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ABSTRACT

The optimization of algorithms in exact combinatorial optimization (CO) solver
plays a fundamental role in operations research. However, due to the extensive
requirements on domain knowledge and the large search space for algorithm design,
the refinement on these algorithms remains highly challenging for both manual and
learning-based paradigms. To tackle this problem, we propose a novel machine
learning framework—large language model for exact combinatorial optimization
solver (LLM4Solver)—to efficiently design high-quality algorithms of the CO
solvers. The core idea is that, instead of searching in the high-dimensional and dis-
crete symbolic space from scratch, we can utilize the prior knowledge learned from
large language models to directly search in the space of programming languages.
Specifically, we first use a pre-trained LLM as the generator for high-quality al-
gorithms. Then, to efficiently explore the discrete and non-gradient algorithm
space, we employ a derivative-free evolutionary framework as the algorithm op-
timizer. Experiments on extensive benchmarks show that the algorithms learned
by LLM4Solver significantly outperform all the state-of-the-art (SOTA) human-
designed and learning-based policies (on GPU) in terms of the solution quality, the
solving efficiency, and the cross-benchmark generalization ability. The appealing
features of LLM4Solver include 1) the high training efficiency to outperform SOTA
methods within ten iterations, and 2) the high cross-benchmark generalization abil-
ity on heterogeneous MIPLIB 2017. LLM4Solver shows the encouraging potential
to efficiently design algorithms for the next generation of modern CO solvers.

1 INTRODUCTION

Combinatorial optimization (CO), which aims to find an optimal object from a finite solution set,
is one of the most fundamental models in operations research (OR) (Achterberg, 2007; Bengio
et al., 2021). It is widely used to formulate a series of important real-world tasks, e.g., scheduling,
transportation, and management (Liu et al., 2008; Chen, 2010; Ma et al., 2019; Paschos, 2014). In
these applications, the solving efficiency and the solution quality are usually related to enormous
economic value (Kuang et al., 2023; Achterberg, 2007). Thus, the optimization for algorithms on
exact CO solvers plays a fundamental role in the field of OR. Popular exact CO solvers like SCIP
(Gleixner et al., 2018) and Gurobi (Gurobi Optimization, LLC, 2023) employ a rich set of hard-coded
heuristics, whose efficacy directly affects the performance of the CO solvers. Due to the complexity
of these heuristics, designing and optimizing them typically demand substantial domain expertise,
significant manual adjustments, and intricate workflows(Achterberg, 2007; Bengio et al., 2021).

Recently, there has been an explosive surge in the use of machine learning (ML) techniques to
enhance exact CO solvers. These learning-based approaches can be roughly divided into two classes.
One class incorporates deep neural networks (DNNs) to approximate different components in CO
solvers, e.g., the branching (Gasse et al., 2019), the cut selection (Wang et al., 2023), and the primal
heuristics (Paulus & Krause, 2024; Nair et al., 2020). Note that these DNN models fail to explain
what patterns they have learned that accelerate the CO solvers (Kuang et al., 2024a), and thus they
fail to help researchers further optimize the human-designed heuristics in solvers. To tackle this
problem, the other class (Kuang et al., 2024a;b) employs symbolic discovery approaches to learn more
interpretable heuristics. Currently, these approaches are proved effective mainly on the branching
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component (Achterberg, 2007), in which symbolic regression (SR) is employed to learn interpretable
scoring functions that outperform DNN policies on purely CPU-based devices.

Previous symbolic discovery approaches(Kuang et al., 2024a;b) , though effective for branching,
have two general limitations that severely hinder their potential applications to CO solvers. (1) Due
to the high-dimensional and discrete search space for symbolic discovery and its nature of searching
from scratch, existing SR-based approaches suffer from high computational costs. (2) The vastly
different intrinsic nature of CO problems across various scenarios causes most approaches to fail in
generalizing to various benchmarks. However, we hope that learning-based approaches will design
more generic heuristics like human-designed ones to enhance the built-in performance of the solvers.

The powerful capabilities of the large language models (LLM) in text comprehension and logic
generation have attracted widespread attention(Naveed et al., 2023; Yang et al., 2023), offering new
approaches for algorithm design. Romera-Paredes et al. (2024) combine LLM with the island-based
evolution for mathematical discovery. Liu et al. (2024) and Ye et al. (2024) leverage LLM to revise
heuristics for online bin packing, traveling salesman problems, and flow shop scheduling problems.
Sun et al. (2024) create a multi-agent-based framework to improve the heuristics of SAT problems.
These works have demonstrated impressive results in scenarios like mathematical discovery, and
designing heuristics for classical CO and SAT problems. However, while online bin packing and
traveling salesman problems are highly representative and important CO problems, when modeled
and solved using general MILP formulations in CO solvers, it is critical to investigate heuristics to
find feasible solutions in more general MILP problems. Currently, there are no LLM-based heuristic
optimization methods specifically designed for general MILP problems and research on such methods
holds more generic scientific significance.

In this work, we propose an automatic algorithm design framework—large language model for exact
combinatorial optimization solver (LLM4Solver)—to efficiently design high-quality diving heuristics
of the CO solvers. Specifically, we first use the LLM as an algorithm generator, leveraging it to
design three operators: initialization, crossover, and mutation, to generate new executable algorithm
code with LLM’s prior knowledge. Then, we treat the derivative-free evolutionary framework as
an optimizer, utilizing it to iteratively optimize in the non-gradient algorithm space. Finally, we
extend this framework through multi-objective evolution to leverage the heterogeneous characteristics
of different CO problems to design more generic algorithms. Extensive experiments show that
LLM4Solver-designed interpretable diving heuristics significantly outperform all the state-of-the-art
(SOTA) human-designed and learning-based policies (on GPU) in terms of solution quality, solving
efficiency, and cross-benchmark generalization ability.

We summarize the highly appealing features of LLM4Solver as follows. (1) High performance.
LLM4Solver outperforms all the baselines, including both the human-designed diving heuristics
in SCIP (Gleixner et al., 2018) and the SOTA learning-based policy on GPU (Paulus & Krause,
2024), in terms of the solution quality (Table 1) and the solving efficiency (Table 2). (2) Efficient
searching. LLM4Solver outperforms the SOTA learning-based approaches within only four iterations
and converges to optimum within ten iterations, respectively (Figure 2). (3) Strong cross-benchmark
generalization ability. LLM4Solver can design a generic diving heuristic with high cross-benchmark
generalization ability on different benchmarks (Table 3), including the highly challenging heteroge-
neous MIPLIB 2017 (Table 4). (4) Good interpretability. The programs with comments designed
by LLM4Solver (Figure 4) clearly illustrate the execution logic of the algorithms, offering better
interpretability compared to neural network parameters(Paulus & Krause, 2024) and purely symbolic
expressions(Kuang et al., 2024a). LLM4Solver shows the potential to efficiently design high-quality
and generic algorithms for the next generation of solvers, thereby enhancing their built-in capabilities.

2 PRELIMINARIES

2.1 EXACT COMBINATORIAL OPTIMIZATION SOLVERS AND DIVING HEURISTIC

In real-world scenarios, a series of CO problems can be modeled as Mixed Integer Linear Program-
mings (MILPs), taking the form of:

argmin
x
{c⊤x|Ax ≤ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I},
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where c denotes the objective coefficient vector, A the constraint matrix, b the constraint right hand
side vector, l,u respectively the lower and upper bounds and I denotes the index of integer variables.
In exact solvers like SCIP (Gleixner et al., 2018), MILPs are solved with the branch-and-bound (B&B)
algorithm. B&B recursively builds a search tree and expands the tree by selecting a variable xi to
partition the problem into two subproblems. Specifically, one adds constraint xi ≤ ⌊x∗

i ⌋ and the other
adds xi ≥ ⌈x∗

i ⌉, where the x∗
i is the fractional value in the solution of the linear programming (LP)

relaxation problem. Here, the LP relaxation problem is defined as argmin
x
{c⊤x|Ax ≤ b, x ∈ Rn}

and its constraints are defined as P ∗ . Furthermore, B&B uses objective bounds to prune the tree
and direct the exploration. Primal heuristics help solvers obtain stronger primal bounds and improve
solving efficiency. Among them, diving heuristics is one of the most common primal heuristics and
has a significant impact on the performance of solvers. They perform a depth-first search by iteratively
rounding a variable and solving the modified LP relaxation problems until a feasible solution is found
or infeasibility is proven. Algorithm 1 details the diving heuristic process. The scoring function s,
used to select the variables and rounding direction, is the most crucial part of diving heuristics.

2.2 EVOLUTIONARY ALGORITHMS

Given a minimization problem argminv∈V h(v), evolutionary algorithms (EA)(Zhou et al., 2019)
take v as an individual and use parent selection, crossover, mutation, fitness measure and survivor
selection operators to get better individuals, see Figure 1. After generations of iteration, EA outputs a
population of feasible solutions to the problem.

Multi-objective evolutionary algorithms (MOEAs)(Deb et al., 2002; Zhang & Li, 2007) can implent
on multi-objective minimization problem argminv∈V(h1(v), h2(v), ..., hm(v)). For two solutions
v, v′ in a multi-objective minimization problem, we define that

• v weakly dominates v′ (denoted as v ⪯ v′) iff. ∀1 ≤ i ≤ m,hi(v) ≤ hi(v
′).

• v dominates v′ (denoted as v ≺ v′) iff. v ⪯ v′ and ∃1 ≤ i ≤ m,hi(v) < hi(v
′).

A feasible solution that any other solution cannot dominate is called the Pareto optimal solution.
The set of all Pareto optimal solutions is called the Pareto Front. MOEAs leverage the evolution
framework and output the Pareto Front of the multi-objective optimization problem.

2.3 PERFORMANCE MEASUREMENT

It is common to measure the primal-dual gap as the solving performance, taking the form as:

γpd(z̃, z̃
∗) =

{
|z̃−z̃∗|

max(|z̃|,|z̃∗|) , if 0 < z̃z̃∗ <∞,

1, else,

where z̃ is the primal bound given by the incumbent feasible solution x̃ and z̃∗ is the dual bound
given by the optimal solution of LP relaxation problem.

Primal-dual integral Considering that the primal-dual gap is subject to the final solution and the
time limit setting, a more intuitive way is measuring the variation of the primal-dual gap during the
solving process, i.e. calculating the primal-dual integral along the time steps:

PD(T ) =

∫ T

t=0

γpd(z̃t, z̃
∗
t )dt.

Primal gap As the diving heuristics only aim to improve the primal performance, there is a necessity
to introduce the relative primal gap to assess the effectiveness of diving heuristics, which is given by:

γp(z̃) =
|z̃ − z†|
|z†|

,

where z† is the objective value of the optimal solution presolved. The primal gap intuitively shows
the objective value distance between the current feasible solution and the global optimal solution. If
|z†| = 0, we would use the primal gap:

γ′
p(z̃) = |z̃ − z†|

3
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Figure 1: Illustration of the automatic algorithm design framework LLM4Solver. The top flowchart
outlines the evolutionary process of the algorithms. LLM4Solver leverages the prior knowledge of
LLM to generate new algorithm candidates in the initialization, crossover, and mutation steps. In
the fitness evaluation step, LLM4Solver utilizes the solving performance of the candidates on one or
multiple CO problems for single- or multi-objective evolution. The three parts at the bottom give
examples of initialization, crossover, and mutation with LLM and prompt engineering.

3 METHODS

Modern CO solvers like SCIP (Gleixner et al., 2018) are highly complex, typically containing up to
millions of lines of code. Thus, directly designing a whole CO solver end-to-end is challenging, as
the search space grows exponentially with the algorithm complexity (Kuang et al., 2024b). Instead, in
this paper, we mainly focus on the design of diving heuristic, which is widely recognized as one of the
most critical primal heuristics in exact CO solvers to find high-quality solutions within a reasonably
short time (Achterberg, 2007; Paulus & Krause, 2024).

Due to the large search space and lack of prior knowledge, previous manual and learning-based
paradigms are inefficient for designing heuristics in CO solvers. Thus, we propose a novel framework
(see Figure 1 and pseudo code 2)—large language model for exact combinatorial optimization solver
(LLM4Solver)—to efficiently design high-quality and generic diving heuristics. The core idea of
LLM4Solver is that, instead of defining complex symbols and searching in the space of symbolic
trees (Poli et al., 2008; Petersen, 2019; Kuang et al., 2024a), we can utilize the prior knowledge
learned from large language models to conduct efficient searching directly at the program space.
We further extend this framework through multi-objective evolution to leverage the heterogeneous
characteristics of different CO problems and design more generic heuristics.

Generally, as shown in Figure 1, LLM4Solver begins evolution with population initialization, itera-
tively optimizing the algorithms through the following steps: parent selection, crossover, mutation,
fitness evaluation, and survivor selection. It leverages the prior knowledge of LLM to generate new
algorithm candidates during initialization, crossover, and mutation (shown in the bottom part of
Figure 1). During fitness evaluation, single-objective evolution uses one fitness function, f1, while
multi-objective evolution considers multiple fitness functions, f1, f2, . . . , fn, to assess performance
across various CO problems and design a more generic algorithm.

Specifically, Section 3.1 first describes how to represent algorithms as individuals and how to evaluate
the individuals in the evolution. Then, in Section 3.2 we introduce the idea of utilizing LLM to
generate new individuals. After that, Section 3.3 describes the process of selecting the survivor
individuals for the next generation of populations. Moreover, in Section 3.4 we introduce LLM4Solver
with multi-objective evolution to simultaneously utilize information from different CO problems and
design an algorithm with cross-benchmark generalization ability.
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3.1 INDIVIDUAL REPRESENTATION AND FITNESS EVALUATION

As a population-based optimization strategy, each individual in the evolutionary process is represented
by a diving score function s and the description of its logic. The fitness of each individual is assessed
based on its solving performance in specific instances. Throughout the evolutionary process, a
population of N individuals is maintained to facilitate optimization.

Diving Score Function The diving score function s is the key decision-making component of the
diving heuristic (See Appendix B). It determines the next diving variable and the rounding direction,
which directly impacts the solving performance. For a diving score function s with Python format,
we employ a variable’s 13 features as input and output score (float, the score of the variable) and
roundup (bool, True if round the variable up, False for rounding down). These 13 features listed
in Table 8 represent the union of all features used by the human-designed diving heuristics in SCIP.
They are cheap to obtain, interpretable, and effectively describe the state of variables.

As previous methods based on neural networks(Paulus & Krause, 2024) and symbolic discov-
ery(Kuang et al., 2024a) do not consider the description of algorithm logic, we treat both the diving
score function and its logical description as an individual like (Liu et al., 2024). As shown in the
bottom part of Figure 1, these logical descriptions provide a high-level idea for the corresponding al-
gorithms, helping both the LLM and humans understand the algorithms. Through steps like crossover
and mutation, LLM can combine and mutate these ideas to guide the generation of new algorithms.

Fitness Evaluation As primal heuristics aim to find better feasible solutions, we use the quality of
solutions found by the diving heuristics as their fitness. Specifically, we embed s in SCIP, turn off the
other heuristics, dive into the root node, and the fitness is

f(s) = mean(γp(z̃
s
1), γp(z̃

s
2), ..., γp(z̃

s
Nins

)), (1)

where Nins is the number of instances used for fitness evaluation, z̃sk is the incumbent feasible
solution found by s in the k-th instance, γp(z̃sk) is the relative primal gap of s in the k-th instance.
For an individual s, the smaller the value of f(s), the better s is.

3.2 GENERATING NEW INDIVIDUALS WITH LLM

The text comprehension and logic generation abilities exhibited by LLMs closely align with the
algorithm design. Therefore, we leverage the capabilities of LLM with prompt engineering to quickly
generate new individuals in initialization, crossover and mutation steps.

Prompt Engineering As general LLM lacks sufficient information in specific domains, we need to
provide more details of diving heuristics and specific instructions through prompt engineering. For the
convenience of LLM’s comprehension, we categorize the prompts into two groups: 1) the background
prompts to provide the details about diving heuristics and 2) the task-specific prompts to instruct how
to generate a new individual in initialization, crossover or mutation steps. Specifically, the background
prompts consist of the introduction of MILP and diving heuristics and give the pseudo-code of diving
for task-specific prompts. The task-specific prompts comprise the input features description, in-out
format description and task-specific instruction. We give specific prompts in Appendix E.

Initialization, Crossover and Mutation In the initialization step, we need to leverage the capabilities
of LLM to generate an individual from scratch. We directly use initialization-specific prompts and
the LLM to generate a new individual. After running N times, we can get the first population
P = {s1, s2, ..., sN}. In the crossover step, we need to recombine the advantages of the parent
individuals to obtain a better offspring individual. Specifically, we provide l parent algorithms
and recombine them with crossover-specific prompts to generate r offspring individuals. Then, we
employ the LLM with mutation-specific prompts to mutate the offspring individuals generated by
crossover, thereby exploring new individuals in the vicinity of the current one. We run the crossover
and mutation for N times in each generation and get rN new individuals after that.

Parent Selection Before crossover, we need to select l parent algorithms from the population. As
parent selection needs to balance randomness and optimality, we adopt the fitness proportional
selection(Zhou et al., 2019) to determine the probability of each individual sn being selected, i.e.

g(sn) =

1
f(sn)+eps∑N

k=1
1

f(sk)+eps

, n = 1, 2, ..., N, (2)

5
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where eps is a small number to avoid division by 0. It can be observed that the probability of better
individuals being selected as parents is higher, which effectively balances randomness and optimality,
allowing for exploration of a larger algorithm space.

3.3 ELITISM SURVIVOR SELECTION FOR POPULATION OPTIMIZATION

The Survivor Selection Policy plays a vital role in determining which individuals are kept and which
are removed from the next generation. It is essential to ensure that the best individuals are preserved
within the population. Specifically, we employ elitism survivor selection(Zhou et al., 2019) which
always select the N individuals with best fitness from the total (r + 1)N ones after crossover and
mutation. Elitism survivor selection can excellently ensure the optimality of individuals, which is
helpful for efficiently finding high-quality diving heuristics.

3.4 EMPLOYING MULTI-OBJECTIVE EVOLUTION FOR CROSS-BENCHMARK GENERALIZATION

To design a unified algorithm with cross-benchmark generalization ability for the CO solver, we need
to leverage the information of different benchmarks simultaneously. However, previous gradient-
based work has only one optimization objective(Gasse et al., 2019; Kuang et al., 2024a;b), which
is the algorithm’s performance on a single benchmark, making it difficult to simultaneously utilize
information from multiple benchmarks. To tackle this problem, we treat the performance of the
algorithm on different benchmarks as separate objectives and utilize multi-objective evolution to
harness information from different benchmarks. Specifically, the differences between single-objective
and multi-objective are in the fitness evaluation, parent selection, and survivor selection steps.

Fitness Evaluation of Multi-objective Evolution We treat the fitness of the diving heuristics on
different benchmarks as different objectives. Specifically, the m-th objective (fitness) is

fm(s) = meanm(γp(z̃
s
1), γp(z̃

s
2), ..., γp(z̃

s
Nins_m

)), m = 1, 2, ...,M, (3)

where M is the number of objectives.

Parent and Survivor Selection of Multi-objective Evolution We use the binary tournament
selection(Deb et al., 2002) for parent selection. Specifically, we randomly choose 2 individuals from
the population and select the better one as a parent. Similarly, we use the elitism survivor selection
for multi-objective evolution to select the best next generation. Since multi-objective optimization
cannot simply compare two individuals using a single fitness function, we employ Non-dominated
Sorting (See Appendix F) and Crowding Distance Sorting to perform the necessary comparisons.

4 EXPERIMENTS

We evaluate LLM4Solver through extensive experiments and benchmarks1. These experiments aim to
1) show that LLM4Solver with single-objective evolution algorithm (SOEA) significantly outperforms
current human-designed and learning-based SOTA methods in solution quality and solving efficiency;
2) illustrate that LLM4Solver with multi-objective evolution algorithm (MOEA) designs heuristics
with high cross-benchmark generalization ability; 3) show the interpretability of LLM4Solver; 4)
conduct ablation studies to highlight the effectiveness of evolution search.

4.1 EXPERIMENTAL SETTINGS

Baselines There are 8 baselines corresponding to solution quality, including 7 human-designed
diving heuristics (i.e. coefficient, fractional, linesearch, pseudocost, distributional, vectorlength and
farkas(Witzig & Gleixner, 2021) diving) in the open-source solver SCIP(Achterberg, 2007) and a
learning-based GNN diving method L2DIVE(Paulus & Krause, 2024). For solving efficiency, we
compare our method with the default and tuned SCIP and L2DIVE. Specifically, we do not change
any parameters for the default SCIP, but we tune two important parameters (i.e. freq and freqofs) for
tuned SCIP to get better performance. See Appendix D.1 for more details.

Benchmarks The same as previous work(Paulus & Krause, 2024), we employ four standard and two
real-world benchmarks to compare the solution quality and solving efficiency. The four standard

1We report the learned heuristics in Appendix G and will release our training code once the paper is accepted.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The average relative primal gap with standard error of different diving heuristics. The
results compare LLM4Solver with SOEA to seven human-designed and one learning-based baselines
to illustrate the superior quality of solutions found by the designed diving heuristics.

Methods Setcover Cauctions Facilities Indset

LLM4Solver with SOEA 3.36 (0.25) 1.83 (0.16) 0.65 (0.03) 0.84 (0.07)

Best Human-designed 6.99 (0.38) 3.00 (0.21) 2.17 (0.09) 4.91 (0.45)
coefficient 232.47 (3.47) 8.10 (0.34) 5.61 (0.18) 15.49 (0.50)

distributional 231.54 (3.45) 9.47 (0.40) 3.11 (0.11) 11.30 (0.25)
farkas 6.99 (0.38) 5.67 (0.29) 2.19 (0.09) –

fractional 232.43 (3.47) 7.63 (0.31) 5.61 (0.18) 14.55 (0.40)
linesearch 232.43 (3.47) 3.58 (0.26) 6.78 (0.31) 10.51 (0.51)
pseudocost 18.62 (1.47) 3.00 (0.21) 2.17 (0.09) 9.82 (0.49)

vectorlength 232.43 (3.47) 61.67 (0.55) 6.78 (0.31) 4.91 (0.45)

L2DIVE2 3.58 2.60 0.71 1.37

ones include set covering (Setcover), combinatorial auctions (Cauctions), capacitated facility location
(Facilities), and maximum independent sets (Indset), and the two real-world ones include server load
balancing in distributed computing (LoadBalance)(Gasse et al., 2022) and neural network verification
(NNVerify)(Nair et al., 2020). We utilize the heterogeneous benchmark MIPLIB2017 containing
20 instances(Gleixner et al., 2021) to further demonstrate the cross-benchmark generation ability.
These 20 instances (See Table 10) ensure that at least one diving heuristic can find a feasible solution,
facilitating the comparison of different diving heuristics. We report the size of benchmarks and the
hyperparameters for generating them in Appendix D.2.

Implementation Details (1) For the solution quality, Diving is solely implemented in the root node
of each instance, with branching, cutting planes, and other primal heuristics disabled, emphasizing
the quality of feasible solutions found by diving heuristics. For fitness evaluation in the evolution, we
generate 50 instances each for Setcover, Cauctions, and Indset, and 10 instances for Facilities. We
validate and test the discovered diving heuristics on 100 instances each. (2) For the solving efficiency,
we embed the discovered diving heuristics into the SCIP. We use the LoadBalance dataset(Gasse et al.,
2019) with 100 instances for validation and testing respectively. These instances cannot be solved
within 3600 seconds, so we set a limit time Tlimit = 900 seconds and measure its primal-dual integral
PD(Tlimit) as the solving performance. We use the NNVerify dataset with 50 instances for validation
and 523 for testing. We set the maximal solving time limit Tlimit = 3600 seconds and measure the
solving time T . We use solution quality as the evaluation criterion and then utilize the primal-dual
integral or solving time for validation and testing, selecting the diving heuristic that demonstrates the
best performance in solving efficiency. (3) For LLM4Solver with multi-objective evolution algorithm
(MOEA), we set the primal gap on four benchmarks (Setcover, Cauctions, Facilities, and Indset)
as four objectives. Then, we chose the diving heuristic in the Pareto front with the highest average
improvement ratio compared to the human-designed heuristic on four benchmarks as the output.
We employ the designed diving heuristic to the MIPLIB instances to show the cross-benchmark
generalization ability. We report the mean of the primal gap and the wins for comparison.

We use the GPT-3.5-turbo as the pre-trained LLM. We run all the experiments with 3 rand seeds on
Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz and NVIDIA GeForce RTX 2080 Ti.

4.2 RESULTS

Solution Quality We compare LLM4Solver to other baselines in Table 1. Results show that
LLM4Solver with single-objective evolution algorithm (SOEA) finds better feasible solutions than
all human-designed and learning-based SOTA diving heuristics on four different problem classes.
The results show that combining the prior knowledge of LLMs and evolutionary search is effective
for designing new algorithms of CO solvers. We further expose the results of harder instances in
Appendix D.3 to show the scalability of LLM4Solver.

2Since the code for L2DIVE is currently not open-source and specific hyperparameters are not available, we
officially report the performance of L2DIVE based on its ratio to the best human-designed heuristic as presented
in the original article (Paulus & Krause, 2024). For a fair comparison, we use the same benchmarks and observe
consistent results for the human-designed baselines.
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Table 2: Compare SCIP with LLM4Solver to default and tuned SCIP to illustrate that it can
improve the quality of solutions while leveraging better solutions to enhance the solving efficiency.
LLM4Solver improves the primal-dual integral by 38% (15%) on LoadBalance and reduces the
solving time by 31% (20%) on NNVerify over the default (tuned) settings of SCIP.

LoadBalance NNVerify

Primal-dual Integral Wins Solving Time Wins

Default SCIP 7340.7 (58.1) 0 (0.0) 76.9 (4.08) 44 (9.2)
Tuned SCIP 5445.7 (100.8) 1 (0.5) 65.8 (1.09) 103 (10.1)

SCIP with LLM4Solver 4543.0 (53.1) 99 (0.5) 52.9 (1.49) 376 (14.6)

Table 3: The average relative primal gap of LLM4Solver with MOEA, LLM4Solver with SOEA, and
human-designed diving heuristics. The results show that using multi-objective evolution can leverage
the characteristics of different CO problems to achieve cross-benchmark generalization ability.

Methods Setcover Cauctions Facilities Indset

LLM4Solver with MOEA 4.01 (0.32) 2.49 (0.19) 1.30 (0.08) 1.28 (0.11)

LLM4Solver trained on Setcover 3.36 (0.25) 2.77 (0.21) 3.33 (0.18) 9.75 (0.49)
LLM4Solver trained on Cauctions 5.30 (0.36) 1.83 (0.16) 3.28 (0.20) 14.87 (0.48)
LLM4Solver trained on Facilities 6.86 (0.54) 11.37 (1.21) 0.65 (0.03) 5.93 (0.35)

LLM4Solver trained on Indset 70.96 (1.50) 11.52 (0.52) 3.18 (0.16) 0.84 (0.07)

Best Human-designed 6.99 (0.38) 3.00 (0.21) 2.17 (0.09) 4.91 (0.45)
farkas 6.99 (0.38) 5.67 (0.29) 2.19 (0.09) –

pseudocost 18.62 (1.47) 3.00 (0.21) 2.17 (0.09) 9.82 (0.49)
vectorlength 232.43 (3.47) 61.67 (0.55) 6.78 (0.31) 4.91 (0.45)

Efficient Searching We show the convergence process of LLM4Solver with SOEA on Setcover
dataset in Figure 2. It illustrates that LLM4Solver can design an algorithm better than the best human-
designed ones in the first generation and better than the SOTA learning-based method L2DIVE in
the fourth generation. The convergence time with 10 iterations is 3503.5±73.4s for Setcover, and
1835.4±56.6s, 4568.2±116.3s, 1213.6±48.9s for Cauctions, Facilities, and Indset respectively. The
result shows that LLM4Solver is efficient for designing high-quality diving heuristics.

Solving Efficiency We compare LLM4Solver to default and tuned SCIP in Table 2. Results show
that LLM4Solver improves the solution quality while leveraging better solutions to enhance the
solving efficiency. LLM4Solver improves the primal-dual integral by 38% (15%) on LoadBalance
and reduces the solving time by 31% (20%) on NNVerify over the default (tuned) settings of SCIP
comparing that L2DIVE improves 35% (7%) on LoadBalance and 29% (20%) on NNVerify.

Table 4: Compare LLM4Solver to human-designed div-
ing heuristics to illustrate high generalization ability on
heterogeneous MIPLIB of 20 instances. For "Wins",
"8/18" means the heuristic can find feasible solutions
on "18" instances and get the best solutions on "8".

Heuristics Average Primal Gap Wins

coefficient 1510 0/18
distributional 4826 1/15

farkas 1180 3/11
fractional 1268 1/14
linesearch 1589 1/16
pseudocost 1242 4/15

vectorlength 4803 2/17
LLM4Solver 844 8/18

Generalization Ability of LLM4Solver
with MOEA In Table 3, we compare
the performance of individual algorithms
across multiple CO problems. For example,
the row labeled "LLM4Solver trained on
Setcover" represents the performance of the
algorithm trained on the Setcover problem
across four different problems. In Figure
3, we use a radar plot to visually compare
the performance of MOEA, SOEA, and
human-designed heuristics across different
CO problems. The results in Table 3 and
Figure 3 show that 1) although the diving
heuristics designed by LLM4Solver with
SOEA perform well on their corresponding
benchmarks, they struggle to generalize ef-
fectively to other benchmarks (e.g., the algorithms evolved using Indset perform poorly on Setcover);
2) LLM4Solver with MOEA consistently outperforms the best human-designed heuristics across all
datasets and demonstrates better cross-benchmark generalization ability compared to single-objective
evolution. Moreover, we measure the performance of the diving heuristic designed by MOEA on 20
MIPLIB instances, results in Table 4 show that it can find better solutions even on heterogeneous
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Figure 2: The convergence curve of
LLM4Solver with SOEA on the Setcover
problem, where each point represents an al-
gorithm during the evolution. The x-axis rep-
resents the iterations, the y-axis indicates the
solution quality. The red and green lines rep-
resent the best and mean relative primal gap
per generation. The black and grey dotted
lines represent L2DIVE and the best human-
designed diving heuristic.
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Figure 3: The radar plot comparison on the
performance of MOEA, SOEA, and human-
designed heuristics with different CO problems.
The radius represents the ratio of each algo-
rithm’s relative primal gap compared to the
human-designed one (we set the maximum ra-
dius to 2.5 for visualization). Therefore, a
smaller radius or enclosed area indicates bet-
ter performance. In this context, "Setc" refers
to "LLM4Solver trained on Setcover," and
"MOEA" refers to "LLM4Solver with MOEA".

and unseen instances. This result demonstrates that LLM4Solver with MOEA can simultaneously
utilize characteristics from different CO problems to design a unified algorithm with cross-benchmark
generalization ability, which is beneficial to improving the solvers’ built-in capabilities.

def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Initialization
        score = 0.0
        roundup = False
        # Penalize limited rounding options to encourage exploration
        score -= 0.2 if mayrounddown or mayroundup else 0.0
        # Prioritize variables with high fractional values and low pseudo costs
        score += candsfrac  
        score += min(1 / (1 + (pscostdown + pscostup)), 1)
        # Consider the impact of objective function value and Euclidean norm
        score += (obj / max(1, objnorm)) * (1 - candsfrac) / (nNonz + 1)
        # Incorporate historical solution values
        score += rootsolval * 0.3
        # Penalize excessive sparsity
        if nNonz < 5:  
            score -= 0.2   
        # Adjust based on the number of locks for rounding down/up of a 
special type
        score -= min(0.2 * (nlocksdown + nlocksup), 0.4) 
        # Differentiate based on the binary nature of the variable
        score *= 1.5 if isBinary else 1.0
        # Determine rounding direction based on the score
        if candsfrac > 0.5:
            roundup = True
        return score, roundup

Figure 4: The code designed by LLM4Solver

Interpretability We report the diving heuristic
designed by LLM4Solver with MOEA in Fig-
ure 4. There are three key features that enable
LLM4Solver to achieve both interpretability and
high performance. (1) Leveraging LLMs’ text
and code generation capabilities, LLM4Solver
directly generates code and provides comments
for the code. This offers greater interpretability
compared to black-box neural networks (Paulus
& Krause, 2024) and purely numerical symbolic
methods (Kuang et al., 2024a). (2) Most of the
intuition in LLM4Solver aligns with human rea-
soning. For example, the condition to determine
the rounding direction is " candsfrac > 0.5 ".
Since "candsfrac" represents the fractional part
of an integer variable, the intuitive approach
is to round up if it is closer to 1 and down if
closer to 0. (3) LLM4Solver can fine-tune pa-
rameters or specific computational methods to
achieve higher performance for particular prob-
lems. For example, after multiple rounds of
evolution, it ultimately selected a penalty value
of "0.2" for the "penalize limited rounding options" strategy. Similarly, for "prioritize low pseudo
costs," it uses the formula "min(1/(1+(pscostdown+pscostup)), 1)" instead of directly applying "-
(pscostdown+pscostup)". These algorithms not only improve the solving performance but also help
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experts obtain insights into solving patterns. The insights potentially play a significant role in the
design of the next generation of solvers.

4.3 ABLATION STUDY

Table 5: A comparison of different parts in evolution.
The average relative primal gap with standard error.

Methods Setcover Cauctions

LLM (No Evolution) 3.84 (0.31) 2.84 (0.22)
LLM4Solver (No Crossover) 3.67 (0.28) 2.77 (0.21)
LLM4Solver (No Mutation) 3.55 (0.27) 2.34 (0.19)

LLM4Solver 3.36 (0.25) 1.83 (0.16)

We conduct ablation studies to provide
more evidence of the contribution of dif-
ferent parts in LLM4Solver. First, we
compare the contribution of different parts
in the evolutionary process. For "LLM
(No Evolution)", we disable all evolution-
ary processes and solely use the LLM to
generate 100 algorithm candidates. Addi-
tionally, we compare LLM4Solver where
either crossover or mutation was excluded individually. The results in Table 5 indicate that crossover
is more crucial for the outcomes. Without crossover, the solution quality decreases by 10%-28%,
while not using any evolutionary process results in a 14%-55% reduction in solution quality.

Table 6: A comparison of different LLMs. The
average relative primal gap with standard error.

LLM Setcover Cauctions

GPT-4 3.43 (0.28) 2.29 (0.18)
GPT-3.5-turbo-16k 3.48 (0.28) 2.16 (0.17)
Claude-3.5-sonnet 3.41 (0.27) 2.10 (0.18)

GPT-3.5-turbo 3.36 (0.25) 1.83 (0.16)

Second, we compare LLM4Solver with differ-
ent LLMs (GPT-4, GPT-3.5-turbo-16k, Claude-
3.5-sonnet). The results in Table 6 show that
the performance of LLM4Solver is not entirely
dependent on the reasoning capability of the
LLMs and all four LLMs can achieve high per-
formance. This further indicates that the evolu-
tionary search framework in LLM4Solver helps
compensate for the differences in reasoning ca-
pabilities among the various LLMs.

Table 7: A comparison of different hyper-
parameters. The average relative primal gap with
standard error.

LLM Setcover Cauctions

Ng = 10, N = 10 3.36 (0.25) 1.83 (0.16)
Ng = 20, N = 10 3.34 (0.23) 1.91 (0.17)
Ng = 10, N = 20 3.31 (0.23) 1.80 (0.21)

Finally, we compare the impact of key hyper-
parameters during the evolutionary process on
the final results, including the number of gen-
erations (Ng) and population size (N ). The re-
sults in Table 7 indicate that once convergence
is achieved, increasing the number of genera-
tions or population size does not significantly
improve the final results.

5 CONCLUSIONS

In this paper, we propose a novel LLM-based automatic algorithm design framework for combinatorial
optimization solvers to efficiently design high-quality and generic diving heuristics. To leverage
the heterogeneous characteristics of different CO problems, we extend this framework through
multi-objective evolution. Extensive experiments show that LLM4Solver significantly outperforms
all the SOTA human-designed and learning-based (on GPU) methods in terms of solution quality,
solving efficiency, and cross-benchmark generalization ability. Furthermore, the appealing features
of LLM4Solver include high performance, efficient searching, and interpretability of the designed
algorithms. The results show an encouraging step towards efficient automatic algorithm design on
modern exact CO solvers via large language models. Applying LLM4Solver to more components
in modern CO solvers like branching (Gasse et al., 2019; Kuang et al., 2024a), presolve (Kuang
et al., 2023; Achterberg, 2007), and cut generation (Huang et al., 2022; Wang et al., 2023) are
exciting avenues for further work. Moreover, the automated algorithm design framework based
on multi-objective evolution can be extended to more complex problems like multi-objective CO
problems(Chen et al., 2024; Lust & Teghem, 2010) and electronic design automation(Wang et al.,
2024). Finally, LLM4Solver shows the potential to efficiently design high-quality and generic
algorithms for the next generation of solvers, thereby enhancing their built-in capabilities.
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6 REPRODUCIBILITY STATEMENT

We do all experiments on the open-source CO solver SCIP Optimization Suite 9.0 (Bolusani et al.,
2024). For benchmarks, we provide the information of four standard and two real-world benchmarks
in 4.1 and D.2. We give the name of used MIPLIB instances in 10. For baselines, we give all the
information about human-designed diving heuristics in B and source code is in SCIP(Bolusani et al.,
2024). For our methods, we give LLM4Solver’s pseudo-code in 2, hyper-parameters in C, prompts in
E and the designed diving heuristics in G. We will release all the codes for training and evaluation
once the paper is accepted.
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A RELATED WORKS

Existing CO solvers consist of branching, cut selection, primal heuristics, and other essential modules
(Achterberg, 2007). The application of Machine Learning (ML) leverages its inherent capabilities
to learn data distributions and replace one or more modules within the solver to enhance solving
efficiency. The research on ML for CO solvers can be roughly categorized into two classes. One class
aims to substitute modules with deep neural networks, for example, Gasse et al. (2019) propose a
bipartite graph presentation of CO problems and replace the branching module with the graph neural
network (GNN). Nair et al. (2020) construct a Neural Solver to generate a high-quality assignment
and optimality gap. Han et al. (2023) leverage the predict-and-search framework to generate better
assignment. Wang et al. (2023) develop a hierarchical sequence/set model to learn cut selection
policies. While previous works achieved significant results, complex models face disadvantages
including high requirement of training samples, low interpretability, and great deployment difficulty
(Kuang et al., 2024a). To tackle these problems, the other class aims to discover symbolic algorithms
in a data-driven methodology. Kuang et al. (2024a) leverage deep symbolic regression to learn
branching policies in expressions, outperforming previous neural network methods on purely CPU-
based devices. Symbolic learning-based methods also have broad prospects for scientific discovery.
Chen et al. (2023) propose program search techniques and discovered a more efficient optimization
algorithm Lion. Mankowitz et al. (2023) train an agent AlphaDev to learn sorting algorithms
and achieve better performance than human benchmarks. Although the discovery process runs
automatically, training these works still requires developing a novel algorithm from scratch, which is
inefficient with limited prior knowledge.

As the performance of Large Language Models grows rapidly (Naveed et al., 2023), researchers
attempt to combine the prior knowledge of Large Language Models (LLMs) with algorithm design.
Yang et al. (2023) propose an approach that iteratively optimizes prompts and solutions to problems
by LLMs. Xiao & Wang (2023) leverage LLMs to assist the design of the robotic modules and attain
the utility-optimal A* algorithm. Despite the excellent capabilities of LLMs, it is still tough to design
algorithms for complex problems with solely LLMs and prompt engineering. Thus, recent works
consider evolutionary search methods and obtain more competitive algorithms through the continuous
iterative evolution of algorithms generated by LLM. Romera-Paredes et al. (2024) combine LLM
with the island-based evolutionary method, and discover new algorithms for classic mathematical
problems like cap set and online bin packing, revealing the great potential of this combination. Liu
et al. (2023) introduce a novel approach AEL and discover heuristics with excellent generalization
performance on the traveling salesman problem. Ye et al. (2024) leverage LLM to revise heuristics for
online bin packing, traveling salesman problems, and electronic design automation. Sun et al. (2024)
create a multi-agent-based framework to improve the heuristics of SAT problems. These works have
demonstrated impressive results in scenarios like mathematical discovery, and designing heuristics for
classical CO and SAT problems. However, while online bin packing and traveling salesman problems
are highly representative and important CO problems, when modeled and solved using general MILP
formulations in CO solvers, it is critical to investigate heuristics to find feasible solutions in more
general MILP problems. Especially in the domain of exact CO solver, various cross-distribution
problems, such as Set covering (Balas & Ho, 1980), Combinatorial auction (Leyton-Brown et al.,
2000), Capacitated facility location (Cornuéjols et al., 1991), Maximum independent set (Bergman
et al., 2015), etc., are modeled by a unified format for solving. Hence, it is essential to design a
general algorithm that can cater to diverse problem types for exact CO solvers.

B DIVING HEURISTICS AND INPUT FEATURES

Every diving heuristic shares the same generic framework 1 and the only difference is the score
function s to decide the rounding variables and direction.

There are some human-designed diving heuristics used in SCIP.

Coefficient Diving selects the variable that minimizes the number of up-lock or down-lock constraints
and bounds it in the up or down direction. We say a constraint C is up-lock (down-lock) on xj if
C(x̂) = 1, C(x̃) = 0, where x̂k = x̃k for all k ̸= j and x̂j > x̃j (x̂j < x̃j).

Distributional Diving selects a variable according to the solution density obtained by fixing its value,
which is proposed in Pryor & Chinneck (2011).
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Table 8: The features of the variables used for diving score functions
Features Name Description

s1 mayrounddown bool, indicate whether it is possible to round variable down and stay feasible.
s2 mayroundup bool, indicate whether it is possible to round variable up and stay feasible.
s3 candsfrac float, fractional part of solution value of variable.
s4 candsol float, solution value of the variable in LP relaxation solution.
s5 nlocksdown int, the number of locks for rounding down of a special type.
s6 nlocksup int, the number of locks for rounding up of a special type.
s7 obj float, objective function value of variable.
s8 objnorm float, the Euclidean norm of the objective function vector.

s9,s10 pscostdown/up float, the variable’s pseudo cost value for the given change of the variable’s LP value.
s11 rootsolval float, the solution of the variable in the last root node’s relaxation.
s12 nNonz int, number of nonzero entries in the column vector.
s13 isBinary bool, TRUE if the variable is of binary type.

Farkas Diving (Witzig & Gleixner, 2021) comes from the Farkas’ lemma. It bounds a variable
along the direction in which the objective is improved and selects the variable with the largest lifting
objective value.

Fractionality Diving selects the variable with minimal fractionality min{⌈xj⌉ − xj , xj − ⌊xj⌋} and
rounds it to the nearest integer.

Line Search Diving reinforces the solution update direction from the root node. It selects the first
variable that reaches an integer on the ray from the LP solution at the root to the LP solution at
the current node. Algebraically spoken, it rounds the variable having the minimal distance ratio

⌈xj⌉−xj

xj−(xroot)j
for xj > (xroot)j and xj−⌊xj⌋

(xroot)j−xj
for xj < (xroot)j .

Pseudocost Diving selects a variable based on its pseudocost collected during the search process. The
pseudocosts provide an estimation for each integer variable, indicating the increase in the objective
value of the LP problem per unit change in that variable.

Vector Length Diving is custom-made for set covering and applied to general MIPs. It selects the
variable with the smallest ratio of the objective cost to the constraints covered by fixing it to 1.

There are some other diving heuristics in SCIP, including adaptive diving, guided diving and conflict
diving. We do not compare these diving heuristics as baselines because they are ineffective (conflict),
require at least one feasible solution (guided), or choose from other heuristics (adaptive).

In our work, we take the variable’s features used in these human-designed diving heuristics as input
for our diving score function. See Table 8 for details of the total 13 features.

Algorithm 1 Generic Diving Heuristic
Input: MILP with relaxation constraints P ∗, LP solution x∗, maximum depth dmax

Output: If available, a set of feasible solutions X
Require: a scoring function s for selecting tighten variables and corresponding round direction

1: Initial depth d← 1, C := {j ∈ I|x∗
j /∈ Z}

2: while d ≤ dmax do
3: j = argmaxi∈C s(xi)
4: lj ← ⌈x∗

j⌉ if roundup else uj ← ⌊x∗
j⌋

5: P ∗ ← P ∗ ∩ {lj ≤ xj ≤ uj}
6: if P ∗ is infeasible then break
7: x∗ = argmin

x
{c⊤x|x ∈ P ∗}

8: if x∗ is roundable then
9: X ← X ∪ round(x∗)

10: end if
11: d← d+ 1
12: update candidate variable index set C
13: end while

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PSEUDO-CODE OF LLM4SOLVER AND HYPERPARAMETERS

We provide the pseudo-code of LLM4Solver in Algorithm 2. Firstly, during the initialization, we
utilize an LLM to generate the initial population P = {s1, s2, . . . , sN}. Subsequently, through the
use of parent selection, crossover, mutation, fitness evaluation, and survivor selection, we iteratively
evolve the algorithm’s population. After Ng generations of iteration, we can get one high-performance
diving score function s for the exact combinatorial optimization solver. We list the hyperparameters
as follows: Ng(SOEA) = 10, Ng(MOEA) = 20, Ng(SOEA) = 10, Ng(MOEA) = 16, l =
2, r = 1, eps = 10−8.

Algorithm 2 Large Language Models for Exact Combinatorial Optimization Solvers (LLM4Solver)
Input: A given LLM; The number of generations: Ng; Population size N ; The number of parents
l; The number of new individuals r generated by crossover; The number of objectives M.
Output: Best diving score function s∗

1: for j = 1, 2, ..., N do
2: Initialization: Creat new diving score function sj as individuals with given LLM;
3: Fitness Evaluation: Evaluate its fitness f1(sj), ..., fM (sj) with instances;
4: end for
5: Initial population P = {s1, s2, ..., sN}
6: for i = 1, 2, ..., Ng do
7: for j = 1, 2, ..., N do
8: Parent Selection: Select the parent individuals pj = {s1, s2, ..., sl}
9: Crossover: Create new individuals oj = {s1, s2, ..., sr} with LLMs, crossover

10: prompts and pj
11: for k = 1, 2, .., r do
12: Mutation: Mutate sk with LLMs and mutation prompts
13: Fitness Evaluation: Evaluate its fitness f1(sk), ..., fM (sk) with given instances;
14: end for
15: end for
16: Survivor Selection: Select the best N individuals from P ∪ {o1, o2, ..., oN} to generate
17: the next population P
18: end for
19: Select the best s∗ from the latest population by validation as output.

D MORE EXPERIMENT DETAILS

D.1 TUNING SCIP PARAMETERS FOR DIVING

There are two most important parameters frep and freqofs that control the stages where different
diving heuristics take effect. Hence for baseline Tuned SCIP, we sample the configurations by
varying these parameters to associate diverse heuristics and improve the performance. Learning
from Paulus & Krause (2024), we define the sample distribution of frep by setting freq = −1 (no
diving), freq = 0.5 × freqdefault (double frequency), freq = freqdefault (default frequency),
freq = 2 × freqdefault (half frequency) with equal probability and the distribution of freqofs by
leaving the freqofs = 0 and freqofs = freqofsdefault with equal probability for each diving
heuristic. Under the same resource load and validation instances, we select the configuration with the
lowest primal-dual integral and solving time for the baseline. Although tuning solver parameters may
enhance our LLM4Solver, we keep the default settings to give the direct improvement reflection.

D.2 BENCHMARK DETAILS

We follow the benchmark generation process in Gasse et al. (2019) for the problems including set
covering (Setcover), capacitated facility (Facilities), combinatorial auction (Cauctions), and maximum
independent set (Indset). We set 2 levels (i.e. easy, and hard) of difficulty according to the problem
scales. We list the generation hyperparameters and algorithms in Table 9.
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Table 9: Instance generation algorithms and the detailed hyperparameters.

Benchmark Algorithms Hyperparameters

Setcover Balas & Ho (1980) Easy: 500 rows 1000 columns
Hard: 2000 rows 1000 columns

Cauctions Leyton-Brown et al. (2000) Easy: 100 items for 500 bids
Hard: 300 items 1500 bids

Facilities Cornuéjols et al. (1991) Easy: 100 facilities with 100 customers
Hard: 100 facilities with 400 customers

Indset Bergman et al. (2015) Easy: 500 nodes with affinity 4
Hard: 1500 nodes with affinity 4

Table 10: Used MIPLIB instance names

air05 beasleyC3 binkar10_1 cod105
dano3_3 eil33-2 hypothyroid-k1 istanbul-no-cutoff

markshare_4_0 mas76 mc11 mik-250-20-75-4
n5-3 neos-860300 neos-957323 neos-1445765
nw04 piperout-27 pk1 seymour1

For load balancing in distributed computing (LoadBalance), we get the dataset the same as Gasse
et al. (2022). We don’t use the training set and we only use 100 instances for validation and testing
respectively. For neural network verification (NNVerify)(Nair et al., 2020), we select 50 instances for
validation and 523 for testing by excluding the unsolved, trivial and numerically unstable instances.

For MIPLIB instances, we choose the easy instances from MIPLIB2017 (Gleixner et al., 2021) that
can be solved within 100s and at least one diving heuristic can find a feasible solution. The specific
names are listed in Table 10.

D.3 SCALE TO HARD INSTANCES

We compare the diving heuristics generated by LLM4Solver on easy instances and scale them to hard
ones. Results in Table 11 show that LLM4Solver with SOEA still outperforms all human-designed
heuristics on all four problems. It illustrates that LLM4Solver has a high scalability to hard instances.
However, as mentioned in Table 3 of the main text, although LLM4Solver with SOEA can learn the
characteristics of a single problem and generalize to harder instances of the same problem type, it is
unable to learn features across different problems. Therefore, it lacks cross-benchmark generalization
ability.

Table 11: LLM4Solver still outperforms all seven human-designed diving heuristics on hard test
instances even trained on easy instances.

Type Heuristics Setcover Cauctions Facilities Indset

LLM4Solver:

gpt35 5.03 (0.26) 2.29 (0.11) 1.39 (0.24) 0.80 (0.04)
gpt35-16k 6.34 (0.32) 1.55 (0.09) 0.61 (0.02) 0.79 (0.04)

gpt4 5.66 (0.30) 2.00 (0.10) 0.42 (0.04) 0.79 (0.04)
claude3 4.90 (0.26) 1.60 (0.07) 0.43 (0.04) 0.77 (0.04)

Human-designed:

best human-designed 9.49 (0.35) 3.17 (0.12) 3.04 (0.16) 4.00 (0.51)
coefficient 332.39 (3.31) 8.23 (0.20) 28.15 (1.22) 16.36 (0.30)

distributional 332.36 (3.31) 12.83 (0.32) 9.92 (0.54) 10.93 (0.16)
farkas 9.49 (0.35) 5.82 (0.13) 7.21 (0.48) –

fractional 332.39 (3.31) 8.84 (0.20) 28.57 (1.25) 15.23 (0.24)
linesearch 278.48 (1.93) 3.78 (0.14) 30.01 (1.18) 14.16 (0.28)
pseudocost 25.59 (1.33) 3.17 (0.12) 3.04 (0.16) 13.11 (0.26)

vectorlength 253.60 (2.38) 60.85 (0.34) 30.01 (1.18) 4.00 (0.51)
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Table 12: The relative primal gap between "average improvement ratio as single objective" and
"LLM4Solver with MOEA + average improvement ratio".

Methods Setcover Cauctions Facilities Indset

MOEA + Average Improvement Ratio 4.01 (0.32) 2.49 (0.19) 1.30 (0.08) 1.28 (0.11)
Average Improvement Ratio as Single Objective 4.57 (0.42) 2.54 (0.23) 1.37 (0.12) 1.38 (0.15)

D.4 TAKE AVERAGE IMPROVEMENT RATIO AS SINGLE OBJECTIVE

When selecting algorithms with cross-benchmark generalization ability from the Pareto Front obtained
through multi-objective evolution, we used the average improvement ratio of the algorithms on four
CO problems as a posterior selection criterion. This is defined as:

AIR(s) =

M∑
m=1

1

M

fm(s)

hm
,m = 1, 2, ...,M (4)

where AIR(s) is the average improvement rario of s, M is the number of CO problems (objectives),
fm(s) and hm are the relative primal gap of s and best human-designed algorithm respectively on
the m-th CO problem.

We use the average improvement ratio as a single objective for LLM4Solver with SOEA, and the
results in Table 12 show that LLM4Solver with MOEA outperforms the approach that relies solely on
the average improvement ratio across multiple CO problems. The reason for this result is that single-
objective evolution has a smaller search space, making it prone to converging on suboptimal
solutions. In multi-objective evolution, the best algorithm for each problem remains in the Pareto
Front, and the best algorithms for different problems vary significantly. Their crossover combinations
generate more diverse new algorithms, leading to the discovery of more generic solutions. When
using the average improvement ratio as a single objective, the diversity of algorithms within the
population is insufficient, resulting in a limited exploration of the algorithm space.

D.5 OTHER DIVING HEURISTICS IN THE PARETO FRONT

Table 13: Compare the best-
performing algorithms on each
benchmark in the multi-objective
evolutionary Pareto Front with sin-
gle objective evolution. The aver-
age relative primal gap with stan-
dard error.

Benchmark SOEA MOEA

Setcover 3.36(0.25) 3.41(0.28)
Cauctions 1.83(0.16) 2.31(0.20)
Facilities 0.65(0.03) 0.75(0.03)

Indset 0.84(0.07) 1.03(0.09)

By employing multi-objective evolution, we ultimately obtain
a Pareto Front consisting of different diving heuristics. In addi-
tion to the diving heuristic with cross-benchmark generalization
ability mentioned in Table 3, the Pareto Front retains the best-
performing algorithms on each benchmark (as they are not
dominated by other algorithms). The results in Table 13 show
that the algorithms from the multi-objective evolutionary Pareto
Front are competitive with those from single-objective evolution
on a specific CO problem. This implies that through one multi-
objective evolutionary process, users can select algorithms from
the Pareto Front based on their practical needs—whether they
require algorithms with cross-benchmark generalization abil-
ity or those that perform exceptionally well on a single CO
problem. This significantly enhances the practical value of LLM4Solver.

E PROMPTS

Prompts are key to whether LLMs can generate effective diving heuristics. We divide the prompts
into two groups: 1) background prompts, which provide sufficient background knowledge about
MILP problems and diving heuristics; 2) task-specific prompts, which offer detailed instructions for
the LLM’s specific operations (initialization, crossover, and mutation) to generate new algorithms.

As shown in Figure 5, background prompts contain Introduction of MILP, Definition of MILP, Primal
Heuristics, Diving Heuristics, Pseudo-code of Generic Diving and Background Instruction. Together
they provide enough background knowledge of diving heuristics for the downstream tasks. Also,
shown in Figure 6, task-specific prompts contain the Task Prompt, Features Description, In-out
Format Description and Inspiring Instruction. By combining the background and task-specific
prompts, we get the total prompts for each operator. LLMs take these prompts as input and output
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one diving score function named "myheurdiving". An example of the code generated by LLMs is
shown in Appendix G.

F NON-DOMINATED SORTING AND CROWDING DISTANCE SORTING

In multi-objective evolution, both parent selection and survivor selection require comparisons between
two or more individuals. Therefore, an appropriate method for individual comparison is crucial.
We employ Non-dominated Sorting and Crowding Distance Sorting to compare individuals. In the
Non-dominated Sorting phase, each individual s is assigned a rank, where rank = 1 indicates that
s is not dominated by any other individual in the population, while a rank = n+ 1 indicates that s
is only dominated by individuals with rank ≤ n. Thus, a lower rank is preferred.

If two individuals have the same rank, we then compare their crowding distance, which measures the
distance of s from other individuals s′ in the population. To encourage diversity within the population,
a larger crowding distance is favored.

In binary tournament selection, we randomly select two individuals from the population at a time and
choose the better one after comparison. After l selections, we obtain l parent individuals. In elitism
survivor selection, we compare all individuals in the population and select the top N individuals to
form the next generation.

Algorithm 3 Non-dominated Sorting
Input: A population P = {s1, s2, ..., sN}

1: Initial k = 1, Q = ∅
2: while P ̸= ∅ do
3: for each si ∈ P do
4: if si is not dominated by any sj

in P then
5: rank(si) = k
6: Q = Q ∪ {si}
7: end if
8: end for
9: P = P\Q

10: k = k + 1
11: end while

Algorithm 4 Crowding Distance Assignment
Input: Q = {s1, s2, ..., snum}

1: for each j, set Q[j]distance = 0
2: for each objective fi do
3: Q = sort(Q, fi)
4: Q[1]distance = inf
5: Q[num]distance = inf
6: for j = 2 to num− 1 do
7: Q[j]distance = Q[j]distance +

fi(Q[j+1])−fi(Q[j−1])
fi,max−fi,min

8: end for
9: end for

G EXAMPLES OF DISIGNED DIVING HEURISTICS

We present examples of diving heuristics designed by LLM4Solver in Figures 7 - 11, which can
be directly integrated into SCIP to reproduce experimental results. Notably, before generating the
code, the LLM produces a description that guides and explains the execution logic of the code, aiding
users in understanding it. Furthermore, the resulting diving heuristics can be categorized into two
styles: 1) one resembles linear regression, where inputs are linearly combined and the LLM and
evolution adjust the weights for each feature (e.g., GPT-3.5-turbo-16k for Setcover); 2) the other
employs complex logical controls and computations to enhance performance (e.g., Claude-3.5-Sonnet
for MOEA). These complex logical controls, parameter selections, and computational methods can
better utilize existing features, offering greater representational power and practical value compared
to simple mathematical expressions(Kuang et al., 2024a) and neural network parameters(Paulus &
Krause, 2024). Moreover, this suggests to solver designers that they can not only explore new features
as inputs but also leverage existing features to adjust computational methods and parameters, leading
to better algorithmic performance.
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Background Prompts

<Introduction of MILP>
<Definition of MILP>
<Primal Heuristics>
<Diving Heuritics>
<Pseudo-code of Generic Diving>
<Background Instruction>

<Introduction of MILP>
Mixed Integer Linear Programming (MILP) is 
a type of mathematical optimization or 
decision-making method that is used to 
find the best or optimal solution from a set 
of possible solutions, considering both 
linear and discrete decision variables. It is 
an extension of the well-known Linear 
Programming (LP) paradigm, which deals 
only with continuous variables.

<Definition of MILP>
Given a matrix $A \in \mathbb{R}^{m \times 
n}$, vectors $b \in \mathbb{R}^m$, and $c 
\in \mathbb{R}^n$, and a subset $I \subset 
N = \{1,2,...,n\}$, the mixed integer linear 
programming $\mathbf{MILP} = (A,b,c,I)$ is 
to solve $c^{*} = min\{c^T x| Ax \leq b, x \in 
\mathbb{R}^n, x_j \in \mathbb{Z}  \text{ for 
a l l  }  j  \ in  I \ }$ .  The vectors  in  the set 
$ X _ { M I L P }  =  \ { c ^ T x | A x \ l e q 
b,x_j\in\mathbb{Z} \text{ for all }j \in I\}$ are 
called feasible solutions of MILP. The 
bounds of variables are denoted by $l_j \leq 
x_j \leq u_j$ with $l_j,u_j \in \mathbb{R} 
\cup \{\pm \infty \}$

<Primal Heuristics>
Primal heuristics in the context of Mixed 
Integer Linear Programming (MILP) refer to 
methods or strategies used to f ind a 
feasible solution to the problem, typically 
as an initial step in the solution process. 
These heuristics are particularly useful 
when dealing with large and complex MILP 
prob lems where  f ind ing  an  opt ima l 
solution may be computationally expensive 
or time-consuming. The term "primal" 
refers to the original problem formulation, 
as opposed to the "dual" which is another 
way of looking at the problem.

<Diving Heuristics>
Diving heuristics are one of the most 
important categories of primal heuristics. 
Diving heuristics start from the current LP 
solution and iteratively fix an integer 
variable to an integral value and resolve 
the LP. 

<Pseudo-code of Generic Diving>
The pseudo-code of the Generic Diving Heuristic is as follows:

Algorithm: Generic Diving Heuristic 
Input: Optimal LP solution $$\breve{x}$$ of the current 
subproblem. 
Output: If available, one or more feasible integral solutions. 
Require: s, a scoring function to select variables for bound 
tightening
1. Set $\tilde{x} \coloneqq \breve{x}$. 
2. d = 1
3. while $$d \leq d_{max}$$ do
4.     If $F \coloneqq \{j \in I | \tilde{x}_j \notin \mathbb{Z}\} = 
\emptyset$, stop and return the feasible integral solution 
$\tilde{x}$. 
5.     Apply the simple rounding heuristic on $$\tilde{x}$$ to 
potentially produce an intermediate feasible integral solution. 
6.     Choose a fractional variable $x_j, j=argmax_{j\in F}  s_j$, 
and a rounding direction. 
7.     If down rounding is selected, t ighten $\tilde{u}_j 
\coloneqq \lfloor \tilde{x}_j \rfloor$. Otherwise, tighten 
$\tilde{l}_j \coloneqq \lceil \tilde{x}_j \rceil $. 
8.     Call domain propagation to propagate the tightened 
bound. 
9.     Resolve the LP relaxation with the new bounds. 
10.    (optional) If the LP is infeasible, undo the previous 
propagations, apply the opposite rounding, propagate, and 
resolve the LP again.
11.    If the LP is still infeasible, stop with a failure. Otherwise, 
let $$\tilde{x}$$ be the new optimal solution.
12.    d = d + 1

<Instruction>
You need to understand the above contents, especially the generic 
diving heuristic, and the next task will be closely related to the 
diving heuristic.

Figure 5: The background prompts include the <Introduction of MILPs>, <Definition of MILP>,
<Primal Heuristics>, <Diving Heuristics>, <Pseudo-code of Generic Diving> and <Background
Instruction>. Add them together to get the total background prompts.

Initialization Prompts
<Init-task Prompt>

<Features Description>

<In-out Format Description>

<Inspiring Instruction>

Crossover Prompts
<Crossover-task Prompt>

<Features Description>

<In-out Format Description>

<Inspiring Instruction>

Mutation Prompts
<Mutation-task Prompt>

<Features Description>

<In-out Format Description>

<Inspiring Instruction>

<Init-task Prompt>
Please focus on line 6 of the Generic Diving Heuristic. 
You should create a totally new Python scoring 
function for me (different from the heuristics in the 
literature) to choose the fractional variable and 
corresponding rounding direct ion us ing the 
information of the LP relaxation and objective 
function. The function is used for every variable to 
decide the variable's score and rounding direction. 

<Crossover-task Prompt>
Please focus on line 6 of the Generic Diving Heuristic. 
I have some score functions with their code to get 
the variable's score and the rounding direction. 
Motivated by these functions, you should combine 
them and create 1 different new Python score 
function(s).
The first algorithm and the corresponding code is:
<algorithm description>
<code>
The second algorithm and the corresponding code is:
<algorithm description>
<code>

<Mutation-task Prompt>
Please focus on line 6 of the Generic Diving Heuristic. 
I have a score function with its code to get the 
var iable 's  score and i t s  rounding d i rect ion . 
Motivated by the algorithm, you should create a 
different new Python score function.

The score function and the corresponding code are:
<algorithm description>
<code> 

<Features Description>
Specifically, you have 13 features to use in the score 
function: "mayrounddown" and "mayroundup" (bool, 
indicate whether it is possible to round variable 
down/up and stay feasible, it should be penalized 
because we need more exploration); "candsfrac" (float, 
fractional part of solution value of variable); "candsol" 
(float, solution value of variable in LP relaxation 
solution); "nlocksdown" and "nlocksup" (int, the number 
of locks for rounding down/up of a special type); "obj" 
(float, objective function value of variable); "objnorm" 
(float, the Euclidean norm of the objective function 
vector); "pscostdown" and "pscostup" (float, the 
variable's pseudo cost value for the given change of the 
variable's LP value); "rootsolval" (float, the solution of 
the variable in the last root node's relaxation, if the root 
relaxation is not yet completely solved, zero is returned); 
"nNonz" (int, the number of nonzero entries in variable); 
"isBinary" (bool, TRUE if the variable is of binary type). 

<In-out Format Description>
Provide a brief description of the score function's logic 
and its corresponding code. The description must start 
with '<start_des>' and end with '</end_des>'. The 
code must start with '<start_code>' and end with 
'</end_code>'. The code score function must called 
'myheurdiving' that takes 13 inputs 'mayrounddown', 
'mayroundup', 'candsfrac', 'candsol', 'nlocksdown', 
'nlocksup', 'obj', 'objnorm', 'pscostdown', 'pscostup', 
'rootsolval', 'nNonz' and 'isBinary'. The function must 
output the 'score' and 'roundup', where 'score' is a float 
type indicating the variable's score, the more the better, 
and the 'roundup' is a bool type indicating whether we 
should round the variable up, True for rounding up.  

<Inspiring Instruction>
Be creative and do not give additional explanations.

a) Prompts Format b) Task Prompts c) Descriptions and Instructions

Figure 6: Task-specific prompts. It is needed to get the parent algorithms to generate the offspring
for crossover and mutation prompts.
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Description:
The new score function aims to prioritize variables with higher 
potential for improving the objective function value and those that 
are closer to an integer value. It penalizes variables with limited 
rounding options and higher locking constraints. The function assigns 
a higher score to variables with lower fractional parts and higher 
pseudo cost values, while also considering the number of non-zero 
entries and binary nature of the variable.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # determine roundup
        if mayroundup and not mayrounddown:
            roundup = True
        elif mayrounddown and not mayroundup:
            roundup = False
        else:
            roundup = True  # default to round up if both options are available

         # calculate score
         score = objnorm * (candsfrac * 2 - abs(1 - candsfrac))  # prioritize 
variables closer to an integer
         score += (1 / (1 + nlocksdown + nlocksup))  # penalize variables with 
locking constraints
         score += candsol * (1 + pscostup + pscostdown)  # prioritize variables 
with higher potential for improving objective
         score += 1 / (1 + rootsolval)  # consider the solution value in the last 
root node's relaxation

         if isBinary:
             score *= nNonz  # take into account the number of non-zero entries 
in binary variables        
         
         return score, roundup

Description:
The new score function is designed to prioritize variables that have a 
higher probability of rounding up and contribute more to improving 
the objective function. The score is determined by a combination of 
several factors: the fractional part of the solution value, the number of 
locks for rounding down and rounding up, the normalized objective 
function value, the pseudo cost for rounding up, the number of 
nonzero entries in the variable, and whether the variable is binary. The 
score is penalized if it is not possible to round the variable down or if 
rounding up is not beneficial. The rounding direction is determined 
based on whether rounding up is more advantageous or rounding 
down is not allowed.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0
        if mayroundup and not mayrounddown:
            score -= 1
    
        score += candsfrac * 10
    
        if obj > 0:
            score += objnorm
    
        score += nlocksup * 0.5
    
        if pscostup != 0:
            score += 1 / pscostup
    
        score += nNonz * 0.1
    
        if isBinary and obj > 0:
            score += 1
    
        if score < 0:
            score = 0
        roundup = True if score > 0 else False
    
        return score, roundup

Description:
The new `myheurdiving` function is designed to streamline decision-
making in MILP diving heuristics by balancing multiple aspects of 
variables and their situational contexts. It leverages both the fractional 
part of the variable's solution and its proximity to the root relaxation, 
allowing for strategic rounding decisions that account for potential 
future solutions. The function also integrates constraint-based 
penalties, factoring in the difficulty of locking constraints to balance 
feasibility against objective optimization. Special treatment for binary 
variables expedites rounding, while the overall scoring system 
synthesizes urgency, constraint influence, and exploration needs, 
aiming for an efficient and directed solution path.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Determine rounding direction based on various factors
        if isBinary:
            roundup = candsol > 0.5
        else:
            if mayrounddown and mayroundup:
                roundup = pscostup < pscostdown if candsfrac < 0.5 else True
            elif mayrounddown:
                roundup = False
            elif mayroundup:
                roundup = True
            else:
                roundup = pscostup < pscostdown
        # Proximity to integer and penalty for rounding direction
        distance_to_integer = min(abs(candsol - int(candsol)), abs(candsol - 
(int(candsol) + 1)))
        feasibility_penalty = (nlocksdown if not roundup else nlocksup) * 0.1
        # Constraint influence scaled by normalized objective
        constraint_influence = nNonz / (1 + objnorm + 0.01 * obj)
        # Final score combines distance, influence, and penalties
        score = (1 - distance_to_integer) * constraint_influence - 
(feasibility_penalty + (pscostup if roundup else pscostdown))
        if isBinary:
            score *= 1.25  # Prioritize binary rounding
        return score, roundup

Description:
The scoring function considers both the objective function impact and 
the feasibility impact when deciding the variable to round and the 
rounding direction. If rounding down is feasible, it prioritizes variables 
with larger objective coefficients, smaller fractional parts, and lower 
pseudo-costs for rounding down. If rounding up is feasible, it 
prioritizes variables with smaller objective coefficients, larger 
fractional parts, and lower pseudo-costs for rounding up. The function 
also penalizes variables with more locks (nlocksdown or nlocksup) to 
encourage exploration.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        if mayrounddown:
            scoredown = obj / objnorm - candsfrac - pscostdown / 1000 - 
nlocksdown / 100
        else:
            scoredown = -1e9
    
        if mayroundup:
            scoreup = -obj / objnorm + candsfrac - pscostup / 1000 - nlocksup / 
100
        else:
            scoreup = -1e9
    
        if scoredown > scoreup:
            score = scoredown
            roundup = False
        else:
            score = scoreup
            roundup = True
    
        return score, roundup

(a) GPT-3.5-turbo (b) GPT-3.5-turbo-16k

(c) Claude-3.5-Sonnet (d) GPT-4

Figure 7: The description and code designed by different LLMs with LLM4Solver trained on Setcover.
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Description:
This new score function aims to prioritize variables that have a 
balanced solution value close to 0.5 while considering the potential 
for exploration by penalizing rounding opportunities. It incorporates 
the objective function value, pseudo costs, number of locks, and 
binary variable characteristics to determine the final score and 
rounding direction.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = candsfrac  # Base score from the fractional part
    
        penalty = 0.4 * (mayrounddown + mayroundup)  # Penalize rounding 
potential for exploration
        score -= penalty
    
        proximity = (0.5 - abs(candsfrac - 0.5)) * 1.8  # Preference for proximity 
to 0.5
        score += proximity

        if mayroundup:
            score += (obj * pscostup) / (objnorm + 1e-10)  # Adjust score based 
on objective function value and pseudo cost
        if mayrounddown:
            score -= (obj * pscostdown) / (objnorm + 1e-10)

        score += 0.3 * nNonz  # Reward for more nonzero entries

        if isBinary:
            binary_adjustment = 1.8 if candsol > 0.5 else -1.8  # Adjust score for 
binary variables
            score += binary_adjustment

         roundup = (score > 0)  # Determine rounding direction based on 
accumulated score         
         return score, roundup

Description:
The new score function calculates the variable's score based on a 
combination of 13 features. It penalizes variables that cannot be 
rounded down or up by deducting a large negative value from the 
score. It considers the fractional part of the variable's solution value 
and gives more weight to variables that are closer to an integer value. 
The score also takes into account the number of locks for rounding 
down and up, with a higher weight given to variables that have been 
extensively explored. The objective function value and objective 
function norm are used to evaluate the importance of the variable in 
the optimization. Pseudo cost values are considered to determine the 
direction of rounding. Finally, variables that are binary are treated 
differently, with the rounding direction based on the number of locks 
for rounding down or up. The new score function calculates a 
composite score based on these factors and determines the rounding 
direction based on the score value.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0.0
        roundup = False

        if not mayrounddown and not mayroundup:
           score -= 1000000.0

        score += nNonz * (candsfrac + 1) / (nlocksdown + nlocksup + 1)
        score += objnorm * candsol / (max(pscostdown, pscostup) + 0.01)
        score += abs(obj) / (nlocksdown + nlocksup + 1)
        score += rootsolval * (1 + isBinary)

        roundup = True if score > 0 else False

        return score, roundup
    
        return score, roundup

Description:
The new score function penalizes variables that are easily roundable, 
have high objective values, or binary variables that are not at extreme 
values. It prioritizes variables with high fractional parts and low 
pseudo costs, considering the number of locks, the Euclidean norm of 
the objective function vector, the solution value in the last root node's 
relaxation, and the number of nonzero entries in the variable. The 
function aims to balance exploration and exploitation while taking 
into account various factors that contribute to the variable's 
importance in the MILP problem.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
      score = 0 
      # Penalize easily roundable variables
      if candsfrac < 0.5:
          score -= candsfrac
      if candsfrac == 1:
          score -= 0.2
      if candsfrac == 0:
          score += 0.2
       # Penalize high objective values
       if obj > 0.5:
           score -= 0.5 * obj
       # Prioritize variables with high fractional parts
       score += candsfrac
       # Consider the number of locks
       score -= nlocksdown * 0.05
       score -= nlocksup * 0.05
       # Consider the solution value in the last root node's relaxation
       if rootsolval != 0:
           score += rootsolval
       # Consider the number of non-zero entries in the variable
       if nNonz > 0:
           score += nNonz * 0.1
       roundup = True if score > 0 else False   # Rounding direction based on 
the calculated score
        return score, roundup

Description:
The scoring function aims to prioritize variables that have a significant 
impact on the objective function and can potentially lead to a feasible 
integral solution. It considers various features to determine the 
rounding direction and the corresponding score for each variable. The 
logic is as follows:
1. If the variable is binary, favor the direction that moves the fractional 
value closer to the corresponding integral value.
2. For non-binary variables, prioritize the direction that has a lower 
pseudo-cost and fewer locks.
3. Assign a higher score to variables with a larger absolute objective 
coefficient and a fractional value closer to the midpoint (0.5).
4. Penalize variables that cannot be rounded in either direction by 
assigning a lower score.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0.0
        roundup = False

        if isBinary:
           if candsfrac < 0.5:
               roundup = False
           else:
               roundup = True
           score = abs(obj) * (1 - abs(candsfrac - (0 if not roundup else 1)))
        else:
           if pscostdown < pscostup and nlocksdown <= nlocksup:
               roundup = False
           else:
               roundup = True
           score = abs(obj) * (1 - abs(candsfrac - 0.5))

        if not mayrounddown and not mayroundup:
           score *= 0.1    
        
        return score, roundup

(a) GPT-3.5-turbo (b) GPT-3.5-turbo-16k

(c) Claude-3.5-Sonnet (d) GPT-4

Figure 8: The description and code designed by different LLMs with LLM4Solver trained on
Cauctions.
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Description:
The new score function considers the given features to calculate the 
variable's score for informed rounding decisions. It penalizes limited 
rounding options, prioritizes variables with high fractional values and 
lower pseudo costs. It balances exploration and exploitation by 
factoring in the objective function value, its norm, solution values, the 
number of locks, nonzero entries, and binary type.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        penalty = 0
        penalty += 10 if not mayrounddown else 0
        penalty += 10 if not mayroundup else 0
    
        score = objnorm - penalty + 0.5*candsfrac - (pscostdown + pscostup) - 
nlocksdown - nlocksup + obj + abs(rootsolval) - 0.1*nNonz - (0.5*isBinary)
    
        roundup = score > 0
    
        return abs(score), roundup

Description:
The new score function's logic is as follows:
1. Start with an initial score of 0.
2. If mayrounddown and mayroundup are both False, penalize the 
variable by setting the score to a very low value.
3. Calculate the score based on the given features using a 
combination of arithmetic operations.
4. Adjust the score based on the relative costs of rounding down and 
rounding up by multiplying it with the ratio of pscostdown to 
pscostup.
5. Normalize the score based on the magnitude of objnorm by 
dividing it by the sum of 1 and the square of objnorm.
6. Penalize variables with a larger number of nonzero entries in the 
variable's solution by subtracting the product of rootsolval and nNonz 
from the score.
7. Set the rounding direction (roundup) based on whether candsol is 
greater than or equal to 0.5.
8. Return the final score and rounding direction.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0.0
        roundup = False
    
        if not mayrounddown and not mayroundup:
            score = -1e9
        else:
            score = candsfrac * candsol + (nlocksdown + nlocksup)**2
            score *= pscostdown / pscostup
            score /= (1 + objnorm**2)
            score -= rootsolval * nNonz
            roundup = candsol >= 0.5
    
        return score, roundup

Description:
The new score function calculates the variable's score based on the 
provided features. It penalizes if it's not possible to round the variable 
down/up and stay feasible. The rounding direction is determined 
based on the fractional part of the solution value. The calculated score 
and rounding direction are returned as output.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
      # Penalize if not possible to round down/up and stay feasible
      penalty = 0.1 if mayrounddown or mayroundup else 0
    
       # Determine rounding direction
       roundup = candsfrac > 0.5
    
       # Calculate score
       score = (candsfrac + (1 - candsfrac) * candsol + penalty)

       # Extra features
       score += (nlocksdown + nlocksup) * 0.05
       score += (obj / objnorm) * 0.2
       score += (pscostdown + pscostup) * 0.1
       score += (1 - rootsolval) * 0.3
       score += nNonz * 0.05
    
       if isBinary:
           score += abs(candsfrac) * 1000.0

        return score, roundup

Description:
The new score function calculates the variable's score based on the 
given features. It penalizes the variable if it is not possible to round 
down or up and stay feasible. The rounding direction is determined by 
comparing the value of 'candsfrac' with 0.5. The score is calculated by 
combining the features with custom weights. The higher the score, 
the better. The 'score' and 'roundup' are returned as output.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Define custom weights for each feature
        weights = {
            "mayrounddown": -0.5,
            "mayroundup": -0.5,
            "candsfrac": 1,
            "candsol": 0,
            "nlocksdown": -2,
            "nlocksup": 2,
            "obj": 1,
            "objnorm": 1,
            "pscostdown": -1,
            "pscostup": 1,
            "rootsolval": 0.2,
            "nNonz": 1,
            "isBinary": 0
    }
    score = 0
    # Penalize if not possible to round down/up and stay feasible
    if not mayrounddown or not mayroundup:
        score += weights["mayrounddown"] + weights["mayroundup"]
    # Determine rounding direction
    roundup = True if candsfrac > 0.5 else False    
    # Calculate score
    score += weights["candsfrac"] * candsfrac + weights["candsol"] * candsol 
+ weights["nlocksdown"] * nlocksdown + weights["nlocksup"] * nlocksup + 
weights["obj"] * obj + weights["objnorm"] * objnorm + weights["pscostdown"] 
* pscostdown + weights["pscostup"] * pscostup + weights["rootsolval"] * 
rootsolval + weights["nNonz"] * nNonz + weights["isBinary"] * (1 if isBinary 
else 0)     
        return score, roundup

(a) GPT-3.5-turbo (b) GPT-3.5-turbo-16k

(c) Claude-3.5-Sonnet (d) GPT-4

Figure 9: The description and code designed by different LLMs with LLM4Solver trained on
Facilities.
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Description:
The new score function calculates the variable's score by considering 
features such as the fractional part of the solution value, LP relaxation 
solution value, number of locks for rounding, objective function value, 
Euclidean norm of the objective function vector, pseudo cost values, 
solution value in the last root node's relaxation, number of non-zero 
entries, and whether the variable is binary. It penalizes limited 
rounding possibilities, rewards higher objective values, encourages 
exploration for feasible solutions, and adjusts the score accordingly 
based on the specified features.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Determine rounding direction
        roundup = True if candsfrac >= 0.5 else False
    
        # Calculate score based on specified features
        score = (candsfrac * 0.1) - ((nlocksdown + nlocksup) * 0.2) + (obj * 0.3) 
- (objnorm * 0.1) - ((pscostdown + pscostup) * 0.3) + (rootsolval * 0.2) + 
(nNonz * 0.1)
    
        # Penalize limited rounding possibilities
        score -= 0.5 if not mayrounddown else 0
        score -= 0.5 if not mayroundup else 0
    
        # Reward binary variables
        score += 0.5 if isBinary else 0
           
        return score, roundup

Description:
The new score function's logic combines the 13 given features to 
determine the score and rounding direction for each variable. It 
penalizes variables that cannot be rounded down or up by subtracting 
1 from the score. It rewards variables with a higher fractional part of 
the solution value by adding twice the value to the score. The function 
also considers the difference between the variable's objective function 
value and its Euclidean norm, rewarding variables with a higher 
difference. It penalizes the variable's pseudo cost values for rounding 
down and up by subtracting 0.1 times each value from the score. It 
penalizes the number of locks for rounding down and up by 
subtracting their sum from the score. It rewards binary variables by 
adding 1 to the score. It penalizes variables with a higher number of 
nonzero entries by subtracting 0.1 times the number of nonzero 
entries from the score. Based on the final score, the function 
determines whether to round the variable up or not by checking if the 
score is greater than or equal to 0.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0.0
    
        if not mayrounddown:
           score -= 1.0
        if not mayroundup:
           score -= 1.0
        score += candsfrac * 2.0
        score += candsol * 0.5
        score += abs(obj - objnorm) * 0.3
        score -= pscostdown * 0.1
        score -= pscostup * 0.1
        score -= (nlocksdown + nlocksup) * 1.0
        if isBinary:
           score += 1.0
        score -= nNonz * 0.1
    
        roundup = score >= 0.0    
        
        return score, roundup

Description:
The new scoring function, `myheurdiving`, refines and adjusts its 
methodology to optimize the decision-making process for rounding 
in MILP scenarios. It evaluates both upward and downward rounding 
potential by considering the feasibility, direct impact on the objective, 
and the strategic influence of each rounding decision. The score 
calculation involves considering penalties for infeasibility and rewards 
for reducing the objective function while incorporating a complexity 
factor based on the variable's involvement in the model. Special 
attention is given to binary variables by assigning them additional 
score points, enhancing their prioritization due to their decisive nature 
in binary decisions. This function aims to balance between exploring 
new feasible regions (penalized if not feasible) and exploiting the 
current position to move towards optimality by dynamically 
comparing the potential outcomes of rounding decisions.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
      # Calculate penalties for infeasibility
      penalty_down = 2 if not mayrounddown else 1
      penalty_up = 2 if not mayroundup else 1
      # Base score calculations considering penalties
      score_down = (obj * (1 - candsfrac) - pscostdown * penalty_down + 
rootsolval * 3) / (nlocksdown + 1)
      score_up = (obj * candsfrac - pscostup * penalty_up + rootsolval * 3) / 
(nlocksup + 1)
      # Boost scores for binary variables
      if isBinary:
           score_down += 50
           score_up += 50
      # Decide the best rounding direction
      roundup = score_up > score_down
      # Normalize the score by considering the objective norm and the 
model's complexity
      final_score = (score_up if roundup else score_down) / (objnorm * 
(nNonz + 1))

        return final_score, roundup

Description:
The new score function 'myheurdiving' aims to balance exploration 
and exploitation by considering objective function values, fractional 
parts, pseudo-costs, and potential lock-in effects. It prioritizes 
rounding in the direction that improves the objective function, while 
promoting exploration by penalizing variables that may lead to 
infeasibility or lock-in situations. The score is higher for variables with 
larger objective function coefficients and fractional parts closer to 0.5, 
promoting better objective improvements and more exploration.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Determine rounding direction
        roundup = abs(candsfrac - 0.5) <= abs(1 - candsfrac - 0.5)
    
        # Calculate score
        score = abs(obj) / objnorm
        if roundup:
            score *= (1 - candsfrac)
            score -= pscostup * (1 + nlocksup)
            if not mayroundup:
                score *= 0.1  # Penalize potential infeasibility
        else:
            score *= candsfrac
            score -= pscostdown * (1 + nlocksdown)
            if not mayrounddown:
                score *= 0.1  # Penalize potential infeasibility
    
        # Adjust score for binary variables
        if isBinary:
            score *= 1.5  # Prioritize binary variables     
        
        return score, roundup

(a) GPT-3.5-turbo (b) GPT-3.5-turbo-16k

(c) Claude-3.5-Sonnet (d) GPT-4

Figure 10: The description and code designed by different LLMs with LLM4Solver trained on Indset.
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Description:
The new score function penalizes limited rounding options to 
encourage exploration, prioritizes variables with high fractional values 
and low pseudo costs, considers the impact of the objective function 
value and Euclidean norm, incorporates historical solution values, 
adjusts for sparsity, and differentiates based on the binary nature of 
the variable for effective solution search.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Initialization
        score = 0.0
        roundup = False
        # Penalize limited rounding options to encourage exploration
        score -= 0.2 if mayrounddown or mayroundup else 0.0
        # Prioritize variables with high fractional values and low pseudo costs
        score += candsfrac  
        score += min(1 / (1 + (pscostdown + pscostup)), 1)
        # Consider the impact of objective function value and Euclidean norm
        score += (obj / max(1, objnorm)) * (1 - candsfrac) / (nNonz + 1)
        # Incorporate historical solution values
        score += rootsolval * 0.3
        # Penalize excessive sparsity
        if nNonz < 5:  
            score -= 0.2
        # Adjust based on the number of locks for rounding down/up of a 
special type
        score -= min(0.2 * (nlocksdown + nlocksup), 0.4)
        # Differentiate based on the binary nature of the variable
        score *= 1.5 if isBinary else 1.0
        # Determine rounding direction based on the score
        if candsfrac > 0.5:
            roundup = True
    
        return score, roundup

Description:
The new score function's logic aims to prioritize variables that have a 
high potential for being rounded up while remaining feasible. It 
penalizes variables that can be rounded down to encourage more 
exploration and balanced rounding. The score calculation considers 
features such as the possibility of rounding down or up, the fractional 
part of the solution value, the solution value itself in the LP relaxation, 
the number of locks for rounding down and rounding up, the 
objective function value and its Euclidean norm, the variable's pseudo 
cost values, the solution value in the last root node's relaxation, the 
number of nonzero entries in the variable, and whether the variable is 
binary or not. The score is a weighted sum of these features, assigning 
higher weights to factors that have a positive impact on rounding up 
or the objective function value.
The rounding direction is determined based on the comparison 
between the fractional part of the solution value and the difference 
between the solution value and its rounded value. If the fractional part 
is greater than the absolute difference, it suggests that rounding up is 
more preferable. Therefore, the 'roundup' variable is set to True if the 
score indicates that rounding up is better, and False otherwise.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = (mayroundup * 0.2) - (mayrounddown * 0.5) + (candsfrac * 100) 
+ (candsol * 10) + (nlocksup * 0.5) + (nlocksdown * 0.3) + (obj * 0.05) + 
(objnorm * 0.1) + (pscostup * 0.3) + (pscostdown * 0.2) + (rootsolval * 3) + 
(nNonz * 0.3) + (isBinary * 2)
        roundup = candsfrac > abs(candsol - round(candsol))
        return score, roundup

Description:
The `myheurdiving` function for MILP diving heuristic assigns scores 
to fractional variables for rounding decisions based on several 
considerations to ensure effective and informed rounding. It 
emphasizes exploration, solution quality, and the strategic importance 
of variables, incorporating factors like feasibility of rounding 
directions, variable proximity to integers, and influence on the overall 
objective. The function adjusts scores for both pseudo costs and the 
number of constraints a variable impacts when rounded up or down, 
with special attention to binary variables due to their pivotal role in 
solution feasibility. It also adjusts the score based on the deviation 
from the root solution, promoting variables closer to initial 
estimations to maintain solution stability.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        score = 0.0
        roundup = candsfrac >= 0.5  # Determines the initial rounding direction
        if mayrounddown and mayroundup:
            score -= 0.3
        # Adding proximity to the nearest integer score
        proximity = 20 * (1 - abs(candsfrac - 0.5))
        score += proximity if roundup else -proximity
        # Influence on the objective function and solution quality
        score += 10 * candsol  # Reward higher solution values
        score += (obj / objnorm) * 3  # Normalize contribution to objective
        # Adjusting for pseudo costs
        score -= 0.7 * (pscostup if roundup else pscostdown)
        # Constraint influence through locks
        score -= 4 * (nlocksup if roundup else nlocksdown)
        # Adding a score for the number of nonzero entries to promote 
constraints satisfaction
        score += 3 * nNonz
        if isBinary:
            score *= 1.5  # Increase importance for binary variables
        root_discrepancy = abs(candsol - rootsolval) * 7
        score += root_discrepancy if roundup else -root_discrepancy
        return score, roundup

Description:
The new score function combines the factors of fractional value 
proximity, objective coefficient, pseudo costs, number of locks, binary 
status, and nonzero entries. It prioritizes variables with fractional 
values closer to integers, larger objective coefficients, smaller pseudo 
costs, and fewer locks. The rounding direction is determined by the 
potential impact on the objective function and the fractional value. 
The score is adjusted based on the number of nonzero entries to 
encourage sparsity.
Code: 
def   myheurdiving(mayrounddown, mayroundup, candsfrac, candsol, 
nlocksdown, nlocksup, obj, objnorm, pscostdown,  pscostup, rootsolval, 
nNonz, isBinary):
        # Determine rounding direction
        roundup = False
        if isBinary:
            roundup = candsol > 0.5
        else:
            roundup = obj * (1 - candsfrac) < obj * candsfrac - pscostup + 
pscostdown

        # Calculate score
        if roundup:
            if mayroundup:
                score = (obj * candsfrac) / ((nNonz + nlocksup + 1) * (pscostup + 
1))
            else:
                score = -(obj * candsfrac) / ((nNonz + nlocksup + 1) * (pscostup + 
1))
        else:
            if mayrounddown:
                score = (obj * (1 - candsfrac)) / ((nNonz + nlocksdown + 1) * 
(pscostdown + 1))
            else:
                score = -(obj * (1 - candsfrac)) / ((nNonz + nlocksdown + 1) * 
(pscostdown + 1))

        return score, roundup

(a) GPT-3.5-turbo (b) GPT-3.5-turbo-16k

(c) Claude-3.5-Sonnet (d) GPT-4

Figure 11: The description and code designed by different LLMs with LLM4Solver and MOEA.
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