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ABSTRACT

Ensembling multiple models enhances predictive performance by utilizing the var-
ied learned features of the different models but incurs significant computational
and storage costs. Model fusion, which combines parameters from multiple mod-
els into one, aims to mitigate these costs but faces practical challenges due to
the complex, non-convex nature of neural network loss landscapes, where learned
minima are often separated by high loss barriers. Recent works have explored us-
ing permutations to align network features, reducing the loss barrier in parameter
space. However, permutations are restrictive since they assume a one-to-one map-
ping between the different models’ neurons exists. We propose a new model merg-
ing algorithm, CCA Merge, which is based on Canonical Correlation Analysis and
aims to maximize the correlations between linear combinations of the model fea-
tures. We show that our method of aligning models leads to better performances
than past methods when averaging models trained on the same, or differing data
splits. We also extend this analysis into the harder many models setting where
more than 2 models are merged, and we find that CCA Merge works significantly
better in this setting than past methods. 1

1 INTRODUCTION

A key strategy for improving the performance and robustness of machine learning models involves
utilizing multiple models which capture diverse, potentially complementary insights from data. En-
sembles, which combine outputs from several trained models through averaging or majority vote at
inference time, improve predictive performance but at the expense of increased memory and compu-
tational costs (Ho, 1995; Lobacheva et al., 2020). An alternative, model fusion, merges parameters
from multiple models into one by averaging them, reducing storage and computation costs but fac-
ing challenges in maintaining performance (Frankle et al., 2020; Stoica et al., 2024). Indeed, while
multiple good local minima can be found for a given model and task, these minima are most often
separated by regions of high loss (Frankle et al., 2020). Combining the parameters of trained models
is likely to lead to a high loss region in parameter space, thus destroying the learned features.

Linear mode connectivity which describes two optima connected by a linear low loss path in the pa-
rameter space (Frankle et al., 2020), provides a straightforward way of combining models through
linear interpolation of their parameters, the existing low loss path guaranteeing the preserving of
performance. However, LMC is very rare in practice and is not guaranteed even for networks with
the same initializations (Frankle et al., 2020), and it is only made rarer by NN’s permutation invari-
ance. Entezari et al. (2022) conjectured that most SGD solutions can be permuted in such a way that
they are linearly mode connected to most other SGD solutions. Many works in recent years have
provided algorithms for finding permutations that successfully achieve LMC between pairs of SGD
solutions, or at least significantly lower the loss barrier on the linear path between these solutions,
further supporting this conjecture (Singh & Jaggi, 2020; Peña et al., 2023; Ainsworth et al., 2023).

However, there is nothing inherently stopping NNs from distributing computations that are done by
one neuron in a model to be done by multiple neurons in the other model. Permutations would fail
to capture this relationship since they can only account for one-to-one mappings between features.
Furthermore, the focus of recent works has been mainly on merging pairs of models. However, if a

1Our code is publicly available at https://github.com/shoroi/align-n-merge
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similar function is learned by networks trained on the same task then it should be possible to extract
the commonly learned features from not only two but also a larger population of models.

Contributions Our main contributions are threefold: (1) We propose a new model merging
method based on Canonical Correlation Analysis (Sec. 3) which we will refer to as “CCA Merge”.
This method is more flexible than past, permutation-based methods and therefore makes better use
of the correlation information between neurons (Sec. A.1). (2) We compare our CCA Merge to past
works and find that it yields better performing merged models across a variety of architectures and
dataset. This is true in both settings where the models were trained on the same data (Sec. 4.1) or on
disjoint splits of the data (Sec. 4.3). (3) We take on the difficult problem of aligning features from
multiple models and then merging them. We find that CCA Merge is significantly better at finding
the common learned features from populations of NNs and aligning them, leading to lesser accuracy
drops as the number of models being merged increases (Sec. 4.2).

2 RELATED WORK

“Easy” settings for model averaging Linear mode connectivity is hard to achieve in deep learning
models (Frankle et al., 2020) and it seems that only models which are already very close in parameter
space can be directly combined through linear interpolation. This is the case for snapshots of a model
taken at different points during its training trajectory (Garipov et al., 2018; Izmailov et al., 2018),
multiple fine-tuned models with the same pre-trained initialization as is standard in NLP (Wortsman
et al., 2022; Ilharco et al., 2023; Yadav et al., 2023) or models merged every couple of epochs during
training as in federated learning settings (McMahan et al., 2017). We emphasize that these settings
are different from ours in which we aim to merge fully trained models with different parameter
initializations and SGD noise (data order and augmentations).
Merging multiple models Merging more than two models has only been explored thoroughly in
the “easy” settings stated above (Wortsman et al., 2022; Jolicoeur-Martineau et al., 2023; Yadav
et al., 2023). The only works focused on providing feature alignment methods which have also
applied these methods to the multiple model merging setting are Ainsworth et al. (2023) with their
“Merge-Many” algorithm and Singh & Jaggi (2020). However their results for merging multiple
models are mainly relegated to the appendix and focus on easy settings such as MLPs on MNIST or
they fine-tune the resulting merged model. We extend this line of work to more challenging settings,
using more complex model architectures, we report the merged models accuracies directly without
fine-tuning and make this a key focus in our work.
Model merging beyond permutations We note that the two model merging methods based on
optimal transport Singh & Jaggi (2020) and Peña et al. (2023) can also align models beyond permu-
tations. However, in Singh & Jaggi (2020) this only happens when the two models being merged
have different numbers of neurons at each layer, which is not the case for the majority of their exper-
iments. The method proposed by Peña et al. (2023) isn’t constrained to finding binary permutation
matrices but binarity is still encouraged through the addition of an entropy regularizer. For a more
complete account of related works we direct the reader to the Appendix.

3 USING CCA TO MERGE MODELS

Merging Models Consider two deep learning models A and B with the same architecture. Let
{LM

i }Ni=1 be the set of layers of model M ∈ {A,B} and let XM
i ∈ Rm×ni denote the set of

outputs of the i-th layer of model M in response to m given inputs. We assume XM
i is centered.

We are interested in merging the parameters from models A and B in a layer-by-layer fashion. In
practice, it is often easier to keep model A fixed and to find a way to transform model B such
that the average of their weights can yield good performance. Mathematically, we are looking for
invertible linear transformations Ti ∈ Rni×ni which can be applied at the output level of model B
layer i parameters to maximize the “fit” with model A’s parameters and minimize the interpolation
error. The inverse transform is then applied at the input level of the next layer to keep the flow of
information consistent inside a given model. With these transformations, σ being the non-linearity
and W, b being the weight and bias parameters, the output of the transformed layer i of B becomes:

xB
i = σ(TiW

B
i T−1

i−1x
B
i−1 + Tib

B
i )

After finding transformations {Ti}i=1 for every merging layer in the network we can merge the two
model’s parameters:

Wi =
1

2
(WA

i + TiW
B
i T−1

i−1) (1)
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Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a statistical method
aiming to find relations between two sets of random variables. Suppose we have two datasets X and
Y both of sizes n × d, where n is the number of instances or samples, and d is the dimensionality
or the number of features. Further, suppose that these datasets are centered so that each column has
a mean of 0. CCA finds vectors pX and pY in Rd such that the projections XpX and Y pY have
maximal correlation and norm 1. By iteratively finding such vectors, with the added constraint that
each new vector must be orthogonal to the other ones, CCA can find the full projection matrices PX

and PY aligning XPX and Y PY . For more details we direct the reader to De Bie et al. (2005).

CCA Merge: Merging models with CCA To merge models using CCA we simply apply the CCA
algorithm to the two sets of activations XA

i and XB
i to get the corresponding projection matrices

PA
i and PB

i . Using the framework described above of matching model B to model A, which is

consistent with past works, we can define Ti =
(
PB
i PA

i
−1

)⊤
. The transpose here is to account for

the fact that Ti multiplies Wi on the left while the Pis were described as multiplying Xi on the right.
This transformation can be thought of as first bringing the activations of model B into the common,
maximally correlated space between the two models by multiplying by PB

i and then applying the
inverse of PA

i to go from the common space to the embedding space of A. The averaging of the
parameters of model A and transformed B can then be conducted following Eq. 1.

4 RESULTS

4.1 MODELS MERGED WITH CCA MERGE ACHIEVE BETTER PERFORMANCE

In Table 1 we show the test accuracies of merged VGG11 (Simonyan & Zisserman, 2015), ResNet20
and ResNet18 (He et al., 2016) models of different widths trained on CIFAR10 (Krizhevsky & Hin-
ton, 2009), CIFAR100 and ImageNet200 (Russakovsky et al., 2015) (full-sized images but training
and evaluating only on 200 of the 1k classes) for CCA Merge and multiple other popular model
merging methods. The models were trained either using the one-hot encodings of the labels or the
CLIP (Radford et al., 2021) embeddings of the class names as training objectives. We report the
average accuracies of the base models being merged under the label “Base net avg.” (i.e. each
model is evaluated individually and their accuracies are then averaged) as well as the accuracies of
ensembling the models (the logits of the different models are averaged and the final prediction is the
argmax). Ensembling is considered to be the upper limit of what model fusion methods can achieve.
Also, since the models being merged were trained on the same data, we do not expect the merged
models to outperforms the base ones in this particular setting.

We compare CCA Merge with the following methods: Direct averaging: averaging the models’
weights without any neuron alignment; Permute: permuting model weights to align them, the per-
mutation matrix is found by solving the linear sum assignment problem consisting of maximizing
the sum of correlations between matched neurons (Li et al., 2015; Tatro et al., 2020); Matching
Weights: main method from Ainsworth et al. (2023); ZipIt!: model merging method proposed by
Stoica et al. (2024). For ResNets, we recompute the BatchNorm statistics after the weight averaging
and before evaluation as suggested by Jordan et al. (2023) to avoid variance collapse.

VGG11 models merged with CCA Merge have significantly higher accuracies than models merged
with any other method, and this is true across all model widths considered. Differences in accuracy
ranging from 10% (×8 width) up to 25% (×1 width) can be observed between CCA Merge and the
second-best performing method. Furthermore, CCA Merge is more robust when merging smaller
width models, incurring smaller accuracy drops than other methods when the width is decreased
from ×8 to ×1; 1.71% drop for CCA Merge versus 18.34% for Matching Weights and 8.19% for
Permute. Lastly, CCA Merge seems to be more stable across different initializations, the accuracies
having smaller standard deviations than all other methods for the same width except for Matching
Weights for ×8 width models. We note that for VGG models with width multipliers above ×2 and
ResNet18 on ImageNet200, we ran into out-of-memory issues when running ZipIt!, which is why
those results are not present. The same conclusions seem to hold for ResNet20 trained on CIFAR100
and ResNet18 on ImageNet200, although the differences in performance here are less pronounced.
For ImageNet, the top 5 accuracy of models merged with CCA Merge is remarkably close to the
accuracy of model ensembles, the peak of attainable performance.
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VGG11 on CIFAR10 ResNet20×8 ResNet18×4 on ImageNet200
Method ×1 ×8 CIFAR100 Top 1 Acc. Top 5 Acc.

Base net avg. 87.27±0.25 88.20±0.45 78.77±0.28 82.09±0.13 95.21±0.09
Ensemble 89.65±0.13 90.21±0.24 80.98±0.21 83.51±0.01 95.9±0.03

Direct averaging 10.54±0.93 10.45±0.74 14.00±1.66 2.94±0.12 10.52±0.60
Permute 54.39±6.45 62.58±3.31 72.90±0.08 71.84±0.53 91.40±0.24

Matching Weights 55.40±4.67 73.74±1.77 74.29±0.51 69.37±0.48 90.53±0.24
ZipIt! 52.93±6.37 - 72.47±0.41 - -

CCA Merge 82.65±0.73 84.36±2.09 75.06±0.18 76.38±0.20 93.03±0.21
Table 1: VGG11×1 and ×8 trained on CIFAR10, ResNet20×8 trained on CIFAR100 & ResNet18x4
trained on ImageNet200 - Accuracies and standard deviations from 4 different merges (3 for Ima-
geNet200) of 2 models are presented. Models averaged with CCA Merge notably outperform models
merged with other methods even on the significantly harder ImageNet200 task, narrowing the gap
between merged models and model ensembles. Model ensembles are significantly more memory and
compute expensive and represent the upper bound of attainable performance for model merging. For
ImageNet top 5 accuracy CCA Merge remarkably approaches the accuracy of model ensembles.

For both VGG and ResNet architectures and for all considered datasets the added flexibility of CCA
Merge over permutation-based methods seems to benefit the merged models. Aligning models using
linear combinations allows CCA Merge to better model relationships between neurons and to take
into account features that are distributed across multiple neurons.

4.2 CCA MERGING FINDS BETTER COMMON REPRESENTATIONS BETWEEN MANY MODELS

In this section, we present our results related to the merging of many models, a significantly harder
task. This constitutes the natural progression to the problem of merging pairs of models and is a
more realistic setting for distributed or federated learning applications where there are often more
than 2 models. Furthermore, aligning populations of neural networks brings us one step closer to
finding the common learned features that allow different neural networks to perform equally as well
on complex tasks despite having different initializations, data orders, and data augmentations.

The authors of Ainsworth et al. (2023) introduced “Merge Many”, an adaptation of Matching
Weights for merging a set of models. A simpler way of extending any model merging method
to the many models setting is to choose one of the models in the group as the reference model and
to align every other network in the group to it. Then the reference model and all the other aligned
models can be merged. It is by using this “all-to-one” merging that we extend CCA Merge, Permute,
and Matching Weights to the many model settings. ZipIt! is naturally able to merge multiple models
since it aggregates all neurons and merges them until the desired size is obtained.

In Fig. 1 we show the accuracies of the merged models as the number of models being merged
increases. For both VGG and ResNet architectures aligning model weights with CCA continues to
yield better performing merged models. In fact, models merged with CCA Merge applied in an all-
to-one fashion maintain their accuracy relatively well while the other ones see their accuracies drop
significantly. In the VGG case, the drop for other methods is drastic, all merged models having less
than 20% accuracy when more than 3 models are being merged while CCA Merge suffers a drop in
accuracy of less than 3% when going from 2 to 5 models, staying around the 80% mark. We also
note that Merge Many performs only slightly better than its 2 model counterpart (Matching Weights
applied in an all-to-one fashion). For ResNets, the accuracy of models merged with Permute drops
by ~15% when going from merging 2 models to 20. CCA Merge on the other hand is a lot more
robust, incurring a less than 4% drop in accuracy even as the number of models is increased to 20.

These results suggest that CCA Merge is significantly better than past methods at finding the
“common features” learned by groups of neural networks and aligning them. The limitations of
permutation-based methods in taking into account complex relationships between neurons from dif-
ferent models are highlighted in this context. Here it is harder to align features given that there are
more of them to consider and therefore easier to destroy the features when averaging them.

4.3 CCA MERGE IS BETTER AT COMBINING FEATURES FROM DIFFERENT DATA SPLITS

In this section we consider the more realistic setting where the models are trained on disjoint splits
of the data, therefore they’re expected to learn (at least some) different features. Such a set-up is
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Figure 1: Accuracies of av-
eraging multiple models af-
ter feature alignment with dif-
ferent model fusion methods.
The mean and standard devi-
ation across 4 random seeds
are shown.

Method (1) 80%-20% (2) Dirichlet (3) 50 classes

Base models avg. 65.66 ±0.71% 59.98 ±1.80% 41.42 ±0.54%
Ensemble 77.84 ±0.23% 73.77 ±0.44% 69.91 ±0.49%

Direct averaging 11.40 ±1.62% 20.55 ±3.07% 16.90 ±2.02%
Permute 62.11 ±0.30% 58.45 ±1.76% 43.82 ±1.31%
Weight Matching 58.18 ±0.68% 55.87 ±1.80% 41.15 ±1.45%
ZipIt! 61.41 ±0.51% 57.97 ±1.29% 55.08 ±0.70%
CCA Merge (ours) 66.35 ±0.19% 60.38 ±1.68% 46.57 ±0.76%

Table 2: ResNet20×8 trained on 3 different splits of CIFAR100 - Accuracies and standard deviations
from 4 different merges of 2 models are presented. When the models being merged have learned
different features from disjoint sets of the training data but with all the classes (splits 1 and 2) CCA
Merge is the only model merging method which outperforms the average of the base models. In the
case where the models being merged were trained on disjoint subsets of the classes (split 3) CCA
Merge still outperforms past model merging methods except for ZipIt!.

natural in the context of federated or distributed learning. We consider ResNet20 models trained on
3 different data splits of the CIFAR100 training dataset. The first (1) data split is the one considered
in Ainsworth et al. (2023) and Jordan et al. (2023) where one model is trained on 80% of the data
from the first 50 classes of the CIFAR100 dataset and 20% of the data from the last 50 classes, the
second model being trained on the remaining examples. In the second (2) data split we use samples
from a Dirichlet distribution with parameter vector α = (0.5, 0.5) to subsamble each class in the
dataset and create 2 disjoint data splits, one for each model to be trained on. Lastly, with the third
(3) data split we consider the more extreme scenario from Stoica et al. (2024) where one model is
trained on 100% of the data from 50 classes, picked at random, and the second one is trained on the
remaining classes, with no overlap. For this last setting, in order for both models to have a common
output space they were trained using the CLIP Radford et al. (2021) embeddings of the class names
as training objectives. In Table 2 we report mean and standard deviation of accuracies across 4
different model pairs.

For the first two data splits CCA Merge outperforms the other methods, beating the second best
method by ~4% and ~2% on the first and second data splits respectively. For the third data split CCA
Merge is the second best performing method after ZipIt!. However, we note that the comparison with
ZipIt! is somewhat unfair, ZipIt! was designed for this specific setting and it allows the merging of
features from the same network to reduce redundancies, thus making it more flexible than the other
methods which only perform “alignment”. In all cases CCA Merge outperforms or is comparable
with the base models average indicating that, to some extent, our method successfully combines
different learned features from the two models.

5 DISCUSSION AND CONCLUSION

Recent model fusion successes exploit inter-model relationships between neurons by modeling them
as permutations before combining them. Here, we argue that, while assuming a one-to-one corre-
spondence between neurons yields interesting merging methods, it is rather limited as not all neu-
rons from one network have an exact match with a neuron from another network. Our proposed CCA
Merge takes the approach of linearly transforming model parameters beyond permutation-based op-
timization. This added flexibility allows our method to outperform recent competitive baselines
when merging pairs of models trained on the same data or on disjoint splits of the data (Tables 1
and 2). Furthermore, when considering the harder task of merging many models, CCA Merge mod-
els showcase remarkable accuracy stability as the number of models merged increases, while past
methods suffer debilitating accuracy drops. This suggests a path towards achieving strong linear
connectivity between a set of models, which is hard to do with permutations (Sharma et al., 2024).
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A APPENDIX

A.1 CCA’S FLEXIBILITY ALLOWS IT TO BETTER MODEL RELATIONS BETWEEN NEURONS

We first aim to illustrate the limits of permutation based matching and the flexibility offered by
CCA Merge. Suppose we want to merge two models, A and B, at a specific merging layer, and let
{zMi }ni=1 denote the set of neurons of model M ∈ {A,B} at that layer. Given the activations of the
two sets of neurons in response to a set of given inputs, we can compute the correlation matrix C
where element Cij is the correlation between neuron zAi and zBj . For each neuron zAi , for 1 ≤ i ≤ n,
the distribution of its correlations with all neurons from model B is of key interest for the problem
of model merging. If, as the permutation hypothesis implies, there exists a one-to-one mapping
between {zAi }ni=1 and {zBi }ni=1, then we would expect to have one highly correlated neuron for each
zAi – say zBj for some 1 ≤ j ≤ n – and all other correlations Cik, k ̸= j, close to zero. On the other
hand, if there are multiple neurons from model B highly correlated with zAi , this would indicate
that the feature learned by zAi is distributed across multiple neurons in model B – a relationship that
CCA Merge would capture.

In the left column of Fig. 2, we plot the distributions of the correlations between two ResNet20x8
models (i.e., all the elements from the correlation matrix C) for 2 different merging layers. The
vast majority of correlations have values around zero, as expected, since each layer learns multiple
different features. In the right column of Fig. 2 we use box plots to show the values of the top
5 correlation values across all {zAi }ni=1. For each neuron zAi , we select its top k-th correlation
from C and we plot these values for all neurons {zAi }ni=1. For example, for k = 1, we take the value
max
1≤j≤n

Cij , for k = 2 we take the second largest value from the i-th row of C, and so on. We observe

the top correlations values are all relatively high but none of them approaches full correlation (i.e.,
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value of one), suggesting that the feature learned by each neuron zAi from model A is distributed
across multiple neurons from B – namely, those having high correlations – as opposed to having a
single highly correlated match.

Given the flexibility of CCA Merge, we expect it to better capture these relationships between the
neurons of the two networks. We recall that CCA Merge computes a linear transformation T that
matches to each neuron zAi a linear combination zAi ≈

∑n
j=1 Tijz

B
j of the neurons in B. We expect

the distribution of the coefficients (i.e., elements of T ) to match the distribution of the correlations
(Cij elements), indicating the linear transformation found by CCA Merge adequately models the
correlations and relationships between the neurons of the two models. For each neuron zAi , we
select its top k-th, for k ∈ {1, 2}, correlation from the i-th row of C and its top k-th coefficient from
the i-th row of T and we plot a histogram of these values for all neurons {zAk }nk=1 in Fig. 3. Indeed,
the distributions of the correlations and those of the CCA Merge coefficients are visually similar,
albeit not fully coinciding. To quantify this similarity we compute the Wasserstein distance between
these distributions, normalized by the equivalent quantity if the transformation were a permutation
matrix. For a permutation matrix, the top 1 values would be of 1 for every neuron zAi and all other
values would be 0. We can see that CCA Merge finds coefficients that closely match the distribution
of the correlations, more so than simple permutations, since the ratio of the two distances are 0.15
and 0.04, respectively, for top 1 values in the two considered layers and 0.35 and 0.23 for top 2
values.

Figure 2: Left column: distribution of correlation values between the neurons {zAi }ni=1 and
{zBi }ni=1 of two ResNet20x8 models (A and B) trained on CIFAR100 at two different merging
layers; Right column: for k ∈ {1, 2, 3, 4, 5} the distributions of the top k-th correlation values for
all neurons in model A at those merging layers.

A.2 EXTENDED RELATED WORK

Mode connectivity Freeman & Bruna (2017) proved theoretically that one-layered ReLU neural
networks have asymptotically connected level sets, i.e. as the number of neurons increases two
minima of such a network are connected by a low loss path in parameter space. Garipov et al.
(2018) and Draxler et al. (2018) explore these ideas empirically and introduce the concept of mode
connectivity to describe ANN minima that are connected by nonlinear paths in parameter space along
which the loss remains low, the maximum of the loss along this path was termed the energy barrier,
and both works proposed algorithms for finding such paths. Garipov et al. (2018) further proposed
Fast Geometric Ensembling (FGE) as a way to take advantage of mode connectivity by ensembling
multiple model checkpoints from a single training trajectory. Frankle et al. (2020) introduced the
concept of linear mode connectivity which describes the scenario in which two ANN minima are
connected by a linear low loss path in parameter space. They used linear mode connectivity to
study network stability to SGD noise (i.e. different data orders and augmentations). They found
that at initialization, networks are typically not stable, i.e. training with different SGD noise from a
random initialization typically leads to optima that are not linearly mode connected, however early
in training models become stable to such noise.

Model merging More recently, Entezari et al. (2022) have conjectured that “Most SGD solutions
belong to a set S whose elements can be permuted in such a way that there is no barrier on the linear
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Figure 3: Distributions of top 1 (left column) and 2 (right column) correlations (blue) and CCA
Merge transformation coefficients (orange) across neurons from model A at two different merging
layers. In the left column for example, for each neuron zAi we have one correlation value corre-
sponding to max1≤j≤n Cij and one coefficient value corresponding to max1≤j≤n Tij where C is
the cross-correlation matrix between neurons of models A and B, and T is the CCA Merge trans-
formation matching neurons of B to those of A. Wasserstein distance between the distributions of
top k ∈ {1, 2} correlations and top k Merge CCA coefficients are reported, relative to equivalent
distances between correlations and Permute transforms (all top 1 values are 1, and top 2 values are
0).

interpolation between any two permuted elements in S” or in other words most SGD solutions are
linearly mode connected provided the right permutation is applied to align the two solutions. They
then perform experiments that support this conjecture and also empirically establish that increasing
network width, decreasing depth, using more expressive architectures, or training on a simpler task
all help linear mode connectivity by decreasing the loss barrier between two optima. Many other
works seem to support this conjecture. For example, Singh & Jaggi (2020) and Peña et al. (2023)
propose optimal transport-based methods for finding the best transformation to match two models.
Ainsworth et al. (2023) propose an algorithm for finding the optimal permutation for merging models
based on the distances between the weights of the models themselves. Jordan et al. (2023) exposes
the phenomenon in which interpolated deep networks suffer a variance collapse in their activations
leading to poor performance. They propose REPAIR which mitigates this problem by rescaling the
preactivations of interpolated networks through the recomputation of BatchNorm statistics.

“Easy” settings for model averaging Linear mode connectivity is hard to achieve in deep learn-
ing models. Frankle et al. (2020) established that even models being trained on the same dataset with
the same learning procedure and even the same initialization might not be linearly mode connected if
they have different data orders/augmentations. It seems that only models that are already very close
in parameter space can be directly combined through linear interpolation. This is the case for snap-
shots of a model taken at different points during its training trajectory (Garipov et al., 2018; Izmailov
et al., 2018) or multiple fine-tuned models with the same pre-trained initialization (Wortsman et al.,
2022; Ilharco et al., 2023; Yadav et al., 2023). This latter setting is the one typically considered in
NLP research. Another setting that is worth mentioning here is the “federated learning” inspired one
where models are merged every couple of epochs during training (Jolicoeur-Martineau et al., 2023).
The common starting point in parameter space and the small number of training iterations before
merging make LMC easier to attain.

We emphasize that these settings are different from ours in which we aim to merge fully trained
models with different parameter initializations and SGD noise (data order and augmentations).

Merging multiple models Merging more than two models has only been explored thoroughly in
the “easy” settings stated above. For example Wortsman et al. (2022) averages models fine-tuned
with different hyperparameter configurations and finds that this improves accuracy and robustness.

10



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

Jolicoeur-Martineau et al. (2023) averages the weights of a population of neural networks multiple
times during training, leading to performance gains. On the other hand, works that have focused on
providing feature alignment methods to be able to merge models in settings in which LMC is not
trivial have mainly done so for 2 models at the time (Singh & Jaggi, 2020; Ainsworth et al., 2023;
Peña et al., 2023; Jordan et al., 2023). An exception to this is Git Re-Basin (Ainsworth et al., 2023)
which proposes a “Merge Many” algorithm for merging a set of multiple models by successively
aligning each model to the average of all the other models. However, results obtained with this
method, which they use to merge up to 32 models, are relegated to the appendix and only concern
the very simple set-up of MLPs on MNIST. Singh & Jaggi (2020) also consider merging multiple
models but either in a similarly simple set-up, i.e. 4 MLPs trained on MNIST, or they fine-tune the
resulting model after merging up to 8 VGG11 models trained on CIFAR100. We extend this line of
work to more challenging settings, using more complex model architectures, we report the merged
models accuracies directly without fine-tuning and make this a key focus in our work.

Model merging beyond permutations We note that the two model merging methods based on
optimal transport Singh & Jaggi (2020); Peña et al. (2023) can also align models beyond permuta-
tions. However, in Singh & Jaggi (2020) this only happens when the two models being merged have
different numbers of neurons at each layer. When the models have the same number of neurons the
alignment matrix found by their method is a permutation, as such the majority of their results are
with permutations. The method proposed by Peña et al. (2023) isn’t constrained to finding binary
permutation matrices but binarity is still encouraged through the addition of an entropy regularizer.
Furthermore, our CCA based method is different in nature from both of these since it is not inspired
by optimal transport theory.

CCA in deep learning Canonical Correlation Analysis is a very popular statistical method used
in many fields of science De Bie et al. (2005). In the context of deep learning, CCA has been used
to align and compare learned representations in deep learning models Raghu et al. (2017); Morcos
et al. (2018), a task which is very similar to the feature matching considered by model merging
algorithms.
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