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Abstract—End-to-end imitation learning offers a promising
approach for training robot policies. However, generalizing to
new settings—such as unseen scenes, tasks, and object in-
stances—remains a significant challenge. Although large-scale
robot demonstration datasets have shown potential for inducing
generalization, they are resource-intensive to scale. In contrast,
human video data is abundant and diverse, presenting an
attractive alternative. Yet, these human-video datasets lack action
labels, complicating their use in imitation learning. Existing meth-
ods attempt to extract grounded action representations (e.g., hand
poses), but resulting policies struggle to bridge the embodiment
gap between human and robot actions. We propose an alternative
approach: leveraging language-based reasoning from human
videos - essential for guiding robot actions - to train generalizable
robot policies. Building on recent advances in reasoning-based
policy architectures, we introduce Reasoning through Action-free
Data (RAD). RAD learns from both robot demonstration data
(with reasoning and action labels) and action-free human video
data (with only reasoning labels). The robot data teaches the
model to map reasoning to low-level actions, while the action-free
data enhances reasoning capabilities. Additionally, we will release
a new dataset of 3,377 human-hand demonstrations compatible
with the Bridge V2 benchmark. This dataset includes chain-of-
thought reasoning annotations and hand-tracking data to help
facilitate future work on reasoning-driven robot learning. Our
experiments demonstrate that RAD enables effective transfer
across the embodiment gap, allowing robots to perform tasks
seen only in action-free data. Furthermore, scaling up action-
free reasoning data significantly improves policy performance
and generalization to novel tasks. These results highlight the
promise of reasoning-driven learning from action-free datasets
for advancing generalizable robot control. Website: here.

I. INTRODUCTION

Training visuomotor policies via imitation learning is an
appealing paradigm for robot control. However, an outstand-
ing challenge for current end-to-end learning methods is to
generalize to new settings beyond their training data, such as
new scenes, new task instructions, and new object instances.

While there are promising signs of scaling up datasets being
the solution, we simply have not reached the scale needed for
comprehensive generalization, and one might argue that col-
lecting data at such scale is practically infeasible (1; 2; 3; 4).

On the other hand, many see tapping into human video
datasets, consisting of humans directly performing tasks as
opposed to collecting robot data, as the answer (5; 6; 7).
This data is cheap to collect and already present at scale in
Internet datasets. However, human videos lack action labels,
making supervised learning methods like imitation learning
very difficult. Some works tackle this challenge by extracting
grounded action-like representations from video as labels for
imitation learning, for example hand poses or object affor-
dances (8; 9; 10; 11). However, extracting grounded actions
from human videos often makes assumptions about the scene
and the embodiment gap (e.g., how the hand pose maps to the

robot action or relying on paired human and robot data) which
can limit their usefulness in practice.

Instead of extracting grounded actions from videos and the
restrictive assumptions that come with it, we ask: is there any
other behavioral information – that still directly influences
robot actions – that we can extract from human videos, and
more generally action-free data? Our insight is that human
videos contain vast amounts of higher-level reasoning that
guide robot action prediction, and this reasoning information
can be captured via language.

We introduce our method, Reasoning through Action-free
Data (RAD), a robot policy that leverages reasoning traces
extracted from action-free data. RAD trains a large transformer
model on a mixture of robot demonstration data with both
reasoning and robot action labels, and action-free (human
video) data labeled with just reasoning. The robot data teaches
the model to autoregressively go from reasoning to low-level
actions, while the action-free data augments the reasoning
knowledge, thus boosting the reasoning capabilities of the
model. We label reasoning traces by leveraging pretrained
vision-language models such as Gemini with hindsight knowl-
edge as done in prior work (12).

We experimentally validate that learning from action-free
reasoning data transfers well across the embodiment gap
– showing 20% better performance on tasks only seen in
the action-free data over models not finetuned with RAD.
Additionally, we demonstrate that having larger amounts of
action-free reasoning data improves the capacity of the model
to generalize in language space to completely unseen tasks
with RAD outperforming baselines by 15% on generalization
tasks (that have never been seen in robot or human data).

II. RELATED WORK

Recent works have explored the use of pre-trained Vision-
Language Models (VLMs) as backbones for Vision-Language
Action Models (VLAs) which directly predict low-level robot
actions. For example, RT-2-X (2) fine-tunes the 55B-parameter
PaLI-X VLM (13) on the Open-X Embodiment dataset (2), and
OpenVLA (3) uses a 7B-parameter Llama 2 LLM backbone
with a vision encoder based on DINOv2 (14) and SigLIP
(15). The promise of VLAs for manipulation is to build
off of generalization of VLMs which have been trained on
Internet-scale vision-language data. More recently, several
works have studied the role of more fine-grained language
such as “language motions” as intermediate representations
to predict (16) or explicitly performing multiple steps of
reasoning over language as well as other visually-grounded
features such as bounding boxes as a way of guiding large
pretrained policies (12).

https://rad-generalization.github.io


Fig. 1: RAD outperforms baselines where human video data was trained on, but no new robot data was provided. RAD-A is
RAD trained only on human video data for the given axis of generalization. ECoT-GT is finetuned on the same data as RAD,
but only using human hand locations (and not the full reasoning data).

A large number of prior works in imitation learning for
robotics focus on learning from demonstrations collected via
teleoperation by expert operators. This method of collecting
data is costly, so a number of prior works have investigated
ways to leverage existing data sources of human videos to
improve robot policy learning — for example, by pre-training
visual representations (17; 18; 19), learning reward functions
(20; 21; 22). Several works learn priors from human video
datasets and/or in-domain human videos (23; 24; 6; 10) or
aligning paired/unpaired examples of human videos and robot
demonstration videos (25; 26; 27; 28) or simulations (29).
These works are still fundamentally limited by the quantity of
robot demonstrations. Another line of work leverages interme-
diate representations for predicting robot actions downstream,
but make assumptions about the human hand behavior, which
is not necessarily the same as the robot (30; 8). Our work goes
beyond existing methods that rely on generating intermediate
representations for action predictions by generating detailed
reasoning steps about human video demonstrations.

III. METHOD

In this section, we will describe our problem setting and lay
out our assumptions. As an overview, RAD involves two major
steps. First, annotate action-free data with language reasoning
(??). Second, train a reasoning-based policy on a combination
of robot demonstration data with both actions and reasoning
chains and action-free data with only reasoning chains (??).

In multi-task imitation learning, we are given a dataset
D = {(o1, a1, g1), . . . (oN , aN , gN )} consisting of tuples of
observations o ∈ O, actions a ∈ A, and task specifications
g ∈ G which are often formulated in language. The objective
is to learn the expert action distribution P (a | o, g) conditioned
on an observation o and a task specification g.

We now define the objective of reasoning-based multi-task
imitation learning. We assume there exists some chain of C
steps of intermediate language reasoning that links an obser-
vation o and action label a, which we denote as (l1, . . . , lC).
We discuss how these reasoning chains are generated in ??.
The distribution of each reasoning step lj only depends on
the preceding reasoning steps (l1, . . . , lj−1) as well as o and
g. The distribution of actions a depends on all reasoning
steps (l1, . . . , lC) and the observation o and task g. We

define the objective of the reasoning-based multi-task imitation
learning problem as learning the expert joint reasoning and
action distribution P (a, l1, . . . , lC | o, g). In this setting, each
(oi, ai, gi) tuple in D is augmented with a reasoning chain
(l1i , . . . , l

C
i ). We wish to learn a distribution Pθ parameterized

by θ that maximizes the log-likelihood of the reasoning and
action data in D:
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Our key insight in RAD is that action-free datasets—such
as human video data, which is often easier to collect than
robot demonstrations—can provide additional supervision for
the joint action-reasoning distribution Pθ which can in turn aid
generalization. Specifically, we assume access to some action-
free data D̃ consisting of M samples of (oĩ, gĩ, lĩ

1
· · · lĩ

Ci
).

Here, sample i includes the first Ci ≥ 1 steps of language
reasoning, where Ci can vary between samples. For example,
we might have varying levels of confidence in our full reason-
ing labeling pipeline for different subsets of our action-free
data – some samples might only be confident in the higher
level reasoning steps (lower Ci) for example due to a large
embodiment gap, while others might have high quality lower
level reasoning (higher Ci). Importantly, this flexibility of
reasoning labeling could enable our framework to incorporate
vast scales of varying quality and embodiment reasoning data
to improve each step of the reasoning process independently
from action prediction.

In this work, we optimize the objective above along with
an auxiliary objective L̃reasoning(θ) for the action-free data,



defined similarly as follows:

L̃reasoning(θ) =
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i
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Note that since sample i contains the first Ci reasoning
steps, we have enough information to model each of the Ci

reasoning steps conditioned on previous reasoning steps and
the current observation and task.

IV. EXPERIMENTS

In this section, we evaluate how RAD enables transfer from
human videos to robot policies and generalization beyond
settings in the human videos or robot demonstration data.
Specifically, we seek to answer the following questions:

Q1 – Human-to-Robot Transfer: Can RAD enable learning
new tasks seen only in the human video data and not the robot
demonstration data?
Q2 – Reasoning Generalization: Does reasoning in RAD
enable generalization to novel tasks beyond both the robot
demonstration data and human video data it was trained on?
Q3 – Cross-Environment Transfer: Can RAD learn new
tasks from human video data in out-of-domain environments?

A. Evaluating Generalization

Generalization Tasks: We evaluate RAD across a variety of
generalization tasks. These tasks comprise three main axes of
generalization:

1) Compositional Generalization: In this axis, the objects,
tasks, and scenes are all seen in pre-training data (Bridge
V2 data), but not in those particular configurations. For
example, pizza and salt both exist in Bridge V2, but salt
is never placed on the pizza.

2) New Object Generalization: This axis introduces un-
seen objects for known behaviors (e.g., pick cup → pick
plushie).

3) New Scene Generalization: This axis requires gener-
alizing to novel backgrounds and distractor objects for
seen tasks; for example, picking up a known object with
a pot in the background.

Note that the Compositional Generalization axis tests the
model’s ability to interpolate the training data, while New
Object and New Scene axes test the model’s ability to extrap-
olate from the training data. Exact tasks for each axis can be
found in Section V-F.

Methods: To test the efficacy of reasoning in learning from
human video data, we evaluate the following models in our
generalization scenarios.

1) Embodied Chain-of-Thought (ECoT) (12) A state-of-
the-art action reasoning model trained on Bridge V2, but
without any human video data.

2) ECoT w/ Gripper Tracking (ECoT-GT): ECoT fine-
tuned on the same human video data as RAD, but only
generates the GripperPosition portion of the reasoning
chain. This is analogous to how prior work learns

from extracted pose information only in human videos,
but does not extract higher level language reasoning
(30; 10; 9).

3) RAD (Ours): ECoT finetuned on the full chain of
reasonings generated from human video data.

4) RAD-A (Ours): Same as RAD, but trained on only
human videos from one axis of generalization at a time
(the axes are described in Section IV-A).

B. Can RAD enable transfer from human-to-robot embodi-
ments?

First, we assess if RAD can learn accurate reasonings
and robot actions on new tasks that are present only in
human video demonstrations. We train the axis-specific models
(RAD-A) only on human video data for that axis (8-12 tasks
with a total of 320-500 videos per axis). We evaluate these
axis-specific models against zero-shot ECoT, as well as RAD
(trained on human video data from all three axes) and ECoT-
GT models trained on our full human video dataset.

In Fig. 1, we find that despite having no new robot demon-
stration data for these new tasks, RAD-A achieves consistently
higher success rates than zero-shot ECoT and ECoT-GT across
all areas of generalization (Q1).

Compositional: On compositionally new tasks, RAD-A out-
performs ECoT by 23% and ECoT-GT by 20%. RAD out-
performs ECoT and ECoT-GT by 17% and 13% respectively.
Qualitatively, RAD models demonstrates significantly better
reasoning capability, particularly in the second step of pick
place tasks (such as placing the object of interest in the desired
location).

New Object: On tasks with new objects, RAD and RAD-
A both improves on ECoT and ECoT-GT by 25% and 20%,
respectively. RAD models demonstrate substantially better
ability to reason about grasp points on new objects, such as
moving towards the sides of large cups instead of the middle.

New Scene: RAD models also substantially outperform base-
lines on novel scenes (containing distractors and other scene
modifications). RAD-A outperforms ECoT by 12% and ECoT-
GT by 15%. The full RAD model had stronger performance,
outperforming ECoT by 27% and ECoT-GT by 30% - poten-
tially due to improves ability to ignore distractors from the
larger dataset it was trained on. Reasoning traces on RAD
models also appeared to be more accurate, with ECoT often
becoming distracted and generating non-sensical reasonings.
These results indicate that augmenting chain-of-thought mod-
els with reasoning from human video data improves these
models’ ability to reason about and infer robot actions on
previously unseen task configurations.

C. Can RAD train more generalizable policies?

Ultimately, training on large datasets of human video data
should enable VLAs to generalize not only to human demon-
strated tasks, but also to completely unseen scenarios. To
explore if RAD enables training more general models, we
evaluate our model against ECoT on 10 novel tasks (unseen in



Fig. 2: RAD compared to ECoT for tasks contained in neither human or robot data. RAD shows improved performance across
all three axes of generalization.

both human and robot data) comprising all three generalization
axes. Results are presented in Fig. 2.

Compositional: On compositionally novel tasks, RAD out-
performs ECoT by 5%. RAD reasoned better than ECoT over
multi-step tasks, such as knowing where to place the salt after
picking it up.

New Object: RAD substantially improves performance on
tasks with unseen objects, such as bowls and large cups,
despite not seeing such objects in human or robot training
data. RAD achieves 30% higher success compared to ECoT.

New Scene: In novel scenes (environments with large distrac-
tors in the scene, such as cloth, pots, and a large plushie), RAD
reached 18% higher success rate than ECoT. Qualitatively,
ECoT struggled to reason about the new scene and would
often generate poor reasonings and execute seemingly random
actions, whereas RAD generated correct reasoning which
informed downstream action prediction.

This indicates that reasoning in RAD enables better gener-
alization to a variety of unseen tasks, without training on any
new human or robot data (Q2).

D. Can RAD leverage data from new environments?

To truly leverage large-scale video data, generalist robot
policies must learn from demonstrations in diverse scenes.
Thus, we first train RAD with human video data in unseen
environments to see how well it can incorporate this data,
and then we compare its performance to RAD trained on in-
distribution human video data (i.e., same environment for both
human video and robot evaluation).

Human Videos from New Environment: We seek to un-
derstand how RAD responds to human video data collected
outside the Bridge V2 environment. We first collect data for
two unseen tasks in a new tabletop setup (unseen in Bridge
V2 data). Then, we evaluate models trained on this new
enviroment data in the original Bridge Toy Sink environment.
In Table I, we see that models trained on this data outperform
ECoT by 16% and ECoT-GT by 13%. Similarly to Sec-
tion IV-B and Section IV-C RAD models showed significantly
better ability to reason about grasp points, such as where to

pick up the controller, despite the data being in a different
environment (Q3).

In-distribution vs. Out-of-Distribution Human Data: Next,
we assess how RAD performance scales with increased data
for the same tasks collected in-distribution (in the miniature
Toy Sink setup) versus out-of-distribution (various real world
kitchen and office environments). To do so, we collected 100
additional demos for the pick up the tape task in the Toy
Sink setup. We also collected 250 out-of-domain demos for
pick up the tape in novel environments such as real kitchens,
countertops, and desks. Then, we trained RAD on two different
data mixtures:

1) The original RAD data mix (which already had 40 “Pick
up the tape” demos) + in-distribution data and

2) The original RAD data mix + out-of-domain data.

Results for both mixtures are shown in Table II. We find
that RAD models trained on both in-domain (+30% success)
and out-of-domain data (+25% success) show improved per-
formance over the original model (Q3). Qualitatively, RAD
models were better able to reason about when to bring the
gripper to the level of the tape, with ECoT models often mov-
ing to low and knocking over the tape, which is abnormally
tall with respect to objects in Bridge V2.

V. DISCUSSION

In this work we present RAD, a new way to train generalist
robot policies from human video data. RAD learns to predict
reasoning, which can be labeled on both robot and human
video data. We find that RAD enables VLAs to cross the
embodiment gap, and to learn tasks represented in only human
video data. Models trained with RAD are also able to gener-
alize to completely unseen tasks (not present in either robot
or human data). Finally, we find RAD responds positively
to data from out-of-domain environments, enabling models
to learn new tasks from environments completely separate
from the target domain. These results demonstrate that RAD
is a promising step towards training generalist robot policies,
laying the groundwork for models that can leverage both robot
data and large-scale human video data.
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APPENDIX

We outline the dataset collection and reasoning generation
procedure in Section V-A, Section V-B, Section V-C, and
Section V-D. The models, training procedure, and baselines
are described in detail in Section V-E. Finally, Section V-F
provides examples of results and description of reported suc-
cess rates.

A. Reasoning Steps in RAD

While our setup can in principle work with different for-
mulations of language reasoning steps, we instantiate our
algorithm with the following reasoning steps from prior work
(12):

• TaskPlan (l1): describes a list of subtasks to achieve g.
• SubtaskReasoning (l2): reasons about which subtask

currently needs to be executed in the plan.
• Subtask (l3): predicts the subtask that currently needs to

be executed.
• MoveReasoning (l4): reasons about the motion needed to

achieve the subtask in the scene.
• MovePrimitive (l5): predicts a movement primitive in

language.
• GripperPosition (l6): predicts the pixel position of the

end-effector.
• VisibleObjects (l7): predicts the bounding box coordi-

nates of objects in the scene.
• Action (a): predicts the low-level robot action as an end-

effector position delta.
We note that these reasoning steps trace through in-

formation at an increasing amount of physical and spa-
tial groundedness—beginning with high-level scene reason-
ing over tasks and subtasks, transitioning to reasoning over
language motions, followed by spatial information about the
gripper and objects, and concluding with the low-level robot
action. We take advantage of this fact in designing a pipeline
to label reasoning in action-free data, as we describe in the
following section.

B. Labeling Reasoning in Action-free Data

In order to construct D̃—our dataset of observations, goals
and action-free reasoning—we need to generate labels for
the reasoning steps above from human videos. Our pipeline
is similar to the automated procedure used by Embodied
Chain-of-Thought (ECoT) (12) for generating reasoning over
robot demonstrations, with some key modifications to han-
dle human videos. To obtain reasoning labels for robot
demonstrations, ECoT first generates GripperPositions and
VisibleObjects tags using off-the-shelf object detectors to
obtain bounding boxes. Then, it extracts MovePrimitive (e.g.
“move to the left”) directly from actions using an automated
heuristic. Conditioned on these more grounded reasoning steps
(l5, l6, l7) and the image observation o, it queries Gemini (31)
to label the prior reasoning steps, from TaskPlan through
MoveReasoning (l1, . . . , l4).

In the action-free setting with human videos, we note that
we can still extract high-level reasoning with Gemini, as well

as extract VisibleObjects with off-the-shelf object detectors.
However, generating the more action-grounded reasoning steps
is challenging: we can no longer extract MovePrimitives
or GripperPositions automatically because we lack explicit
action labels. In order to overcome this, we extract the
MovePrimitives and GripperPositions using HaMeR (32),
a hand keypoint and pose tracking method. Given these
predictions, we can extract the MovePrimitives from changes
in the hand pose information: first, we study each axis of the
change in hand poses for each frame; then, we label the move
primitive based on the dominant axis of motion. We find that
this works reliably for tracking gripper and positional move-
ment primitives, but is not as reliable for detecting rotational
movement primitives. We outline this labeling procedure in
Fig. 3.

C. Training on Partial Reasoning Chains

To train on mixtures of demonstration and action-free data,
we use the ECoT and OpenVLA (12; 3) architecture, which
trains a pre-trained VLM transformer with 7B parameters
to predict sequences of language reasoning and then action
tokens. This model is pretrained on Internet-scale vision-
language tasks, such as bounding box detection or object lo-
calization. Thus, it benefits from a strong vision and language
priors. With ECoT and OpenVLA, it is then further trained on
robot demonstration data, and in the case of ECoT, predicts
language reasoning tokens prior to action tokens. In RAD, we
reuse this paradigm for the robot demonstration data, but for
the new action-free data, our “labels” for training contain only
reasoning as described in Section V-B.

D. Dataset Details

Data Collection: Our main human video data collection was
on the Bridge V2 Toy Sink setup. We aligned one camera
based on the original Bridge V2 scene. We also set up a second
camera from directly behind the WidowX gripper to better
track hand movement as seen in Fig. 4. Example tasks are
shown in Fig. 5. We used HaMeR to track the hand using the
secondary camera perspective. We used the average location of
the thumb tip and index finger tip points tracked by HaMeR
as the gripper location. Based on the delta gripper position
between frames, we characterized every frame as “stop”,
“move forward”, “move backward”, “move left”, “move right”,
“move up”, or “move down” movement primitives. We used
the average distance between the thumb tip and index tip to
determine “close gripper” and “open gripper” primitives. For
reasoning generation on the human videos, we followed the
the pipeline of (12), but used this HaMeR tracking in place
of proprioception and SAM to generate movement primitives
and gripper locations.

Data Mixtures: For RAD-A models in Section IV-B we col-
lected 392 demonstrations for the compositional generalization
dataset, 304 demonstrations for the new object dataset, and 280
demonstrations for the new scene dataset. The full RAD model
as well as ECoT-GT model were both trained on all three of



Fig. 3: RAD generates reasonings on both human and robot data using a suite of pretrained models. Scene descriptors and
object bounding boxes for both human and robot data are generated using Prismatic VLM and Grounding DINO. While SAM
and proprioception can be used to generate movement primitives for robot data, RAD relies on HaMeR to track human hand
data for primitive generation. For both data types, the scene descriptions, bounding boxes, and movement primitives (as well
as actions for robot data) are synthesized by Gemini into reasoning data in natural language. These reasonings are tokenized
and fed into a mixed dataset containing both human and robot data for co-finetuning.

Fig. 4: The main Bridge V2 perspective (right) versus the
secondary perspective used for hand tracking (left).

these datasets as well as 640 additional demos to make 1616
total demonstrations.

Data for Table I was collected from two new tabletop
environments as shown in Fig. 6. Each task in Table I had
40 total demos collected. For Table II we collected 100
additional demos in the Toy Sink setup for the “in-distribution”
evaluation. For the “OOD” data, we collected 50 demos from
5 different scenes as show in Fig. 7.

E. Training Details

RAD uses the Prismatic VLM [35] architecture from Open-
VLA (3), which fuses pre-trained SigLIP (15) and/or DinoV2
(14) features for the visual encoder, and a LLaMA 2 7B (33)
language backbone. All models are fine-tuned to convergence
with a learning rate of 2e-4, a LoRA batch size of 2, and
anywhere from 2 to 8 GPUs (L40s or A40). Training of the
ECoT-GT baseline is the same as RAD except the loss term
for the stop token is omitted and we also adjust the query
prompt from ”What action should the robot take to [task]?”
to “Where is the robot hand in the image?”.

F. Results

Real-World Environments: We use a 6-DoF WidowX robot
arm for our experiments. We perform all evaluations in Sec-
tion IV-B and Section IV-C on the Toy Sink setup from (34),
to ensure fair comparison with existing pre-trained models. All
human video data for Section IV-B and Section IV-C was also
collected in the Toy Sink setup (1616 demonstration videos),
using both the standard Bridge V2 camera setup, as well as



Fig. 5: Example human video tasks collected.

Fig. 6: Task demonstrations collected in environments outside of Bridge V2 to assess how RAD responds to data from different
types of scenes.

Fig. 7: Real world environment data RAD is trained with for Section IV-D.

an additional camera for better hand tracking. Notably, the
Bridge V2 setup is comprised of mostly miniature toy replicas
of real world objects such as small kitchen supplies, blocks,
and home supplies. Therefore, we also seek to assess how
RAD responds to data from real-world human environments,
and learns to interact with realistically sized objects. We thus
collect data in two additional environments: a plain tabletop
and a cluttered desk, as well as various real home and kitchen
environments. This data was used to assess how RAD responds
to data from unstructured environments in Section IV-D.

Evaluation Criteria: Every task was evaluated 10 times.
Objects were randomly placed throughout the scenes in a

different spot for all 10 trials. For pick and place tasks, partial
credit (0.5) was given for successfully picking up the object,
but placing in the wrong location. For pick objects, no partial
credit was given except for the “pick up the controller” task,
which had an exceptionally high payload. Thus partial credit
was given for grasping the object, even if the object slipped
out of grasp upon being lifted.



Fig. 8: Example tasks for compositionally new tasks (left), new objects (middle), and new scenes (right).



TABLE I: Cross-Environment Transfer

Task Model Success Rate
pick up the cup ECoT 3/10

RAD 6/10
ECoT-GT 4/10

put the sushi on the book ECoT 4.5/10
RAD 6.5/10
ECoT-GT 5/10

pick up the tiger ECoT 3/10
RAD 3/10
ECoT-GT 3/10

pick up the controller ECoT 2/10
RAD 3.5/10
ECoT-GT 2/10

TABLE II: Data Scaling

Data Model Success Rate
Original model (40 demos) ECoT 2/10

ECoT-GT 3/10
RAD 4/10
RAD-A 5/10

Same Environment (+100 ID demos) RAD 7/10
ECoT-GT 4/10

New Environments (+250 OOD demos) RAD 6.5/10
ECoT-GT 5/10
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