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ABSTRACT

Multimodal learning seeks to utilize data from multiple sources to improve the
overall performance of downstream tasks. It is desirable for redundancies in the
data to make multimodal systems robust to missing or corrupted observations in
some correlated modalities. However, we observe that the performance of several
existing multimodal networks significantly deteriorates if one or multiple modali-
ties are absent at test time. To enable robustness to missing modalities, we propose
simple and parameter-efficient adaptation procedures for pretrained multimodal
networks. In particular, we exploit low-rank adaptation and modulation of inter-
mediate features to compensate for the missing modalities. We demonstrate that
such adaptation can partially bridge performance drop due to missing modalities
and outperform independent, dedicated networks trained for the available modality
combinations in some cases. The proposed adaptation requires extremely small
number of parameters (e.g., fewer than 0.7% of the total parameters in most ex-
periments). We conduct a series of experiments to highlight the robustness of our
proposed method using diverse datasets for RGB-thermal and RGB-Depth seman-
tic segmentation, multimodal material segmentation, and multimodal sentiment
analysis tasks. Our proposed method demonstrates versatility across various tasks
and datasets, and outperforms existing methods for robust multimodal learning
with missing modalities.

1 INTRODUCTION

Multimodal learning (MML) (Baltrušaitis et al. (2018); Xu et al. (2023)) is a general framework for
processing, combining, and understanding information from multiple, diverse data sources. Fusing
knowledge from multiple modalities (e.g., text, images, audio, and sensor data) is expected to provide
more accurate and reliable systems. In recent years, MML has achieved remarkable success in a
wide range of applications, including image segmentation (Chen et al. (2020); Wang et al. (2022);
Zhang et al. (2023)), captioning (Zhao et al. (2019); Yu et al. (2019)), classification (Guillaumin
et al. (2010); Roy et al. (2023)), sentiment analysis (Soleymani et al. (2017); Kaur & Kautish
(2022)), and autonomous driving (Xiao et al. (2020); Rizzoli et al. (2022)). In all these applications,
one often encounters situations where some modalities are corrupted or missing due to hardware
limitations/failures or data acquisition cost/constraints. The ability to handle corrupt or missing
modalities is thus crucial for the robustness and reliability of multimodal systems. The central
question of this paper is to study and build robustness in MML with missing modalities.

Recent studies (Ma et al. (2022); Hazarika et al. (2022); McKinzie et al. (2023)) have shown that
MML is not inherently robust to missing modalities and performance can drop significantly when
modalities are missing at test time. Existing approaches for robust MML usually work for specific
combinations of modalities they are trained for and tend to perform poorly when applied to untrained
combinations. For instance, one approach is to adopt robust training strategies such as modality
dropout during training (Neverova et al. (2015); Hussen Abdelaziz et al. (2020)), partial or full
modality masking (Bachmann et al. (2022); Shin et al. (2023)), and knowledge distillation (Tarvainen
& Valpola (2017); Maheshwari et al. (2023)). These approaches either require specialized training
strategies or utilize extra models/sub-networks to guide the underlying model. Another approach
replaces uninformative tokens with aggregated informative tokens from different modalities or learns
to predict tokens for the specific missing modalities (Wang et al. (2022); Woo et al. (2023); Shin et al.
(2023)). Training such separate (independent) networks for every possible modality combination is
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Figure 1: a) Overview of our approach for robust multimodal learning with missing modalities via parameter-
efficient adaptation. A model pretrained on all the modalities is adapted using a small number of parameters
to handle different modality combinations. b) Low-rank model adaption computes features using frozen and
low-rank weights and combine them. c) Scale and shift feature adaptation transforms input by element-wise
multiplication and addition. One set of parameters is learned for each modality combination.

not feasible. One recent approach for robust MML is to impute missing modalities from the available
modalities (Yu et al. (2018); Sharma & Hamarneh (2019); Dorent et al. (2019)). Performance of these
methods depend on the generation model that imputes the missing modalities.

In this paper, we propose a parameter-efficient approach to build a multimodal network that can
adapt to arbitrary combinations of input modalities. Our main objective is to modify the network in a
controllable manner as a function of available modalities. Figure 1 illustrates our proposed method,
where a given multimodal network can be adapted to arbitrary modality combinations by transforming
the intermediate features at different layers. To achieve parameter-efficient adaptation, we propose to
use simple linear transformations such as scaling, shifting, or low-rank increments of features. Our
method does not require retraining the entire model or any specialized training strategy. The adapted
networks provide significant performance improvement over the multimodal networks trained with all
modalities and tested with missing modalities. Performance of the adapted models is also comparable
or better than the models that are exclusively trained for each input modality combination. We present
a series of experiments to evaluate our method and compare with existing methods for robust MML.
We tested different parameter-efficient adaptation strategies and found scaling and shifting features
provides overall best performance with less than 0.7% of the total parameters.

Contributions. The main contributions can be summarized as follows.

• We propose parameter-efficient adaptation for multimodal learning that is robust to missing modal-
ities. The adapted model can easily switch to different network states based on the available
modalities with minimal latency, computational, or memory overhead.

• The adapted networks provide notably improved performance with missing modalities when
compared to models trained with all modalities and is comparable to or better than the networks
trained for specific modality combinations.

• Our approach is versatile and adaptable to a wide range of multimodal tasks and models. Detailed
evaluations on diverse datasets and tasks show that our approach outperforms existing baseline
methods and robust models designed for specific tasks and datasets.

2 RELATED WORK

Multimodal learning with missing modalities has been studied for different applications in recent
years. For instance, robustness in vision-language tasks with multimodal transformers in Ma et al.
(2022), multimodal sentiment analysis in McKinzie et al. (2023), multimodal classification in
Hazarika et al. (2022), and multimodal action recognition in Woo et al. (2023). These studies have
shown that the task performance can drop significantly when modalities are missing during test time.

Robust training strategies have been proposed to make models robust to different missing modalities.
Such approaches include modality dropout during training Neverova et al. (2015); Hussen Abdelaziz
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et al. (2020), unified representation learning Lau et al. (2019), and supervised contrastive learning
Gomaa et al. (2022). Modality masking during training has become a popular choice for enhancing
robustness. Shin et al. (2023) utilized complementary random masking, He et al. (2022) used masked
auto encoder, and Ma et al. (2022) applied masked cross-modal attention for enhancing robustness
of the underlying model. Hazarika et al. (2022) proposed noisy perturbation of modalities during
training for robust multimodal sentiment analysis. Recently, Li et al. (2023) proposed uni-modal
ensemble with modality drop and substitution augmentation during training to adapt to different
missing modality scenarios.

Design of robust models and fusion strategies is another approach for robust MML. Fan et al.
(2023) proposed a recursive meshing technique called SpiderMesh and Shin et al. (2023) designed
complementary random masking and knowledge distillation based framework for robust RGB-
thermal semantic segmentation. Wang et al. (2022) proposed TokenFusion to dynamically detect
and replace uninformative tokens with projected tokens from other modalities for robust RGB-depth
semantic segmentation, image-to-image translation, and 3D object detection. Wang et al. (2023)
proposed a model that learns modality-shared and modality-specific features for robust brain tumour
segmentation. Choi & Lee (2019) proposed a robust fusion strategy for multimodal classification.
The main limitation of these methods is that they are generally designed for a specific modality
combination and do not perform well when applied to other multimodal tasks Lin et al. (2023).

Knowledge distillation and generation methods have also become popular for robust MML. Studies
by Sharma & Hamarneh (2019) and Yu et al. (2018) used GAN based generative models while Dorent
et al. (2019) used VAE based generative models for imputing missing modalities from available input
modalities for unlerlying multimodal tasks. Different knowledge distillation approaches have also
been applied in several multimodal tasks. Tarvainen & Valpola (2017) proposed mean teacher and
Maheshwari et al. (2023) introduced multimodal teacher for semi-supervised image segmentation.
Shin et al. (2023) and Hazarika et al. (2022) applied self-distillation loss for robust RGB-thermal
semantic segmentation. Apart from these approaches, weight space ensembling Wortsman et al.
(2022), policy learning Ma et al. (2022) and optimal fusion strategy designing Maheshwari et al.
(2023) were also studied for robust MML for various tasks.

3 PROPOSED METHOD

3.1 ADAPTATION FOR MISSING MODALITIES

Let us denote the set of input modalities for a given task as M = {m1, . . . ,mM}. Given the full set
M, one can train a model f with parameters ΘM that maps inputs for all the modalities (denoted as
XM) to an output yM as

yM = f(XM; ΘM). (1)
If a subset of the modalities M is missing, a naı̈ve approach is to train a new model for the available
input modalities. Without loss of generality, suppose K ⊂ M represents missing modalities. We can
use S = M\K modalities to retrain the model f for a new set of parameters ΘS as

yS = f(XS ; ΘS), (2)
where XS represents input data for modalities in S. While we would prefer that yS ≈ yM, but
the training above does not guarantee it. In principle, we can train one model for every possible
S ⊂ M and use the corresponding model at the test time. Such an approach is infeasible because of
computational and storage resources required to train models for a large number of possible modality
combinations. Furthermore, deploying a large number of trained models and selecting one of them at
test time is not feasible in real-world scenarios.

We propose an alternative approach to adapt a single model for all S ⊂ M in a parameter-efficient
manner. In particular, we train the model f on the full set of modalities M and freeze the parameters
ΘM. We add a small number of parameters ∆S , corresponding to the available modality set S, and
update the model as

ŷS = f(XS ; ΘM,∆S) (3)
such that ŷS ≈ yS in the worst case and ŷS ≈ yM in the best case. Such an adaptation is
parameter-efficient if the number of parameters in ∆S is significantly smaller than that in ΘM. In
our experiments, we keep ΘM frozen and demonstrate that less than 0.7% of the total parameters for
∆S are sufficient for network adaptation.
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3.2 METHODS FOR ADAPTATION

In recent years, a number of parameter-efficient methods have been proposed for network adaptation
for various tasks. To the best of our knowledge, none of them have been applied for multimodal
adaptation to handle missing modalities. In this section, we discuss some of the methods that we used
to build our proposed adaptation method for robust MML with missing modalities.
Low-rank adaptation (LoRA) is one possible way to adapt models to missing modality scenarios.
Such adaptation has been applied in other domains and tasks. For instance, LoRA in transformers Hu
et al. (2022) and KAdaptataion He et al. (2023) learn low-rank factors for task/domain adaptation.
In our context, suppose W represents one of the weight matrices in the pretrained ΘM. For a given
S, we can learn a low-rank matrix WS for ∆S . Since the update matrix is low-rank, the number of
parameters needed for ∆S remains a fraction of that in ΘS .
Scaling and shifting features (SSF) is another parameter-efficient method to transform intermediate
features of the pretrained model Ioffe & Szegedy (2015); Lian et al. (2022). As shown in Figure 1c,
SSF applies a linear transformation to the given token/feature with learnable scale (γ) and shift
parameters (β). Given an input token x, SSF generates the output token h as h = γ ⊙ x + β,
where γ, β, x, h are vectors of same length and ⊙ represents element-wise multiplication along the
embedding dimension. These scale and shift parameters are input-independent, meaning they are
applied to the features regardless of the specific input modality. They are learned during the training
process to help the model adjust and fine-tune its representations for better performance on the
underlying task.
BitFit in Ben Zaken et al. (2022) and Norm adaptation (both batch norm and layer norm) are other
approaches that adapt a subset of the model parameters. BitFit adapts the bias terms and Norm
adaptation adapts norm layers, while keeping everything else frozen. Our experiments show that
intermediate feature modulation via these simple linear transformation works well for most of the
scenarios.

3.3 OUR APPROACH: PRAMETER-EFFICIENT ADAPTATION FOR MISSING MODALITIES

Our overall approach for model adaptation is illustrated in Figure 1. We first train a network with
all available modalities in M and freeze the weights ΘM. To adapt the model for different S ⊂ M,
we insert SSF layers after each linear, convolutional, and norm (both batch norm and layer norm)
layers. We learn (γ, β) for all the SSF layers for given S. While training SSF parameters for the
given modality combination, S, we set the missing modalities to zero. At the test time, we can
easily change the SSF parameters corresponding to the available modalities. We only insert SSF
layers in the encoder and fusion blocks, while keeping the decoder/prediction head unchanged. We
observed that using pretrained decoder/prediction head provided a good overall performance with
several missing modalities.

We primarily selected the SSF technique for robust multimodal learning with missing modalities
because of its simplicity and effectiveness. SSF was introduced in Ioffe & Szegedy (2015) with batch
normalization to potentially enhance the representation power of the networks and faster convergence.
Ba et al. (2016) used the same strategy for layer normalization and Lian et al. (2022) used it for
fine-tuning pretrained models for different image classification tasks on several datasets. SSF offers
several benefits: First, the parameters (γ, β) are independent of the input features, which makes
SSF applicable to diverse tasks and input modality combinations. Second, we can easily insert SSF
layers in the existing model without changing the model architecture. We can easily switch/select
the corresponding SSF parameters for a given input modality combination. Finally, SSF introduces
extremely small number of additional learnable parameters. The resulting adaptation offers significant
savings compared to training a separate model for each input combination or retraining the model
using some specialized training strategy like modality dropout or knowledge distillation.

4 EXPERIMENTS AND RESULTS

We performed detailed experiments to evaluate the performance of our proposed method for different
tasks and datasets. We also present comparison with existing methods that are robust to missing
modalities.
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4.1 DATASETS

Multimodal segmentation. We used three datasets for three multimodal segmentation tasks. MFNet
with RGB-Thermal images Ha et al. (2017), NYUDv2 with RGB-Depth images Silberman et al.
(2012) and MCubeS for multimodal material segmentation with RGB, Angle of Linear Polarization
(AoLP), Degree of Linear Polarization (DoLP) and Near-Infrared (NIR) images Liang et al. (2022).
These datasets are divided into train and test sets along with ground truth per-pixel annotation for the
underlying segmentation tasks.

Multimodal sentiment analysis. CMU-MOSI from Zadeh et al. (2016) and CMU-MOSEI from
Bagher Zadeh et al. (2018) are two popular datasets for multimodal sentiment analysis using audio,
visual and text as input modalities. They contain 2199 and 23453 annotated data samples, respectively,
divided into train, validation, and test sets.

4.2 IMPLEMENTATION DETAILS

To investigate missing modality adaptation performance in multimodal semantic and material segmen-
tation tasks, we use the CMNeXt model by Zhang et al. (2023) as the base model. We use multimodal
transformer by Tsai et al. (2019) as the base model for multimodal sentiment analysis. We train a base
model with all the modalities for each dataset. To evaluate performance with missing modalities, we
provide the available modalities and set the missing modalities to zero. To perform model adaptation
for any modality subset S ⊂ M, we freeze the pretrained weights and insert learnable SSF layers.
Then we fine tune the learnable parameters for 100 epochs for multimodal segmentation tasks and
until convergence for multimodal sentiment analysis tasks.

For multimodal segmentation tasks, we set the initial learning rate to 6 × 10−5 and applied a
polynomial learning rate scheduler with a power of 0.9. The first 10 epochs were set as the warm-up,
during which the learning rate was set to 0.1 times the original rate. The scale parameters (γ) were
initialized with all 1s and the shift parameters (β) were initialized with all 0s. We used cross-entropy
loss function and AdamW optimizer as proposed in Loshchilov & Hutter (2019), with an epsilon value
of 10−8 and a weight decay of 0.01. We used a batch size of 4 and report single scale performance
for all the datasets. All other hyper-parameters and configurations are the same as Zhang et al. (2023).
For multimodal sentiment analysis tasks, we used the default settings for the datasets as configured in
the codebase Yu et al. (2021). We have included additional details for each dataset and experimental
setup in the supplementary section.

4.3 BASELINE METHODS

We report experiments and results for different methods that are listed as follows. Pretrained model
refers to the base model that is trained with all the available modalities. Dedicated training refers
to independent models trained for each input modality combination. Adapted model refers to the
model that is adapted using our approach for each input modality combination.

Different robust methods have been proposed for different multimodal tasks. We compare our
method with the following methods: SpiderMesh Fan et al. (2023), VPFNet Lin et al. (2023),
MDRNet Zhao et al. (2023), CRM Shin et al. (2023) for robust RGB-thermal semantic segmentation.
CEN Wang et al. (2020a), TokenFusion Wang et al. (2022), AsymFusion Wang et al. (2020b), Dialated
FCN-2s Kamran & Sabbir (2018) for robust RGB-depth semantic segmentation.

For every task/dataset, we adopted the experimental setup used in the corresponding previous studies.
We used the reported results from prior works where possible. It is important to note that, because of
this criteria, some of the baseline methods may only be present in specific experiments depending on
the availability of their reported numbers. We also perform detailed comparison analysis of SSF with
other parameter-efficient adaptation techniques. For all the experiments we follow the same setup
suggested by the corresponding papers and report mean accuracy, F1 score and mean intersection
over union (mIoU) when available.

Ablation studies and comparison of different parameter-efficient adaptation methods show that
SSF-based adaptation provides overall best performance. We present results for scale only, shift only,
BitFit (Ben Zaken et al. (2022)), norm layer fine-tuning and LoRA (Hu et al. (2022)).
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Table 1: Performance of Pretrained, Dedicated, and Adapted networks with missing modalities. CMNeXt is the
base model for multimodal semantic segmentation for MFNet and NYUDv2 datasets and multimodal material
segmentation for MCubeS dataset. HHA-encoded images were used instead of raw depth maps. Bold letters
represent best results.

Dataset Input Missing Pretrained Dedicated Adapted

MFNet
RGB-Thermal - 60.10 60.10 -
RGB Thermal 53.71 55.86 55.22
Thermal RGB 35.48 53.34 50.89

NYUDv2
RGB-Depth - 56.30 56.30 -
RGB Depth 51.19 52.18 52.82
Depth RGB 5.26 33.49 36.72

MCubeS

RGB-AoLP-DoLP-NIR - 51.54 51.54 -
RGB-AoLP-DoLP NIR 49.06 49.48 51.11
RGB-AoLP DoLP-NIR 48.81 48.42 50.62
RGB AoLP-DoLP-NIR 42.32 48.16 50.43

4.4 EXPERIMENTS FOR MULTIMODAL SEGMENTATION

In this section, we present experiments for multimodal semantic segmentation with RGB-Thermal
and RGB-Depth datasets, and multimodal material segmentation with MCubeS dataset. We report
the detailed results for multimodal material segmentation along with per class % intersection over
union (IoU) comparisons between the Pretrained and Adapted models in the supplementary section.

Overall performance comparison. We present the performance comparison of Pretrained, Ded-
icated, and Adapted networks for different missing modalities in Table 1. We observe that the
performance of the Pretrained model drops significantly with missing modalities. We see a 6.39%
drop when Thermal is missing in MFNet dataset and 5.11% drop when Depth is missing in NYUDv2
dataset compared to the case when all modalities are available. The effect is amplified when RGB
gets missing as we observe 24.62% drop in MFNet dataset and 51.04% drop in NYUDv2 dataset.
In MCubeS dataset, we observe 2.48–9.22% drop in pretrained model when different modality
combinations are missing.

The overall performance of Adapted models with missing modalities is significantly better than
Pretrained models. For MFNet, an improvement of 1.51% compared to the Pretrained model when
RGB is available and thermal is missing. The Adapted model performance is close to the performance
of Dedicated network trained for RGB only. The adapted model shows a significant improvement
of 15.41% compared to the Pretrained model when RGB is missing. For NYUDv2 dataset, we see
1.63% and 31.46% performance improvement compared to Pretrained model when depth and RGB
are missing, respectively. In both cases, the performance of the Adapted model is better than the
Dedicated model. For all input combinations in MCubeS dataset, we see 1.82–8.11% performance
improvement compared to the Pretrained model. The Adapted model performs better than Dedicated
models in all the cases.

Visualization of segmentation maps. For qualitative analysis, we show some examples of the
predicted segmentation maps form the Pretrained and Adapted models in Figure 2. For each dataset,
we show the input images, predictions when all the modalities are available during both training
and test time (CMNeXt column), predictions from the pretrained and adapted models for different
available/missing modality scenarios (Available input modality names are shown in parentheses
above each image). We see in Figure 2a, the Pretrained model fails to detect humans when only
RGB is available and cars when only Thermal images are available. The adapted model can detect
both humans and cars with missing modalities. For NYUDv2 dataset, as shown in Figure 2b, the
Adapted model can detect window, bed, and furniture with higher accuracy than the Pretrained model
with missing modalities. We only show the RGB input images for MCubeS dataset for brevity in
Figure 2c. The Adapted model can identify sand, sky, and gravel with higher accuracy than the
pretrained model. In all cases, the predictions from the Adapted model with missing modalities are
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(a) Visualization of predictions from MFNet dataset

(b) Visualization of predictions from NYUDv2 dataset

(c) Visualization of predictions from MCubeS dataset

Figure 2: Examples of predicted segmentation maps for the Pretrained and Adapted models for multimodal
semantic segmentation (on MFNet and NYUDv2) and material segmentation (on MCubeS). Title above each
subimage shows method name (tested with available modalities). CMNeXt column shows the predictions with
all the modalities. Segmentation quality improves significantly after model adaptation for all the input modality
combinations. Green boxes highlight areas with salient differences in results (e.g., cars and humans missing
in the Pretrained model with missing modalities but visible in the Adapted model). For MCubeS dataset, we
only show RGB images and A, D and N denote angle of linear polarization, degree of linear polarization, and
near-infrared, respectively.

closer to the predictions of the pretrained model with all modalities. We provide additional examples
in the supplementary section.

Performance Comparison for RGB-Thermal Semantic Segmentation. We compare the perfor-
mance of the Adapted model with existing robust models for RGB-thermal semantic segmentation
with MFNet dataset in Table 2. The results show that the Adapted model offers the best average
performance compared to the other baseline models, in terms of mean accuracy and % mIoU. Among
the robust models, CRM Shin et al. (2023) shows competitive performance with the Adapted model.
The Adapted model performs better when only RGB is available while CRM performs better when
only Thermal is available. Notably CRM is designed specifically for RGB-Thermal pairs and re-
quires specialized training approach and utilizes self-distillation loss between the clean and masked
modalities to train the model. In contrast, our approach is applicable to any input modalities and does
not require any specialized training technique.

Performance Comparison for RGB-Depth Semantic Segmentation. Table 3 shows the perfor-
mance comparison with existing robust models for RGB-Depth semantic segmentation on NYUDv2
dataset. The table shows that on average, the Adapted model performs better than the existing
robust models. TokenFusion Wang et al. (2022) performs slightly better (+0.12%) in terms of mIoU
when Depth is available and RGB is missing, but shows larger drop (-5.59%) in mean accuracy. On
the other hand, the Adapted model performs significantly better (+3.5% mIoU and +4.47% mean
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Table 2: Performance comparison with existing robust methods for MFNet dataset. RGB and Thermal columns
report performance when only RGB and Thermal are available. Average column reports average performance
when one of the two modalities gets missing. ‘-’ indicates that results for those cells are not published. Mean
accuracy (mAcc) and % mean intersection over union (mIoU) are shown for all the experiments.

Methods RGB Thermal Average
mAcc % mIoU mAcc % mIoU mAcc % mIoU

FuseNet (Hazirbas et al. (2016)) 11.11 10.31 41.33 36.85 26.22 23.58
MFNet (Ha et al. (2017)) 26.62 24.78 19.65 16.64 23.14 20.71
RTFNet (Sun et al. (2019)) 44.89 37.30 26.41 24.57 35.65 30.94
SAGate (Chen et al. (2020)) 32.01 30.57 13.34 12.51 22.68 21.54
FEANet (Deng et al. (2021)) 15.96 8.69 58.35 48.72 37.16 28.71
MDRNet (Zhao et al. (2023)) 57.11 45.89 41.98 30.19 49.55 38.04
VPFNet (Lin et al. (2023)) 48.14 41.08 42.20 35.80 45.17 38.44
SpiderMesh (Fan et al. (2023)) - 39.60 - 50.50 - 45.05
CRM (Shin et al. (2023)) - 52.70 - 53.10 - 52.90
Adapted (Ours) 67.18 55.22 66.70 50.89 66.94 53.06

Table 3: Performance comparison with existing robust methods for NYUDv2 dataset. RGB and Depth columns
report performance when only RGB and Depth are available. Average column indicates average performance
when one of the two modalities gets missing. ∗ indicates that available codes and pretrained models from the
authors were used to generate the results. Other results are from the corresponding papers.

Methods RGB Depth Average
mAcc % mIoU mAcc % mIoU mAcc % mIoU

FCN (Long et al. (2015)) 44.70 31.60 35.70 25.20 40.20 28.40
Dilated FCN-2s (Kamran & Sabbir (2018)) 47.10 32.30 39.30 26.80 43.20 29.55
AsymFusion (R-101) (Wang et al. (2020b)) 59.00 46.50 45.60 34.30 52.30 40.40
CEN (R-101) (Wang et al. (2020a)) ∗ 51.77 39.59 28.98 19.32 40.38 29.46
TokenFusion (Wang et al. (2022)) ∗ 63.49 49.32 46.83 36.84 55.16 43.08
Adapted (Ours) 67.96 52.82 52.42 36.72 60.19 44.77

accuracy) when RGB is avalable and Depth is missing. The average performance of the Adapted
model is also better than the TokenFusion model despite the fact that TokenFusion was designed to
work with RGB-Depth pair, whereas the Adapted method is independent of input modalities. For
our experiments, we use HHA-encoded images proposed by Gupta et al. (2014) instead of raw depth
maps.

Comparison with Parameter Efficient Model Adaption Techniques. Apart from robust models,
we also compare different parameter-efficient adaptation techniques. We report the results in Table 4.
For MFNet dataset, SSF outperforms all the methods and performance is significantly better than
the Pretrained model and close to the Dedicated models. For NYUDv2 and MCubeS datasets, the
Adapted model performs better than both Pretrained and Dedicated models. These experiments also
show that SSF performs better than other methods for most of the input modality combinations for all
the datasets. We show a detailed comparison for each dataset in terms of mean accuracy, F1 score
and % mIoU in the supplementary section of this paper.

4.5 EXPERIMENTS FOR MULTIMODAL SENTIMENT ANALYSIS

We tested our adaptation method for a multimodal sentiment analysis task and report the results
in Table 5. We used the multimodal transformer (MulT) in Tsai et al. (2019) as the base model,
and the CMU-MOSI dataset in Zadeh et al. (2016) and the CMU-MOSEI dataset in Bagher Zadeh
et al. (2018) for evaluation. A, V and T stand for audio, video and text modalities, respectively. We
observed that when text is available and either audio or video or both are missing at the test time,
the performance does not drop significantly. Similar trend was reported in Hazarika et al. (2022). If
text is missing at test time, then the performance of the Pretrained models drops significantly. The
Adapted models can partially compensate for missing text and offer significantly better performance.
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Table 4: Performance comparison (% mIoU) of different parameter-efficient adaptation techniques for MFNet,
NYUDv2, and MCubeS datasets. Each column reports mIoU of the Adapted model with the corresponding
modalities, and Avg indicates average performance. A and D denote Angle and Degree of Linear Polarization.

Datasets MFNet NYUDv2 MCubeS

Methods RGB Thermal Avg RGB Depth Avg RGB RGB-A RGB-A-D Avg

Pretrained 53.71 35.48 44.60 51.19 5.26 28.23 42.32 48.81 49.06 46.73
Dedicated 55.86 53.34 54.60 52.18 33.49 42.84 48.16 48.42 49.48 48.69

Scale Only 54.77 49.23 52.00 53.04 36.12 44.58 50.16 50.55 51.13 50.61
Shift Only 54.57 48.96 51.77 53.04 36.25 44.65 50.13 50.40 50.86 50.46
BitFit 54.39 49.07 51.73 53.09 36.64 44.87 50.19 50.57 51.07 50.61
LoRA 54.19 47.45 50.82 52.87 34.97 43.92 49.59 50.07 50.80 50.15
Norm 54.65 47.49 51.07 53.05 34.73 43.49 49.95 50.51 51.07 50.51
Scale and Shift 55.22 50.89 53.06 52.82 36.72 44.77 50.43 50.62 51.11 50.72

Table 5: Performance of Pretrained and Adapted models for multimodal sentiment analysis with CMU-MOSI
and CMU-MOSEI datasets. Multimodal Transformer (MulT) as the base model. A, V and T denote audio, video,
and text, respectively. ↑ means higher is better and ↓ means lower is better. The Adapted model outperforms the
Pretrained model with missing modalities.

Dataset Input Missing Pretrained Adapted
Acc ↑ F1 ↑ MAE ↓ Acc ↑ F1 ↑ MAE ↓

CMU-MOSI

AVT - 79.88 79.85 0.918 - - -
AV T 48.93 41.95 1.961 55.49 53.96 1.469
A VT 48.32 40.98 1.875 50.00 46.71 1.464
V AT 52.44 51.77 1.547 54.88 54.39 1.471

CMU-MOSEI

AVT - 83.79 83.75 0.567 - - -
AV T 41.91 32.78 1.025 63.32 60.69 0.819
A VT 37.15 20.12 1.089 62.85 55.55 0.826
V AT 38.28 23.70 1.075 62.49 60.00 0.819

For CMU-MOSI dataset, we see a significant 30.95% drop in accuracy when text is missing for
the pretrained model compared to the case when all modalities are available. The Adapted model
offers 6.56% improvement in accuracy over the Pretrained model. We also observe 1.68% and 2.44%
improvement in accuracy over the Pretrained model performance when only audio and only video
are available, respectively. In all these scenarios, we also see larger improvement in F1 score and
reduction in mean absolute error (MAE). For CMU-MOSEI dataset, we see even greater improvement
in all the metrics. Experiments show 21.41%, 25.7% and 24.21% improvement in accuracy for
audio-video, audio only, and video only scenarios compared to the Pretrained model. We also observe
27.91%-36.30% improvement in F1 score and 0.206-0.263 reduction in mean absolute error (MAE).

5 CONCLUSION

Missing modalities at test time can cause significant degradation in the performance of multimodal
systems. In this paper, we presented a simple and parameter-efficient adaptation method for robust
multimodal learning with missing modalities. We demonstrated that simple linear operations can
efficiently transform a single pretrained multimodal network and achieve performance comparable
to multiple (independent) dedicated networks trained for different modality combinations. We
evaluated the performance of our method and compared with existing robust methods for different
multimodal segmentation and sentiment analysis tasks. Our method requires an extremely small
number of additional parameters (e.g., < 0.7% of the total parameters in most experiments), while
significantly improving performance compared to missing modality scenarios. Our adaptation strategy
is applicable to different network architectures and tasks, which can be a versatile solution to build
robust multimodal systems.
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SUPPLEMENTARY MATERIAL

A DATASETS

MFNet Dataset introduced by Ha et al. (2017), is a popular dataset for RGB-thermal urban scene
segmentation, particularly in the context of supporting autonomous driving applications. It comprises
a total of 1569 aligned pairs of RGB-thermal images. Within this collection, 820 image pairs were
captured during daytime, while 749 pairs were acquired during nighttime. The dataset is divided into
distinct training and test sets, each accompanied by pixel-level annotations that define semantic labels
for nine classes. Each image is 640× 480 pixels.

NYU Depth v2 (NYUDv2) Dataset from Silberman et al. (2012) is a well-known dataset for RGB-D
semantic segmentation. This dataset contains 1449 pairs of aligned RGB-depth images of indoor
scenes. The images are divided into training and test sets containing 795 and 654 pairs of images
respectively. The dataset also provides per pixel annotations for 13 classes, 40 classes and 894 classes
ground truth semantic labels. For our experiments we used the standard 40 classes annotation. Each
image is 640 × 480 pixels and the dataset contains both raw and processed depth maps. For our
experiments we used HHA images as proposed by Gupta et al. (2014) instead of depth maps.

Multimodal Material Segmentation (MCubeS) Dataset was introduced by Liang et al. (2022) for
accurate multimodal material segmentation with the help of thermal and polarized images alongside
RGB images. This dataset has four modalities: RGB, Angle of Linear Polarization, Degree of Linear
Polarization and Near-Infrared. Alongside these modalities, the dataset also provides ground truth
annotation for semantic and material segmentation. There are 500 image sets divided into train,
validation and test sets having 302, 96 and 102 image sets respectively. The images are 1224× 1024
pixels each and have 20 classes in total.

CMU-MOSI dataset from Zadeh et al. (2016) is a popularly used for multimodal sentiment analysis.
The dataset has 2199 samples each having audio, visual and text as input modalities. It is divided into
train, validation and test sets containing 1284, 229 and 686 samples respectively along with annotated
sentiment for each sample.

CMU-MOSEI is a large scale sentiment analysis dataset from Bagher Zadeh et al. (2018). It is 10
times larger than CMU-MOSI and contains audio, visual and text modalities along with ground truth
sentiment annotations. The dataset contains 23453 samples divided into train, validation and test sets
for multimodal sentiment analysis and emotion recognition.

B IMPLEMENTATION DETAILS

We used Python1 3.8.12 and PyTorch2 1.9.0 to for our implementation. The experiments were done
using two NVIDIA RTX 2080 Ti GPUs. We applied automatic mixed precision (AMP) training
provided by PyTorch. For CMNeXt model, we use their publicly available code3 and models trained
on all the available modalities for each dataset. We trained the multimodal transformer models on all
the modalities using the available code and preprocessed data from the repository4 for CMU-MOSI
and CMU-MOSEI datasets.

MFNet Dataset: We divied the 4 channel RGB-T images into three channel RGB and one channel
thermal images. Then data pre-processing and augmentation was applied following CMNeXt from
Zhang et al. (2023). MiT-B4 from Xie et al. (2021) was the backbone for the base CMNeXt model.
One set of scale and shift parameters was learnt for each input modality combination. Input images
were sized at 640× 480 for both training and testing and we report single scale performance for all
the experiments. The scale and shift parameters were trained for 100 epochs with a batch size of 4.

NYUDv2 Dataset: For processing depth maps, we follow SA-Gate by Chen et al. (2020) and
CMNeXt by Zhang et al. (2023) and use HHA-encoded images instead of raw depth maps. The

1https://www.python.org/
2https://pytorch.org/
3https://github.com/jamycheung/DELIVER
4https://github.com/thuiar/MMSA
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Table 6: Hyperparameters for the experiments on CMU-MOSI and CMU-MOSEI datasets for multimodal
sentiment analysis.

Hyperparameters CMU-MOSI CMU-MOSEI

Batch Size 16 4
Initial Learning Rate 0.002 0.0005
Optimizer Adam Adam
Attention Dropout 0.3 0.4
Embedding Dropout 0.2 0.0
Output Dropout 0.5 0.5
Gradient Clip 0.6 0.6
Weight Decay 0.005 0.001
Temporal Conv Kernel Size (T/A/V) 5/5/5 5/1/3
# of Crossmodal Blocks 4 4

Table 7: Learnable parameter counts for different parameter efficient model adaptation methods. As seen from
the table, scale and shift introduce less than 0.7% of the total model parameters.

Method Total Parameters (M) Learnable Parameters (M) % of Total Parameters

Norm 116.560 0.126 0.108
BitFit 116.560 0.378 0.324
LoRA 116.957 0.397 0.340
Scale and Shift 117.349 0.789 0.673

already preprocessed dataset can be downloaded from the SA-Gate repository5. RGB and HHA
images were sized at 640 × 480 pixels each and we used this size for training and testing. The
backbone was set to MiT-B4 as suggested in CMNeXt paper. One set of scale and shift parameters
was learnt for each input modality combination by feeding available input modalities and setting the
missing modality to zero. We train the scale and shift parameters for 100 epochs with a batch size of
4 and report single scale performance.

MCubeS Dataset: We follow the same data pre-processing and augmentations used by the base
CMNeXt model from Zhang et al. (2023). MiT-B2 from Xie et al. (2021) was used as the backbone
for this dataset. We set the input image resolution to 512×512 during training and 1024×1024 during
testing and report single scale performance with predicted segmentation maps sized at 1024× 1024.
Similar to other two datasets, we train the learnable parameters for 100 epochs with a batch size of 4.

CMU-MOSI and CMU-MOSEI Datasets: We used Multimodal Transformer (MulT) from Tsai
et al. (2019) as the base model. Preprocessed datasets and all the configurations are available on
the repository6. First we trained the multimodal transformer (MulT) model on all the available
modalities and then adapted the pretrained model for different modalities. The hyperparameters for
the experiments are shown in Table 6.

C NUMBER OF LEARNABLE PARAMETERS

We report the number of learnable parameters for different parameter-efficient adaptation techniques
(for multimodal segmentation) in Table 7. We insert scale and shift layers after each linear, convolu-
tional and norm (both batch norm and layer norm) layers. The number of learnable parameter varies
with the size of the backbone. We used MiT-B4 as the backbone while counting these learnable
parameters. Scale and shift adds only 0.789M learnable parameters which is less than 0.7% of the
total model parameters. Despite this very few parameters, it improves performance significantly
in different missing modality scenarios. For this study we mainly focused on improving missing
modality robustness and did not try to optimize the number of learnable parameters. We will leave
that part for future studies.

5https://github.com/charlesCXK/RGBD_Semantic_Segmentation_PyTorch
6https://github.com/thuiar/MMSA
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Table 8: Performance comparison with parameter efficient model adaptation techniques on CMNeXt model for
MFNet dataset. Average column indicates average performance when one of the two modalities gets missing.
Mean accuracy, F1 score and % mIoU are shown for all the experiments.

Methods RGB Thermal Average
mAcc F1 % mIoU mAcc F1 % mIoU mAcc F1 % mIoU

Pretrained 60.74 66.91 53.71 38.18 45.11 35.48 49.46 56.01 44.60
Dedicated 66.28 68.22 55.86 68.35 65.29 53.34 67.32 66.76 54.60

Scale Only 67.09 68.03 54.77 64.00 60.92 49.23 65.55 64.48 52.00
Shift Only 65.82 67.42 54.57 59.77 60.54 48.96 62.80 63.98 51.77
BitFit 66.49 67.40 54.39 61.06 60.59 49.07 63.78 64.00 51.73
LoRA 66.44 67.32 54.19 57.10 59.04 47.45 61.77 63.18 50.82
Norm 66.43 67.07 54.65 57.55 59.22 47.49 61.99 63.15 51.07
Scale and Shift 67.18 68.04 55.22 66.70 62.64 50.89 66.94 65.34 53.06

Table 9: Performance comparison with parameter efficient model adaptation techniques on CMNeXt model for
NYUDv2 dataset. Average column indicates average performance when one of the two modalities gets missing.
Mean accuracy, F1 score and % mIoU are shown for all the experiments.

Methods RGB Depth Average
mAcc F1 % mIoU mAcc F1 % mIoU mAcc F1 % mIoU

Pretrained 64.10 65.70 51.19 8.30 7.95 5.26 36.20 36.83 28.23
Dedicated 66.00 66.62 52.18 44.80 46.79 33.49 55.40 56.71 42.84

Scale Only 68.18 67.38 53.04 51.54 49.88 36.12 59.86 58.63 44.58
Shift Only 67.54 67.35 53.04 50.30 49.76 36.25 58.92 58.56 44.65
BitFit 67.31 67.33 53.09 50.68 50.27 36.64 59.00 58.80 44.87
LoRA 66.67 67.14 52.87 49.34 48.66 34.97 58.01 57.90 43.92
Norm 67.18 67.34 53.05 48.74 48.06 34.73 57.96 57.70 43.89
Scale and Shift 67.96 67.18 52.82 52.42 50.60 36.72 60.19 58.89 44.77

D COMPARISON OF PARAMETER-EFFICIENT ADAPTATION METHODS

We performed a detailed performance comparison with other parameter efficient methods for the
three segmentation datasets. The results are summarized in Table 8 for RGB-thermal segmentation
on MFNet dataset, Table 9 for RGB-depth segmentation on NYUDv2 dataset and Table 10 for
multimodal material segmentation on MCubeS dataset. For each method, we take a model trained on
all the available modalities. Then we freeze the pretrained weights and tune the learnable parameters
for the corresponding adaption method. We have shown mean accuracy, F1 score and % mIoU for
each experiment.

D.1 COMPARISON FOR RGB-THERMAL SEMANTIC SEGMENTATION

Table 8 summarizes the results on MFNet dataset when the base CMNeXt model is adapted with
other parameter efficient model adaptation techniques. Experiments show that scale and shift shows
the best performance in all three matrices compared to all other methods. It shows a significant
improvement of +8.46% in mIoU, +9.33% in F1 score and +17.48% in mean accuracy on an average
over the pretrained model. The average performance is also close to dedicatedly trained models.

D.2 COMPARISON FOR RGB-DEPTH SEMANTIC SEGMENTATION

Similar trend is observed fro RGB-depth semantic segmentation on NYUDv2 dataset as shown in
Table 9. Scale only and BitFit adapted models show slightly better performance for some of the
matrices. But in most of the cases scale and shift adapted model performs better. For all the matrices,
scale and shift shows a significant improvement of +16.54% in mIoU, +22.05% in F1 score and
+23.99% in mean accuracy over the pretrained model on an average and consistently outperforms
dedicated training.
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Table 10: Performance comparison with different parameter efficient model adaptation techniques on CMNeXt
model for MCubeS dataset. Average column indicates the average performance. Mean accuracy, F1 score and %
mIoU are shown for all the experiments.

Methods RGB RGB-AoLP RGB-AoLP-DoLP Average
mAcc F1 % mIoU mAcc F1 % mIoU mAcc F1 % mIoU mAcc F1 % mIoU

Pretrained 51.63 55.91 42.32 58.66 62.00 48.81 60.06 62.43 49.06 56.78 60.11 46.73
Dedicated 57.70 60.95 48.16 57.56 61.17 48.42 59.12 61.91 49.48 58.13 61.34 48.69

Scale Only 59.64 63.06 50.16 60.28 63.55 50.55 60.96 64.14 51.13 60.29 63.58 50.61
Shift Only 59.82 63.17 50.13 60.10 63.36 50.40 60.61 63.78 50.86 60.18 63.44 50.46
BitFit 59.98 63.24 50.19 60.12 63.52 50.57 60.84 64.03 51.07 60.31 63.60 50.61
LoRA 59.08 62.50 49.59 59.81 63.05 50.07 60.69 63.84 50.80 59.86 63.13 50.15
Norm 59.57 62.89 49.95 60.22 63.49 50.51 60.98 64.08 51.07 60.26 63.49 50.51
Scale and Shift 60.23 63.41 50.43 60.40 63.59 50.62 60.94 64.04 51.11 60.52 63.68 50.72

D.3 COMPARISON FOR MULTIMODAL MATERIAL SEGMENTATION

We show comparison with parameter efficient model adaptation techniques on MCubeS dataset
in Table 10. Scale and shift outperforms all other methods in most of the matrices for all input
combinations. It also shows an improvement of +3.99% in mIoU, +3.57% in F1 score and +3.74%
in mean accuracy on an average over the pretrained model. Furthermore, Scale and shift also
outperforms dedicated training for all input modality combinations. These experiments corroborate
the fact that scale and shift provides better model adaption for different missing modality scenarios.

E PER CLASS IOU COMPARISON

To further analyze how the adaption is helping the model improve overall semantic and material
segmentation performance, we conduct a per-class % intersection over union (IoU) analysis on the
pretrained and adapted models. Table 11 summarizes the results. We show the per class % IoU
comparison for different missing modality situations on MFNet dataset on Table 11a. From the
table we can see that when RGB is available and thermal is missing, the adaptation helps improve
performance for most of the classes. Though we see some performance drop for bike (-0.74%) and
guardrail (-5.25%) classes, the rest of the classes have better % IoU than the pretrained model. Bump
(+6.26%), person (+4.42%), and curve (+4.14%) classes show greater improvement after adaptation.
When thermal is available and RGB is missing, adaptation improves performance for all the classes.
Among the classes, bike (+39.76%), car (+27.59%), car stop (+24.04%), color cone (+19.37%) and
bump (+13.91%) are showing impressive performance improvement over the pretrained model.

Results for MCubeS dataset is shown on Table 11b. Here A, D, and N stand for angle of linear
polarization (AoLP), degree of linear polarization (DoLP) and near-infrared (NIR) respectively.
Experiments show that when only RGB is available and the rest of the modalities are missing, the
adapted model performs better in detecting all the 20 classes present in the dataset. Gravel (36.2%),
asphalt (16.1%), rubber (15.2%), wood (12.9%) and sky (10.2%) are some of the classes who show
the most performance boost after adaptation. In other input combinations, most of the classes see
performance improvement compared to the pretrained model. Though we see some performance
drop in a few classes, most of the classes show improvement in % IoU which leads to the overall
performance improvement after adaption.

F COMPARISON WITH AVAILABLE MODALITY DUPLICATION METHOD FOR
MISSING MODALITIES

Apart from replacing the missing modalities with zeros, we have also performed some experiments on
utilizing available modalities to compensate for the missing modalities. We compare the performance
of duplicating available modalities and replacing zeros for missing modalities with our adaptation
method in Table 12. The results show that duplicating available modalities is inferior to the adapted
model (and in some cases worse than replacing zeros for missing modalities). For MFNet and
NYUDv2 datasets, we replaced the missing modality with a copy of the available modality. For
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Table 11: Per class % IoU comparison between pretrained and adapted CMNeXt model on MFNet and MCubeS
datasets. Adapted model show better performance for most of the classes leading to overall performance
improvement. Here A, D and N stand for Angle of Linear Polarization (AoLP), Degree of Linear Polarization
(DoLP) and Near-Infrared (NIR) respectively.

(a) Per class % IoU of pretrained and adapted CMNeXt model on MFNet dataset.
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RGB-Thermal CMNeXt 98.31 90.27 74.52 64.52 46.64 39.19 15.09 52.56 59.79 60.10

RGB Pretrained 97.79 87.62 51.13 61.94 30.05 39.36 21.04 45.55 48.95 53.71
Adapted 97.79 88.06 55.55 61.20 34.19 40.52 15.78 48.67 55.21 55.22

Thermal Pretrained 95.97 55.24 68.47 9.27 31.85 2.75 0.0 16.87 38.92 35.48
Adapted 97.46 82.83 70.12 49.03 40.89 26.79 1.84 36.24 52.83 50.89

(b) Per class % IoU of pretrained and adapted CMNeXt model on MCubeS dataset.
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RGB-A-D-N CMNeXt 84.4 44.9 53.9 74.6 32.1 54.0 0.8 28.7 29.8 67.0 66.2 27.7 68.5 42.8 58.7 49.7 75.3 55.6 19.1 96.52 51.5

RGB Pretrained 69.7 39.2 47.6 67.3 26.9 44.6 0.2 20.9 15.2 61.8 36.7 19.1 67.2 36.0 49.5 36.1 71.6 36.1 14.7 86.3 42.3
Adapted 85.8 43.7 52.6 73.8 27.9 51.0 0.8 24.2 30.4 67.8 72.9 27.1 68.1 42.9 57.6 49.0 74.9 43.4 18.3 96.5 50.4

RGB-A Pretrained 83.2 43.3 50.7 72.6 26.4 51.9 0.2 28.1 22.2 67.7 63.4 22.7 67.5 40.6 54.4 44.9 73.9 44.8 21.8 96.0 48.8
Adapted 84.4 45.4 53.8 74.5 30.4 53.2 0.6 26.9 28.8 69.0 69.3 24.8 67.5 43.2 58.4 48.2 75.1 48.1 14.4 96.4 50.6

RGB-A-D Pretrained 84.5 41.2 46.7 72.8 25.2 51.6 0.3 26.1 28.8 66.7 65.6 26.0 66.5 40.4 50.0 45.1 72.7 49.4 25.6 96.3 49.1
Adapted 84.1 45.6 54.1 74.6 30.5 54.2 0.6 28.1 30.1 69.0 67.6 25.9 67.8 43.8 58.0 49.1 75.0 53.7 13.7 96.5 51.1

Table 12: Performance of Pretrained model with zero filling, Pretrained model with available modality du-
plication, and Adapted model for missing modalities. CMNeXt is used as the base model for all the datasets.
HHA-encoded images were used instead of raw depth maps. Bold letters represent best results.

Dataset Input Missing Pretrained
(Zeros for missing)

Pretrained
(Duplicate for missing)

Adapted
(Ours)

MFNet
RGB-Thermal - 60.10 - -
RGB Thermal 53.71 52.33 55.22
Thermal RGB 35.48 44.43 50.89

NYUDv2
RGB-Depth - 56.30
RGB Depth 51.19 46.19 52.82
Depth RGB 5.26 13.94 36.72

MCubeS

RGB-AoLP-DoLP-NIR - 51.54 - -
RGB-AoLP-DoLP NIR 49.06 49.93 51.11
RGB-AoLP DoLP-NIR 48.81 49.23 50.62
RGB AoLP-DoLP-NIR 42.32 48.96 50.43

the MCubeS dataset, we replaced the missing modalities with a copy of RGB modality. In all the
combinations, the adapted model works much better than the modality duplication method.

G EXAMPLES OF PREDICTED SEGMENTATION MAPS

We show the predicted segmentation maps from the pretrained and adapted models in Figure 3. For
each dataset, we show the input images, predictions from the base CMNeXt model when all the
modalities are available, predictions from the adapted and pretrained models for different missing
modality scenarios. For brevity, we only show RGB input images for MCubeS dataset. A, D and N
stand for angle of linear polarization (AoLP), degree of linear polarization (DoLP) and near-infrared
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(a) Visualization of predictions from MFNet dataset

(b) Visualization of predictions from NYUDv2 dataset

(c) Visualization of predictions from MCubeS dataset

Figure 3: Visualization of predicted segmentation maps for pretrained and adapted models on MFNet and
NYUDv2 datasets for multimodal semantic segmentation and MCubeS dataset for multimodal material segmen-
tation. Only RGB images are shown from MCubeS dataset for brevity. CMNeXt column shows the predictions
when all the modalities are available. Segmentation quality improves significantly after model adaptation for all
the input modality combinations. A, D and N stand for angle of linear polarization, degree of linear polarization
and near-infrared respectively.

(NIR) respectively. Modalities that are available during testing are shown in parenthesis while other
modalities are missing.

For MFNet dataset, Figure 3a shows that when only RGB is available, the pretrained model performs
very poorly in detecting humans. On the other hand, if only thermal is available, the pretrained model
can not detect cars very accurately. But the adapted model can detect both humans and cars more
accurately in both of the scenarios. In all the cases, the predictions form the adapted model is closer
to the predictions of the base CMNeXt model when all the modalities are available.

Predictions from NYUDv2 dataset is shown on Figure 3b. We can see that the adapted model can
identify bed, furniture and other classes more accurately than the pretrained model for different
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Table 13: Comparison of our adaptation technique with existing methods for multimodal sentiment analysis.

Datasets Methods Audio Visual Audio-Visual Average
ACC F1 ACC F1 ACC F1 ACC F1

CMU -MOSI

MulT (Tsai et al. (2019)) 48.31 40.98 52.44 51.77 48.93 41.95 49.89 44.90
MFN (Zadeh et al. (2018)) 56.86 44.81 55.95 42.94 56.86 51.07 56.56 46.27
TFN (Zadeh et al. (2017)) 42.23 25.07 42.38 25.40 42.23 25.07 42.28 25.18
BERT MAG (Rahman et al. (2020)) 57.77 42.31 57.77 42.31 57.77 42.31 57.77 42.31
LMF (Liu et al. (2018)) 42.23 25.07 43.14 27.54 43.29 27.61 42.89 26.74
Adapted (Ours) 50.00 46.71 54.88 54.39 55.49 53.96 53.46 51.69

CMU - MOSEI

MulT (Tsai et al. (2019)) 37.15 20.12 38.28 23.70 41.91 32.78 39.11 25.53
MFN (Zadeh et al. (2018)) 58.48 58.31 60.35 59.48 59.74 60.37 59.52 59.39
TFN (Zadeh et al. (2017)) 37.15 20.12 37.15 20.12 37.15 20.12 37.15 20.12
BERT MAG (Rahman et al. (2020)) 62.83 48.50 61.39 49.70 62.83 48.51 62.35 48.90
LMF (Liu et al. (2018)) 42.38 34.48 57.15 57.85 55.94 56.63 51.82 49.65
Adapted (Ours) 62.85 55.55 62.49 60.00 63.32 60.69 62.89 58.75

missing modality scenarios. The pretrained model performs very poorly when only depth is available
and RGB is missing. But detection accuracy improves significantly after model adaptation. For
MCubeS dataset, as seen in Figure 3c, predictions from the pretrained model shows artifacts when
detecting different materials. On the other hand, the adapted model is showing more accuracy in
detecting sky, cobblestone, sand and brick. For all the three datasets, the predictions from the adapted
model is more accurate and closer to the all modality predictions of the base CMNeXt model.

H COMPARISON WITH EXISTING METHODS FOR MULTIMODAL SENTIMENT
ANALYSIS

We also compare our adaptation method with existing methods for multimodal sentiment analysis
and show the results in Table 13. All the experiments are done with the same settings described
in Section B utilizing the same codebase for the model implementations. The table shows that for
CMU-MOSI dataset, BERT MAG works better in terms of accuracy but our adaptation method works
better in terms of F1 score. One thing to mention is that BERT MAG uses a pretrained BERT model
and finetunes it on the dataset but we are not using any pretraining. For CMU-MOSEI, our adaptation
method works better for most of the cases.
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