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ABSTRACT

Generative models have recently emerged as powerful surrogates for physical sys-
tems, demonstrating increased accuracy, stability, and/or statistical fidelity. Most
approaches rely on iteratively denoising a Gaussian, a choice that may not be the
most effective for autoregressive prediction tasks in PDEs and dynamical systems
such as climate. In this work, we benchmark generative models across diverse
physical domains and tasks, and highlight the role of stochastic interpolants. By
directly learning a stochastic process between current and future states, stochastic
interpolants can leverage the proximity of successive physical distributions. This
allows for generative models that can use fewer sampling steps and produce more
accurate predictions than models relying on transporting Gaussian noise. Our ex-
periments suggest that generative models need to balance deterministic accuracy,
spectral consistency, and probabilistic calibration, and that stochastic interpolants
can potentially fulfill these requirements by adjusting their sampling. This study
establishes stochastic interpolants as a competitive baseline for physical emulation
and gives insight into the abilities of different generative modeling frameworks.

1 INTRODUCTION

Generative models have recently become a promising class of models for physical systems. Empiri-
cally, diffusion models have demonstrated better accuracy and stability (Lippe et al., 2023)), capable
of resolving finer details than deterministic baselines (Oommen et al., [2025). In addition, diffusion
models can be more effective at capturing the underlying statistics of physical systems, such as in
turbulence (Lienen et al., 2023} Molinaro et al., [2025) or in weather forecasting and climate pre-
diction (Price et al.,|2024; (Cachay et al., |2023). Overall, these capabilities are supported by studies
that benchmark diffusion models in PDE systems (Kohl et al., |2024; Rozet et al., [2025), as well
as by continued research that improves their accuracy or inference speed (Bastek et al.| 2025} [She-
hata et al., 2025). Moreover, these models continue to benefit from larger advances in the generative
modeling community, such as flow matching or improved samplers (Liu et al., 2022} Lu et al.,[2025).

While promising, a key feature of these prior works in PDE or climate modeling is the assumption of
a Gaussian prior/source distribution. This is a logical choice for unconditional generation, where we
have no prior knowledge about the source distribution and require it to be easily sampled. However,
recent work has challenged this assumption for tasks where the source and target distributions are
related, such as in image-to-image translation or super-resolution. Ordinarily, these tasks are framed
as sampling from a Gaussian and evolving a reverse process conditioned on the source distribu-
tion, however, methods such as diffusion bridges or stochastic interpolants seek to directly learn a
stochastic process between the source and target distributions (Zhou et al.||2023;|Albergo & Vanden-
Eijnden, [2023). Directly evolving samples drawn from the source distribution (e.g., blurry images,
masked images) to samples from the target distribution (e.g., sharp images, in-painted images) can
require fewer sampling steps and produce higher quality samples (Albergo et al., 2024;|Zheng et al.,
20235)). In these cases, it is believed that transporting Gaussian noise to a conditional distribution is
both inefficient and more complex than directly mapping the source to the target distribution.

This observation makes stochastic interpolants well-suited as a generative model for physical sys-
tems. Specifically, predicting PDE or climate systems are usually framed as an autoregressive task,
where future states are predicted based on a current state. While current and future states are often
tightly coupled, generative models still predominantly follow the approach of transporting Gaus-
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Figure 1: Left: Typical generative models rely on transporting Gaussian noise z, conditioned on a
current state u(t). Right: Learning a stochastic process to transport current to future states can be
more efficient and accurate. The mixing of the source and target distributions can be controlled by
the amount of added noise. T" denotes time along a stochastic process, while ¢ is the physical time.

sian noise while conditioning on the current state. This common framework is likely wasteful, and
stochastic interpolants trained to map current to future states can result in faster or more accurate
generative models for physical systems. We provide a conceptual comparison in Figure|[I]

2 STOCHASTIC INTERPOLANTS

Definition We consider a class of generative models that admit arbitrary source and target distri-
butions. These models have various names and instantiations, however, for simplicity, we consider
stochastic interpolants since many of these models can be unified under this framework
et all}, 2023}, [Zhang et al| [2025). Given samples zq from a source distribution py and samples x1
from a target distribution p1, a stochastic interpolant is defined as a stochastic process x; such that:

xy = I(t, zo, 1) +y(t)2, t€10,1] (1)

The interpolant I satisfies the boundary conditions (0, xo,z1) = o and I(1, zg,21) = x;1. Fur-
thermore, z is sampled from a standard Gaussian NV (0, I'), and the noise coefficient y(t) satisfies the
conditions v(0) = (1) = 0 and ~(¢) > 0. There are a few useful observations to make. Firstly,
the stochastic interpolant produces samples zg ~ pg att = 0 and 21 ~ p; att = 1 by construction.
Furthermore, the interpolant x; maps between the densities pg, p1 exactly and in finite time, which
is not true for typical DDPMs in PDE and climate domains. Lastly, a stochastic interpolant can be
realized by either an ODE or an SDE, which can produce samples x; at any time ¢ € [0, 1].

Implementation Stochastic interpolants have many instantiations, as well as different training and
sampling procedures. We consider spatially linear interpolants, where zq is sampled from a current
solution u(t) and x; is sampled from a future solution u(t + 1):

xy = a(t)xg + f(t)z1 + y(t)2 (2)

The coefficients a(t), 5(t),y(t) are chosen to satisfy boundary conditions. Since these coefficients
are specified, we can learn the drift b of the stochastic interpolant with a network by by minimizing

the empirical loss on the dataset {z*, 22,..., 2"V }:
1L /1 4 ‘ o .
Lolbe] = ; (2|b9(ti,x;)2 — by (ti, @} ) (I (i, wh, 7}) + W)zl)) 3)

where ¢; € [0, 1] is uniformly sampled and xii is a given data sample ¢ at time ¢; along the stochastic
interpolant. Intuitively, by aims to estimate the time derivative of the stochastic interpolant. This is
useful during inference, where samples z( are integrated using drift estimates by according to the
probability flow ODE or SDE:

Y(t
dXOPE — by(t, X, )dt,  dXPPP =by(t, X;)dt + Wx([t)th 4)
where W; := \/tz is a Wiener process on ¢ € [0, 1]. A given drift by and noise coefficient () also
define a family of SDEs that describe the same stochastic process, allowing the diffusion term dW;

to be adjusted during sampling without retraining (Chen et al.l 2024).
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While the overall loss and sampling framework gives exact generative models, in practice, imple-
mentation choices can influence how effectively the drift is learned due to numerical and statistical
errors. For example, the loss £, can have high variance around the endpoints ¢ = 0 and ¢t = 1 if y(¢)
is singular. Furthermore, choices for coefficients «(t), 5(t),y(t) affect the mixing of the source,
target, and noise distributions. We report our implementation details in Appendix D}

3 METHODS

3.1 DATASETS

Kolmogorov Flow Kolmogorov Flow (KF) is described by the 2D Navier-Stokes equations driven
by unidirectional periodic forcing. Although common, this is a fairly challenging task and most
PDE surrogates are unstable when rolled out to the training horizon (Lippe et al., [2023; |Zhou &
Barati Farimani, 2025). Data is generated from APEBench (Koehler et al., 2024) at a resolution of
160 x 160 on a domain (x,y) = [—10,10]%, with the vorticity being recorded. The simulation is
saved at a resolution of At = 0.2s for 100 timesteps, resulting in a rollout from ¢ = 0 to ¢t = 20
seconds. Initial conditions are sampled from a random truncated Fourier series with 5 modes, and
the viscosity v is set to 1072 to simulate a Reynolds number of approximately 102,

Rayleigh-Bénard Convection Rayleigh-Bénard Convection (RBC) is a phenomenon that de-
scribes the mixing of horizontal layers of fluid driven by a temperature gradient. Current PDE
surrogates usually struggle since the system is highly chaotic and features a transition between lam-
inar and turbulent regimes. The system is described by its Rayleigh and Prandtl numbers, which
govern the convection and diffusivity of the flow. Data is obtained from the Well (Ohana et al.,
2025; Burns et al., [2020), which includes 2D simulations on a 512 x 128 grid with buoyancy, pres-
sure, and velocity. In addition, we use 100 timesteps with an interval of A¢ = 0.5 seconds and a
variety of Rayleigh and Prandtl numbers are used for training and validation.

PlaSim Global 3D atmospheric data are generated from an intermediate-complexity climate model
(PlaSim) to evaluate emulators for weather forecasting and climate prediction (Lunkeit et al., 2021}
Ragone et al.,[2018}; [Lancelin et al., [in prep.). PlaSim solves the Navier-Stokes equation on a rotating
sphere along with parameterizations for various atmospheric (e.g., moist convection, radiation) and
land processes, while the sea surface temperature and sea ice cover are prescribed and vary with a
yearly period. Prognostic atmospheric variables (temperature, humidity, zonal and meridional wind)
are saved at a resolution of (128 x 64 x 10) (latitude, longitude, model level) on an Gaussian hori-
zontal grid. These are then vertically interpolated onto 13 equipressure levels, and the geopotential
height is computed using the hydrostatic equation. 8 surface variables, including 2-meter temper-
ature and accumulated precipitation, and 6 forcing variables are also saved. Models are trained on
100 years of data at 6-hour intervals and validated on a year of held-out data, except when evaluating
climatological biases, which uses 10 years of data. This results in ~144,000 training samples and
~1,440 validation samples. Additional detail on datasets can be found in Appendix [C]

3.2 MODELS

Overview Although the work focuses on generative models, we include a deterministic emulator
as a baseline to understand the difficulty of tasks. For PDE tasks, we consider FNO (Li et al.,
2021) and for climate tasks, we consider SFNO (Bonev et al., 2023). To benchmark generative
models, we consider: denoising diffusion probabilistic models (DDPM) (Ho et al.,[2020)), denoising
diffusion implicit models (DDIM) (Song et al., [2022)), elucidated diffusion models (EDM) (Karras
et al.} 2022), truncated sampling models (Shehata et al., 2025) (TSM), flow matching (FM) (Lipman
et al.,[2023)), and stochastic interpolants (SI). These frameworks can have many variations, therefore,
formulas for the training objective and sampling procedures used are given in Table [T}

Beyond overall frameworks, generative models are also determined by hyperparameters such as the
noise schedule. We use a linear schedule for DDPM, DDIM, and TSM models. The noise schedule
for EDM is reproduced from |Karras et al.[(2022). For FM models, we use the rectified flow schedule
where z; = (1 — t)zo + tz. For ST models, we choose a(t) = 1 — ¢, B; = t, and y(t) = (1 — t)\/%.
ODE samplers use the Euler method and SDE samplers use the Euler-Maruyama method.
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Figure 2: Distance heuristics for the Rayleigh-Bénard dataset. Distances between samples drawn
from successive timesteps D(u(t),u(t + 1)) and between Gaussian noise and future timesteps
D(N(0,I),u(t + 1)) are plotted for the buoyancy field. Each metric is averaged over a 5-fold
cross validation, with the standard deviation shaded.

Autoencoders To effectively train generative models, we pretrain a latent space using an autoen-
coder (Rombach et al.,|2022)). This is effective in reducing computation, however, for PDE problem:s,
this can additionally stabilize rollouts (Rozet et al., 2025} |Li et al., [2025a). For PDE tasks, we use
a Deep Compression Autoencoder (DCAE) (Chen et al., [2025a), which is based on 2D convolution
and residual pooling/unpooling layers. Following Rozet et al.| (2025), we apply a saturation func-
tion to latent vectors, rather than KL regularization, to avoid arbitrary variance. For climate tasks,
we find that KL regularization is beneficial, potentially due to the need for long-term consistency
in climate emulators. KF and RBC autoencoders use a compression ratio of 64x and the PlaSim
autoencoder uses a compression ratio of 32x.

Architectures We use a diffusion transformer (DiT) (Peebles & Xie, 2023) as the backbone for
all latent-space generative models. Within a given task, the architecture and model size is kept
constant across all models. To condition on the diffusion or interpolant timestep, adaptive layer
normalization is used. Additionally, the current state of the system is concatenated to the noisy
estimate of the future state as conditioning. Moreover, as a result of the compressed latent space,
the backbone does not need patchification or sparse attention. Additional details on the autoencoder
and diffusion architectures can be found in Appendix D}

Metrics We follow standard metrics to evaluate the deterministic and statistical performance of
models. For PDE tasks, we use Variance Scaled RMSE (VRMSE), and for weather forecasting, we
use latitude-weighted RMSE (IRMSE). Annual climatological biases are also calculated to evaluate
the consistency of the climate emulator; these are calculated as the IRMSE between the time average
of a 10-year ground truth from PlaSim and a 10-year emulation for each 3D variable.

For PDE tasks, the statistical consistency of fluid flows is evaluated by comparing the power spec-
trum of predicted and true rollouts with spectral RMSE (SRMSE). Exact predictions of turbulent
flows over time is usually not possible for PDE surrogates, therefore spectral metrics can quantify
the distribution and scale of predicted features rather than relying on point-wise accuracy. Following
Rozet et al| (2025)), the power spectrum is calculated and partitioned into three evenly distributed
frequency bands and reported as the RMSE of the relative power spectrum (/(1 — p/pg)?). For
weather forecasting, the statistical performance of probabilistic predictions is measured using the
continuous ranked probability score (CRPS) and the spread-skill ratio (SSR). CRPS is minimized
when samples from the generative model are drawn from the same distribution as the data. SSR
values of 1 are considered optimal as the uncertainty of the forecast matches its error (Fortin et al.,
2014). Additional information on the considered metrics is given in the Appendix [D.2]

4 RESULTS

Understanding Distances for Physical Distributions A major hypothesis of this work is that the
distributions of current and future states are closer together than Gaussian noise and future states,
which allows stochastic interpolants to be more efficient or accurate than conditional generation.
Consider an example where initial states are uniformly sampled from a set of initial conditions. For
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Model: FNO DDPM DDIM EDM TSM M SI AE
NFEs: 1 100 10 10 1 2 2 1

VRMSE 0.621+0.008 0.684+0.022 0.735+0.007 0.616+0.013 0.835+0.044 0.593+0.029 0.552+0005| 0.011
SRMSE sy, 0.064+0.001 0.078+0.005 0.335+0.073 0.063+0.002 0.124+0.029 0.073+0.011 0.056+0.004| 0.011
SRMSE, ,;a 0.042+0001 0.053+0.003 0.180+0.056 0.043+0.002 0.068+0.011 0.044+0.005 0.039+0002| 0.006
SRMSEpign 0.380+0017 0.795+0001 0.801+0.005 0.792+0.001 0.850+0.033 0.792+0.001 0.791+0.000| 0.791

Table 1: Pointwise (VRMSE) and Spectral (SRMSE) errors of models on Kolmogorov Flow.

dissipative PDEs, this uniform distribution is transported over time to a stationary distribution as
energy is lost. If the time interval is small, we may intuitively believe that subsequent distributions
are close; however, we seek to visualize and loosely quantify this difference.

Calculating statistical distances between high-dimensional empirical distributions is usually in-
tractable. Despite this, there are several heuristics that are used. For example, Fréchet Inception
Distance (FID) (Heusel et al., 2018) computes distances based on activations of a neural network;
while this has no mathematical basis, it is useful to estimate distances between image distribu-
tions. We consider more general heuristics such as the Sliced Wasserstein Distance (SW), Classifier
2-Sample Test (C2ST), and Maximum Mean Discrepancy (MMD) (Bischoff et al.,[2024). For exam-
ple, C2ST trains a classifier to discriminate samples drawn from two distributions; if the classifier is
perfect (100% accuracy), then the distributions can be viewed as farther than if the classifier cannot
identify samples (50% accuracy). Additional information on heuristics are given in Appendix[D.3]

We adopt a perspective where each timestep u; € R"=*"v of a dataset is sampled from a dif-
ferent underlying distribution u; ~ p;. While p; is unknown, we have access to an empirical
distribution with n samples p?* = {u},...u}}, where n is the dataset size. Heuristics are com-
puted using these empirical distributions as well as n samples z € R™=*"v drawn from a Gaussian
z ~ N(0,I). For the RBC dataset, we calculate each heuristic D over time for either D(p}", pi*, 1)
or D(N(0,T), p}', ;). Results are plotted and shown in Figure

In general, the heuristics suggest that distances between subsequent timesteps are closer than dis-
tances between future timesteps and Gaussian noise. For the SW and MMD metrics, Gaussian noise
more closely resembles physical states after convective mixing (around ¢ = 20), where there is a
transition between laminar and turbulent regimes. This aligns with our understanding of turbulence
as a multiscale and chaotic phenomena. Conversely, subsequent states seem to be farther during and
after this transition, as turbulence can cause large changes even in small time intervals. Interest-
ingly, classifiers struggle to take advantage of this; subsequent timesteps have ~ 50% classification
accuracy in turbulent regimes, as consistent changes between states become harder to learn.

Kolmogorov Flow We report the pointwise and spectral performance of models in Table[I] where
the lowest errors are shaded and the second-lowest errors are lightly shaded. Errors are averaged
over three seeds and standard deviations are reported. The number of function evaluations (NFEs)
needed for a single prediction is shown, and autoencoder (AE) performance is given as a reference.

FNO performs well in Kolmogorov Flow, likely due to the low Reynolds number (~ 10%) and the
consistent spectrum over time due to the sinusoidal forcing. Truncated sampling based on Tweedie’s
formula does not seem to work well, which suggests iterative sampling is still necessary for gener-
ative models. DDIM/DDPM models also under-perform, with high VRMSE and SRMSE metrics,
yet EDM performance suggests that this is an issue of parameterizing the forward/reverse process
rather than diffusion itself. Further simplifying the stochastic processes to linear interpolation also
provides benefits, as demonstrated by flow matching. Lastly, due to the low Reynolds number, sub-
sequent states are highly related, which allows stochastic interpolants to be accurate and statistically
consistent. It achieves this performance with only 2 sampling steps, alongside flow matching. For
all generative models, pointwise error is largely driven by autoregressive drift rather than reconstruc-
tion error of the autoencoder. Furthermore, in the highest frequency band, the spectral error of the
autoencoder thresholds the spectral error of latent generative models.

Rayleigh-Bénard Convection Rayleigh-Bénard Convection offers a more complex system fea-
turing a transition between laminar and turbulent states. Due to the large size of the dataset, only
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Model: FNO DDPM DDIM EDM TSM FM SI-E  SI-EM | AE
NFEs: 1 100 10 10 10 5 5 50 1
VRMSE >10 0.765 0.675 0.681 8.961 0.733 0.665 0.726 | 0.027

SRMSE,,, 0.357 0405 0.612 0363 1.113 0.323 0.346 0.296 | 0.086
SRMSE,.;.a 1.739 0.242 0.644 0.321 0.883 0.243 0.601 0.184 | 0.061
SRMSE;qn, 2406  1.822 3276 2594 1.133 2478 6.078 2.096 | 1.528

Table 2: Pointwise (VRMSE) and Spectral (SRMSE) errors of models on Rayleigh-Bénard.

a single set of experiments was run and errors are reported in Table 2] After training, stochastic
interpolants are deterministically or stochastically sampled, using either the Euler method (-E) or
Euler-Maruyama method (-EM) to solve the reverse ODE/SDE. Adding noise in the reverse SDE
necessitates a finer discretization, which results in using more sampling steps.

The performance of FNO matches previous benchmarks from|Ohana et al.|(2025)), where it is unsta-
ble across the trajectory. For generative models, Rayleigh-Bénard convection reveals an interesting
trade-off: lower pointwise error usually comes at the cost of higher spectral error. After convective
mixing, it is intractable for models to exactly predict turbulent states, especially over 50-100 au-
toregressive predictions. Therefore, minimizing pointwise error tends to push models toward overly
smoothed predictions. This behavior can be mitigated by increasing the sampling length or intro-
ducing more stochasticity; taking smaller, random steps adds perturbations to help recover the true
spectrum. However, greater stochasticity causes predictions to deviate further from the exact state,
even as the spectral characteristics remain consistent. This can be qualitatively seen in Figure 8]

Deterministically sampled stochastic interpolants achieve the lowest VRMSE, yet exhibit large spec-
tral errors. To remedy this, noise can be added when sampling the stochastic interpolant by solv-
ing the reverse SDE, although this uses more sampling steps. Other generative models fall some-
where along this spectrum. DDPM and flow matching have good spectral accuracy, while EDM
and DDIM have better pointwise accuracy, potentially from sub-sampling the probability flow SDE.
In general, this task is very challenging; pointwise errors are high and no model can resolve the
highest frequency band, with SRMSE values above 1 being largely meaningless. Additional plots
of VRMSE/SRMSE over time for KM and RBC can be found in Appendix

Weather Forecasting Many commonly used PDEs are deterministic; when fully observed, a fu-
ture state should be known provided that a sufficiently small time interval is used. Although un-
certainty and statistical metrics are useful for PDEs, climate systems benefit more directly from
probabilistic modeling due to the need for well-calibrated forecasts as well as inherent uncertainty
in weather data collection and numerical weather prediction (Palmer, |2019; Dueben et al., 2022}
Bracco et al.} [2025). This makes weather forecasting a good benchmark not only for evaluating the
accuracy of generative models but also for understanding their ability to approximate underlying
distributions and to capture uncertainty.

After training, models are evaluated on medium-range weather forecasting for up to 10 days. The
latitude-weighted RMSE (IRMSE) of models is reported in Table[3] At this time horizon, stochas-
tic interpolants tend to do well. One hypothesis is that, while complex, global weather systems
evolve at multiple timescales, including low-frequency variability, which increases the large-scale
predictability compared to turbulence or other chaotic PDEs. In this scenario, subsequent states sep-
arated by 6 hours tend to still be related, which stochastic interpolants can leverage during sampling.
Not only does this produce more accurate forecasts, using 5 sampling steps also pushes the frontiers
of efficiency for generative weather models, where it is currently typical to use around 20-40 steps
Price et al.|(2024); |Couairon et al|(2024); Zhuang & Duraisamy| (2025).

Within this timescale, we evaluate the probabilistic performance of generative models by calculating
the CRPS and SSR of ensemble forecasts. Ensembles are initialized at every 3rd day in the valida-
tion year to make a 30-day forecast; the CRPS/SSR is calculated at each timestep and metrics are
averaged across all initializations. The resulting CRPS and SSR plots are shown in Figure[3] DDPM
is omitted due to its computational expense and its performance on 10-day forecasts. To generate
different ensemble members, stochastic interpolants are sampled with a stochastic sampler by using
the Euler-Maruyama method (-EM), which is run with 10 steps.
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Var: z500 [m)] t2m K] t850 K] u250 [m/s] pr_6h [mm]
Days: 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

SFNO 11 329 55.8 119 1.27 2.31 3.19 7.27 1.17 2.21 3.18 7.72 2.37 5.26 7.96 15.6 .87 1.28 1.38 2.08
DDPM 8.5 18.2 30.9 61.9 0.93 1.38 1.88 3.03 0.95 1.40 1.98 3.27 1.85 3.32 4.88 8.44 .85 1.14 1.33 1.57
DDIM 7.3 15.6 26.5 549 .84 1.23 1.67 2.76 0.88 1.26 1.75 2.99 1.65 2.89 4.20 7.44 .78 1.01 1.18 1.40
EDM 7.2 154 26.6 57.6 0.83 1.21 1.65 2.87 0.86 1.24 1.76 3.11 1.64 2.88 4.21 7.71 .73 1.00 1.21 1.47
FM 6.9 15.0 26.3 57.0 0.79 1.15 1.60 2.81 0.84 1.19 1.72 3.06 1.59 2.80 4.13 7.63 .71 0.98 1.19 1.48
SI 6.2 12.9 22.9 52.2 0.73 1.05 1.44 2.66 0.80 1.10 1.55 2.89 1.48 2.53 3.71 7.01 .61 0.87 1.10 1.43

Table 3: IRMSE of benchmarked models on weather forecasting. Errors are reported at different
lead times ({1, 3, 5,10} days) and climate variables. DDPM uses 100 sampling steps, while EDM
and DDIM use 10 steps. FM and SI both use 5 sampling steps.

Up to 30 days, stochastic interpolants shows lower CRPS and better-calibrated SSR values. Up to
a constant, the CRPS is equal to the squared L2 error between the true and predicted cumulative
distribution functions (Zamo & Naveaul, 2018)), suggesting that stochastic interpolants have a lower
distributional shift over time. While most generative models are under-dispersive at shorter lead
times, stochastic interpolants tend to mitigate this and calibrate their uncertainty earlier. Addition-
ally, the uncertainty of stochastic interpolants can be tuned by adjusting the noise coefficient of the
EM sampler, which allows the model to produce ensembles with more or less variance.

Climate Emulation An advantage of using PlaSim instead of real-world data is the availability
of a very large dataset of true samples from a long PlaSim integration. This allows models to be
evaluated for long-term climate consistency. After training to predict states at 6-hour intervals,
generative models are queried to make emulations up to 10 years. DDIM, EDM, and SI-EM are run
with 10 steps, and FM and SI-E are run with 5 steps. For each variable and at each grid point and
pressure level, predictions are averaged across all timesteps; the IRMSE between true and predicted
averages is the 10-year climatological bias. Prior work has observed the lack of correlation between
medium-range forecast error and climatological biases, stemming from error accumulation as the
model trained for fast, weather dynamics is integrated to climate (Chattopadhyay & Hassanzadeh,
2023; |Cachay et al.| 2024; Watt-Meyer et al, [2025). Therefore, while 10-day forecasting errors
converge and are reported after 30 epochs, models are fine-tuned for an additional 20 epochs for
bias evaluations. During fine-tuning, biases are calculated at each epoch, and the results for each
model are reported in Table [ for the best epoch.

In general, learning a consistent, long-term cli-
mate emulator with uniformly small biases glob- Y&t 2500 t2m t850 u250 pr-6h hus850
ally from 6-hour prediction intervals is challeng- DDIM 15.7 0.55 0.45 1.91 0.125 0.437
ing (Wikner et al. [in prep.). No model is the best EDM 9.66 0.54 0.56 1.34 0.148 0.380
over all variables, and differences between models FM 8.06 0.35 0.31 1.30 0.081 0.268
and from epoch to epoch are large. Smoother fields SI-E  8.81 0.43 0.42 1.22 0.110 0.257
such as temperature or geopotential are usually bet- SI-EM 10.7 0.51 0.48 1.03 0.069 0.187
ter modeled using deterministic or linear samplers,
while higher frequency fields such as wind speed,  Table 4: 10-year Climatological Biases.
precipitation, or humidity are better modeled with

stochastic samplers. Random perturbations added by the EM sampler may help to resolve high-
frequency features but can lead to inconsistent trends in smoother fields. This can allow SI models
to use different samplers based on the variable of interest, which can be done without re-training.

At longer time horizons of up to 100 years, we track global temperature and precipitation to visualize
trends in long-term model performance, shown in Figure 4] In general, most models respond well
to the forcing of the seasonal cycle, leading to globally averaged timeseries that are dominated by
a periodic (annual) timescale. Although models occasionally underestimate or overestimate global
temperature, this effect is more consistent in more challenging fields such as precipitation. Despite
this, interpolants have the ability to match or exceed other models in matching long-term trends,
depending on how they are sampled. Future work can perhaps mitigate model biases or find better
training strategies to ensure long-term consistency.
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Figure 3: CRPS and SSR plots for the considered generative models over 30 days.

5 DISCUSSION

Throughout the work, stochastic interpolants have shown promise as a generative model for model-
ing physical systems. The key inductive bias that is leveraged is the assumption that successive states
are related over a given time interval. When architectures and parameterizations are kept constant,
empirical evidence suggests that this is a remarkably effective way to train and sample a generative
model. However, when the system becomes chaotic or models are rolled out for extremely long
horizons, assumptions of coupled source and target distributions become less clear or less helpful.

Beyond interpolants, there are interesting trends in other generative models. EDM and flow match-
ing are remarkably consistent in their improvement over DDPM, suggesting that reparameterizing
vanilla diffusion with an ODE sampler offers benefits in accuracy and speed. Conditional distribu-
tions in physical systems tend to be unimodal, as a single state is usually the most probable when
observing a past state. Therefore, adding noise in the sampling process when solving the reverse
SDE may not be necessary to mix different modes. However, unimodality can be violated in highly
chaotic systems, which can result in worse spectral performance when using an ODE sampler.

Finally, to better understand the benchmarked generative models, we provide a set of ablation studies
in Appendix [B] Consistent with prior evidence (Rozet et al [2025) we show that the compression
ratio of the autoencoder does not influence prediction error substantially. We also corroborate prior
results (L1 et al.,2025b)) that probabilistic training is more effective than deterministic neural solvers
in latent space. We additionally verify that generative models are more effective in latent space than
in pixel space. Lastly, for stochastic interpolants we investigate the effect of the number of sampling
steps and the amount of noise added. Adding noise to the interpolant encourages modes from the
source and target distributions to mix, and produces a smoother trajectory through probability space.
However, too much noise can transport intermediate distributions too far from the source or target
distributions and increase the difficulty of learning a drift or sampling the stochastic process.

6 RELATED WORKS

Generative Models There are several foundational works on which generative models and
stochastic interpolants are based. Diffusion models (Ho et al.l 2020; [Song et al.l 2021}, and its
extensions to different samplers (Song et al., [2022; |Karras et al., [2022)) and flow matching (Lipman
et al., 2023} [Liu et al., [2022) propose a variety of methods to transport Gaussian noise to an arbi-
trary density, with the goal of sampling from a target distribution. Subsequent work has relaxed the
requirement for a Gaussian prior distribution, allowing transport between arbitrary densities. These
models fall under many frameworks, such as Schrodinger Bridges (Bortoli et al., [2023)), Diffusion
Bridges (Su et al.| [2023; Zhou et al.l 2023), Optimal Transport (Tong et al.| |2024), or Stochastic
Interpolants (Albergo et al., [2023)).



Under review as a conference paper at ICLR 2026

Global Surface Temperature

0 10 20 30 40 50 60 70 80 90 100

0.62F

0.60 F

pr 6h [mm]

0.58F

Years

DDIM EDM — FM SI-E — SIEM  ---- PlaSim

Figure 4: Global surface temperature and precipitation averaged for every 6 months over 100 years.

Applications to PDEs/Climate The use of deep learning to approximate PDE or climate systems
is a diverse field, with approaches based on transformers (Pathak et al.} [Lietal2023;Bietal.
2022} [Li et al., [2024), large-scale pretraining (Zhou & Farimanil, [2024; McCabe et al.,[2024} [Zhou
et al) [2024; Nguyen et al |2023), or physics-based priors (Verma et al., 2024; |[Zhou & Farimani,
2025). A subset of these works study the application of diffusion models to predict PDE systems
(Yang & Sommer], [Huang et al.| [2024; [Shu et al| [2023; [Cachay et al., 2023} [Du et al [2024;
[Serrano et al., 2024; [Molinaro et al., [2025; [Shysheya et al., [2024; |Gao et al., 2024). Extensions
of diffusion models have also been investigated to introduce physics-informed losses (Bastek et al.}

2025), operate on meshes (Lino et al.,[2025)), or use text-conditioned generation (Zhou et al.,[2025).

Recent progress in flow matching has also been reflected in emulating PDEs, with works that report
additional speed or accuracy benefits (Baldan et all, 2025}, [Utkarsh et al, 2025}, [Armegioiu et al.}
2023} [Shi et al.,[2024)). Similar applications are also prevalent in climate prediction, where diffusion
and flow matching models are popular approaches (Zhuang & Duraisamy| 2025} [Cachay et all
[2024}, [Couairon et al.}[2024). Beyond prediction, climate downscaling and data assimilation are also

relevant applications of diffusion models (Mardani et al., 2024} [Gong et al, 2024} [Gao et al., 2023}
[Andry et al.}, 2025}, [Aich et al, 2024} [Tomasi et al., 2025} Brenowitz et al., [2025).

Interpolant or diffusion-bridge approaches in physical systems are less common. Previous works
have addressed super-resolution and data assimilation in PDEs and climate (Bischoff & Deck}[2023}
[Schigdt et al.| 2025}, [Chen et al.}[2025b} [Rout et al |, [2025]), motivated by their resemblance to denois-
ing/inpainting tasks where stochastic interpolants have proven effective in computer vision.
applies interpolants to forecast stochastic PDEs, and [Miicke & Sanderse] (2025) show
promise that stochastic interpolants can perform well in modeling fluid problems. Expanding on
these prior works, we present a more comprehensive benchmark of generative models across a
diverse set of physical systems. We consider more challenging tasks, such as laminar-turbulent
transitions and long-term climate emulation, and seek to understand when and how stochastic inter-
polants work. In doing so, we find stochastic interpolants are a strong baseline for modeling PDE
and climate systems, while also providing insights into a variety of different generative models.

7 CONCLUSION

Modeling physical phenomena is challenging, as each system exhibits distinct dynamics, variables,
and spatial or temporal scales. While generative models have shown promise for such tasks, not all
are created equal. Even with the same architecture and training, changes in the loss objective and
sampling can result in different deterministic and statistical performance. Despite this, stochastic
interpolants can be a good baseline for generative models, motivated by the proximity of subsequent
states in autoregressive prediction. We hope future work can continue to investigate this and ad-
vance the capabilities of generative models for physical systems, such as improving performance in
turbulent systems or forecasting weather extremes (Sun et al., 2025 [Wikner et al.| [in prep.).
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Figure 5: VRMSE/SRMSE for model predictions over time on the Kolmogorov Flow (KF) dataset.
Each model is trained with three seeds, mean errors are plotted with standard deviations shaded.

A SUPPLEMENTARY RESULTS

A.1 ERROR PLOTS

To visualize time-dependent trends in model errors, we plot the VRMSE and SRMSE over time for
model predictions, averaged over all samples the validation set. Errors for Kolmogorov Flow are
plotted in Figure [5]and errors for Rayleigh-Bénard Convection are plotted in Figure[6]

Error trends for Kolmogorov Flow tend to be more clear. Stochastic interpolants consistently have
lower VRMSE across the prediction horizon, and all models accumulate error near the middle of
the trajectory. When autoregressive drift sufficiently shifts the input distribution, VRMSE growth
tends to taper off as predictions reach a steady-state, albeit with mostly incorrect predictions. At
the low- and mid-frequency bands, stochastic interpolants also tend to have lower SRMSE across
the trajectory. The mid-band SRMSE tends to oscillate more, as higher frequency features tend to
form and dissipate more quickly than lower frequency features in Kolmogorov Flow. Lastly, at the
high-frequency band, the performance of generative models is thresholded by the SRMSE of the
autoencoder (~ 0.8), while FNO can have a lower SRMSE. In general, stochastic interpolants, flow
matching, and EDM tend to perform well on this dataset, with good spectral and pointwise accuracy.

Examining time-dependent errors for RBC can also reveal insights. All models rapidly accumulate
pointwise errors during turbulent mixing (~ ¢t = 20) and reach steady state during subsequent
dissipation. In this regime, all models have have decorrelated from the true trajectory and based on
our observations, pointwise accuracy tends to be achieved by smoother fields. In the low-frequency
band, we see a spike in error as the fluid undergoes mixing. Despite this, most generative models
can recover low-frequency features after mixing. Similar observations can also be made for the mid-
frequency SRMSE, however, accurately capturing features after mixing becomes more difficult. At
the high-frequency band, most models reach errors above 1 after ¢ = 20 and stay there.

These plots shed more insight into tradeoffs between point-wise and spectral accuracy in chaotic
systems. DDPM has low spectral error yet has high point-wise error; using a different sampler
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Figure 6: VRMSE/SRMSE for model predictions over time on the Rayleigh-Bénard Convection
(RBC) dataset. In general, there is an increase in errors at ~ ¢ = 20 as fluid layers mix.

with DDIM achieves low point-wise error but with high spectral errors. We also observe a similar
phenomenon when training stochastic interpolants and using either an ODE or SDE based sampler.
Perhaps it is still an open question as to what the desired behavior should be in turbulence modeling
or if we can train models to accomplish both point-wise and spectral accuracy.

A.2 VISUALIZATIONS

To qualitatively evaluate model performance, we provide a set of visualizations of model perfor-
mance on Kolmogorov Flow (KF) and Rayleigh-Bénard Convection (RBC) in Figures[7]and [§] KF
predictions are shown at ¢ = 50, when model predictions begin to decorrelate. RBC predictions are
shown at £ = 18 and ¢ = 45, which is before and during turbulent mixing. In the turbulent regime,
the effects of SDE-based samplers is more clear. DDPM and SI-EM are able to capture more high-
frequncy features, despite having larger pointwise errors. Interestingly, SI-E can roughly model the
correct position and size of plumes, although the predictions are smoothed.

Additionally, medium-range forecasts using the PlaSim dataset are plotted in Figure 9] for different
models, variables, and lead times. At this length scale and time horizon, differences between models
are challenging to distinguish, although they exist. To visualize long-horizon consistency, we look
at the zonally-averaged power spectrum of model predictions after 100 years, since this lead time
is well beyond the limit for pointwise consistency. After being rolled out to 100 years, we plot the
zonally-averaged power spectrum of different model predictions as well as the ground truth in Figure
[TO] At this timescale, the considered generative models seem to produce similar spectra, although
their biases may be different (Figure ). Although no model is the best, the spectrum of generative
models remains largely accurate and remains stable over 100 years, which is a promising sign.
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Figure 7: Model predictions of Kolmogorov Flow at ¢ = 50, shown with the ground truth. Qualita-
tively, stochastic interpolants seem to capture most of the relevant features, although all models start
to de-correlate at this timestep.
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Figure 8: Model predictions of Rayleigh-Bénard Convection at £ = 18 and ¢ = 45, shown with
the ground truth. In the laminar regime, most models can model initial mixing. After mixing,
the effects of SDE-based samplers become more clear. DDIM/EDM are noticeably smoother than
DDPM, likewise, FM/SI-E are smoother than SI-EM. Qualitatively, SI-EM seems to model the most
detail, however SI-E seems to approximately capture the size and location of plumes.
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forecasting.
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Figure 10: Zonally-averaged power spectra for different models and weather variables for predic-
tions at a 100 year lead time. Despite having different biases, the considered generative models have
consistent spectra and remain stable at long horizons.

B ABLATION STUDIES

Pixel/Latent Space Ablations We train flow matching and stochastic interpolant models in either
pixel or latent space to compare their performance. The Normalized RMSE (NRMSE), or Relative
L2 error, is reported for the Kolmogorov Flow validation set in Table[5] Model sizes are kept roughly
constant, and all models are trained for the same number of epochs. To account for the larger spatial
input to the DiT (160 x 160), a patch size of 8 x 8 was used to match the compression ratio of the
autoencoder.

In general, we find that pixel space models have higher errors than latent space models, in addition
to being more expensive to train and query. One hypothesis is that latent space models could be
more stable, as the latent space has less variance and a well-trained decoder may smooth out errors.
Indeed, we find that autoregressive drift is the primary contributor to large errors in pixel space
models.

Metric FMpizel FMlatent Slpixel SIlatent
NRMSE 0.812 0.649 0.966 0.609

Table 5: Comparison of pixel and latent space generative models on Kolmogorov Flow.

Compression Ratio Ablations We compare the effects of training autoencoders with different
compression ratios (64,256) on the reconstruction error of the autoencoder and the rollout error
of the generative model. The NRMSE for Rayleigh-Bénard convection is reported in Table [6] A
larger compression ratio results in a smaller latent space, increasing the reconstruction error of the
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autoencoder. Despite having nearly double the reconstruction error, generative models with more
aggressive compression only have a modest increase in rollout error, which is consistent with Rozet
et al.[(2025)).

= AE M SI

64 0.0252 0.619 0.605
256 0.0457 0.649 0.622

Table 6: Comparison of NRMSE for models using different compression ratios (=) on Rayleigh-
Bénard Convection. Reconstruction error is reported for the autoencoder (AE), while rollout error
is reported for the generative models.

Deterministic/Probabilistic Latent Models We compare training a deterministic, latent neural
solver (LNS) (Li et al.,|2025a)) against latent generative models in Table[/} LNS is trained to regress
future latent states with an MSE loss, rather than a denoising loss. During inference, LNS makes a
single future prediction, whereas generative models need to iteratively sample future states. Similar
to prior works, we find that probabilistic training is more beneficial than deterministic models in
latent space, although the benefit is not as large as previously reported (Rozet et al., 2025)).

Model: LNS FM SI
NFEs: 1 2 2

NRMSE 0.623 0.570 0.548

Table 7: Comparison of latent neraul solver (LNS) and generative models on Kolmogorov Flow.

Number of Sampling Steps We compare the effect of using different samplers and numbers of
sampling steps for stochastic interpolant models in Table[§] After training on the Kolmogorov Flow
dataset, models are either sampled with an Euler sampler or Euler-Maruyama sampler to solve the
probability flow ODE or SDE. In general, we find that ODE-based samplers require fewer steps
to obtain good performance. Furthermore, performance tends to increase consistently with more
sampling steps, although these performance gains will saturate at some point.

Sampler: Euler Euler-Maruyama
NFEs: 2 5 10 10 20 50
NRMSE 0.560 0.548 0.537 0.555 0.535 0.534

Table 8: Comparison of different samplers and number of sampling steps for SI models on Kol-
mogorov Flow.

Noise Coefficients for Interpolants The forward and reverse processes for stochastic interpolants
are set by Equation or z(t) = a(t)rg + B(t)xy + v(t)z. We define y(t) = (1 — t)\/t as the
noise coefficient, where o controls the scale of the noise in the stochastic process. More noise can
encourage mixing between zy and x;, however, too much noise can make the stochastic process
more difficult to learn or sample from. We can see this in Table 0] where SI models are trained to
learn stochastic processes with different noise scales ¢ and are sampled with an Euler sampler using
2 steps. In general, o can be tuned to find an optimal amount of noise for the stochastic process.

o: 0.1 0.5 1 3
NRMSE 0.702 0.632 0.609 0.803

Table 9: Comparison of different o coefficients for SI models in Kolmogorov Flow. o scales the
amount of noise in the stochastic process.
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Surface Variables (8) Atmospheric Variables (5)  Forcing Variables (6) Pressure Levels (13)
Iwe of water evaporation (evap) specific humidity (hus) land sea mask (1sm) 50, 100, 150, 200,
surface runoff (mrro) air temperature (ta) surface geopotential (sg) 250, 300, 400, 500,
Iwe of soil moisture content (mrso) eastward wind (ua) surface roughness length (z0) 600, 700, 850, 925,
log surface pressure (pl) northward wind (va) TOA Incident Radiation (rsdt) 1000

12h accumulated precipitation (pr_-12h) geopotential (zg) sea ice cover (sic)

6h accumulated precipitation (pr_6h) sea surface temperature (sst)

air temperature 2m (t 2m)
surface temperature (t s)

Table 10: Climate variables grouped into surface, atmospheric, and forcing variables. Additionally,
the 13 pressure levels are reported.

C DATASET INFORMATION

Kolmogorov Flow In vorticity form, Kolmogorov Flow can be described by the PDE (Koehler
et al., [2024):

9w
ot

The leftmost term represents vorticity convection, controlled by the coefficient b. Diffusion is con-
trolled by the viscosity v and a drag term Aw is introduced. Lastly, a sinusoidal forcing term is in-
troduced, controlled by the magnitude k. Coefficients are kept constant throughout data generation.
Initial conditions are uniformly sampled from a truncated Fourier series. While not straightforward
to write in 2D/3D, in 1D the series is written as:

=-b <[11} ® V(A_lw)) Vw+vV - -Vw+ Iw — kcos(k%ry) 5)

5
2
wo = ; ay sin(k%x + é) 6)

where L is the length of the domain and terms ay, € [—1, 1] and ¢, € [0, 27] are uniformly sampled.
This results in a uniform distribution for the initial states of the system, which does not dissipate
over time due to the sinusoidal forcing.

Rayleigh-Bénard Convection The equations for Rayleigh-Bénard Convection are governed by a
buoyancy and Navier-Stokes equation (Ohana et al., [2025):

b
a—/ﬁAb——u-Vb @)
@—Vu—&-Vp—beZ:—u-Vu )

ot

The thermal diffusivity « and viscosity v are determined by the Rayleigh and Prandtl numbers:

1
Rayleigh\ 2
yleig > ©)

k= (Rayleigh x Prandil) "%, v = ( Prandtl

Rayleigh and Prandtl numbers are varied throughout the training and validation data. In particular,
Rayleigh € {1e6, 17, 1e8, 19, 110} and Prandtl € {0.1,0.2,0.5, 1,2, 5,10}. Furthermore, initial
conditions for the buoyancy are generated by b(t = 0) = (Ly—y) x dbo+y(Ly—y) X €, where dbg is
sampled from {0.2,0.4,0.6,0.8,1.0} and e is sampled from a Gaussian scaled to 10~3. This results
in a linear buoyancy gradient in the vertical direction with a small perturbation. All other fields are
initialized to zero. Therefore, the initial conditions can be approximated by a categorical distribution,
but as the system evolves, each sample quickly diverges and produces unique trajectories.

PlaSim Simulations are solved using PlaSim, which assumes a set of governing equations for
planetary climate based on the conservation of mass, momentum, and energy. Additionally, many
variable-specific equations are used. A full description of the climate variables and the pressure
levels used in the climate simulation dataset is given in Table[I0] There are 8 surface variables and
5 atmospheric variables at 13 pressure levels, resulting in 73 prognostic variables. Additionally, 6
constant or yearly constant forcing variables are included as extra inputs.
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Training Objective Sampling Procedure
DDPM L = |le — eg (vVarzo + VI —ar e, t) || Te-1 = iy (ﬂct - \}%—;t ee(ﬂfM)) +oez
xr — /1 — apeq(x, t)
5 Tt—1 = /Ot—1
DDIM L = |le — eo (varmo + VI — are, t)|| var
+ /1 — a1 — 02 eo(me,t) + orz
EDM £ = |Do(x + 2z, 0) — z|2 Tepar =+ 2 (@ — Do(x,0(1))) At (Buler)
TSM L= ||e—eg(\/&two+\/1—&t €, t)”2 xo = (¢ — V1 — dpeg(we, t))/+/ay (1-step)
FM L=|(x—2)—ve((1 —t)z +ta,t)|? Terar = ¢ + v (xe, )AL, xo ~ N(0, ) (Euler)
. 2
SI L= H(I(mo, 21, t) + 4(t)z) — be(I(z0, 1, t) +~(t)2, t)” Tepar = ¢ + be(ze, )AL, 2o ~ po (Euler)

Table 11: Training and sampling for diffusion, flow matching, and stochastic interpolant frame-
works.

D ADDITIONAL METHODS

D.1 MODELS

Generative Models DDPM, DDIM, TSM, and EDM models use some variant of the stochastic

process:

T = Vaure + V1 —awz, 2z~ N(0,1I) (10)
which noises data o over some time ¢ € [1,T]. While x, approaches z as ¢ — oo, this does not
happen in finite time. This can cause inconsistencies when not using enough timesteps, and indeed,
DDPM/DDIM models usually train with a fine discretization 7' = [100, 1000] and require careful
choice of noise schedule «;. To remedy this, flow matching uses the following stochastic process:

xp=txo+ (1 —t)z, z~N(0,]I) (11)

where ¢ € [0,1]. This process is exact at the endpoints ¢ = {0, 1}, where xg is considered to be
fully noised and x; is considered to be denoised. Under a linear choice of «(t), 3(t), stochastic
interpolants use the same stochastic process if the source distribution zq is chosen to be a Gaussian.
However, admitting arbitrary source and target distributions allows stochastic interpolants to use the
stochastic process:

zy = (1 —t)zo + try + o(1 — t)Vtz, 2z~ N(0,1) (12)

where we make the appropriate choices for a(t), 5(¢),y(t). In practice, to train generative models
to learn and sample these stochastic processes, we use training objectives and sampling algorithms
detailed in Table[TTl

We make a few implementation choices to stabilize the training and sampling of stochastic inter-
polants. We find that antithetic sampling (Albergo et al., |2023) helps to reduce the variance of the
training loss and improves model performance. When 5(¢) is singular, the variance of the loss can
be infinite at the endpoints as ¢ — 0 or £ — 1. Antithetic sampling combines loss functions for the
two stochastic processes " = I(xg,z1,t) +v(t)z and x; = I(x¢,1,t) — ¥(t)z to jointly learn
the drift for both ;" and x; . This results in a finite variance as ¢ — 0 or ¢ — 1. Furthermore,
following |Chen et al.[(2024), the first sampling step for the EM sampler is analytically computed to
avoid potential numerical singularities in the probability flow SDE:

Tar = xo + Atbg(z0,0) + VAto(1 —t)z (13)

Model Architectures For a given task (KM, RBC, Climate), the architecture is kept constant
across all autoencoders and diffusion backbones. Model sizes for KM are 21M for FNO, 20.5M
for AE, and 57.9M for DiT backbones. Model sizes for RBC are 68.4M for FNO, 57.3M for AE,
and 232M for DiT backbones. Model sizes for PlaSim are 218M for the SENO, 89.5M for AE, and
313M for DiT backbones.

For autoencoders, we rely on convolution to process and downsample/upsample inputs. At each
layer a standard Residual block processes inputs; at downsample/upsample layers PixelShuffle is
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used. Latent vectors are constrained either with a saturation function z = \/ﬁ, where b = 5,
4

or a small KL regularization loss.

For the DiT backbone, the diffusion timestep ¢ is passed into the model with adaptive layer norm
(AdalLN) after sinusoidal embedding. For datasets with extra scalar information (Rayleigh/Prandtl
number, day of year/hour of day), it is added to the timestep embedding after sinusoidal embedding.
For additional fields (PlaSim forcing variables), they are embedded and passed into the model with
cross attention. Furthermore, every generative model is conditional since it is provided information
about the current state to sample a future state. To facilitate this, the noised state is concatenated
along the channel dimension to the current state as input to the DiT.

D.2 METRICS

Variance-Scaled RMSE Given a spatio-temporal data sample u € R™*"=*"v and a model roll-
out ug € R™*"=>"y the Variance-Scaled RMSE (VRMSE) is given by:

IS ||U(9(t)—u(t)||2 A
MSE = 14
VRMSE(u,uy) = ntg Tut) a0l + ¢’ [lu]]2 o E E [u(i, 5)1>  (14)
t=1 Y =1 j=1

The term € = 10~° is added for numerical stability. This metric scales the error by the variance of
the input sample, then averages over the prediction horizon n,. The metric is more representative
when nonnegative fields are present, as the more common Normalized RMSE (NRMSE) or Relative
L2 Error tends to down-weight these channels. Additionally, predicting the mean field will result in
VRMSE(u,u) =~ 1, which is a useful interpretation.

Spectral RMSE  Given a spatio-temporal data sample u € R™*"=*"v and a model rollout ug €
R™t*me X"y the DFT is used at each timestep to generate the power spectrum p(¢) and frequencies
k. The power spectrum is partitioned based on its frequency into three evenly log-spaced bins. The
SRMSE between the true and predicted spectra (p, py) for each bin is then calculated as:

SRMSE(u,ug) Z

15)

For inputs with multiple channels, the SRMSE is calculated for each channel separately, then aver-
aged.

Latitude-Weighted RMSE Latitude-weighted RMSE (IRMSE) is calculated at each lead time,
for each variable and pressure level separately. For a forecasted variable f;; € R™at*™on and
ground-truth oy € R™at*™en at level [ and time ¢, IRMSE is given by [Rasp et al.| (2024):

1 Niat Nion Sin eu — Sin 91
IRMSE = | ——— w(i)(fu(i,3) —ouli, 5))?, w(i) = - g
NiatMion ; ]; ( )( tl( ) tl( )) ( ) %Zilzl(Sin 9? —sin 9%)

(16)
For latitude weights w(3), i denotes the index of the discretized latitude, and % and 6! denote the
upper and lower bounds of the cell at latitude 7. Latitude weights are used to account for distortion
at the poles in an equiangular grid, which would otherwise over-emphasize predicted values near
the poles. Lastly, IRMSE is calculated for a given lead time (i.e., 10-day IRMSE) by initializing a
forecast at each day in the validation set and averaging across all forecasts for that lead time.

Climatological Biases Climatological biases involve averaging over a long rollout to evaluate the
consistency of a climate emulator. In particular, the 10-year bias is calculated for each variable and
pressure level by:

: 1
Blale—year = lRMSE(favg; Oavg)a favg = ; Z fl(t) (17)
t =1

where ny ~ 10 * 365 * 4, since a forecast is made every 6 hours for each day in 10 years. Note that
fi(t) € Rmatxnion | f € RMaet*Mon and IRMSE reduces over latitude and longitude.
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Continuous Ranked Probability Score Similar to IRMSE, CRPS is calculated at each lead time,
and for each variable and pressure level separately, however with the addition of M different ensem-
ble members. CRPS makes use of the latitude-weighted mean absolute error IMAE):

Niat Nion

IMAE = ———% "% " w(i)| fu(i, j) — ou(i, j)| (18)

nlatnloni 1j—=1

CRPS for a given lead time ¢, variable, and level [ is given by:

M M N
_ 1 (m) 1 (n)
CRPS”—MgllMAE(f” ,otz)—mmz:: nz::lMAE Y 9)

Intuitively, the first term penalizes deviations of the individual ensemble members from the ground
truth, and the second term encourages spread between ensemble members. To calculate the CRPS
for a given lead time, ensemble forecasts are initialized every three days for the validation year, and
CRPS values at each lead time are averaged for across each forecast. An ensemble size of 32 is used.

Spread-Skill Ratio The spread-skill ratio (SSR) is the ratio of the ensemble spread to the ensem-
ble skill. The spread is calculated for a given time, level, and variable as the square root of the
ensemble variance:

Niat Nion

Spreadtl = Z Z Uarm ftl ( 7])) (20)

i=1 j=1

where var,, calculates the variance over M ensemble members. The ensemble skill is given by the
RMSE of the ensemble mean:

M
_ 1 . .
fu=572 Fim 0 skilly = IRMSE(fu, ou) 1)

m=1

where fflm) € R™MatXMon jg an individual forecast for a variable at lead time ¢ and level . The SSR
is given by:
Spread,,

SSRy =
T TSkl

(22)
Calculating SSR for a given lead time is done similarly to CRPS, where SSR values for a lead time
are averaged across all ensemble forecasts made for the validation year. SSR values less than 1
indicate an under-dispersive forecast, where the ensemble fails to capture the full range of possible
outcomes, while values over 1 indicate an over-dispersive forecast, where the ensemble is overly
uncertain.

D.3 DISTANCE HEURISTICS

Background Considering each timestep of a PDE/climate trajectory as a distribution is not a com-
mon perspective, although it is often implicitly assumed when applying generative models to these
emulation tasks. As such, we seek to build some intuition on this perspective through a set of visu-
alizations, in Figures[TT]and

We use t-SNE to visualize samples from the Kolmogorov Flow or Rayleigh-Bénard Convection
datasets. This is purely for visualization and intuition, no claims about distances or distributions can
be made based on the plots. Interestingly, t-SNE can portray initial distributions based on what we
expect, since we know the distributions that are used to sample randomized initial conditions. Over
time, the initial distribution may be transported over time based on the PDE, which we visualize
both for all samples and a single trajectory. At each timestep, we don’t know this true distribution
or if it even exists, however, we have access to some of its samples. Can we quantify a distance
between two subsequent, empirical distributions? Since we can sample a Gaussian, can we quantify
a distance between a Gaussian and an empirical distribution at a given timestep?
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Figure 11: t-SNE visualizations for samples from Kolmogorov Flow. Left, A: We plot initial condi-
tions u(t = 0) from the entire dataset at after dimensionality reduction using t-SNE. As expected,
the initial distribution is roughly uniform as Fourier coefficients used for initial conditions are uni-
formly sampled. Middle, B: Samples from the entire dataset are plotted, where each sample can
be from a different initialization or timestep. Samples are colored by their timestep, where lighter
colors are later timesteps. Right, C: A single trajectory is enlarged and visualized. There is some
path that transports a single initial condition through time. As a whole, there may be a distribution
at each timestep that is transported through time.
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Figure 12: t-SNE visualizations for samples from Rayleigh-Bénard Convection. Left, A: We plot
initial conditions u(¢ = 0) from the entire dataset at after dimensionality reduction using t-SNE.
As expected, the initial distribution is roughly categorical, as initial condition coefficients db, are
sampled from {0.2,0.4,0.6, 0.8, 1.0}. Middle, B: Samples from the entire dataset are plotted, where
each sample can be from a different initialization or timestep. Samples are colored by their timestep,
where lighter colors are later timesteps. Although samples are instantiated at similar initial condi-
tions, chaotic mixing causes different instantiations to diverge. Right, C: A single trajectory is
enlarged and visualized. There is some path that transports a single initial condition through time,
although perhaps not easy to visualize. As a whole, there may be a distribution at each timestep that
is transported through time.
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Calculation Heuristics for calculating distances between distributions where we only have access
to samples exist (Bischoff et al.}[2024)), although their quality may be impacted by many factors. One
factor is the dimensionality of samples drawn from the considered distributions. High-dimensional
distributions are more challenging to work with and heuristics are less accurate, therefore we first use
a dimensionality reduction that preserves distances, based on the Johnson-Lindenstrauss Lemma.

Consider a set of n samples {x!, 22 ... 2"}, ' € R%, where d can be very large. In our case, this
can be a flattened sample «(t). We define a reduced dimension m < d and a random projection
matrix P € R™*<, where each entry is sampled from a normal Gaussian P;; ~ N(0,1). P

is additionally scaled to obtain P = \/%P. Consider a Euclidean distance on vectors ||z||s =

d . .
>-i_, x2. Given some error € if m = O( loegg" ), then:

(1 -9z’ = /|3 < [|[Pa’ — Pad|[3 < (1+)lle’ —a7||3 (23)
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Fortunately, the choice of m does not depend on the original dimension d, which is beneficial if
d is large. We can therefore leverage this to preserve pairwise Euclidean distances between x?, 27
while reducing the dimensionality of the samples. This is assuming we have enough samples and
choose modest error bound €, which we set to e = 0.2. After projecting each sample to a lower
dimension, we use implementations from |Bischoff et al.[|(2024)) to calculate the Sliced Wasserstein
Distance, Classifier 2-Sample Test, and Maximum Mean Discrepancy between distributions, where
each distribution is represented by n samples at a given timestep. Additionally, we perform 5-fold
cross validation by taking 80% of the total samples at each timestep as the empirical distribution.
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