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ABSTRACT

Traditional speech enhancement systems produce speech with com-

promised quality. Here we propose to use the high quality speech

generation capability of neural vocoders for better quality speech en-

hancement. We term this parametric resynthesis (PR). In previous

work, we showed that PR systems generate high quality speech for

a single speaker using two neural vocoders, WaveNet and WaveG-

low. Both these vocoders are traditionally speaker dependent. Here

we first show that when trained on data from enough speakers, these

vocoders can generate speech from unseen speakers, both male and

female, with similar quality as seen speakers in training. Next us-

ing these two vocoders and a new vocoder LPCNet, we evaluate the

noise reduction quality of PR on unseen speakers and show that ob-

jective signal and overall quality is higher than the state-of-the-art

speech enhancement systems Wave-U-Net, Wavenet-denoise, and

SEGAN. Moreover, in subjective quality, multiple-speaker PR out-

performs the oracle Wiener mask.

Index Terms— Speech enhancement, Neural vocoders, analysis-

by-synthesis, enhancement-by-synthesis

1. INTRODUCTION

Traditional speech enhancement systems modify a noisy mixture to

reduce the amount of noise it contains, but in doing so they introduce

distortion in the speech. The distortion increases when there is more

noise in the mixture leading to poor quality speech [1]. In contrast,

speech synthesis systems generate high quality speech from only tex-

tual information. These text-to-speech systems (TTS) are complex

as they need to generate realistic acoustic representation without a

reference audio signal. In this work, we propose to combine these

two methods, i.e., using speech synthesis techniques for speech en-

hancement. This is an easier task than TTS since we have a reference

noisy audio signal from which we can extract the desired prosody in-

stead of having to invent it. By predicting the “acoustic features” of

the clean speech from the noisy speech in the speech enhancement

system, we can generate high quality noise-free resyntheses.

Parametric Resynthesis (PR) systems [2, 3] predict clean acous-

tic parameters from noisy speech and synthesize speech from these

predicted parameters using a speech synthesizer or vocoder. Current

speech synthesizers are trained to generate high quality speech for a

single speaker. In previous work we showed that a single speaker PR

system can synthesize very high quality clean speech at 22 KHz [2]

and performs better than the corresponding TTS system [3]. Hence,

a critical question is whether these systems can be generalized to

unknown speakers. The main contribution of the current work is

to show that when trained on a large number of speakers, neural

vocoders can successfully generalize to unseen speakers. Further-

more, we show that PR systems using these neural vocoders can also

generalize to unseen speakers in the presence of noise.

In this work, we test the speaker dependence of neural vocoders,

and their effect on the enhancement quality of PR. We show that

when trained on 56 speakers, WaveGlow [4], WaveNet [5], and LPC-

Net [6] are able to generalize to unseen speakers. We compare the

noise reduction quality of PR with three state-of-the-art speech en-

hancement models and show that PR-LPCNet outperforms every

other system including an oracle Wiener mask-based system. In

terms of objective metrics, the proposed PR-WaveGlow performs

better in objective signal and overall quality.

1.1. Related work

Traditional speech enhancement systems generally predict a time-

Frequency mask to reduce noise in the magnitude spectrum domain,

for example [7, 8]. Recent works perform speech enhancement in

the time-domain directly, which has the additional advantage of

reconstructing the phase of the signal. A modified WaveNet was

proposed for speech denoising [9], by using non-causal convolu-

tions on noisy speech and predicting both clean speech and the

noise signal. Another approach is to progressively downsample the

noisy audio to a bottleneck feature and then upsample with skip

connections to the corresponding downsampled features to enhance

speech. SEGAN [10] uses this approach in a GAN setting and

Wave-U-Net [11, 12] uses it in the U-Net setting. The aim of these

approaches is to remove noise from the audio at different scales.

Compared to these systems, we do not focus on modelling noise but

only focus on modelling speech. We evaluate our approach against

three of these systems [9–11]. These papers publish results on the

same dataset we used and also each provide several enhanced files,

which we utilize in our listening tests.

2. SYSTEM OVERVIEW

Our PR models have two parts. First is a prediction model that

estimates the clean acoustic features from noisy audio. Second,

a vocoder synthesizes “clean” speech from the predicted “clean”

acoustic parameters. The aim of the prediction model is to reduce

noise while the vocoder synthesizes high quality audio.

http://arxiv.org/abs/1911.06266v1


2.1. Prediction model

The prediction model is trained with parallel clean and noisy speech.

It takes noisy mel-spectrogram Y as input and is trained to predict

clean acoustic features X . The predicted clean acoustic features

vary based on the vocoder used. In this work we used WaveG-

low, WaveNet, LPCNet and WORLD [13] as vocoders. For Wave-

glow and WaveNet, we predict clean mel-spectrograms. For LPC-

Net, we predict 18-dimensional Bark-scale frequency cepstral coeffi-

cients (BFCC) and two pitch parameters: period and correlation. For

WORLD we predict the spectral envelope, aperiodicity, and pitch.

For WORLD and LPCNet, we also predict the ∆ and ∆∆ of these

acoustic features for smoother outputs. The prediction model is

trained to minimize the mean squared error (MSE) of the acoustic

features

MSE : L = ‖X − X̂‖2 (1)

where X̂ are the predicted and X are the clean acoustic features. The

Adam optimizer [14] is used for training. During test, for a given a

noisy mel-spectrogram, clean acoustic parameters are predicted. For

LPCNet and WORLD we use maximum likelihood parameter gen-

eration (MLPG) [15] algorithms to refine our estimate of the clean

acoustic features from predicted acoustic features, ∆, and ∆∆.

2.2. Vocoders

The second part of PR resynthesizes speech from the predicted

acoustic parameters X̂ using a vocoder. The vocoders are trained on

clean speech samples x and clean acoustic features X . During syn-

thesis, we use predicted acoustic parameters X̂ to generate predicted

clean speech x̂. In the rest of this section we describe the vocoders,

three neural: WaveGlow, WaveNet, LPCNet and one non-neural:

WORLD.

WaveGlow: WaveGlow [4] is a Glow based network [16] for syn-

thesizing speech. WaveGlow learns a sequence of invertible transfor-

mations of audio samples x to a Gaussian distribution conditioned

on the mel spectrogram X . For inference, WaveGlow samples a la-

tent variable z from the learned Gaussian distribution and applies the

inverse transformations conditioned on X to reconstruct the speech

sample x̃. The model is trained to minimize the log likelihood of the

clean speech

ln p(x | X) = ln p(z) + log det

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

, (2)

where ln p(z) is the log-likelihood of the spherical zero mean Gaus-

sian with variance σ2. During training σ = 1 is used. We use the offi-

cially published waveGlow implementation1 with the original setup,

i.e., 12 coupling layers, each consisting of 8 layers of dilated convo-

lution with 512 residual and 256 skip connections. We will refer to

the PR system with WaveGlow as its vocoder as PR-WaveGlow.

LPCNet: LPCNet is a variation of WaveRNN [17] that simpli-

fies the vocal tract response using linear prediction pt from previous

time-step samples

pt =
M
∑

k=1

akxt−k.

LPC coefficients ak are computed from the 18-band BFCC. It pre-

dicts the LPC predictor residual et, at time t. Then sample xt is

generated by adding et and pt.

1 https://github.com/NVIDIA/waveglow

Model #spk SIG BAK OVL STOI

Seen

WaveGlow 1 4.7±0.12 2.9±0.10 3.9±0.16 0.94±0.01
LPCNet 1 3.8±0.16 2.2±0.12 2.9±0.21 0.91±0.02
WaveNet 1 3.3±0.15 2.1±0.06 2.5±0.13 0.81±0.03

Unseen - Male

WaveGlow 3 4.4±0.03 2.8 ± 0.01 3.7±0.02 0.94±0.01
LPCNet 3 4.0±0.14 2.4±0.10 3.2±0.16 0.90±0.04
WaveNet 3 3.2±0.08 2.1±0.07 2.5±0.10 0.83±0.01

Unseen - Female

WaveGlow 3 4.7±0.04 2.9±0.03 3.9±0.05 0.95±0.01
LPCNet 3 3.9±0.15 2.3±0.12 3.0±0.20 0.90±0.04
WaveNet 3 3.3±0.10 2.0±0.06 2.5±0.10 0.80±0.01

Table 1. Speaker generalization of neural vocoders. Objective qual-

ity metrics for synthesis from true acoustic features, higher is better.

Sorted by SIG.

A frame conditioning feature f is generated from 20 input fea-

tures: 18-band BFCC and 2 pitch parameters via two convolutional

and two fully connected layers. The probability p(et) is predicted

from xt−1, et−1, pt, f via two GRUs [18] (A and B) combined with

dualFC layer followed by a softmax. The largest GRU (GRU-A)

weight matrix is forced to be sparse for faster synthesis. The model

is trained on the categorical cross-entropy loss of p(et) and the pre-

dicted probability of the excitation p̂(et). Speech samples are 8-bit

mu-law quantized. We use the officially published LPCNet imple-

mentation2 with 640 units in GRU-A and 16 units in GRU-B. We

refer to the PR system with LPCNet as its vocoder as PR-LPCNet.

WaveNet: WaveNet [5] is a autoregressive speech waveform gen-

eration model built with dilated causal convolutional layers. The

generation of one speech sample at time step t, xt, is conditioned on

all previous time step samples (x1, x2, . . . xt−1). We use the Nvidia

implementation3 which is the Deep-Voice [19] model of WaveNet

for faster synthesis. Speech samples are mu-law qauantized to 8 bits.

The normalized log mel-spectrogram is used in local conditioning.

WaveNet is trained on the cross-entropy between the quantized sam-

ple x
µ
t and the predicted quantized sample x̂

µ
t .

For WaveNet, we used a smaller model that is able to synthesize

speech with moderate quality. We tested the PR model’s dependency

on speech synthesis quality by testing on a smaller model. We used

20 layers with 64 residual, 128 skip connections, and 256 gate chan-

nels with maximum dilation of 128. This model can synthesize clean

speech with average predicted mean opinion score (MOS) 3.25 for a

single speaker [19]. The PR system with WaveNet as its vocoder is

referred to as PR-WaveNet.

WORLD: Lastly, we use a non-neural vocoder WORLD which syn-

thesizes speech from three acoustic parameters: spectral envelope,

aperiodicity, and F0. We use WORLD with the Merlin toolkit 4.

WORLD is a source-filter model that takes previously mentioned pa-

rameters and synthesizes speech. We also use spectral enhancement

to modify the predicted parameters as is standard in Merlin [20].

2 https://github.com/mozilla/LPCNet
3https://github.com/NVIDIA/nv-wavenet
4https://github.com/CSTR-Edinburgh/merlin

https://github.com/NVIDIA/waveglow
https://github.com/mozilla/LPCNet
https://github.com/NVIDIA/nv-wavenet
https://github.com/CSTR-Edinburgh/merlin


Model SIG BAK OVL STOI

Oracle Wiener 4.3 3.8 3.9 0.98

PR-WaveGlow 3.8 2.4 3.1 0.91
PR-LPCNet, noisy F0 3.5 2.1 2.7 0.88
PR-LPCNet 3.1 1.8 2.2 0.88
PR-World 3.0 1.9 2.2 0.87
PR-WaveNet 2.9 2.0 2.2 0.83

Wave-U-Net (from [11]) 3.5 3.2 3.0
SEGAN (from [10]) 3.5 2.9 2.8

Table 2. Speech enhancement objective metrics on full 824-file test

set: higher is better. Top system uses oracle clean speech informa-

tion. Bottom section compares to published comparison system re-

sults.

3. EXPERIMENTS

3.1. Dataset

We use the publicly available noisy VCTK dataset [21] for our ex-

periments. The dataset contains 56 speakers for training: 28 male

and 28 female speakers from the US and Scotland. The test set con-

tains two unseen voices, one male and another female. Further, there

is another available training set, consisting 14 male and 14 female

from England, which we use to test generalization to more speakers.

The noisy training set contains ten types of noise: two are artifi-

cially created, and the eight other are chosen from DEMAND [22].

The two artificially created are speech shaped noise and babble noise.

The eight from DEMAND are noise from a kitchen, meeting room,

car, metro, subway car, cafeteria, restaurant, and subway station.

The noisy training files are available at four SNR levels: 15, 10,

5, and 0 dB. The noisy test set contains five other noises from DE-

MAND: living room, office, public square, open cafeteria, and bus.

The test files have higher SNR: 17.5, 12.5, 7.5, and 2.5 dB. All

files are downsampled to 16 KHz for comparison with other systems.

There are 23, 075 training audio files and 824 testing audio files.

3.2. Exp 1: Speaker independence of neural vocoders

Firstly, we test if WaveGlow and WaveNet can generalize to unseen

speakers on clean speech. Using the data described above, we train

both of these models with a large number of speakers (56) and test

them on 6 unseen speakers. Next, we compare their performance

to LPCNet which has previusly been shown to generalize to unseen

speakers. In this test, each neural vocoder synthesizes speech from

the original clean acoustic parameters. Following the three base-

line papers [9–11], we measure synthesis quality with objective en-

hancement quality metrics [23] consisting of three composite scores:

CSIG, CBAK, and COVL. These three measures are on a scale from

1 to 5, with higher being better. CSIG provides and estimate of the

signal quality, BAK provides an estimate of the background noise

reduction, and OVL provides an estimate of the overall quality.

LPCNet is trained for 120 epochs with a batch size of 48, where

each sequence has 15 frames. WaveGlow is trained for 500 epochs

with batch size 4 utterances. WaveNet is trained for 200 epochs with

batch size 4 utterances. For WaveNet and WaveGlow we use GPU

synthesis, while for LPCNet CPU synthesis is used as it is faster5.

WaveGlow and WaveNet synthesize from clean mel-spectrograms

5We also found that GPU synthesis code was incomplete as of commit
3a7ef33

with window length 64 ms and hop size 16 ms. LPCNet acoustic

features use a window size of 20 ms and a hop size of 10 ms.

We report the synthesis quality of three unseen male and three

unseen female speakers, and compare them with unseen utterances

from one known male speaker. For each speaker, the average qual-

ity is calculated over 10 files. Table 1 shows the composite quality

results along with the objective intelligibility score from STOI [24].

We observe that WaveGlow has the best quality scores in all the mea-

sures. The female speaker scores are close to the known speaker

while the unseen male speaker scores are a little lower. We note here

that these values are not as high as single speaker WaveGlow, which

can synthesize speech very close to the ground truth. We also note

that LPCNet scores are lower than those of WaveGlow but better than

WaveNet. Between LPCNet and WaveNet, we do not observe a sig-

nificant difference in synthesis quality for male and female voices.

Although WaveNet has lower scores, it is consistent across known

and unknown speakers. Thus, we can say that WaveNet generalizes

to unseen speakers.

3.3. Exp 2: Speaker independence of parametric resynthesis

Next, we test the generalizability of the PR system across different

SNRs and unseen voices. We use the test set of 824 files with 4

different SNRs. The prediction model is a 3-layer bi-directional

LSTM with 800 units that is trained with a learning rate of 0.001.

For WORLD filter size is 1024 and hop length is 5 ms. We com-

pare PR models with a mask based oracle, the Oracle Wiener Mask

(OWM), that has clean information available during test.

Table 2 reports the objective enhancement quality metrics and

STOI. We observe that the OWM performs best, PR-WaveGlow per-

forms better than Wave-U-Net and SEGAN on CSIG and COVL.

PR-WaveGlow’s CBAK score is lower, which is expected since this

score is not very high even when we synthesize clean speech (as

shown in Table 1). Among PR models, PR-WaveGlow scores best

and PR-WaveNet performs worst in CSIG. The average synthesis

quality of the WaveNet model affects the performance of the PR sys-

tem poorly. PR-WORLD and PR-LPCNet scores are lower as well,

we observe that both of these models sound much better than the ob-

jective scores would suggest. We believe, as both of these models

predicts F0, even a slight error in F0 prediction affects the objec-

tive scores adversely. For this, we test the PR-LPCNet using the

noisy F0 instead of the prediction, and the quality scores increase.

In informal listening the subjective quality with noisy F0 is similar

to or worse than the predicted F0 files. Hence we can say that the ob-

jective enhancement metrics are not a very good measure of quality

for PR-LPCNet and PR-WORLD.

We also test objective quality of PR models and OWM against

different SNR and noise types. The results are shown in Figure 1. We

observe with decreasing SNR, CBAK quality for PR models stays

the same, while for OWM, CBAK score decreases rapidly. This

shows that the noise has a smaller effect on background quality com-

pared to a mask based system, i.e., the background quality is more re-

lated to the presence of synthesis artifacts than recorded background

noise.

3.4. Listening tests

Next, we test the subjective quality of the PR systems with a listen-

ing test. For the listening test, we choose 12 of the 824 test files,

with four files from each of the 2.5, 7.5 and 12.5 dB SNRs. We

observed the 17.5 dB file to have very little noise, and all systems

perform well with them. In the listening test, we also compare with
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Fig. 1. Overall objective quality of PR systems and OWM broken down by noise type (824 test files).
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Fig. 3. Subjective quality: higher is better. Error bars show twice

the standard error.

the OWM and three comparison models. For these comparison sys-

tems, we included the publicly available output files in our listening

tests, selecting five files from each: Wave-U-Net has 3 from 12.5 dB

and 2 from 2.5 dB, Wavenet-denoise and SEGAN have 2 common

files from 2.5 dB, 2 more files each are selected from 7.5 dB and 1

from 12.5 dB. For Wave-U-Net, there were no 7.5 dB files available

publicly.

The listening test follows the Multiple Stimuli with Hidden

Reference and Anchor (MUSHRA) paradigm [25]. Subjects were

presented with 8-10 anonymized and randomized versions of each

file to facilitate direct comparison: 4 PR systems (PR-WaveNet,

PR-WaveGlow, PR-LPCNet, PR-World), 4 comparison speech en-

hancement systems (OWM, Wave-U-Net, WaveNet-denoise, and

SEGAN), and clean and noisy signals. Subjects were also provided

reference clean and noisy versions of each file6. Five subjects took

part in the listening test. They were told to rate the speech quality,

noise-suppression quality, and overall quality of the speech from

0 − 100, with 100 being the best. We observe intelligibility of all

of the files to be very high, so instead of doing an intelligibility

6All files are available at http://mr-pc.org/work/icassp20/

Model SIG BAK OVL STOI Subj. Intel.

Oracle Wiener 4.3 3.8 3.9 0.98 0.91

PR-WaveGlow 3.7 2.4 3.0 0.91 0.90
PR-World 3.0 1.9 2.2 0.86 0.90
PR-LPCNet 3.0 1.8 2.2 0.85 0.92
PR-WaveNet 2.9 2.0 2.2 0.83 0.74

Table 3. Speech enhancement objective metrics and subjective intel-

ligibility on the 12 listening test files.

listening test, we ask subjects to rate the subjective intelligibility as

a score from 0− 100.

Figure 3 shows the result of the quality listening test. PR-

LPCNet performs best in all three quality scores, followed by PR-

WaveGlow and PR-World. The next best model is the Oracle Wiener

mask followed by Wave-U-Net. Table 3 shows the subjective in-

telligibility ratings, where PR-LPCNet has the highest subjective

intelligibility, followed by OWM, PR-WaveGlow, and PR-World.

It also reports the objective quality metrics on the 12 files selected

for the listening test for comparison with Table 2 on the full test

set. We observe that while PR-LPCNet and PR-WORLD have very

similar objective metrics (both quality and intelligibility), they have

very different subjective metrics, with PR-LPCNet being rated much

higher).

3.5. Tolerance to error

Finally, we measure the tolerance of PR models to inaccuracy of the

prediction LSTM using the two best performing vocoders, WaveG-

low and LPCNet. For this test, we randomly select 30 noisy test files.

We make the predicted feature X̂ noisy as, X̂e = X̂ + ǫN , where

ǫ = MSE×e%. The random noise N is generated from a Gaussian

distribution with the same mean and variance at each freuency as X .

Next, we synthesize with the vocoder from X̂e. For WaveGlow, X

is the mel-spectrogram and for LPCNet, X is 20 features. We repeat

the LPCNet test adding noise into all features and only the 18 BFCC

features (not adding noise to F0).

http://mr-pc.org/work/icassp20/


Figure 2 shows the objective metrics for these files. We observe

that for WaveGlow, e = 0−10% does not affect the synthesis quality

very much and e > 10% decreases performance incrementally. For

LPCNet, we observe that errors in the BFCC are tolerated better than

errors in F0.

4. CONCLUSION

We show that the neural vocoders WaveGlow, WaveNet, and LPCNet

can be used for speaker-independent speech synthesis when trained

on 56 speakers. We also show that using these three vocoders, the

parametric resynthesis model is able to generalize to new noises and

new speakers across different SNRs. We find that PR-LPCNet out-

performs the oracle Wiener mask-based system in subjective quality.
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