
Navigating Trustworthiness of Deep Learning in ∆∆G prediction : Addressing
Data Bias, Model Evaluation, and Interpretation

Ruochi Zhang * 1 2 Ningning Chen * 1 3 Fengfeng Zhou 4 Xin Gao 1 5

Abstract
Artificial intelligence has emerged as an epicenter
of global attention, given the rapid proliferation
of cutting-edge AI tools. One promising avenue
of application is the leveraging of deep learning
methodologies to resolve complex biological co-
nundrums. However, an essential question arises
about the reliability and utility of deep learning
models in the context of biosciences, where ex-
perimental data are often limited, especially in
comparison to the vast data troves available in
other domains. In this work, we focus on the
task of identifying the change of binding affinity
(∆∆G) induced by mutations in protein-protein
interaction, exploring the impact of the data bias,
the methods of model evaluation and interpre-
tation. Surprisingly, we find that deep learning
models may only learn the unintentional bias in
the dataset instead of intrinsic principles, there-
fore proper data analysis and model evaluation
should be applied not just focusing on improv-
ing the evaluation metrics. Our work provides
a guideline to navigate the trustworthiness chal-
lenges in deep learning in bioscience and brings
forth suggestions for future improvements.

1. Introduction
Protein-protein interactions (PPIs) play a crucial role in nu-
merous fundamental biological processes, including DNA
replication, signal transduction and immune response (So-
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leymani et al., 2022). Mutations in protein sequences can al-
ter binding strength and thermodynamics of protein-protein
interactions, which are typically assessed by binding affinity
∆G. Understanding the change of binding affinity (∆∆G)
caused by mutations is of utmost importance for protein en-
gineering (Karanicolas & Kuhlman, 2009) and drug design
(Macalino et al., 2018; Bruzzoni-Giovanelli et al., 2018).
However, experimental methods for measuring binding affin-
ity are often time-consuming and expensive. To address
this challenge, computational methods show promise by
utilizing accumulated data collected from the literature
(Jankauskaitė et al., 2019). Recently, multiple machine-
learning-based models have been proposed to predict the
impact of mutations on binding affinity in PPIs. While
most models aim to capture the geometric changes caused
by mutations and require the 3D structure as input(Jiang
et al., 2022; Liu et al., 2021; Rodrigues et al., 2019; Wang
et al., 2020), MuPIPR (Zhou et al., 2020) solely utilizes the
sequence information. Considering that the structure infor-
mation of a complex is not always available and remains
challenging to predict compared to individual protein chains
(Evans et al., 2021). This work focuses on the sequence-
based model with the goal of performing virtual mutation
screening for protein engineering and drug design.

In the intricate domains of medicine and protein engineer-
ing, inaccuracies propagated by deep learning models can
incur significant ramifications. Accordingly, we initiated
our investigation with an exhaustive analysis of data, sub-
sequently devising meticulous experiments to assess the
model’s credibility. Counter to our anticipations, we dis-
covered that deep learning models may fail to sufficiently
grasp the inherent association between the mutations and
the alterations in binding affinity. Instead, they may inad-
vertently assimilate biases inscribed within the dataset. In
pursuit of a deep learning model that truly addresses crucial
real-world quandaries, we propose a systematic framework
for scrutinizing model dependability and interpreting model
predictions. We posit that our work holds the potential to
aid researchers in refining their models, thereby enhancing
their reliability for end-users.

Overall, our contributions are as follows:
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• We addressed the concerns related to data distribution
within the existing benchmark datasets employed for
predicting mutation effects on protein-protein interac-
tions. Our findings underscore that absent a meticulous
evaluation, models might merely learn the bias innately
embedded within the data.

• We formulated a comprehensive framework for assess-
ing the reliability of models which consists of data
analysis, model evaluation and interpretation.

• We introduced two sequence-based models that outper-
formed on the benchmark dataset by leveraging a more
stringent evaluation procedure.

2. Experiments
Our objective is to establish a computational model capable
of predicting the implications of mutations within protein-
protein interactions, a crucial process in protein design and
instrumental for advances in drug discovery. Nevertheless,
prior to utilizing such predictions to steer protein design,
it is imperative to assess the reliability of the model in
question. Beginning with an in-depth analysis of the dataset,
we devise a succession of experiments aimed at scrutinizing
the proficiency of the black-box model. Additionally, we
strive to elucidate the predictive mechanism of the model to
gain a comprehensive understanding of its functionality.

2.1. Dataset and visualization

We collected the data from SKEMPI v2 (Jankauskaitė et al.,
2019), which is the largest database providing the binding
affinity of protein-protein interaction caused by mutations.
Many previous works used this dataset as benchmark, but
they used multiple subsets to test the performance and there
is no one standard or well-defined benchmark. Here, we
carefully cleaned the latest version of SKEMPI v2 and also
analyzed the data to find if there is any bias in the dataset.
This step is usually ignored by most of the model-developing
papers as datasets are well-defined in cs fields, but it’s essen-
tial in bioscience since there exists a significant imbalance
in biological data (i.e. some proteins are well-studied, but
others are not). Specifically, protein-protein interaction
includes two particles which makes it more complicated.
Therefore, we visualized the protein-protein interaction net-
work into a graph and colored it by protein family collected
from Pfam (Mistry et al., 2021). The results are shown in
Figure 1. It’s apparent that the dataset is highly imbalanced
that some nodes are aggregated to form large clusters while
others are segregated. This is a common problem in biologi-
cal data (Chatterjee et al., 2023) and we will further interpret
how it will impact the performance of deep learning models
in the next section.

Figure 1. Cleaned SKEMPI v2 dataset visualization. Graph plot
of the 3562 doublet pairs of data, each node represents a protein
sequence and each edge denotes an interaction between that protein
pair. The nodes are colored by the protein family (Pfam). The
table shows the basic statistics of the graph and the hist plot shows
the node degree distribution of all protein sequences.

2.2. Models and set up

We evaluated three sequence-information-only models to
investigate if deep learning models can really help to pre-
dict the effects of mutations on PPIs. To our knowledge,
MuPIPR (Zhou et al., 2020) is the state-of-the-art model
which is open-sourced focusing on this task. It first pre-
trained a protein language model to contextualize the amino
acid sequences and then trained Siamese residual recur-
rent convolutional neural network (RCNN) encoder with
a multi-layer perceptron (MLP) regressor to predict the
∆∆G along with ∆G of wild-type pair and mutant pair
of proteins in a multi-task manner. ESM model is a pro-
tein language model pre-trained on 200 million protein
sequences and has shown superior performance on multiple
downstream tasks (Rives et al., 2021). It is also proven that
it can capture binding information in complexes. There-
fore, we also evaluated if finetuning ESM model with an
MLP regressor (ProtMutp) can leverage the evolutionary
information learned in the pretraining step to improve the
performance on this task with limited data. In addition,
we designed a model using cross attention (ProtMutc) to
capture the interaction information between protein pairs
(Figure 6). We denote the model input as I = {(pw, pm)},
where pw and pm are the wild-type and mutant protein
sequences respectively. Each pair contains two protein se-
quences pw = (s1w, s2w), pm = (s1m, s2m). The labels
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are denoted as O = {∆∆G,∆Gw,∆Gm}.

2.3. Model evaluation

Deep learning models are developed to solve problems in
real world settings, therefore, they should be carefully evalu-
ated if it really performs well but not just overfit the training
data before applying them to real world problems. In this
section, we will propose a series of experiments to evaluate
the performance of the models and try to interpret the model
to understand the prediction mechanism.

Dataset Split Methods One important step in deep learning
is determining how to split the dataset into training, vali-
dation and test sets. Protein sequences are consist of 20
different amino acids and vary in length. Based on these
properties, we designed a dataset split strategy in addition to
random split to evaluate the models in different settings and
generalizability. We adopt a cluster-level split approach, we
first calculated the pairwise sequence similarity of the s1w
and s2w using a normalized Smith-Waterman algorithm and
then clustered all the sequences based on the similarity by
Hierarchical clustering algorithm. The total 381 unique se-
quences in the set {s1w, s2w} are clustered into 209 clusters
by the threshold of similarity 0.4. Each sequence pair pw
is assigned a unique id based on the clustering results and
the whole dataset is divided into five folds based on the
clustering id.

Metrics determination The metrics to evaluate the model
performance should be carefully chosen. It should align
with the real world needs, which will be helpful for model
users to choose the right model. In the task of estimating
the change of binding affinity by mutations in PPIs, the
possible application will be to optimize a protein to better
bind a target or to introduce a mutation that might decrease
the binding affinity between a protein and target to achieve
a specific goal like increasing the specificity. Therefore,
instead of the Pearson correlation and RMSE used by most
of the models in this field, we used Spearman correlation
as the metrics because the ranking between the mutations
is more meaningful than predicting the accurate numbers
of affinity. Additionally, the aggregate metric might only
provide the ”at a glance” performance of the model, but
granular evaluations are needed (Burnell et al., 2023). In
this task setting, the predictions inside one type of protein
or protein family are more meaningful than the overall per-
formance, i.e. the rankings between the different protein
families might not be helpful.

Held-out sanity check Beside the traditional steps in deep
learning, we also propose some approaches to sanity check
that the model learns the basic knowledge but not something
unexpected(e.g. data bias) like the phenomenon of ”Clever
Hans”. Here, we propose two methods:

• Dataset features regression test: applying simple ma-
chine learning on the features of the datasets but not
providing the sequence information. We implemented
linear regression and gradient boosting regression on
the features of sequence length, sequence degree in
the graph and the number of mutations in each doublet
input using the same 5-fold cross-validation.

• Held out one sequence in the protein sequence pair
test: we only provide one sequence {s1w, s1m} or
{s2w, s2m} to the model to evaluate if the model learns
the interactions between the pairs.

3. Results
3.1. Model performance

As depicted in Figure 2, ProtMutp markedly surpasses other
baseline models in both random split and cluster-level split
scenarios. However, we observed a discernible decline
in performance across all models upon implementing the
cluster-level split strategy. For ProtMutc and ProtMutp, the
Spearman scores attained 0.75 and 0.81 respectively during
the random split. However, following the application of
the cluster-level split, these Spearman scores plummeted
to 0.41 and 0.48 respectively. The MuPIPR model regis-
tered Spearman and Pearson correlations only marginally
lower than ProtMutp under random split conditions, but
these metrics dramatically fell below 0.2 upon the introduc-
tion of the cluster-level split. Given our prior analysis of
the data, it is plausible that MuPIPR may be susceptible to
biases inherent in the dataset. Furthermore, as illustrated
in Figure 2, even in the absence of amino acid information,
the gradient boosting regressor exhibits the capacity to con-
struct a satisfactory model under random split conditions,
achieving a Spearman score of 0.55 and a Pearson score
of 0.69. However, the performance of the gradient boost-
ing regressor significantly deteriorates when subjected to a
cluster-level split, falling below 0.2. This suggests that the
nonlinear combination of certain elementary features can
also excel in a randomly partitioned test set. Nonetheless,
such models fail to encapsulate the underlying principles of
protein-protein interactions.

We executed a more intricate study on the test set under
cluster-level split conditions, comprising a total of 50 groups
of wild types and their corresponding mutants. In Fig-
ure 4, we showcase the distribution of Spearman scores
of ProtMutp across these 50 groups. It can be discerned
that although the model performs commendably in most
groups, there exists a substantial variance across different
groups. Furthermore, the Spearman correlation scores in
some subsets dipped below 0.5 and even manifested nega-
tive correlations. Figure 7 furnishes a detailed portrayal of
the model’s predictions juxtaposed against the ground truth
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Figure 2. Model performance on different dataset splitting
strategy. Five fold cross-validation results using random split
and cluster-level split.

for each subset.

3.2. Model interpretation

We employed Principal Component Analysis (PCA) (Wold
et al., 1987) to decrease the dimensionality of the repre-
sentations acquired by ProtMut and MuPIPR, subsequently
visualizing these in a two-dimensional space. As delin-
eated in Figure 5, the X-axis and Y-axis denote Principal
Component 1 and Principal Component 2 respectively. It is
apparent that the Principal Component 1 of MuPIPR shares
a potent correlation with sequence length, implying that
the model may not be deciphering the underlying protein-
protein interaction mechanism. Instead, it appears to be
capturing dataset-specific characteristics, such as sequence
length. In contrast, the embedding of ProtMut does not
manifest a significant correlation with sequence length.

Figure 3. Model performance on held-out inputs. “Both” de-
notes the complete input, “seq1” and “seq2” denote that there is
only one sequence in PPIs as input.

Figure 3 showcases the evaluation results of the held-out
inputs sanity check. Intriguingly, when only seq2 (mu-
tated sequences) information is supplied to ProtMut and
MuPIPR, the performance remains largely unaltered. In the
preceding Section 2.1, we dissected the SKEMPI dataset
and identified it as a highly imbalanced dataset, replete with
intricate relationships. For any given wild-type sequence,

Figure 4. Distribution of cluster-level spearman in the test set.

there are typically multiple mutated sequences present in the
dataset. This one-to-many relationship may cause the model
to neglect information from the wild-type sequence (seq1).
Moreover, mutated sequences might be linked to other wild
types, leading to the same sequence being allocated to both
the training and testing sets. This scenario allows the model
to excel on the testing set by merely learning the charac-
teristics of mutated sequences. This observation further
accentuates the crucial need for conscientious test set parti-
tioning when the dataset is highly imbalanced and teeming
with complex relationships.

Figure 5. Embeddings of models in the cluster-level split. Em-
beddings of a. MuPIPR, b. ProtMutp, c. ProtMutc colored by the
sequence length are shown. The style of points denotes the data in
the training set or the test set.

4. Conclusion and Discussion
This study explored the application of deep learning models
in biosciences, specifically focusing on identifying changes
in binding affinity(∆∆G) caused by mutations in protein-
protein interaction. We underscored the importance of
proper data analysis and model evaluation as crucial deter-
minants of the trustworthiness of such models. Our findings
unveiled that deep learning models might be learning unin-
tentional biases present in the dataset rather than the actual
biological relationships, thereby questioning their practi-
cal utility. The results depicted that models like ProtMut
performed significantly better than other baseline models
under both random and cluster-level split conditions. How-
ever, the implementation of the cluster-level split strategy
led to a marked decrease in performance across all models.
This trend highlighted the sensitivity of these models to the
partitioning strategy and the potential pitfalls of bias in the
data. It also emphasized the necessity of rigorous model
evaluation approaches that extend beyond mere metric im-
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provement.

In conclusion, while deep learning offers immense potential
in biosciences, its applications should be approached with
caution. A thorough understanding of the underlying data
and appropriate evaluation methods is essential to avoid
misleading conclusions and to truly harness the power of
deep learning in this field.
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A. Additional Tables and Figures

Figure 6. Model architecture. a. The architecture of ProtMutc. b. The architecture of ProtMutp
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Figure 7. Scatter plot of cluster-level results in the test set. The Cluster-level metrics are shown in the title of each sub graph.


