
Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

VALUE AUGMENTED SAMPLING: PREDICT YOUR RE-
WARDS TO ALIGN LANGUAGE MODELS

Idan Shenfeld*1, Seungwook Han*1, Akash Srivastava2, Yoon Kim1 , Pulkit Agrawal1

ABSTRACT

With Large Language Models (LLMs) learning a plethora of behavior from
Internet data, it has become ever more important to adapt and align these models
to cater to different human preferences, learn new skills, and unlearn harmful
behavior. Currently, there exists a dichotomy of solutions, each with its own
set of advantages and disadvantages. Search-based methods, such as Best-of-N
and Monte Carlo Tree Search, are effective but expensive during inference and,
therefore, infeasible in practice. RL-based methods, such as Proximal Policy
Optimization, are computationally efficient, but are not competitive in performance.
To this end, we propose a novel framework for reward optimization, Value
Augmented Sampling (VAS), to effectively adapt LLMs at inference-time, while
significantly reducing the computational cost compared to existing search-based
methods. At the heart of our method lies the idea of augmenting the LLM’s output
distribution with expected reward estimates to guide the generation process toward
high-reward responses at the token level. Our method outperforms established
baselines, such as PPO and DPO, in improving summarization and multi-turn
chat dialogue and achieves comparable results to Best-of-128 with lower inference
costs. We also demonstrate the capability to align a closed-source, proprietary
model (such as GPT-3.5) on learning to use a new API tool.

1 INTRODUCTION

Large language models (LLMs) trained on large amounts of Internet data are powerful models for
many applications, such as programming and web-based search (Schick et al., 2023; Rozière et al.,
2024; Chiang et al., 2023). Usually, once the models are pre-trained, they are adapted to improve
their task-specific capabilities, suppress unwanted behavior, or change their response style. A popular
approach for adaptation is to define any target task or behavior as a reward function and to leverage
one of many search-based or optimization-based frameworks to maximize the expected reward.

Each of these methods brings its own set of advantages and disadvantages. In this work, we first
identify four key characteristics that essential for a practical adaptation method. First of all, an
adaptation method should be performant, effectively maximizing the specified reward. Second, the
method needs to be as computationally efficient as possible, especially during inference. Third, a
method should allow for inference time adaptability. Adapting LLMs requires many design choices,
from choosing the tasks to deciding how much to optimize for the specific task. At times, it may be
necessary to combine multiple tasks simultaneously. Thus, an ideal method should allow for control
over some of these design choices without a need to retrain the LLM. Finally, an ideal method should
be flexible to work with any model. Since many state-of-the-art models are available only via API
(Google, 2024; OpenAI, 2024), we would aspire that the method can work with both open-source
and closed-source models.

Search-based methods have especially touted their strength in maximizing performance. Even simple
methods like Best-of-N (BoN), where one optimizes for a given reward by sampling N number
of sequences from the model and choosing the one that maximizes the reward, can achieve a very
high reward given a sufficiently large N . Moreover, since the search is conducted at inference time,
we neither need to decide the design factors for adaptation a priori nor need access to the model’s
weights. However, the critical problem of these methods is their high computation cost. To take BoN
for example, it costs N times the number of generations with the LLM and N times the evaluations
with the reward model. Therefore, it is computationally infeasible to use in practice.

* Equal contribution, correspondences to {idanshen, swhan}@mit.edu, 1 MIT, 2 MIT-IBM Watson AI Lab

1

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Figure 1: Overview of VAS training and inference. During training, our algorithm learns a Value
function estimator using TD learning. In inference, we augment the output distribution of the original
LLM, π0, with the exponentiated Values scaled by a weight coefficient β.

To alleviate this high inference-time cost, many optimization-based approaches have been proposed
and have recently gained popularity for adapting LLMs. These methods, like Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and its variants (Wu et al., 2023), leverage the actor-critic
framework (Sutton & Barto, 2018) to learn a reward-maximizing policy, instead of conducting search.
However, these learning algorithms still fail to outperform the simple, naive search method of BoN,
which has been shown empirically to be the most effective by far (Gao et al., 2023). A hypothesis
as to why RL-based approaches lag behind BoN in performance is their optimization instability.
Actor-critic methods conduct a bi-level optimization, alternating between learning a Value estimator
for the current policy and using this estimator to improve the policy. We posit that PPO does not
seem to converge to the optimal solution because of the instabilities accompanying this optimization
process. In addition to the performance gap, the optimization-based methods also lack inference time
adaptability and require access to the models’ weights. For any given design choice, the LLM must be
re-trained and minimal control over the model’s task-specific behavior is allowed at inference-time.

In this paper, we present an reward-maximization adaptation method to bridge the gap in performance
between current optimization-based methods and Best-of-N, while reducing inference-time cost,
enabling inference-time control over the adaptation process, and waiving the need for the model’s
weights. Instead of conducting a costly search over entire sequences as in BoN, we propose to conduct
a token-level search by predicting the expected reward from partial sequences. At each step in the
generation process, as an approximation to searching over all future sequences, we first estimate the
expected reward associated with choosing each token. Then, we augment the LLM distribution with
these values and sample the next token from it.

Our main contributions are as follows: (1) We introduce Value Augmented Sampling (VAS), a novel
reward optimization algorithm, that uses a Value estimator to guide the decoding process of an LLM.
Our method outperforms strong baselines, such as PPO and DPO, in improving summarization and
creating a more helpful/harmless chat assistant. We further demonstrate that VAS is on par with
Best-of-128 while being more computationally efficient; (2) We showcase a novel application of
aligning a closed-source model. With our method, we improve GPT-3.5 capability in using new APIs.

2 METHOD

2.1 FROM REWARD OPTIMIZATION TO VALUE AUGMENTED SAMPLING.

Consider the following finite-time Markov Decision Process (MDP) for a generative model π
(“policy”). At time step t, the policy observes a state st, defined as the text prompt y concatenated with
the response generated so far x≤t, and outputs an action xt+1 ∈ V, where V is the vocabulary space
of the model. Once the action is chosen, the model deterministically transitions into the next state
st+1 = st ⊕ xt+1, where ⊕ is the concatenation operation. The episode ends either after the policy
generates T new tokens or an [EOS] token. At the end of the episode, a scalar reward is collected from
the reward model r(sT) : VT → R where sT is the generated response. In the following Kullback-
Leibler (KL)-regularized RL setting (Ng et al., 2000; Boularias et al., 2011), we aim to learn a policy
that maximizes the expected reward while keeping the distance from the initial π0 under a threshold ϵ:

max
π

EsT∼π[r(sT)] s.t DKL(π||π0) < ϵ (1)

2

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Prior works have tackled Equation 1 by directly optimizing a language model to be the solution π,
which is known to be complex and unstable. As an alternative, we look into the following closed-form
solution to the KL-regularized RL problem (Peters & Schaal, 2007; Peng et al., 2019).
Proposition 2.1. Let the expected reward of being in state st, and choosing token xt+1 be the Q-value
Qπ0(xt+1|st) = EsT∼π0

[r(sT)|st = st, xt+1 = xt+1]. The solution to the optimization problem in
Equation 1 is:

π(xt+1|st) ∝ π0(xt+1|st)eβQ
π0 (xt+1|st) (2)

β is a scalar dependent on ϵ and independent of xt+1.

This proposition hints that instead of learning π, it can be sufficient to only learn Qπ0 . Since we have
access to π0(xt+1|st), we can estimate the optimal solution without having an explicit model for π.
Learning a Q-value estimator for a given policy is a well-studied problem (Sutton & Barto, 2018).
However, the action space of language models is the set of all possible next tokens V, which is usually
in the tens of thousands, much larger than most RL environments. Existing algorithms for Q-value
estimation have been shown to be ineffective in such large discrete action spaces (Dulac-Arnold et al.,
2015). To overcome this challenge, we take advantage of another unique property of the language
generation task: deterministic transitions. Given the current state and the next action, the next state is
simply the concatenation of the generated tokens. This property allows us to draw the equivalence
between the Q-value of a state-action pair and the Value function and to re-write Equation 2:

Qπ0(xt+1|st) = V π0(xt+1 ⊕ st) → π(xt+1|st) ∝ π0(xt+1|st)eβV
π0 (xt+1⊕st) (3)

As seen in Equation 3, a Value function does not depend on the action space size. Therefore, when
the action space is large, it can be learned more easily than a Q-value function. The trade-off of this
lower learning complexity is that the Value estimator needs to predict the expected return over the
entire vocabulary set V.

2.2 VALUE AUGMENTED SAMPLING (VAS)

Equation 3 presents an elegant but infeasible solution to the KL-regularized RL problem. To realize it
into a practical algorithm, we propose the following approximation. At every decoding step, we first
obtain k tokens with the highest output probabilities under our base policy π0. Then, we calculate the
Value estimation for only these k tokens and sample the subsequent action according to the following
distribution:

π(xt+1|st) ∝

{
π0(xt+1|st)eβV

π0 (xt+1⊕st) xt ∈ top-k
π0(xt+1|st)eβV̄ (st) xt /∈ top-k

(4)

With V̄ (st) =
1
k

∑
xt∈top-k V

π0(xt+1 ⊕ st). We have found that even when k << |V|, our proposed
approximation is effective, while reducing computational complexity significantly. To train our Value
function, we first collect a dataset D = {si, yi, ri}Ni by sampling si ∼ π0(sT |yi) and evaluating them
with the reward function ri = r(si). Then, we use TD(λ) algorithm (Sutton & Barto, 2018; Schulman
et al., 2015) to train our Value function. Our Value function is parametrized as a separate neural net-
work, decoupled from π0. This parametrization removes both the need of having access to the initial
policy’s weights and updating them. We provide an illustrative overview of our algorithm in Figure 1.

3 EXPERIMENTS

We now evaluate VAS on a range of text generation tasks to show its effectiveness in aligning LLMs
and highlight its unique advantages. Additional results can be found in Appendix B and E.

3.1 SUMMARIZATION

Task and Experimental Details We begin with the task of improving summary generation (Ouyang
et al., 2022; Wu et al., 2021; Ramé et al., 2023). For this task, we use the SEAHORSE dataset
(Clark et al., 2023). This dataset contains 96K pairs of texts, summarizations, and human labels
along multiple dimensions of quality. We focus on three measures: (1) Attribution: whether the
information in the summary is fully attributable to the source article, (2) Main ideas: whether the
summary captures the main idea(s), and (3) Conciseness: whether the summary is concise.

3

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

We supervised fine-tune a LLaMA-7B (Touvron et al., 2023) model on the SEAHORSE dataset. This
model will serve as the initial LLM, π0, and will be called the supervised fine-tuned (SFT) policy.
Because off-the-shelf reward models are not available for this dataset, we train our own reward models
with Flan-T5-L (780M parameters, (Wei et al., 2021)) to predict the human labels along the three
attributes. For the Value estimator, we also use the LLaMA-7B model. We compare VAS against
PPO and FUDGE (See description in Appendix D) by analyzing both the KL vs. reward and KL vs.
win rate. In addition, we perform GPT-4 evaluations, where we compare against BoN and MCTS.

Results As illustrated in the left two columns of Figure 2, we outperform PPO and FUDGE on
Attribution and Main Ideas. We maximize the rewards given any KL divergence constraint better
and achieve better overall summarizations (as evaluated by GPT-4). On the last axis of Conciseness,
although PPO achieved higher rewards than VAS, its generated summaries are judged to be worse by
GPT-4. This is a tangible example of ’reward hacking’ (Gao et al., 2023). We further evaluate the
model’s summarization ability by conducting head-to-head evaluations of generations from different
models with GPT-4 and VAS approximately matches the performance of Best-of-128, a very strong
but computationally expensive method. We present detailed results in Table 3 of Appendix E.

0.0 0.1 0.2 0.3
KL Divergence from 0

1.0

1.5

2.0

Re
wa

rd
s

Attribution

0.0 0.1 0.2 0.3
KL Divergence from 0

0.25

0.00

0.25

0.50

Main Ideas

0.0 0.1 0.2 0.3
KL Divergence from 0

0.5

0.0

0.5

Conciseness

0.0 0.1 0.2 0.3
KL Divergence from 0

50

60

70

80

GP
T-

4
Wi

n
 R

at
e

(%
)

0.0 0.1 0.2 0.3
KL Divergence from 0

50

60

70

80

0.0 0.1 0.2 0.3
KL Divergence from 0

50

60

70

80

Summarization

Ours PPO FUDGE SFT

Figure 2: The KL-performance trade-off for both reward and win rate over SFT, for different
summarization objectives. VAS outperforms the baselines in both Attribution and Main Ideas. In
Conciseness, PPO achieves a higher reward but a significantly lower win rate. These results show
that VAS maximizes the reward better without reward hacking as much as PPO.

3.2 HELPFUL/HARMLESS CHAT ASSISTANT

Task and Experimental Details The second task is to improve the LLM’s capability as a helpful
and harmless chat assistant. To this end, we use Anthropic’s Helpfulness and Harmlessness (HH)
dataset (Bai et al., 2022), which contains ∼161K examples of conversations between a human and an
assistant. Each conversation is paired with two responses, one of which is labeled as preferred. The
preference is based on which is more informative, honest, and safe.

We supervised fine-tune LLaMA-2-7B (Touvron et al., 2023) model on the preferred responses. On
top of PPO and FUDGE, we add another strong baseline, Direct Policy Optimization (DPO) (Rafailov
et al., 2023). For FUDGE, because it is not designed for pair-wise preference learning, we create a
variation of FUDGE (“Online FUDGE”) as a baseline for this task. Instead of learning a prefix classi-
fier from offline data, Online FUDGE learns a Value estimator from online data and reward function
by regarding it as a regression task. Therefore, it can also be seen as a TD(1) version of VAS. For GPT-
4 evaluations, we additionally evaluate against Best-of-128. For the reward model, we follow (Ramé
et al., 2023) and use a pre-trained reward model based on DeBERTa V3 Large (304M parameters).

Results As illustrated in the left plot of Figure 3, VAS attains the best KL-reward trade-off. DPO’s
weak performance on this metric is because it does not learn to maximize the reward, but learns directly
from the data. On the right, we show head-to-head win rate comparisons against different models. No-
ticeably, we outperform DPO, a strong baseline tailored for preference learning, with a 55% win rate.
Further, we show that VAS is comparable, if not slightly better, to Best-of-128. Regarding the poor per-
formance of PPO, we report the best performance we were able to achieve, despite extensively experi-
menting with different hyperparameters. This again alludes to the algorithm’s optimization instability.

4

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

0.0 0.1 0.2 0.3 0.4 0.5
KL Divergence from 0

1.2

1.0

0.8

0.6

0.4

0.2

R
ew
ar
d
s

Multi-turn Dialogue

Ours

PPO

Online FUDGE

DPO

SFT

0 20 40 60 80 100
Head-to-Head Win Rate (%)

Ours

Best-of-12854.25±1.35%

Online Fudge64.95±0.42%

DPO65.25±4.10%

PPO66.86% *

SFT80.29±1.11%

Head-to-Head Win Rate on Multi-turn Dialogue

Figure 3: Performance on the Anthropic’s HH dataset using LLaMA-2 7B model. VAS outperforms
strong baselines like DPO and achieves comparable results to Best-of-128. We report the average
win rate and standard deviation (error bar) across three random seeds.

3.3 COMPOSING MULTIPLE ALIGNMENT OBJECTIVES

Task and Experimental Details We further extend the task of aligning to multiple sets of human
preferences – specifically, improving the three axes of Attribution, Main Ideas, and Conciseness
simultaneously. To transform VAS into a multi-reward optimization algorithm, we can take advantage
of the fact that the Value is a linear function of the reward Sutton & Barto (2018). Therefore, VAS
allows us to linearly combine the three Value estimators without any further re-training.

For baselines, we compare against Multi-objective PPO, a PPO training where the reward is the sum
of the three separate reward functions. Moreover, we compare against Rewarded Soup Rame et al.
(2023), an alternative approach to extend PPO for multi-alignment. Rewarded Soup trains a PPO
model for each reward separately and averages the weights of these models during inference.

Figure 4: VAS is able to maximize multiple
rewards simultaneously without sacrificing
performance in any axis.

Results As seen in Figure 7, VAS effectively maxi-
mizes the rewards on each axis without sacrificing the
performance in another and outperforms both Mo-PPO
and Rewarded Soup. We observe an interesting phe-
nomenon with Mo-PPO, where the different reward
models compete with each other over the course of
the training and the policy exhibits mode-switching be-
havior, alternating between optimizing for one reward
model over the other. At one point, Mo-PPO (middle) is
able to learn a reasonably good balance, but at the end
of the training, Mo-PPO (last) collapses on one of the
axes. This shows another example of the instabilities
in PPO training.

3.4 IMPROVING GPT-3.5 API TOOL-USE

An important advantage of VAS is that it can work with
black-box LLMs. We demonstrate this capability by
teaching GPT-3.5 to use an API tool. Following (Xu
et al., 2023), we experiment with the task of learning
to use Home Search API. In this task, the model is
provided an explanation of the APIs (zero-shot) and asked to perform a sequence of API calls to
complete a search given the user query. To train VAS, we first collect 8K query examples and GPT-3.5
responses to these queries. Then, we trained a Pythia-1B model as a Value estimator using the
success or fail signal as the reward. At inference, we query GPT-3.5 for the top-5 logits of the next
token through OpenAI’s API, augment them with our Value estimates, and sample the token with the
highest combined score.

GPT-3.5 (zero-shot) only succeeds 17.4% of the time. Its performance improves to 27.9% with
VAS. Adding an in-context example (one-shot) gets a performance of 62.8%. However, when VAS
is combined with an in-context example, we improve the performance to 84.5%, further improving
it by 22.3%. This demonstration sheds light on our approach as an complementary approach to
teaching even closed-source, proprietary models how to use custom APIs.

5

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

REFERENCES

Nikolay Babakov, David Dale, Ilya Gusev, Irina Krotova, and Alexander Panchenko. Don’t lose
the message while paraphrasing: A study on content preserving style transfer. In Elisabeth
Métais, Farid Meziane, Vijayan Sugumaran, Warren Manning, and Stephan Reiff-Marganiec (eds.),
Natural Language Processing and Information Systems, pp. 47–61, Cham, 2023. Springer Nature
Switzerland. ISBN 978-3-031-35320-8.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
182–189. JMLR Workshop and Conference Proceedings, 2011.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Elizabeth Clark, Shruti Rijhwani, Sebastian Gehrmann, Joshua Maynez, Roee Aharoni, Vitaly
Nikolaev, Thibault Sellam, Aditya Siddhant, Dipanjan Das, and Ankur P Parikh. Seahorse: A
multilingual, multifaceted dataset for summarization evaluation. arXiv preprint arXiv:2305.13194,
2023.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2023.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning
algorithms. In International Conference on Machine Learning, pp. 2021–2030. PMLR, 2019.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al.
A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and
Multi-Agent Systems, 36(1):26, 2022.

6

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better viewed as
bayesian inference. arXiv preprint arXiv:2205.11275, 2022.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! making ppo even better via value-guided
monte-carlo tree search decoding. arXiv e-prints, pp. arXiv–2309, 2023.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022.

OpenAI. Gpt-4 technical report, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750, 2007.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with ”gradient descent” and beam search, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

7

https://github.com/tatsu-lab/alpaca_eval

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Alexandre Rame, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
lating weights fine-tuned on diverse rewards. arXiv preprint arXiv:2306.04488, 2023.

Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
lating weights fine-tuned on diverse rewards, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yunhao Tang, Rémi Munos, Mark Rowland, and Michal Valko. Va-learning as a more efficient
alternative to q-learning. arXiv preprint arXiv:2305.18161, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul
Christiano. Recursively summarizing books with human feedback, 2021.

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao Jiao.
Pairwise proximal policy optimization: Harnessing relative feedback for llm alignment. arXiv
preprint arXiv:2310.00212, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023.

8

https://github.com/tatsu-lab/stanford_alpaca

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

9

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

A PROOFS AND DERIVATIONS.

A.1 SOLUTION TO THE KL-REGULARIZED RL PROBLEM

A.2 SOLUTION TO THE KL-REGULARIZED RL PROBLEM

The following derivation is known as Reward-Weighted-Regression (Peters & Schaal, 2007) and
is closely related to the Bayesian perspective on KL-regularized RL (Korbak et al., 2022). As a
reminder, the problem we aim to solve is:

max
π

EsT∼π[r(sT)] s.t DKL(π||π0) < ϵ

Where we We will start by adding a constant to the first part of the objective, transforming it into:

max
π

EsT∼π[r(sT)]− EsT∼π0
[r(sT)] s.t DKL(π||π0) < ϵ

Using the Performance Difference Lemma (Lemma 6.1 from (Kakade & Langford, 2002)) we can
write:

EsT∼π[r(sT)]− EsT∼π0
[r(sT)] = EsT∼π[Q

π0(xt+1|st)− V π0(st)]

And so our optimization problem became:

max
π

EsT∼π[Q
π0(xt+1|st)− V π0(st)] s.t DKL(π||π0) < ϵ

With the additional constraint that π(·|st) is a probability distribution for all t. The constraints
should hold for every state, and in particular under the state distribution induced by π. Therefore, the
corresponding Lagrangian is:

L(π, λ⃗1, λ⃗2) =

EsT∼π

Qπ0(xt+1|st)− V π0(st) + λ1(st)
(
DKL(π||π0)− ϵ

)
+ λ2(st)

∑
T

π(xt+1|st)− 1




Where λ⃗1, λ⃗2 is state-dependent lagrange multipliers. Notice that if we consider only the decision
at a specific timestep τ , the expectation depends only on the policy’s distribution on that specific
timestep, for example the first term:

EsT∼π[Q
π0(xt+1|st)− V π0(st)] =

∑
xt+1

π(xt+1|st)[Qπ0(xt+1|st)− V π0(st)]

Plugging it in and taking the derivative at specific timestep t with respect to the probability of taking
a specific action xt+1:

∂

∂π(xt+1|st)
L(π, λ⃗1, λ⃗2) = Qπ0(xt+1|st)− V π0(st) + λ1(st)

(
log

π(xt+1|st)
π0(xt+1|st)

+ 1

)
+ λ2(st)

The corresponding fixed-point solution is:

π(xt+1|st) = π0(xt+1|st)e
Qπ0 (xt+1|st)−V π0 (st

λ1(st) e
λ2(st)+1

λ1(st)

We can simplify the expression by considering all the terms that are independent of the choice of xt

as part of the normalization constant, which leaves us with:

π(xt+1|st) ∝ π0(xt+1|st)e
1

λ1(st)
Qπ0 (xt+1|st)

10

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
KL Divergence from 0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Q
4

Re
wa

rd
s

Q-value Estimation with Large action Space

Value

top-k 20

top-k 200

top-k 2000

vanilla Q (sampling)

Vanilla Q (exact)

SFT

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
KL Divergence from 0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Q
4

Re
wa

rd
s

Parametrizations for Q-value Head

Value

Dueling + AV loss

Dueling

Linear

SFT

Figure 5:

B Q-VALUE ESTIMATION VERSUS VALUE ESTIMATION.

B.1 TRAINING Q ESTIMATOR FOR TEXT GENERATION

In our initial formulation, as presented in Equation 2, we propose augmenting the outputs of the
baseline policy with the Q-values corresponding to each token. This step is helpful for enhancing
the LLM’s decoding process by considering the expected rewards associated with each potential
token. Traditionally in reinforcement learning literature, Q-function estimators for discrete action
spaces are parameterized as mappings from the entire state space to the action space. This typically
involves a neural network architecture that processes the state as input, followed by a linear layer that
outputs values spanning the action space dimension. The state space in text generation encompasses
all conceivable text sequences, which is astronomically large. This is further compounded by the vast
number of actions (tokens) typically involved, often numbering in the tens of thousands. Such a vast
state and action space presents formidable optimization challenges.

Given the finite size of the training dataset, rare tokens (tokens with low probability under the original
LLM) are scarcely represented, resulting in minimal updates to their corresponding weights. Conse-
quently, these rare tokens may yield arbitrary values during inference, undermining the estimator’s
reliability. This is less of an issue for the state space since all input tokens share the same weights,
and also, the backbone model is pretrained on a vast amount of data. To address and explore potential
solutions to this challenge, we conducted a series of experiments. Through these investigations,
we aim to provide insights into the complexities and practical challenges of applying Q-function
estimators to text generation tasks, contributing to our decision to use a Value estimator instead.

B.2 EXPERIMENT DESCRIPTION

All the experiments described below were done on the SEAHORSE summarization dataset, specifi-
cally with property Q4 - attribution. However, our experiments indicate that all the conclusions also
hold for the other two properties in this dataset. For the Q-value estimator, we use a Llama-2 7B
backbone with a linear head on top of its last hidden layer. This linear head had an output dimension
of 32k, which is the vocabulary size of the Llama-2 model family. The rest of the training details are
exactly the same as described in section 3.1.

Our first experiment compared two ways to compute the target Q-value during Temporal Dif-
ference (TD) learning. In our experiment, we used TD(λ), which constructs this value as a lin-
ear combination of several n-step bootstrap targets and the final reward v̂(st) = γTλT r(sT) +∑T−1

i=t γiλi[γV π0(si+1) − V π0(si)]. Since we don’t have access to the true Values of the states,
we need to estimate them using the Q function. The connection between Value and Q-values that
come into hand here is V π0(si) = Exi∼π[Q

π0(si−1, xi)]. Having access to the output distribution
of π0, we can calculate this expression exactly or regard the tokens in the data as samples from this
expectation. Figure X (left) shows the results of these two options as ’Vanilla Q (exact)’ and ’Vanilla
Q (sampling)’. The sampling method performs much better, and we hypothesize that this is because

11

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

the sampled tokens are usually those with high probability. That way it disregards the rare tokens,
which usually have bad Q estimators, in the bootstrapping process.

To investigate the effect of rare tokens on the performance further, we used the Q estimator trained
with the sampling-based bootstrapping and, while decoding, evaluated only k tokens at each step.
These top-k tokens were chosen as the ones with the highest probability under the base model. The
results in Figure X (left) show that limiting the tokens to these with high probability helps a lot. We
didn’t find large performance gaps between different values of k up to two thousand. After that, the
performance starts to degrade. This experiment supports the conclusion that with a linear head, it is
hard to learn good Q-value estimation for all tokens.

After realizing the source of the poor performance of the Q estimator, we investigated with alternative
parameterization to the Q-value estimator. Since learning Q-values for rare tokens is hard, we looked
for a solution that will learn a value for them that will not have an effect on the decoding. Dueling
Networks (Wang et al., 2016) does precisely that by decomposing the Q-value into a Value and
Advantage. A dueling network has two heads, one to predict Values and one to predict Advantage,
and during a forward pass it adds them together. The advantage head is initialized to zero, so rare
tokens that do not change their prediction much will get an overall Q-value estimation which is just
the Value. As can be seen from Figure X (right), this parameterization achieves significantly better
results than the linear head. Therefore, to push the idea even further, we experimented with Value
Advantage Learning (Tang et al., 2023), a recent learning objective that optimizes the Advantage
head and the Value head separately. This represents the best results we were able to achieve using
Q-value, and although they were significantly better than initial trials, they still didn’t achieve the
same performance as with the Value estimator.

B.3 ILQL

ILQL (Snell et al., 2022) is an offline RL algorithm designed for altering the behavior of LLMs given
a fixed set of generated data (not necessarily from the initial LLM) annotated with a reward function.
Unlike our algorithm, ILQL does not aim to learn a Q-value estimator for the current function but
instead tries to learn a Q-value estimator for the optimal policy to the unconstrained RL problem.
This is the policy that solely maximizes the reward, disregarding how far its output is from those
of the initial policy π0. After learning the Q-value estimator, ILQL uses during decoding a method
similar to Equation 2. Although built for offline data, we experienced with an online version of ILQL
to see if the algorithm implemented there could be useful for learning a Q-value estimator for text
generation. The results in Figure X shows that ILQL can be used in the online setting, but is still
underperformed compared to VAS.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
KL Divergence from 0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Q6
 R
ew
ar
ds

Ours

ILQL (online)

SFT

Figure 6:

12

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

C TRAINING DETAILS AND HYPERPARAMETERS.

We attempt to ensure that comparisons to baselines are fair. In particular, we take the following
steps to ensure that. First, we perform a separate hyperparameter tuning for every algorithm. For
every baseline, we use either the same number of hyperparameter combinations as for our method or
more. In addition, when possible, we use the codebase released together with the original paper that
proposes the baseline. In cases where this baseline is not suitable for our tasks, we use a well-known
baseline to ensure proper implementation. The following sections explain the details for each one of
the algorithms used in this paper.

C.1 VAS TRAINING

In all of our experiments, we parametrize the Value estimator as an LLM backbone with a linear head.
For efficient training, we use LoRA parameterization (Hu et al., 2021) and train only the low-rank
adapters and linear head. The data for training was collected using the SFT model with a sampling
temperature of 0.7 and then labeled by the reward function. In addition, we also collected a validation
dataset by first generating a dataset of half-completed responses and, for each one, generating ten
completions and averaging their reward. The training objective we use is MSE between the Value
estimator output to a Value target computed with TD(λ) (Sutton & Barto, 2018). For every task, we
train three models with different learning rates and choose the one that achieves the lowest Value MSE
on a validation set. For a full list of hyperparameters, see Table 1. During decoding, we evaluated a
range of β values to report the KL-reward graphs. For GPT-4 evaluation, we choose the β value that
achieves the highest reward.

Summarization Chat Dialogue Tool Use Personalization

Dataset SEAHORSE Anthropic HH Custom Dataset Custom Dataset

Reward Model Trained based on T5-FLAN model OpenAssistant/reward-model-deberta-v3-large-v2 Success Rate Formality: s-nlp/roberta-base-formality-ranker
Conciseness: Token Count

Value Model LLaMA 7B LLaMA-2 7B Pythia 1B LLaMA-2 7B
Lora Rank 60 32 32 32

Lora α 16 32 32 32
Batch Size 32 32 32 32

Learning Rate 1e-5, 5e-4, 1e-4 1e-4, 3e-4, 1e-3 1e-3 1e-4
Epochs 6 1 1 8

λ 0.95 0.95 0.98 0.95

Table 1: Hyperparameters for VAS training.

C.2 PPO TRAINING

For PPO training, we used the Alpaca Farm (Dubois et al., 2023) implementation. We parameterize
both the model itself and the Value estimator with LoRA. The training data is collected through the
run (as it is an on-policy algorithm) with a sampling temperature of 0.7. For the Summarization
task, we have found that the KL coefficient has more effect on the performance than any other
hyperparameter, and as such, did an ablation over three coefficient values. We report the results of the
training (and checkpoint inside the training), which achieves the highest reward. For Multi-Objective
PPO, we used the same training protocol, with the only difference being that we evaluated all three
rewards during training and averaged their scores.

We found the training for the Chat Dialogue task to be unstable, resulting in poor performance.
We tried two additional implementations of PPO 12 and tested over 20 different combinations of
hyperparameters to no avail. As we mentioned before, this was reported by other research works as
well (Rafailov et al., 2023). We report the results of the best run we were able to achieve.

For a full list of hyperparameters, see Table 2.

C.3 DPO TRAINING

For DPO training, we used the codebase released by its authors. We parameterize the model
with LoRA with rank 32 and α 32. We conducted three trainings with different learning rates

1https://github.com/huggingface/trl
2https://github.com/CarperAI/trlx

13

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Summarization Chat Dialogue

Dataset SEAHORSE Anthropic HH
Reward Model Trained based on T5-FLAN model OpenAssistant/reward-model-deberta-v3-large-v2
PolicyModel LLaMA 7B LLaMA-2 7B
Lora Rank 60 32
Lora Alpha 16 32

Rollout Batch Size 512 512
Step Batch Size 128 128
Learning Rate 1e-4 5e-6
KL coefficient 0.0067, 0.02, 0.05 0.05

Epochs 1 1
lambda 0.95 1
gamma 1 1

Table 2: Hyperparameters for PPO training.

{1e− 4, 5e− 5, 1e− 5} and reported the results of the model which achieved the highest margin
on the validation set. The training was done with β = 0.1 and a batch size of 64. We evaluated the
model every 10K training examples for both reward and win rate against SFT. We report the DPO
result as the model that achieves the best win rate against SFT.

C.4 FUDGE TRAINING

For the regular version of FUDGE, used in the Summarization task, we used Transformers3 imple-
mentation of text classifier training and extended it for prefix classification. We parameterize the
model with LoRA with rank 60 and α 16. We used a batch size of 32 and trained for three epochs
until convergence. We performed three trainings with different learning rates {1e− 3, 1e− 4, 1e− 5}
and reported the results for the model that achieved the highest accuracy on a validation set. For the
Online FUDGE in the Chat Dialogue task, we used the same training protocol VAS and just changed
the Value target to TD(1) to achieve a simple regression training.

C.5 PROMPTS FOR TRAINING

C.5.1 SEAHORSE

For the task of summarization, we use the following prompt for every query:

Generate a one-sentence summary of this post.

C.5.2 ANTHROPIC HELPFULESS AND HARMFULESSNESS

For the task of multi-turn chat dialogue, we do not use any additional prompt and simply query
the langauge model with the conversation between the human and assistant up until the assistant’s
response.

C.5.3 GPT-3.5 TOOL-USE

Following is the prompt containing brief description of the API functions that we use to query
GPT-3.5:

I have the following set of API:

To set home types for search. For home buying, home_types
choices are: "House", "Townhouse", "Condo", "Land",
"Multi-family", "Mobile", "Co-op"; for home renting, home_types
choices are: "House", "Townhouse", "Condo", "Apartment".

3https://github.com/huggingface/transformers

14

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

API.select_home_type(home_types: List[str])

To specify whether to search homes for buying or renting.
’value’ can be chosen from [’buy’, ’rent’]. This function must
be called after setting the location and before setting any other
criteria.
API.set_buy_or_rent(value: str)

To set the minimum home size in square feet
API.set_min_square_feet(value: int)

To set the maximum home size in square feet
API.set_max_square_feet(value: int)

To set the floor number
API.set_floor_number(value: int)

To set the maximum home price in dollars
API.set_max_price(value: int)

To set the minimum home price in dollars
API.set_min_price(value: int)

To set the location for the search area. This function must be
called before setting any criteria.
API.set_location(value: string)

Submit criterion to get search results. This function should be
called after setting all the criterion.
API.search()

To set the maximum commute time in minute to your office
location, assuming the office location is already defined
API.set_max_commute_time(value: int)

To set the number of bathroom(s)
API.set_num_baths(value: float)

To set the number of garage(s)
API.set_num_garages(value: int)

To set the number of balconies
API.set_num_balconies(value: int)

To set the number of bedroom(s)
API.set_num_beds(value: int)

To set the number of swimming pool(s)
API.set_num_swimming_pools(value: int)

Task: [USER INPUT]
Return only the relevant API calls, not any other kind of

response.
Action:

15

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

C.5.4 PERSONALIZATION

For the the task of personalization, we use the following prompt for every query:

Please write a one paragraph explanation about the following
topic.

D RELATED WORK

Reinforcement Learning for Language Models. The most commonly used RL algorithm for
tuning LLMs is Proximal Policy Optimization (PPO, (Schulman et al., 2017)) and its variants
(Ramamurthy et al., 2022; Wu et al., 2023). Most of these are actor-critic algorithms (Sutton & Barto,
2018), which iterate between learning a Value estimator for the current policy and using this estimator
to improve the policy. This bi-level process can lead to instabilities since errors, originating from
a Value estimator that has not converged yet and the difficulties of constrained policy optimization,
amplify each other (Fu et al., 2019; Van Hasselt et al., 2018). Moreover, training a Value function
for an ever-changing policy creates optimization difficulties (Igl et al., 2020; Nikishin et al., 2022).
Unlike these methods, our algorithm utilizes a closed-form solution to extract the optimal constrained
policy given a Value function, bypassing the policy optimization step. In addition, the Value function
is of the initial policy, which is fixed during the whole process. By that, we avoid all of the difficulties
mentioned above.

Of most similarity to our work is ILQL (Snell et al., 2022), which proposes a Q-learning algorithm
for steering LLMs. However, their work focuses on the offline RL setting, while ours assumes online
interactions with the environment. We further discuss these similarities and differences in Appendix
B.

Search-based algorithms for LLM decoding. There are several levels of granularity and different
heuristics one can adopt for search. BoN performs search at the sequence level and uses a reward
model as its search heuristic. Monte Carlo Tree Search Decoding (Liu et al., 2023), on the other
hand, uses a Value function at the token-level to encourage sampling high-reward responses and then
chooses the best sequence in the same manner as BoN. These algorithms and their variants have
been shown to achieve remarkable performance but are expensive to compute (Nakano et al., 2021;
Eisenstein et al., 2023).

Another notable line of work (Dathathri et al., 2019; Krause et al., 2020) introduces a family of search
algorithms that performs a token-level search by using a classifier as the decoding heuristic. In each
decoding step, they augment the LLM distribution with the classifier predictions and sample from it.
The closest to our work among these algorithms is (Yang & Klein, 2021), which trains the classifier
on partial responses from an offline dataset. In contrast to these prior methods, our work leverages
the RL framework for training the search heuristic and casts the search objective as a constrained
reward optimization.

Concurrently and independently of our work, Controlled Decoding (Mudgal et al., 2023) explores a
similar method to use the Q function to guide the decoding process.

E ADDITIONAL RESULTS.

E.1 SUMMARIZATION HEAD-TO-HEAD WIN RATES

We further evaluate the performance of our models by directly comparing the generated responses
from different models against each other with GPT-4 and present the results in Table 3. VAS clearly
outperforms the baselines, with an average 60% win rate. More importantly, we approximately match
the performance of Best-of-128.

E.2 MULTI-AXIS

Task In the real world, alignment to multiple different axes is required to model the complex set of
human preferences. Thus, we further extend the evaluation of our algorithm’s capabilities in solving

16

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Model Attribution Main Conciseness Avg.
Ideas

SFT 73.1% 77.0% 74.9% 75.0%
PPO 64.8% 59.3% 56.2% 60.1%
PPO + 62.2% 54.7% 54.0% 57.0%
MCTS
FUDGE 59.2% 61.1% 58.8% 59.7%
BoN-128 49.7% 48.3% 49.2% 49.1%

Table 3: Head-to-head comparison between our algorithm to various baselines, as judged by GPT-4.
Our model outperforms PPO and FUDGE and is almost on par with Best-of-128, while having lower
inference compute cost.

multi-axis alignment. Specifically, we focus on the task of improving the three axes of Attribution,
Main Ideas, and Conciseness simultaneously. Under the RL framework, multi-axis optimization
is usually framed as maximizing a linear combination of different reward functions (Hayes et al.,
2022). To transform VAS into a multi-reward optimization algorithm, we can take advantage of the
fact that the Value is a linear function of the reward (Sutton & Barto, 2018). Therefore, maximizing
a linear combination of rewards is equivalent to performing VAS with a linear combination of the
respective Value estimators. It is important to mention that these estimators do not need to be jointly
trained and are combined only during inference.

Experimental Details and Baselines We examine this idea by combining the Value estimator for
all three axes with equal weighting. All other details are equivalent to those from the single-axis
experiments. For baselines, we compare against Multi-Objective PPO, a PPO training where the
reward is the sum of the three separate reward functions. Moreover, we compare against Rewarded
Soup (Rame et al., 2023), an alternative approach to extend PPO for multi-alignment. Rewarded
Soup trains a PPO model for each reward separately and averages the weights of these models during
inference.

Results As seen in Figure 7, VAS effectively maximizes the rewards on each axis without sacrificing
the performance in another and outperforms both MO-PPO and Rewarded Soup. We observe an
interesting phenomenon with MO-PPO, where the different reward models compete with each other
over the course of the training, and the policy exhibits mode-switching behavior, alternating between
optimizing for one reward model over the other. At one point, as shown with MO-PPO (middle),
it is able to learn a reasonably good balance, but at the end of the training, as seen with MO-PPO
(last), the model collapses on one of the axes. This gives another example of the instabilities in PPO
training.

E.3 PERSONALIZATION

Task Unlike in the previous two sets of experiments, for some behaviors, it is not always desirable
to simply maximize the rewards but control it dynamically. This is important in the problem of
personalization, where users have different preferences for the style of responses. Prompt engineering
is a solution, but it can be time-consuming and computationally expensive to optimize the prompts to
get the exact degree of an attribute (Pryzant et al., 2023; Deng et al., 2022). In this experiment, we
show that VAS is a complementary approach to prompting that allows easy tuning at inference time.
This can be done by modulating the β parameter to control the weight between the original LLM
and the Value augmentation. In contrast, control at inference-time is not possible with PPO, since a
new policy needs to be trained for each different configuration. We show this fine-grained control
capability over the axes of Formality and Verbosity.

Experimental Details For the initial policy, we fine-tune LLaMA-2-7B on Alpaca instruction
following dataset (Taori et al., 2023) to get an SFT model that can follow human instructions. For
Formality, we use a pre-trained reward model from (Babakov et al., 2023) based on Roberta Base
(125M parameters) trained to predict whether a sentence is formal or not. For Verbosity, we use a
numerical function of the sequence length as the response. We first collect 15,000 different topics

17

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Figure 7: VAS is able to maximize multiple rewards simultaneously without sacrificing performance in
any axis. Mode-switching behavior can be observed during the Mo-PPO training (see the comparison
between middle and last), which once again alludes to its inherent instability in optimization.

(e.g., data compression, fruit wines, etc.) and use this data in tandem with the aforementioned reward
models to train our Value estimators, which are also LLaMA-2-7B models.

0 20 40 60 80 100

40

50

60

70

80

Av
er
ag
e
nu
mb
er
 o
f
wo
rd
s

Figure 8: As we increase β during decoding, the average number of words per response decreases
monotonically. This illustrates the ease of tuning LLMs’ response lengths and versatility in reaching
any point in the curve.

Results In Figure 8, we vary the β, the weight of our Value estimator, when augmenting the initial
model. We clearly observe that there is a monotonic decrease in the average number of words per
response as we increase β. This result illustrates that not only can we intuitively and easily change
the behavior of the LLM, but also our algorithm has the versatility to reach any desired point in
this alignment axis. For qualitative evaluation, we showcase how the response to the same prompt
evolves when varying the β parameter for the axis of Formality. Figure 9 shows that the model starts
to generate more causal responses when β is lower and more formal, technical responses when β is
higher. Further examples can be found in Appendix D.

E.4 LEARNING ALGORITHMS

VAS effectively leverages a Value function to guide the original LLM via token-level search, but how
to best train a Value estimator and how to best guide the search (by directly augmenting the output

18

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Figure 9: Qualitative results on Formality. By simply controlling β, our model easily varies from
generating casual responses with emojis on the left to generating formal, technical answers on the
right.

probabilities of the LLM) are open questions. To study this question, we performed an ablation study
of our method. First, we removed the augmented Value given to the tokens not in the top-k. This
design choice is a heuristic to minimize the effect of our approximation by using only top-k Values.
As can be seen Figure 10, this causes quite a considerable degradation in performance.

In addition, we simplified the Value function training procedure and used TD(0) instead of TD(λ).
This causes a small degradation in results, probably as a result of higher value estimation error.

E.5 CAN WE USE SMALL MODELS TO ALIGN BIGGER ONES?

VAS proposes to align LLMs at inference-time by using the Value function as a search heuristic.
Compared to policy-optimization methods, some of the computational costs move from training
the policy to inference. This naturally raises the question of how our algorithm’s computational cost
compares against others. Let m be the compute (in FLOPS) needed by an LLM to process a single
token, and n the compute needed by a secondary model (either Value estimator or reward function)
to do the same. Policy optimization methods directly optimize the base policy and, therefore, only
require T · m FLOPS to generate a response of length T . BoN requires generating N responses
and evaluating all of them with the reward model, requiring a total of N · T (n+m) FLOPS. VAS
requires one pass over the base policy and k token evaluation with our Value estimator, requiring
a total of T (m + kn). When n << m, our method can be significantly more efficient than BoN
and approach the computational cost of using a single policy.

This analysis motivates the use of smaller models for the Value estimator. To investigate this
possibility, we re-iterated the Chat Dialogue experiment, using a 1B model from the Pythia family
(Biderman et al., 2023) to guide a Llama-2 7B model. As seen in Figure 11, the performance degrades
with model size reduction, but the smaller model can still achieve a significant win rate of 68% over
SFT. We conclude that VAS enables flexibility in the trade-off between compute and performance.

E.6 IS THE VALUE ESTIMATOR GENERALIZED BEYOND THE TRAINING DATA?

VAS builds upon the idea of using a Value estimator to guide the search. As explained in section
??, the Value estimator is trained on a dataset of prompts and responses. Even when trained on a
specific dataset of prompts, an ideal adaptation method should generalize beyond it. To test VAS
generalization capabilities, we checked the performance of our VAS model on MT-Bench (Zheng
et al., 2024). MT-Bench is a comprehensive benchmark for LLM evaluation, covering many topics
such as math, science, writing, and more. The SFT model got a score of 3.38 on this benchmark, the
DPO model got a score of 3.91 and VAS got a score of 4.29. This shows that VAS indeed generalizes
to this new dataset. Interestingly, VAS also seems to generalize better than DPO.

E.7 HOW DOES THE VALUE ESTIMATOR’S ACCURACY AFFECT ALIGNMENT PERFORMANCE?

Equation 3 shows that leveraging our Value estimator as the search heuristic leads to the optimal
solution to the KL-constrained RL problem. Since we don’t have access to the true Value function
and only estimate it, we question the relationship between our estimator’s accuracy and the final
performance. To study the Value estimator’s accuracy, we generate a held-out validation set on
which we generate ten different completions starting from a partial answer and compute the mean

19

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

0.00 0.05 0.10 0.15 0.20 0.25 0.30
KL Divergence from 0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Re
wa
rd
s

Ours

Ours without Avg. Decoding

TD(0)

Figure 10: Abalation study on different design choices in our algorithm. The task is Summarization
with Main Ideas as the reward function

0.00 0.05 0.10 0.15 0.20 0.25
KL Divergence from 0

50

55

60

65

70

GP
T-
4
Wi
nr
at
e

Llama-2 7B

Pythia 1B

Figure 11: Comparison of different models size on the Chat Dialogue task. Smaller models achieve
worse performance but require less computation during inference.

20

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

of the generations’ rewards as the label. By varying the dataset size, we attain Value estimators
of differing performances, and, as shown in Table 4, we observe a clear negative correlation clear
negative correlation between the validation MSE and the rewards of the tuned LLM. In other words,
as the Value estimator learns better estimates of the expected reward, the performance of the tuned
model improves with respect to the reward model we are maximizing.

Dataset Size Validation MSE ↓ Rewards ↑
32K 0.852 0.287
64K 0.811 0.355
96K 0.676 0.411

Table 4: We conduct an ablation along different dataset sizes to evaluate Value estimators of varying
accuracies. These results illustrate that higher accuracy (lower validation MSE) is directly correlated
with performance of the tuned LLM.

E.8 VARYING k

In Equation 4, we propose an approximation to the closed-form solution to the KL-regularized RL
problem to realize it into a computationally feasible algorithm. As seen in the equation, k is a
hyperparameter that directly influences the approximation and, to that end, we conduct an ablation
study where we vary k and evaluate the performance. We conduct this ablation on the Conciseness
task for summarization on the SEAHORSE dataset and present the results in Figure 12. Interestingly,
for a fixed β of 5.0, lower k of 10 and 20 seem to be not only sufficient but more optimal than larger k
of 100 and 200. We conjecture that this phenomenon may be related to the fact that lower k implicitly
regularizes the tuned model to stay close to the initial model. However, further investigation is
warranted to study how the optimal β changes with k.

25 50 75 100 125 150 175 200
K

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Re
wa
rd
s

Figure 12: Varying K in VAS

F GPT-4 EVALUATION PROTOCOL

As a proxy of human judgment, we follow the GPT-4 evaluation protocol from AlpacaEval(Li et al.,
2023) and evaluate the models’ generated responses. We now describe the prompts that we use for
the summarization and multi-turn chat dialogue tasks.

F.1 SUMMARIZATION PROMPT

<|im_start|>system
You are helpful assistant whose goal is to simulate Diana’s
preferred output for a given instruction.

21

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Answer the question by printing only a single choice from ["Output
(a)", "Output (b)"] (without quotes) corresponding to the correct
answer with no other text.

Here’s some information about Diana:
- Diana loves literature and is highly cultivated
- Diana is a grammar freak
<|im_end|>
<|im_start|>user
Annotation Guideline
In this task, we will ask you to select the preferred output AI
model’s responses to instructions.

You will read a batch of examples, which are composed of the
following:

1. an Instruction we give to the AI system
2. an Input that is provided along with the instruction
3. Output (a), the first output from the AI system
4. Output (b), the first output from the AI system

Your task is to decide which response is better for each example.
You should answer using only Output (a) or Output (b) depending on
which response is better.

Annotation Example
To help you understand the annotation task, we provide a single
example below.
I will give an explanation for the correct answer, but you should
only answer with the preferred output.

Example 1

Instruction 1:
Write a design document to describe a mobile game idea.

Input 1:
Game Idea: A battle royale game with a superhero and villain
theme.

Output (a) for example 1:
Design Document for a Mobile Game Idea:

1. Introduction:
A battle royale game with a superhero and villain theme.

2. Game Play:
The game is played on a large map with buildings, streets, and
structures spreading across the map. Players converge on the
center to compete in a winner-take-all showdown. The game includes
traditional battle royale elements such as scavenging, looting,
and trying to survive until the end. However, there is also a hero
system in place in which players can choose to take on the role
of a superhero or villain for the game. This adds some variety and
variety of tactics as players use their superpowers to wreak havoc
or use their villainsy to their own advantage.

3. Rewards:

22

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

As players compete in the battle royale game, they will receive
experience and level up their character. These levels reward
players with extra health, shields, and other all important
resources. Players can choose to customize their character in
various ways to make them stand out from the rest as well.

4. Levelling up:
At the end of each game, players will level up their character
and receive various bonuses depending on the level. These bonuses
could range from extra health to increased sprint speed or more
damage while in combat. As players gain levels, they can choose to
upgrade their character with more powerful abilities and powers.

5. Challenges:
Players can also complete

Output (b) for example 1:
The newly launched mobile game offers a thrilling battle royale
experience with a superhero and villain theme. Players jump out
of their cars and go head-to-head in a fight to the finish line.
Each round features a different set of powerful superheroes and
villainous villains, and the winner is the player who survives the
longest. Along the way, they can collect health items and upgrade
their powers to become the ultimate superhero or villain. The game
offers a lively and vibrant art style and a visually appealing
plot to keep the players engaged until the very end.

Which is best for example 1, Output (a) or Output (b)?:
Output (a)

Indeed, Output (a) is a design document as asked in the
instruction and gives more useful details than Output (b).

Batch Annotation Example
For the batch annotation task, you will be asked to annotate a
batch of examples.
I.e. you will read all the examples first and then need to select
the preferred output.
Here’s an example of how you should be formatting your answers for
a batch of 3 examples.
Note that I will also give an explanation for the correct answer,
but you should only answer with the preferred output.

Example 2

Instruction 2:
Find the average age of the following people

Input 2:
John (17), Laura (18), Robert (19), Edward (20).

Output (a) for example 2:
The average age of the people in the given situation is 20 years
old.

Output (b) for example 2:
The average age of the people listed is 19.5 years.

Example 3

23

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Instruction 3:
Generate a to-do list with 5 tasks related to the following.

Input 3:
keeping a neat room

Output (a) for example 3:
Make beds
Organize closet
Shoot some hole in the walls
Dust lamps and furniture
Tidy drawers and shelves

Output (b) for example 3:
chores:
1. Clean up after yourself and put clean clothes away.
2. Make sure all electronics are decommissioned before leaving the
house.
3. Remove all personal items and clutter from your room.
4. Vacuum and mop the floor.
5. Tidy up your desk and put all inboxes on hold.

Example 4

Instruction 4:
Rewrite the following sentence in a polite way

Input 4:
Give it to me now.

Output (a) for example 4:
Could you please give it to me, pending verification?

Output (b) for example 4:
Can you please give me that item?

Preferred Output for example 2-4:
Now give all the preferred outputs for the batch of 3 examples.

Which is best for example 2, Output (a) or Output (b)?:
Output (b)

User explanation: Both outputs are wrong but Output (b) is
preferred. Indeed, the real answer is 18.5 years old, which is
closer to Output (b) than Output (a).

Which is best for example 3, Output (a) or Output (b)?:
Output (b)

User explanation: Output (b) is better because Output (a) adds
to the to do list "Shoot some hole in the walls", which is not
related to tidying a room

Which is best for example 4, Output (a) or Output (b)?:
Output (a)

24

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

User explanation: Output (a) is better because Output (b) adds
the sentence "pending verification", which is unnecessary and
unrelated to the instruction.

Annotation starts below
Now is your turn. I will give you a batch of 5 examples.
You should read all the examples first and then select the
preferred answers by saying only Output (a) or Output (b) as
formatted above without explanation.

Example 5

Instruction 5:
{instruction}

Input 5:
{input}

Output (a) for example 5:
{output_1}

Output (b) for example 5:
{output_2}

Example 6

Instruction 6:
{instruction}

Input 6:
{input}

Output (a) for example 6:
{output_1}

Output (b) for example 6:
{output_2}

Example 7

Instruction 7:
{instruction}

Input 7:
{input}

Output (a) for example 7:
{output_1}

Output (b) for example 7:
{output_2}

Example 8

Instruction 8:
{instruction}

Input 8:
{input}

25

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Output (a) for example 8:
{output_1}

Output (b) for example 8:
{output_2}

Example 9

Instruction 9:
{instruction}

Input 9:
{input}

Output (a) for example 9:
{output_1}

Output (b) for example 9:
{output_2}

Preferred Output for example 5-9:
Now give all the preferred outputs for the batch of 5 examples.
<|im_end|>

F.2 MULTI-TURN CHAT DIALOGUE PROMPT

<|im_start|>system
You are helpful assistant whose goal is to decide on a preferred
answer to a question in a dialogue.
Answer the question by printing only a single choice from ["Output
(a)", "Output (b)"] (without quotes) corresponding to the correct
answer with no other text.
<|im_end|>
<|im_start|>user
In this task, we will ask you to select the preferred output AI
model’s responses.

You will read a batch of examples, which are composed of the
following:

1. A beginning of a conversation between an AI system
("Assistant") and a user ("User")
3. Output (a), the first output from the AI system
4. Output (b), the first output from the AI system

I will give you a batch of 5 examples. Your task is to decide
which response is better for each example. You should answer
using only Output (a) or Output (b) depending on which response
is better.

You should read all the examples first and then select the
preferred answers by saying only Output (a) or Output (b) as
formatted above without explanation.

Example 1

Instruction 1:
{instruction}

26

Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Output (a) for example 1:
{output_1}

Output (b) for example 1:
{output_2}

Example 2

Instruction 2:
{instruction}

Output (a) for example 2:
{output_1}

Output (b) for example 2:
{output_2}

Example 3

Instruction 3:
{instruction}

Output (a) for example 3:
{output_1}

Output (b) for example 3:
{output_2}

Example 4

Instruction 4:
{instruction}

Output (a) for example 4:
{output_1}

Output (b) for example 4:
{output_2}

Example 5

Instruction 5:
{instruction}

Output (a) for example 5:
{output_1}

Output (b) for example 5:
{output_2}

Preferred Output for example 1-5:
Now give all the preferred outputs for the batch of 5 examples.
<|im_end|>

27

	Introduction
	Method
	From Reward Optimization to Value Augmented Sampling.
	Value Augmented Sampling (VAS)

	Experiments
	Summarization
	Helpful/Harmless Chat Assistant
	Composing multiple alignment objectives
	Improving GPT-3.5 API Tool-use

	Proofs and Derivations.
	Solution to the KL-regularized Rl problem
	Solution to the KL-regularized Rl problem

	Q-Value estimation versus Value estimation.
	Training Q Estimator for Text Generation
	Experiment Description
	ILQL

	Training Details and Hyperparameters.
	VAS Training
	PPO Training
	DPO Training
	FUDGE Training
	Prompts for Training
	SEAHORSE
	Anthropic Helpfuless and Harmfulessness
	GPT-3.5 Tool-use
	Personalization

	Related Work
	Additional Results.
	Summarization Head-to-Head Win Rates
	Multi-axis
	Personalization
	Learning Algorithms
	Can we use small models to align bigger ones?
	Is the Value estimator generalized beyond the training data?
	How does the Value estimator's accuracy affect alignment performance?
	Varying k

	GPT-4 Evaluation Protocol
	Summarization Prompt
	Multi-turn Chat Dialogue Prompt

