem1 that we need 2ns+1 domains to reveal their component-
wise identifiability. Therefore, for u = u0, . . . ,u4, we have the following linear system:

ϕ
′′
1(1,0) ϕ′′

2(1,0) ϕ′
1(1,0) ϕ′

2(1,0)
ϕ′′
1(2,0) ϕ′′

2(2,0) ϕ′
1(2,0) ϕ′

2(2,0)
ϕ′′
1(3,0) ϕ′′

2(3,0) ϕ′
1(3,0) ϕ′

2(3,0)
ϕ′′
1(4,0) ϕ′′

2(4,0) ϕ′
1(4,0) ϕ′

2(4,0)





∂z1
∂ẑ1

∂z1
∂ẑ2

∂z2
∂ẑ1

∂z2
∂ẑ2

∂2z1
∂ẑ1ẑ2

∂2z2
∂ẑ1ẑ2


= 0.

where ϕ′′
i (k, l) :=

∂2qi(zi,uk)
∂z2

i
− ∂2qi(zi,ul)

∂z2
i

, ϕ′
i(k, l) :=

∂qi(zi,uk)
∂zi

− ∂qi(zi,ul)
∂zi

Assume z1 varies sufficiently across all domains. i.e., q1(z1,uj) ̸= q1(z1,uk) for all k, l ∈
{1, . . . , 5}, while z2 partially changes across domains, e.g., q2(z2,u0) ̸= q2(z2,u1) = q2(z2,u2) =
q2(z2,u3) = q2(z2,u4). Subtract the first row with other rows, we have

ϕ
′′
1(1,0) ϕ′′

2(1,0) ϕ′
1(1,0) ϕ′

2(1,0)
ϕ′′
1(2,1) 0 ϕ′

1(2,1) 0
ϕ′′
1(3,1) 0 ϕ′

1(3,1) 0
ϕ′′
1(4,1) 0 ϕ′

1(4,1) 0





∂z1
∂ẑ1

∂z1
∂ẑ2

∂z2
∂ẑ1

∂z2
∂ẑ2

∂2z1
∂ẑ1ẑ2

∂2z2
∂ẑ1ẑ2


= 0.
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Apparently, the matrix above is not invertible as the second column and fourth column are dependent.
What if we further release the condition by introducing new changing domains? i.e., q2(z2,u0) ̸=
q2(z2,u1) ̸= q2(z2,u2) = q2(z2,u3) = q2(z2,u4). We will have the following linear system:

ϕ
′′
1(1,0) ϕ′′

2(1,0) ϕ′
1(1,0) ϕ′

2(1,0)
ϕ′′
1(2,1) ϕ′′

2(2,1) ϕ′
1(2,1) ϕ′

2(2,1)
ϕ′′
1(3,1) 0 ϕ′

1(3,1) 0
ϕ′′
1(4,1) 0 ϕ′

1(4,1) 0





∂z1
∂ẑ1

∂z1
∂ẑ2

∂z2
∂ẑ1

∂z2
∂ẑ2

∂2z1
∂ẑ1ẑ2

∂2z2
∂ẑ1ẑ2


= 0.

From the example above, we can easily prove the Remark 1 from its contra-positive perspective,
which is to prove that for ns ≥ 2, if |Si| ≤ 2, then the Lemma 1 cannot hold. We denote the matrix
in Lemma 1.4 as W and use W:,j to denote the jth column of the matrix W . For any latent changing
variable zi whose |Si| ≤ 2, there are at most two different distributions across all observed domains.
Thus, there is at most one nonzero entry in W:,i and W:,2i, which will directly lead to the linear
dependence between W:,i with W:,2i. The Lemma 1 cannot hold.

A2 DISCUSSION OF THOSE PROPERTIES

A2.1 POSSIBLE IMPAIRMENT FOR PARTIAL CHANGING VARIABLES WHEN NEW DOMAINS ARE
INVOLVED

Before we dive into the details, we need to first clarify one basic concept: Incremental domains can’t
affect the overall identifiability of all changing variables theoretically. As long as both Theorem 1
and Lemma 1 state that the overall identifiability is determined by the distribution of true latent
changing variables, the way of learning can’t influence it theoretically. However, the identifiability
of partial changing variables will be affected as shown in Section 3.2.2 and Experiment 4.2. We
demonstrate the influence of the new domain on the identifiability of partial variables through a
carefully designed example, as inferred below.

Proposition 2 For latent variables z1, . . . , zn with sequentially arriving domains u0, . . . , uT whose
generation process follows equation 1 and Lemma1.1,1.2,1.3 hold. Assume for latent variable zi, i ∈
{1, . . . , n}, the first change happens at u2i−1 and the following domains will bring sufficient change,
i.e., p(zi|u0) = · · · = p(zi|u2i−2) ̸= p(zi|u2i−1) ̸= · · · ≠ p(zi, uT ). Then the latent variable zi
reaches component-wise identifiability after observing u2i+2k≤T where k = {0, 1, . . . |2i+2k ≤ T},
and its identifiability degrades to subspace level after the observation of u2i+2k+1 where k =
{0, 1, . . . |2i+ 2k + 1 ≤ T}.

Proof As long as the distribution of latent variables zi follows the p(zi|u0) = · · · = p(zi|u2i−2) ̸=
p(zi|u2i−1) ̸= · · · ̸= p(zi, uT ). The latent variable zi can only be referred to as "changing variable"
after observation of u2i−1. In other words, before the observation of u2i−1, the changing variables
only include {z1, ,̇zi−1}. At this moment, we have {u0, . . . , u2i−2} different domains with sufficient
change, and the requirement of Lemma 1.4 is satisfied. The latent variables {z1, . . . , zi−1} are
component-wise identifiable.

When the observation of u2i−1 happens, a new changing variable zi is introduced. The condition in
Lemma 1.4 doesn’t hold anymore as there are only 2ns domains while 2ns+1 are required. However,
the conditions in Theorem 1 are still fulfilled, thus the identifiability of {z1, . . . , zi−1} degrades from
component-wise level to subspace level.

A2.2 ANOTHER PROPERTY

Learning order matters. Comparing both cases in Figure A1, they show the same identifiability
considering all domains. However, we observe that in the top case, each new domain introduces a
new changing variable, while in the bottom case, the domain order is reversed. Apparently, we can
achieve subspace identifiability after learning each new domain in the top case, indicating that we
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can progressively improve our understanding and representation of the underlying causal factors with
the arrival of each new domain. However, we can only achieve subspace identifiability until learning
all domains in the bottom case. This is in line with the current learning system, where we first learn
subjects with fewer changes before moving on to subjects with more complexity.

A3 PURSDO CODE

Algorithm A1 Continual Nonlinear ICA

Require: Training data sequentially arriving {x|u1, . . . ,x|uT}
Kaiming_init(θ),Mt ← {} for all t = 1, . . . , T
for u = u1, . . . ,uT do:

for {x1, . . . ,xd}|u do
Mt ←Mt ∪ random select x
Calculate loss L(θ) as equation 5
v← ∇θL(θ,x)
vk ← ∇θL(θ,Mk) for all k < t
v′ ← Solve quadratic programming as equation 7
θ ← θ − αv′

Return θ

A4 VISUALIZATION

Figure A1: A toy exam-
ple with three variables and
four domains. z1 changes
in u1,u2,u3, z2 changes in
u2,u3, and z3 changes in u3.

To provide a more intuitive demonstration of the identifiability of
changing variables and compare our method with joint training, we
conducted an experiment in the following setting: with ns = 2, n =
4, and z values generated from a Gaussian distribution across 15
domains. We stored models trained on subsets of the training data
containing 3, 5, 7, and 9 domains, a part of the whole 15 domains
respectively. The test set consisted of all 15 domains, and we used
these models to sample corresponding ẑ values. These generated
ẑ values were then compared to the ground truth values of z for
evaluation.

Specifically, we provide the scatter plot of true latent variables z
with the estimated variables ẑ in Figure A2,A3,A4,A5 for both our
methods and joint training. Figure A2,A3,A4,A5 corresponds to a
different training set that includes 3, 5, 7, and 9 domains respectively.
For each figure, ẑs,i represents the ith estimated changing variable,
ẑc,i represents ith estimated invariant variable, zs,i represents the
ith true changing variable and zc,i represents the ith true invariant
variable.

Based on the experiment results, we observe a stronger linear correla-
tion that appears for estimated changing variables with real changing
ones as more domains are included in the training process for both our method and joint training.
That is, more domains will imply stronger identifiability, aligned with our expectations. Beyond that,
our approach shows slightly inferior or even comparable performance compared to joint training,
demonstrating its effectiveness.

A5 EXPERIMENT DETAILS

A5.1 DATA

We follow the data generation defined in Equation 1. Specifically, we discuss Gaussian cases where
zc ∼ N(0, I), zs ∼ N(µu, σ

2
uI) for both ns = 2, n = 4 and ns = 4, n = 8. For each domain u, the

µu ∼ Uniform(−4, 4) and σ2
u ∼ Uniform(0.01, 1).
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Scatter	Plot	with	3 domains	involves	training:	our		method
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Figure A2: Visual comparison of our methods with joint training in setting that z are Gaussian,
ns = 2, n = 4. One should note that this shows the model evaluated over all 15 domains while 3
domains involve in training.
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Scatter	Plot	with	5 domains	involves	training:	joint	training

Scatter	Plot	with	5 domains	involves	training:	our	method

Figure A3: Visual comparison of our methods with joint training in setting that z are Gaussian,
ns = 2, n = 4. One should note that this shows the model evaluated over all 15 domains while 5
domains involve in training.
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Scatter	Plot	with	7 domains	involves	training:	joint	training

Scatter	Plot	with	7 domains	involves	training:	our	method

Figure A4: Visual comparison of our methods with joint training in setting that z are Gaussian,
ns = 2, n = 4. One should note that this shows the model evaluated over all 15 domains while 7
domains involve in training.
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Scatter	Plot	with	9 domains	involves	training:	joint	training

Scatter	Plot	with	9 domains	involves	training:	our	method

Figure A5: Visual comparison of our methods with joint training in setting that z are Gaussian,
ns = 2, n = 4. One should note that this shows the model evaluated over all 15 domains while 9
domains involve in training.
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We also discuss the mixed Gaussian case or both ns = 2, n = 4 and ns = 4, n = 8 where zs is the
normalization of mixing of two Gaussian variables N(0, I) and N(0.25, I) with domain-specific
modulation and translation. For ns = 2, n = 4, each domain contains 10000 samples for training and
1000 samples for testing. For ns = 4, n = 8, each domain contains 5000 samples for training and
1000 samples for testing. Specifically, we first mix those two Gaussian and do the normalization. After
that, we modulate the normalized variable on every domain with a random variable sampled from
Uniform(0.01, 1). Then, we translate it with a random variable sampled from Uniform(−4, 4).

A5.2 MEAN CORRELATION COEFFICIENT

Mean correlation coefficient(MCC) is a standard metric for evaluating the recovery of latent factors
in ICA literature. It averages the absolute value of the correlation coefficient between true changing
variables with the estimated ones. As stated in our paper, the Lemma1 can only guarantee component-
wise identifiability, leaving it unfair to directly calculate. e.g., z = ẑ2 will give the correlation 0 (One
should note this cannot happen in our case as h(x) = x2 is not invertible, this is just an illustrative
example).

We thus use MLP to remove the nonlinearity. Specifically, we first solve a linear sum assignment
problem in polynomial time on the computed correlation matrix to pair the true variables with the
estimated ones. We divide these pairs into a 50-50 ratio for the training set and the test set. For each
pair, we train a MLP on the training set to do the regression to remove the nonlinearity and use the
test set to calculate the correlation coefficient. We then average those correlation coefficients to get
the final result.

A5.3 NETWORK ARCHITECTURE AND HYPER-PARAMETERS

Network Architecture. We follow the design of Kong et al. (2022) and summarize our specific
network architecture in Table A1, which includes VAE encoder and decoder. We use component-wise
spline flows Durkan et al. (2019) to modulate the changing components ẑs.

Table A1: Architecture details. BS: batch size, i_dim: input dimension, z_dim: latent dimension,
s_dim: the dimension of latent changing variables, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. MLP-Encoder Encoder for Synthetic Data
Input Observed data from one domain x|u BS × i_dim
Linear 32 neurons BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Activation LeakyReLU BS × 32
Linear 32 neurons BS × 2*z_dim

2. MLP-Decoder Decoder for Synthetic Data
Input: ẑ Sampled latent variables BS × z_dim
Linear 32 neurons BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Linear with Activation 32 neurons, LeakyReLU BS × 32
Activation LeakyReLU BS × 32
Linear 32 neurons BS × i_dim

6. Flow Model Flow Model to build relation between ẑs with ˆ̃zs

Input Sampled latent changing variable ẑs BS × s_dim
Spline flow 8 bins, 5 bound BS × s_dim
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Training hyper-paramters We apply Adam to train our model with 50 epochs for every domain. We
use a learning rate of 0.002 with batch size of 256. We set α and β both 0.1 in calculating loss as
Equation 5. For the memory size ofM|u, we randomly select 256 samples of each domain. The
negative slope in Leaky-Relu is set to be 0.2.

Code We include our code in the same zip file. For the reproduction detail, one can refer to the
readme file.
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