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ABSTRACT

Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step
reasoning tasks. However, alongside these successes, a more deceptive form of
model error has emerged—Reasoning Hallucination—where logically coherent
but factually incorrect reasoning traces lead to persuasive yet faulty conclusions.
Unlike traditional hallucinations, these errors are embedded within structured rea-
soning, making them more difficult to detect and potentially more harmful. In
this work, we investigate reasoning hallucinations from a mechanistic perspec-
tive. We propose the Reasoning Score, which quantifies the depth of reasoning
by measuring the divergence between logits obtained from projecting late lay-
ers of LRMs to the vocabulary space, effectively distinguishing shallow pattern-
matching from genuine deep reasoning. Using this score, we conduct an in-depth
analysis on the ReTruthQA dataset and identify two key reasoning hallucina-
tion patterns: early-stage fluctuation in reasoning depth and incorrect backtrack-
ing to flawed prior steps. These insights motivate our Reasoning Hallucination
Detection (RHD) framework, which achieves state-of-the-art performance across
multiple domains. To mitigate reasoning hallucinations, we further introduce
GRPO-R, an enhanced reinforcement learning algorithm that incorporates step-
level deep reasoning rewards via potential-based shaping. Our theoretical analy-
sis establishes stronger generalization guarantees, and experiments demonstrate
improved reasoning quality and reduced hallucination rates. The source code
and dataset are available at: https://anonymous.4open.science/r/
Reasoning_Hallucination-B7F8/.

1 INTRODUCTION

Hallucination has long been a critical safety challenge for Large Language Models (LLMs). In this
context, hallucination refers to outputs that appear fluent and coherent but are semantically inaccurate
or lack factual grounding. With the advent of Large Reasoning Models (LRMs)—such as DeepSeek-
R1 (DeepSeek-AI, 2025) and OpenAI’s O-series (OpenAI, 2025)—AI systems have demonstrated
unprecedented potential in solving complex real-world tasks. These models are typically trained with
outcome-based reinforcement learning (RL) and explicitly generate multi-step reasoning traces prior
to final answers.

Recent studies have uncovered a subtler form of hallucination emerging in LRMs (Lu et al., 2025;
Vectara Research, 2025; OpenAI, 2025), which is referred to as Reasoning Hallucination. Unlike
traditional hallucinations, reasoning hallucinations are often embedded within logically coherent
reasoning traces, making incorrect information more persuasive and harder to detect. This form of
“plausible but incorrect” reasoning can elicit user trust, resembling the conjunction fallacy, where
detailed yet misleading explanations are perceived as more credible than simpler ones (Tentori et al.,
2004; Valmeekam et al.). Prior studies mainly assess the correctness of reasoning paths in standard
Chain-of-Thought (CoT) tasks over relatively simple problems (Xu et al., 2024; Prasad et al., 2023;
Li et al., 2024b), with limited investigation into the mechanisms of hallucinations in LRMs. Recent
work has extended evaluation to long CoT generated by LRMs (He et al., 2025; Lu et al., 2025), yet
remains focused on error identification rather than uncovering underlying causes from mechanistic
perspective. However, directly analyzing model-generated traces can be misleading due to the subtle
nature of reasoning hallucinations. The emergence of Latent CoT, where reasoning is embedded in
hidden states rather than surface text, further obscures detection (Hao et al., 2024). These challenges
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call for probing the internal mechanisms behind reasoning hallucinations, enabling interpretable and
robust hallucination detection.

Recent studies on the reasoning capabilities of LRMs (Mirzadeh et al., 2024; Yan et al., 2025) have
shown that models often produce incorrect answers when their reasoning process relies on shallow
pattern-matching rather than genuine deep reasoning. This mirrors findings in cognitive science,
where human thinking patterns are closely linked to the emergence of cognitive illusions (Kahneman,
2011; Weis & Kunde, 2024). Inspired by these observations, we investigate reasoning hallucinations
in LRMs through the lens of internal thinking patterns, where a central challenge is how to quantify
whether a model is performing deep reasoning or merely matching surface-level patterns from training
data. Prior mechanistic interpretability studies highlight a functional division within language models:
early layers primarily transmit information, while later layers perform more complex reasoning over
aggregated context (Nikankin et al., 2025; Chen et al., 2025a). Based on this insight, we introduce
Reasoning Score, which measures the divergence between logits obtained from projecting late layers
of LRMs to the vocabulary space. Through synthetic experiments, we validate the effectiveness of
the Reasoning Score in measuring the depth of reasoning in LRMs, which reflects whether the model
engages in shallow pattern-matching or deep reasoning (§ 3.1).

Building on the proposed reasoning score, we conduct extensive analyses on reasoning hallucinations
using the ReTruthQA dataset. We identify three key patterns of reasoning hallucination: Pattern #1:
large fluctuations in reasoning depth during the early steps, and Pattern #2: incorrect backtracking
from later steps to earlier incorrect steps. We attribute these patterns to the presence of shallow
pattern-matching and overthinking steps, which undermine the LRM’s inherent abilities in self-
verification and backtracking, ultimately leading to reasoning hallucinations (§ 3.2). Moreover, we
observe that Pattern #3: overthinking steps exhibit a positive correlation between reasoning scores
and perplexity, indicating spurious verification behaviors (§ 3.3). Based on these findings, we design
the Reasoning Hallucination Detection (RHD) method, which significantly outperforms baselines
across diverse domains in the reasoning hallucination detection dataset (§ 4.1).

We further investigate the underlying cause of shallow pattern-matching and overthinking steps in
LRMs and attribute it to the outcome-based RL paradigm commonly used during training. This
paradigm incentivizes correct final answers but neglects whether intermediate reasoning steps reflect
deep and meaningful thinking. To address this challenge, we introduce a step-level deep reasoning
reward based on the reasoning score and propose GRPO-R, a variant of Group Relative Policy
Optimization (GRPO) (Shao et al., 2024; DeepSeek-AI, 2025) that incorporates potential-based
reward shaping. GRPO-R encourages deep—but not excessive—reasoning during RL fine-tuning.
Our theoretical analysis shows that GRPO-R leads to better generalization in outcome-based RL, and
empirical results confirm that it improves reasoning accuracy compared to standard GRPO (§ 4.2).

2 RELATED WORKS

Hallucination of Language Models. Hallucination remains a fundamental safety concern for
LLMs, and outcome-supervised LRMs (DeepSeek-AI, 2025; OpenAI, 2025) exacerbate this issue by
generating logically flawed but persuasive reasoning traces, a consequence of reward-seeking behavior
induced by outcome-based RL without step-level supervision (Chen et al., 2025b; Valmeekam et al.;
Li & Ng, 2025). Detection approaches span uncertainty estimation (Kadavath et al., 2022; Ren
et al., 2022), internal signal probing (Chen et al., 2024; Li et al., 2025b; 2024a), process-level
critique models (He et al., 2025), and Process Reward Models (PRMs) (Zhang et al., 2025), though
challenges remain due to the deceptive nature of hallucinated traces and the poor generalization
of PRM signals (Zheng et al., 2024b). We address this by conducting a mechanistic analysis of
reasoning hallucinations and proposing a detection method grounded in internal model behavior.

Mechanistic Interpretability. Mechanistic interpretability (Ferrando et al., 2024; Elhage et al.,
2021) explains model behavior by attributing predictions to internal components, e.g., attention heads
contextualize token representations (Ferrando & Voita, 2024; Wu et al., 2024), while FFNs serve as
knowledge storage (Geva et al., 2021). Intervention-based studies further reveal a division of labor
across layers, where early layers transmit contextual information and later layers conduct complex
reasoning (Chen et al., 2025a; Nikankin et al., 2025; Li et al., 2024c). These insights motivate our
Reasoning Score, which quantifies hidden state shifts in later layers to capture thinking patterns and
analyze reasoning hallucinations in LRMs.
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Figure 1: The illustration of the calculation processes for the Reasoning Score (Eq. 2), CV Score
(Eq. 3), and Attention Score (Eq. 4).

3 EMPIRICAL STUDY OF REASONING HALLUCINATION

Our empirical study investigates the relationship between reasoning hallucinations and the thinking
patterns of LRMs, where thinking patterns are quantified using a reasoning score derived from
mechanistic interpretability. This analysis reveals key reasoning hallucination patterns and guides the
design of more effective detection and mitigation strategies.

3.1 REASONING SCORE: MEASURING REASONING DEPTH IN LARGE REASONING MODEL

To determine whether a reasoning step is generated via shallow pattern matching or genuine deep
reasoning, we propose a Reasoning Score inspired by mechanistic interpretability. Prior studies
analyzing the internal mechanisms of language models reveal a layered functional division: early
layers primarily transmit information, while later layers perform more complex reasoning over
aggregated context to produce correct outputs (Stolfo et al., 2023; Nikankin et al., 2025; Li et al.,
2024c). Building on this insight, we define the reasoning score under the hypothesis that deeper
reasoning is reflected by meaningful transformations in later-layer representations during generation.

Formally, a LRM-generated reasoning trace C = [c1, c2, . . . , cK ] consists of multiple reasoning steps,
each associated with a step-level reasoning score Rk

score that quantifies the depth of reasoning in step
ck. Each reasoning step ck = ⟨tk1 , . . . , tkM ⟩ is composed of M tokens. The overall reasoning trace
score Rscore is represented as a sequence [R1

score, R
2
score, . . . , R

K
score], capturing the model’s reasoning

dynamics across steps. As shown in Figure 1, each score is defined as the mean Jensen–Shannon
divergence (JSD) between vocabulary distributions induced by hidden states from selected later
layers and the anchor distribution from the final layer. To obtain the output distribution from each
token hidden state h

(j)
m,k of token tkm at layer j, we apply the LogitLens (nostalgebraist, 2020),

which projects each layer-normalized hidden state into vocabulary space via the unembedding matrix
WU : LogitLens(h(j)

m,k) = LayerNorm(h
(j)
m,k)WU . This provides a layer-wise interpretation of token

prediction behavior and has been widely adopted for interpreting LLM internal representations (Hanna
et al., 2024; Zhou et al., 2024; Yu et al., 2023).

The final step-level Reasoning Score Rk
score is computed as:

Rk
score =

1

|ck|
∑

tkm+1∈ck

1

|J |
∑
j∈J

JSD
(
qN
(
tkm+1

)
, qj
(
tkm+1

))
, (1)

qj
(
tkm+1

)
= softmax

(
LogitLens

(
h
(j)
m,k

))
, j ∈ J , (2)

where J denotes the set of selected later layers and qN is the anchor distribution from the final layer.
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Correct Verification:

Step 2 (Shallow Pattern Matching)→ Step 3

Incorrect Verification:

Step 44→ Step 45 (Overthinking)
Incorrect Backtracking :

Step 73 (Misguided Attention)

Liam wants to buy some school supplies. He buys 24 erasers that now cost $6.75 each, 10 notebooks that now cost $11.0 each, and a ream of bond 

paper that now costs $19. How much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year?

Question

Step 2: But if the new total cost is less than the original total cost, subtract the new total from the original total, otherwise, subtract the original total from the new total.

Step 3: Wait. … So, to find the amount Liam should pay now, we just calculate the new total cost.

Step 44: … Suppose this year’s price is $100 ... So, if this year's prices are P, last year's prices were 0.9P… So, to find how much Liam should pay now, it's P.

Step 45: But the question is asking "how much should Liam pay now, assuming that due to inflation, prices were 10% cheaper last year".

Step 73: But the question asks how much he should pay now, which is the new total cost. So, the final answer is $261.9.

Hallucinated Steps Information

StableFluctuating

Golden Answer: $291

Correct Verification:
Step 23(Shallow Pattern Matching) → Step 24

Step 23: ... So, perhaps the question is asking for the amount he should pay now considering the inflation, which would be the last year's total multiplied by 1.10.

Step 24: … So, last year's total is $261.90, and this year's is $291. So, if the question is asking how much should he pay now, it's $291.

Truthful Steps Information

(a)

(b) (c) (d)

High Attention

Figure 2: Case study from GSM-NoOp dataset Mirzadeh et al. (2024) on R1-7B. We sample both a
hallucinated reasoning trace (left) and a truthful reasoning trace (right) for the same question as a
preliminary analysis of reasoning hallucinations. Reasoning scores are scaled by 1e5.

Intuitively, a larger score Rscore indicates substantial transformation in output distributions within late
layers, suggesting the model is actively engaging in deep reasoning by integrating earlier contextual
information. In contrast, a smaller score implies distributional stability in late layers, indicating
shallow pattern matching or heuristic-based processing without further reasoning, consistent with
prior findings on the differential roles of early versus later layers.

Validating the Reasoning Score with GSM-NoOp. We validate whether the Reasoning Score
faithfully reflects reasoning depth using GSM-NoOp (Mirzadeh et al., 2024), a GSM8K-derived
dataset where semantically irrelevant but plausible No-Op phrases are injected into problems. Al-
though these phrases do not alter the correct reasoning path, prior work shows that LRMs are often
misled by them, revealing their reliance on shallow pattern matching (Mirzadeh et al., 2024). This
makes GSM-NoOp a suitable testbed: if the Reasoning Score captures reasoning depth, then steps
misled by No-Op phrases should yield lower scores. We validate this using correct outputs from
DeepSeek-R1-Distill-Qwen-7B (R1-7B) to avoid confounds from hallucinated traces.
Misled steps are labeled via GPT-4o. As GSM-NoOp is not publicly available, we re-implement a
compatible version following the original paper’s methodology, with prompts and details provided in
Appendix E.

Results. Our empirical results in Figure 3 (a) show that reasoning steps misled by No-Op phrases
consistently receive significantly lower Reasoning Scores compared to non-misled steps. This
supports our hypothesis that the Reasoning Score effectively captures shallow pattern-matching
behavior and serves as an indicator of whether a model is engaging in deep reasoning.

3.2 REASONING HALLUCINATION ANALYSIS BASED ON REASONING SCORE

In this section, we leverage the mechanistically derived Reasoning Score as a proxy for the thinking
patterns of LRMs and investigate its relationship with the emergence of reasoning hallucinations. We
begin with a preliminary analysis to identify characteristic patterns associated with hallucinated rea-
soning traces. We then analyze the generality of these patterns across domains using the ReTruthQA
dataset, and further examine the underlying mechanism that leads LRMs to exhibit such behaviors.

3.2.1 CASE ANALYSIS ON GSM-NOOPS

In this section, we conduct a preliminary analysis using the LRM R1-7B on a question from GSM-
NoOp (Mirzadeh et al., 2024), where a “NoOp” statement is appended to the end of a math problem.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Misleading Non-Misleading
0

1

2

3

4
M

ea
n 

R
ea

so
ni

ng
 S

co
re

2.671

3.267

*

Reasoning Score Verification

Overall Mean

(a)

Truth Hallucination
0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
C

V
 S

co
re

***

0.150

0.239

CV Score Comparison (MATH)

Overall Mean

(b)

Truth Hallucination
0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n 
A

tt
en

tio
n 

Sc
or

e

***

0.307

0.382

Attention Scores Comparison (MATH)

Overall Mean

(c)

Figure 3: (a) Reasoning Score validation on GSM-NoOp. (b) Evaluation of Pattern #1 (early
fluctuations), and (c) Pattern #2 (misguidedly attention) on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

To enable controlled comparison of reasoning hallucination patterns, we sample both a truthful and a
hallucinated response from R1-7B on the same question. Figure 2 presents the question along with
step-level reasoning scores Rscore, which quantify the depth of thinking at each step.

We observe that when the model generates reasoning steps that attend to the added NoOp content, these
steps typically receive lower Rscore, which in turn triggers the model’s Self-Verification mechanism (Li
et al., 2025a), producing later steps with higher Rscore that attempt to correct the earlier deviation (e.g.,
(a) and (d) in Figure 2). However, in the hallucinated reasoning trace, we also observe overthinking
phenomena—steps with excessively high Rscore that incorrectly revise the previous correct reasoning
steps (e.g., (b) in Figure 2). These hallucinated traces contain more shallow pattern-matching and
overthinking steps, resulting in an overall unstable reasoning trajectory. From this case study, we
identify the reasoning hallucination Pattern #1: hallucinated traces typically exhibit large fluctuations
in reasoning score, especially during the early steps of the process.

Furthermore, we observe that even when the model briefly arrives at correct intermediate steps, it
often fails to maintain this correctness. In later steps, it performs Incorrect Backtracking, attending to
earlier shallow or overthinking steps, ultimately leading to hallucination (e.g., (c) in Figure 2). This
motivates the reasoning hallucination Pattern #2: in the later stages of reasoning, the model tends to
misguidedly attend to earlier hallucinated steps, either shallow or overthinking, making it difficult to
correct earlier errors and leading to hallucinated reasoning.

3.2.2 REASONING HALLUCINATION PATTERN ANALYSIS

In this section, we validate the two reasoning hallucination patterns identified in preliminary analy-
sis(§ 3.2.1): Pattern #1: large fluctuations in reasoning scores during early steps, and Pattern #2:
incorrect backtracking to earlier hallucinated reasoning steps in later stages. We aim to assess whether
these patterns generalize across broader domains and tasks. To this end, we conduct experiments on
the ReTruthQA dataset using the R1-7B model. ReTruthQA covers three reasoning domains: Math,
Science, and MultiHopQA (Details in § 5.1). For each domain, we construct two balanced
subsets using gold hallucination labels: one with hallucinated traces and one with truthful traces.

To evaluate Pattern #1, we measure the fluctuation of reasoning depth in the early phase of reasoning
using the Coefficient of Variation (CV Score) (Everitt, 1998), a standard metric for quantifying
sequence variability (shown in Figure 1). Specifically, we focus on the first ⌈K/r⌉ steps of the
reasoning trace C = ⟨c1, c2, . . . , cK⟩, and define: Rearly

score =
[
R1

score, R
2
score, . . . , R

⌈K/r⌉
score

]
, where

r > 1 is a constant controlling the size of the early-step window. The CV score over early reasoning
steps is then given by:

CV(C) = σ(Rearly
score)

µ(Rearly
score)

, (3)

where µ(·) and σ(·) denote the mean and standard deviation, respectively.

To assess Pattern #2, we introduce a Attention Score that quantifies the extent to which later
reasoning steps attend to earlier shallow-pattern matching or overthinking steps (Figure 1). Let the full
reasoning trace be C = ⟨c1, c2, . . . , cK⟩, and define the later reasoning steps as Clater = {ck}Kk=⌈ηK⌉.
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Figure 4: Analysis of Pattern #1: (a) Consistency Analysis (Q1); (b) Accuracy Comparison in Rising-
2 triples (Q2); (c) Reasoning score vs. perplexity and (d) Perplexity of Rising-2 vs. Stable (Q3).

For a step ck ∈ Clater, we compute the mean attention from ck to each earlier step cj as:

āk→j =
1

|ck||cj |
∑
t∈ck

∑
s∈cj

(
1

|L|
∑
l∈L

1

H

H∑
h=1

al,ht,s

)
,

where al,ht,s denotes the attention weight from token t to token s at head h in layer l, H is the number
of heads per layer, L is the set of selected layers for aggregation, and the constant η defines late steps.

We then identify the top-K most attended earlier steps based on āk→j : Tk = TopK
(
{āk→j}k−1

j=1 ,K
)
,

where Tk is the set of indices corresponding to the top-attended steps. The step-level attention score
for ck is then defined as the proportion of these steps whose Reasoning Scores fall outside the normal
range, either in the lower quartile or exceeding a high threshold τ :

AttnScore(ck) =
1

K

∑
j∈Tk

1(Rj
score≤Quantile1/4(Rscore) or Rj

score≥τ),

where 1(·) is the indicator function, Quantile1/4(Rscore) denotes the first quartile of the reasoning
scores (i.e., potentially shallow pattern-matching steps), and τ is a threshold identifying potentially
overthinking steps.

The trace-level attention score is computed by averaging over all later steps:

AttnScore(C) = 1

|Clater|
∑

ck∈Clater

AttnScore(ck), (4)

which reflects the extent to which later reasoning steps attend to earlier incorrect steps.

Results. As shown in Figure 3(b) and (c) and Appendix H, across all three domains, hallucinated
reasoning traces consistently yield significantly higher CV scores and Attention scores than truthful
traces. This confirms that hallucinated traces are more fluctuating in reasoning depth (Pattern #1) and
more likely to attend prior incorrect steps (Pattern #2), demonstrating the generalizability of both
patterns beyond the initial case study (Section 3.2.1). Detailed settings are shown in Appendix H.

3.3 ANALYZING THE MECHANISMS BEHIND REASONING FLUCTUATION

We investigate the underlying mechanism behind Pattern #1, where hallucinated reasoning traces
exhibit large fluctuations in reasoning depth. Building on our case study in Section 3.2.1, we
hypothesize this stems from a built-in self-verification mechanism. Key questions still include: Q1:
What triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores reliably
signal overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?

To explore these, we construct step triples (c1, c2, c3) from reasoning traces: (1) Stable triples with
minimal score variation from truthful traces; (2) Rising-1 triples from hallucinated traces with a
moderate score spike (Rscore(c3) < τ ), potentially triggered by shallow pattern-matching in c2; and
(3) Rising-2 triples with extreme score spikes (Rscore(c3) > τ ), to probe overthinking behaviors.

6
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Analysis. For Q1, we compare the logical consistency between c1 and c2 in Rising vs. Stable triples
using GPT-4o judgments. As shown in Figure 4(a), stable triples show significantly higher consistency,
suggesting that verification is more likely to be triggered when earlier steps are inconsistent.

Regarding Q2, we assess the accuracy of c2 and c3 in Rising-2 triples. Figure 4(b) shows that while
c2 is often correct, c3 introduces errors, confirming that excessively high reasoning scores reliably
signal overthinking. Prompts of Q1 and Q2 are shown in Appendix G.

To investigate Q3, we firstly analyze the correlation between reasoning depth and perplexity. As
shown in Figure 4(c), reasoning steps with higher Rscore generally exhibit lower perplexity, indicating
more certainty outputs. However, Figure 4(d) reveals that in Rising-2 triples, c3 steps, despite higher
reasoning scores, have higher perplexity than those in stable triples, suggesting that overthinking may
produce internally unstable generations. We term this phenomenon spurious verification, where the
model performs misguided validation driven by outcome-based reward optimization. This insight
leads us to identify a new hallucination pattern: Pattern #3: Overthinking steps exhibit a positive
correlation between Rscore and perplexity. More details analysis are provided in Appendix F.

4 METHODS

4.1 REASONING HALLUCINATION DETECTION

Building upon the patterns uncovered in our empirical study, we propose the Reasoning Hallucination
Detection algorithm (RHD). Our approach leverages the step-level Reasoning Score Rscore to quan-
tify thinking depth throughout the reasoning trace, and incorporates three identified indicators of
hallucination: (1) Pattern #1: large fluctuations in reasoning scores during early steps, (2) Pattern #2:
incorrect backtracking to earlier shallow or overthinking steps in later stages, and (3) Pattern #3:
overthinking behavior where Rscore and perplexity exhibit a positive correlation.

Given a question Q and its reasoning trace C with step-level scores Rscore, we define the overall
Reasoning Hallucination Score as:

HC = α1 ·Avg(Rscore)︸ ︷︷ ︸
Overall Reasoning Depth

+α2 · CV(C)︸ ︷︷ ︸
Pattern #1

+α3 ·AttnScore(C)︸ ︷︷ ︸
Pattern #2

+α4 · PCC(Rscore,PPL(C))︸ ︷︷ ︸
Pattern #3

, (5)

where α1, α2, α3, α4 are regression coefficients. Avg denotes the average reasoning score, CV
(Eq. 3) measures fluctuations during early-steps, AttnScore (Eq. 4) captures attention on earlier
hallucinated steps, and PCC refers to the Pearson correlation coefficient between reasoning scores
and step-level perplexity PPL(C), computed according to Eq. 11.

4.2 MITIGATING HALLUCINATIONS VIA STEP-LEVEL REASONING SCORE SHAPING

Reasoning hallucinations often stem from two types of flawed steps: (1) shallow pattern-matching,
reflecting shortcut behaviors, and (2) overthinking, induced by excessive and misguided verification.
A core factor is outcome-based RL, which only rewards the final answer and neglects intermediate
steps (Chen et al., 2025b; Valmeekam et al.; Transluce Research, 2024; Kalai et al., 2025), encouraging
reward-hacking heuristics that may propagate through distillation (Wang et al., 2025).

To address this, we introduce an auxiliary process-level reward based on the reasoning score Rscore
from Section 3.1, which measures the reasoning depth at each step. This encourages meaningful
reasoning while penalizing shallow or overthinking steps. We model the reasoning process as a
finite-horizon MDP (S,A, P, r, γ), where st ∈ S is the reasoning state at step t, at ∈ A denotes the
next reasoning step, P is the transition probability and rt is the reward:

rt =

{
0, t < T,

Rfinal, t = T.

Reward Shaping with Reasoning Score. We apply potential-based reward shaping (Ng et al.,
1999):

r̄t = rt + γΦ(st+1)− Φ(st), with Φ(sT ) = 0,

which preserves the optimal policy while redistributing credit: V ′(st) = V (st) − Φ(st), where
V (st) = Eπ

[∑T
k=t γ

k−trk

∣∣∣ st] is the value function of original reward and V ′(st) is the shaped.
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Table 1: Performance comparisons between RHD and baselines for Reasoning Hallucination Detec-
tion. The boldface represents the best performance, and the underline represents the second-best. †
means improvements are significant (paired t-test or DeLong test at p-value < 0.05).

LRMs Categories Methods ReTruthQA (MATH) ReTruthQA (Science) ReTruthQA (MultiHopQA)

Binary Detection Multi-Trace Ranking Binary Detection Multi-Trace Ranking Binary Detection Multi-Trace Ranking

AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3

R1-7B

Ensemble
ChainPoll 0.6384 0.2603 0.3020 0.2952 0.3583 0.6468 0.2612 0.2700 0.2580 0.3098 0.6297 0.2233 0.4208 0.3019 0.3954
LMvLM 0.6364 0.3728 0.3204 0.2504 0.3402 0.5345 0.1890 0.2600 0.2100 0.3113 0.6331 0.2759 0.3649 0.3049 0.3984
SelfCheckGPT 0.7727 0.4598 0.4091 0.2784 0.4119 0.6819 0.2669 0.3793 0.3655 0.5320 0.6886 0.2955 0.2553 0.1915 0.3118

Uncertainty
P(True) 0.7216 0.2681 0.5455 0.4068 0.5182 0.6207 0.2572 0.5172 0.4276 0.5533 0.5400 0.1684 0.4026 0.3030 0.4032
LN-Entropy 0.6896 0.3099 0.5000 0.3917 0.5096 0.5553 0.1129 0.3700 0.3200 0.4329 0.6123 0.2149 0.4156 0.3208 0.4461
PPL 0.7025 0.2856 0.5909 0.4205 0.5267 0.5434 0.1144 0.3793 0.3034 0.3990 0.6432 0.2249 0.5745 0.4532 0.5241

Length Length-Score 0.5351 0.0922 0.4318 0.2568 0.3408 0.5510 0.0911 0.5793 0.5034 0.5737 0.5815 0.1496 0.5106 0.3887 0.4674

PRM Qwen2.5-PRM800K 0.6601 0.2746 0.4773 0.3000 0.4572 0.6153 0.2203 0.4400 0.3605 0.4444 0.5694 0.1074 0.5065 0.4167 0.4990
Qwen2.5-PRM-7B 0.5563 0.1354 0.4318 0.2701 0.3913 0.5690 0.1275 0.2200 0.1425 0.2382 0.5422 0.0866 0.4026 0.2952 0.3947

LCM GPT4-o 0.7513 0.3794 0.4091 0.2705 0.4131 0.7045 0.2026 0.2500 0.2965 0.3200 0.7123 0.2204 0.4043 0.2830 0.3704
Qwen2.5-32B 0.6942 0.2082 0.2500 0.1955 0.2935 0.6525 0.2635 0.3103 0.2897 0.4458 0.6424 0.2056 0.4400 0.3300 0.4187

Self-Aware UQAC 0.6671 0.2902 0.5833 0.3715 0.5298 0.6303 0.2369 0.4700 0.3925 0.4885 0.6736 0.2583 0.6623 0.5335 0.6425
EigenScore 0.7539 0.3868 0.4583 0.3250 0.3007 0.6488 0.2601 0.4260 0.3777 0.3815 0.6696 0.2858 0.5195 0.4113 0.3885

Ours RHD 0.7978† 0.4852† 0.6591† 0.4765† 0.5699† 0.7194 0.3060† 0.6207† 0.5448† 0.6009† 0.7361† 0.3863† 0.7660† 0.6255† 0.7103†

R1-14B

Ensemble
ChainPoll 0.5858 0.1658 0.2704 0.2535 0.3394 0.6640 0.3134 0.3261 0.1775 0.2188 0.5846 0.1607 0.2319 0.1972 0.2638
LMvLM 0.6620 0.3835 0.2563 0.2507 0.3133 0.5435 0.2132 0.3333 0.2300 0.3421 0.6250 0.2914 0.2042 0.1885 0.2506
SelfCheckGPT 0.5823 0.2923 0.2462 0.2167 0.2930 0.5109 0.1048 0.3287 0.2566 0.3683 0.5208 0.1268 0.3167 0.3083 0.0320

Uncertainty
P(True) 0.6460 0.1443 0.2615 0.2374 0.4570 0.6645 0.2582 0.4828 0.3460 0.4885 0.6090 0.2057 0.3147 0.2508 0.4107
LN-Entropy 0.6423 0.2242 0.3479 0.2939 0.4754 0.6248 0.2134 0.5862 0.4147 0.5264 0.5337 0.0494 0.3125 0.2340 0.3678
PPL 0.6526 0.2330 0.3846 0.2744 0.4444 0.6219 0.1182 0.6000 0.4215 0.5162 0.5337 0.1701 0.3058 0.2521 0.3630

Length Length-Score 0.5184 0.0810 0.2817 0.2329 0.3400 0.5814 0.1487 0.5345 0.3848 0.4211 0.5971 0.1843 0.4711 0.3434 0.4284

PRM Qwen2.5-PRM800K 0.5708 0.1285 0.3077 0.2697 0.4028 0.7267 0.4100 0.5862 0.3819 0.5132 0.6579 0.2451 0.4476 0.3366 0.4702
Qwen2.5-PRM-7B 0.5416 0.1249 0.3538 0.2918 0.4429 0.6983 0.3633 0.6133 0.4556 0.5449 0.6674 0.2758 0.5045 0.3642 0.4853

LCM GPT4-o 0.6604 0.2458 0.2154 0.1785 0.3073 0.6265 0.1344 0.3333 0.1628 0.1933 0.6328 0.2356 0.2517 0.1878 0.2683
Qwen2.5-32B 0.6650 0.3055 0.2676 0.2451 0.3632 0.6974 0.2381 0.3833 0.2150 0.3428 0.7071 0.2716 0.3472 0.2517 0.4177

Self-Aware UQAC 0.6374 0.2303 0.3444 0.2836 0.5104 0.7157 0.3732 0.6207 0.4170 0.5050 0.6952 0.3397 0.5417 0.4222 0.4988
EigenScore 0.6706 0.3496 0.3282 0.2282 0.3388 0.6146 0.2228 0.4623 0.3643 0.3547 0.6719 0.3056 0.3694 0.3542 0.3750

Ours RHD 0.7292† 0.3476 0.3692 0.3005 0.4644 0.7686† 0.4625† 0.6667† 0.4714† 0.5671† 0.7255† 0.3742† 0.5785† 0.4421† 0.5154†

Potential Function Design. To avoid encouraging overthinking, we clip the reasoning score:

R̃score(st) =

{
α ·Rscore(st), Rscore(st) ≤ τ,

0, otherwise,
Φ(st) = −R̃score(st),

where α > 0 and τ control the weighting strength and the threshold for overthinking, respectively.

To understand the generalization benefit of our proposed reasoning score–based shaping, we derive a
uniform convergence bound under augmented rewards:

Theorem 1 (Generalization Gap with Augmented Rewards). Let the policy class Π be such that
for any π ∈ Π, the augmented return R(π, ξ) =

∑T
t=1 γ

t−1r̄t(ξ) is uniformly bounded in [0, R̄max]
for any trajectory ξ sampled from the environment. Each trajectory ξ = (s1, a1, r̄1, . . . , sT , aT , r̄T )
denotes a complete multi-step reasoning trace. Suppose that Π has Rademacher complexity Rn(Π)
based on n independent training samples {ξi}ni=1. Then, with probability at least 1 − δ, for any

π ∈ Π the following holds: Jtest(π)−Jtrain(π) ≤ 2R̄max Rn(Π)+R̄max

√
log(1/δ)

2n , where Jtest(π) =

Eξ[R(π, ξ)] is the expected test return and Jtrain(π) = 1
n

∑n
i=1 R(π, ξi) is the empirical training

return.

The proof is given in Appendix B. Intuitively, our reasoning score acts as a regularizer that encourages
logically consistent behaviors and effectively reduces the Rademacher complexity Rn(Π), thereby
tightening the bound and improving generalization to unseen reasoning tasks.

Integrate into GRPO. To demonstrate compatibility with standard RL algorithms, we integrate
the reasoning score shaping framework into the Group Relative Policy Optimization (GRPO), a
scalable and widely used RL algorithm for reasoning model training DeepSeek-AI (2025); Shao et al.
(2024), yielding GRPO-R. All implementation and formulation details of GRPO-R are provided in
Appendix C.
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Table 2: Performance comparisons between GRPO-R and baselines. Bold indicates the best result.

Models DeepSeek-R1-1.5B Qwen2.5-1.5B-Instruct

MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended) MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)

Base 0.772 0.333 0.354 0.333 0.339 0.466 0.100 0.202 0.197 0.211
+GRPO 0.770 0.333 0.359 0.335 0.359 0.480 0.033 0.247 0.214 0.266
+GRPO-R 0.788 0.367 0.414 0.371 0.357 0.490 0.133 0.247 0.243 0.275

5 EXPERIMENTS

5.1 REASONING HALLUCINATION DETECTION

Data and Evaluation. We evaluate our RHD method on the ReTruthQA dataset spanning three
reasoning domains: Math, Science, and MultiHopQA (construction details in Appendix D).
We adopt two evaluation settings: (1) Binary Detection, which assesses the model’s ability to
detect hallucinations in individual (Q,C) pairs using AUC and PCC; (2) Multi-Trace Ranking,
which evaluates whether the model can rank truthful traces higher among multiple candidates
(Q, {C1, ..., CN}), following TruthfulQA-MC (Lin et al., 2021). We report MC1, MC2, and MC3 to
measure hallucination ranking accuracy (Evaluation details are in Appendix I).

Models and Baselines. We conduct experiments on two open-source LRM:
DeepSeek-R1-Distill-Qwen-7B (R1-7B) and DeepSeek-R1-Distill-Qwen-14B
(R1-14B) DeepSeek-AI (2025). We compare our method against six categories of hal-
lucination detection baselines: (1) Ensemble based self-evaluation (e.g., ChainPoll (Friel &
Sanyal, 2023)); (2) Uncertainty based methods (e.g., P(True) Kadavath et al. (2022)); (3)
Self-Awareness based approaches (e.g., UQAC Li et al. (2025b)); (4) LLM-as-Critic (LCM)
models (e.g., GPT-4o); (5) Process Reward Models (PRMs) with step-level supervision (e.g.,
Qwen2.5-Math-PRM); (6) Length-based scoring, which uses trace length as a proxy for
hallucination likelihood. Baselines and RHD implementation details are in Appendix I and J.

Main Results. As shown in Table 1, RHD consistently outperforms most baselines across all
ReTruthQA domains, model backbones, and evaluation settings, demonstrating strong robustness.
Ensemble and LCM methods perform well in binary detection but struggle in multi-trace ranking,
indicating difficulty in fine-grained comparison. Uncertainty-based methods are sensitive to output
length, while Process Reward Models often suffer from limited generalization. In contrast, RHD
directly leverages reasoning mechanisms for more accurate detection. Self-awareness methods
perform competitively but lack explicit reasoning analysis. The Length-based baseline performs well
in multi-trace settings—supporting the intuition that overly long traces are more error-prone, but
underperforms in binary detection, limiting its generality. These findings highlight the effectiveness
of RHD modeling internal reasoning patterns for hallucination detection. Additional Qwen3-8B Yang
et al. (2025) results, ablations and sensitivity studies are provided in Appendix L, M, N, and K.

5.2 REASONING HALLUCINATION MITIGATION

Experimental Setting. To assess the effectiveness of GRPO-R in reducing reasoning hallucina-
tions, we fine-tune Qwen2.5-1.5B-Instruct and DeepSeek-R1-1.5B on 2,000 examples
from OpenR1-Math-220K (Team, 2024) using either GRPO or our proposed GRPO-R. We eval-
uate the accuracy (Hugging Face, 2025) on two in-domain math benchmarks—MATH500 Light-
man et al. (2023) and AIME 2024 AI-MO (2024a)—and an out-of-distribution science bench-
mark—GPQA (Rein et al., 2024). Implementation details are in Appendix O.

Main Results. As shown in Table 2, GRPO-R outperforms GRPO across most of the tasks, indicating
that shaping reasoning steps via the reasoning score enhances both factual accuracy and reasoning
reliability. Gains on GPQA further suggest improved generalization beyond training distribution.
Additional sensitive and GRPO-variants analyses are in Appendix P and R. Hallucination mitigation
experiments in data distillation in Appendix Q further validate the effectiveness of RHD model.

6 CONCLUSION

We study Reasoning Hallucination in LRMs from a mechanistic perspective, probing internal model
behaviors rather than surface text. We propose the Reasoning Score, a step-level metric grounded
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in mechanistic interpretability that quantifies reasoning depth. Using this lens, we uncover three
characteristic hallucination patterns—early-stage depth fluctuations, incorrect backtracking, and
spurious verification-induced overthinking—and build the RHD framework for their detection.
Finally, we introduce GRPO-R, which integrates reasoning-score–based shaping into reinforcement
learning, improving accuracy and robustness across reasoning benchmarks. This establishes a unified
pipeline from mechanistic analysis to practical mitigation of reasoning hallucinations.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. Our proposed
methods (RHD and GRPO-R) are presented with complete algorithmic details in Sections 4.1
and 4.2, and the corresponding hyperparameters, and ablation studies are documented in Ap-
pendix O and J. To further support reproducibility, we submit an anonymous code repository as part
of the supplementary materials (https://anonymous.4open.science/r/Reasoning_
Hallucination-B7F8/), which contains the full implementation, training scripts, and dataset
for reproducing all main results. Datasets used in our experiments are all available, and we provide a
detailed description of the preprocessing and evaluation protocols in Appendix D and I. Together,
these resources enable independent verification of our findings.
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A USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy on the disclosure of language model usage, we confirm that
Large Language Models (LLMs) were utilized in the preparation of this paper. The usage was limited
to aiding with language fluency, grammar checking, and polishing of the writing. The research ideas,
experimental design, theoretical analysis, and all scientific contributions were solely developed by
the authors. No LLMs contributed at the level of a contributing author.

Disclosure: Yes, to aid or polish writing. Details are described in the paper.

B PROOF OF GENERALIZATION GAP WITH AUGMENTED REWARDS

Proof of Theorem 1. For any policy π ∈ Π, define the augmented return

R(π, ξ) =

T∑
t=1

γt−1r̄t(ξ).

Assume that r̄t(ξ) ∈ [0, r̄max] for each t, so that

R(π, ξ) ∈ [0, R̄max].

Define the expected return:
Jtest(π) = Eξ∼D [R(π, ξ)] ,

and the empirical return:

Jtrain(π) =
1

n

n∑
i=1

R(π, ξi).

We aim to bound the expected generalization gap between the test return and empirical return for
policies in class Π via Rademacher complexity. Let the function class be defined as

F = {fπ(ξ) = R(π, ξ) | π ∈ Π} ,
where R(π, ξ) is the total return over trajectory ξ under policy π using the augmented reward r̄t. Our
goal is to bound:

sup
π∈Π

|Jtest(π)− Jtrain(π)| = sup
f∈F

∣∣∣∣∣E[f(ξ)]− 1

n

n∑
i=1

f(ξi)

∣∣∣∣∣ .
Let ξ1, . . . , ξn be the training samples drawn i.i.d. from the environment distribution D, and
ξ′1, . . . , ξ

′
n be another independent copy drawn from the same distribution. By using an independent

ghost sample set and the triangle inequality, we have:

E{ξi}

[
sup
f∈F

(
Eξ∼D[f(ξ)]−

1

n

n∑
i=1

f(ξi)

)]
= E{ξi},{ξ′i}

[
sup
f∈F

(
1

n

n∑
i=1

f(ξ′i)− f(ξi)

)]

≤ E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
.

To simplify the expression, we now introduce independent Rademacher variables σ1, . . . , σn ∈
{−1,+1}, where each σi takes value +1 or −1 with equal probability. Since f(ξ′i) − f(ξi) is
symmetric around zero due to ξi ∼ ξ′i, we can write:

E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
= E{ξi},{ξ′i},{σi}

[
sup
f∈F

1

n

n∑
i=1

σi (f(ξ
′
i)− f(ξi))

]
.

We now apply the triangle inequality again:

sup
f∈F

n∑
i=1

σi (f(ξ
′
i)− f(ξi)) ≤ sup

f∈F

n∑
i=1

σif(ξ
′
i) + sup

f∈F

n∑
i=1

(−σi)f(ξi).
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Since −σi is still a Rademacher variable and ξi and ξ′i have the same distribution, the two expectations
are equal. Thus, we obtain:

E{ξi},{ξ′i}

[
sup
f∈F

1

n

n∑
i=1

(f(ξ′i)− f(ξi))

]
≤ 2E{ξi},{σi}

[
sup
f∈F

1

n

n∑
i=1

σif(ξi)

]
= 2Rn(F),

where Rn(F) is the empirical Rademacher complexity of F .

Assume every return is bounded, 0 ≤ fπ(ξ) ≤ R̄max, and that fπ(ξ) is linear in the augmented
per–step rewards r̄t(ξ):

fπ(ξ) =

T∑
t=1

γt−1r̄t(ξ).

Introduce the normalised return f̃π(ξ) := fπ(ξ)
/
R̄max ∈ [0, 1] and let F̃ := {f̃π | π ∈ Π}. Because

Rademacher complexity is positively homogeneous in its function class,

Rn(F) = Rn

(
R̄max F̃

)
= R̄max Rn(F̃).

We measure the complexity of the policy class precisely through these normalised returns and set

Rn(Π) := Rn(F̃).

Justification. Even if the mapping π 7→ f̃π is not injective, Rademacher complexity is monotone
with respect to set inclusion: enlarging the function class can only increase Rn. Hence analysing the
(possibly larger) class F̃ yields a conservative upper bound on the true policy complexity—exactly
what we need for a valid generalisation bound.

Combining the two displays yields

Rn(F) ≤ R̄max Rn(Π)

(the identity can be written as “≤” because any alternative normalisation would only shrink the
right–hand side).

Substituting the above bound into the symmetrisation result, we obtain

E
[
sup
π∈Π

∣∣Jtest(π)− Jtrain(π)
∣∣] ≤ 2 R̄max Rn(Π),

We now move from the expected generalization gap to a high-probability bound that holds uniformly
over all policies π ∈ Π.

Let Xi = R(π, ξi) =
∑T

t=1 γ
t−1r̄t(ξi) be the augmented return of policy π on the i-th training

trajectory. Then Jtrain(π) =
1
n

∑n
i=1 Xi and Jtest(π) = Eξ∼D[Xi]. By assumption, Xi ∈ [0, R̄max].

Applying Hoeffding’s inequality for bounded i.i.d. variables, we have for any fixed π ∈ Π:

Pr (|Jtest(π)− Jtrain(π)| ≥ ε) ≤ 2 exp

(
− 2nε2

(R̄max)2

)
.

Solving for ε yields that with probability at least 1− δ,

|Jtest(π)− Jtrain(π)| ≤ R̄max

√
log(1/δ)

2n
. (16)

Define the worst-case generalization gap over the policy class:

∆(S) := sup
π∈Π

(Jtest(π)− Jtrain(π)) ,

where S = {ξ1, . . . , ξn} is the training set.
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(i) Expected bound from above: Using symmetrization and Rademacher complexity arguments, we
already established:

ES [∆(S)] ≤ 2R̄maxRn(Π). (6)

(ii) High-probability deviation bound via McDiarmid’s inequality: Let us show that ∆(S) concentrates
around its expectation. Consider replacing any single sample ξi in S by an independent copy ξ′i.
Because each return Xi = R(π, ξi) is bounded in [0, R̄max] and each contributes 1

n to the empirical
mean, the influence of changing ξi is bounded by:∣∣∣∆(S)−∆(S(i))

∣∣∣ ≤ R̄max

n
.

Hence, ∆(S) is R̄max/n-Lipschitz in each of its n arguments.

Applying McDiarmid’s inequality:

Pr (∆(S)− E[∆(S)] ≥ ε) ≤ exp

(
− 2ε2∑n

i=1(R̄max/n)2

)
= exp

(
− 2nε2

(R̄max)2

)
.

Solving for ε again yields that with probability at least 1− δ,

∆(S) ≤ E[∆(S)] + R̄max

√
log(1/δ)

2n
. (7)

(iii) Final generalization gap: Combining Equation 6 and 7, with probability at least 1− δ over the
random draw of the training set S, we obtain:

sup
π∈Π

[Jtest(π)− Jtrain(π)] ≤ 2R̄maxRn(Π) + R̄max

√
log(1/δ)

2n
.

Equivalently, for all π ∈ Π,

Jtest(π)− Jtrain(π) ≤ 2R̄max Rn(Π) + R̄max

√
log(1/δ)

2n
(8)

Conclusion. Equation 8 provides a uniform generalization gap for any policy π ∈ Π, showing
that the expected test-time performance is lower bounded by the training performance minus a
complexity-dependent regularization term. According to this theorem, as the augmented reward
Rscore(st) is well-aligned with genuine logical reasoning, it acts as a regularizer that effectively
reduces the Rademacher complexity Rn(Π), thereby tightening the bound. This theoretical result
highlights that our proposed process supervision framework not only improves credit assignment
during training but also enhances generalization to unseen reasoning tasks.

This theoretical result not only explains why our process supervision framework enhances generaliza-
tion to unseen reasoning tasks, but also sheds light on the hallucination risk in outcome-based RL.
Because outcome-only reward collapses trajectories with differing reasoning quality into a shared
positive label, it greatly increases the functional hypothesis class and thereby the generalization gap.
As a result, models trained with such reward signals are more likely to memorize spurious patterns
and produce hallucinated reasoning at test time.

C DETAILED IMPLEMENTATION OF GRPO-R

Our proposed process-level reasoning score supervision is compatible with any token-level RL
algorithm. In this work, we instantiate it within Group Relative Policy Optimization (GRPO),
yielding GRPO-R. GRPO is a scalable and widely used RL framework for reasoning model training,
which promotes the generation of high-quality reasoning trajectories by ranking G candidate outputs
based on their relative returns, without relying on explicit value estimation DeepSeek-AI (2025);
Shao et al. (2024).
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Table 3: Statistics of ReTruthQA dataset across domains.

Dataset #Samples #Traces Avg Truthful Traces Avg Hallucination Traces

MATH 57 417 3.35 3.96
Science 88 541 3.05 3.10
MultiHopQA 184 1186 2.74 3.70

Given a prompt q and G outputs {oi}Gi=1, each output oi corresponds to a sequence of reasoning
states {si,1, . . . , si,K} produced over K reasoning steps. In the original GRPO setup, only the final
step receives a nonzero reward:

rstepi (j) =

{
rfinali , j = K,

0, j < K,

where rfinali denotes the scalar reward assigned to the final outcome.

We replace this sparse signal with our shaped step-level reward using potential-based reward shaping:

r̄stepi (j) = r̃stepi (j) − γ R̃score(si,j+1) + R̃score(si,j),

where R̃score(s) = min
(
Rscore(s), τ

)
and we set γ = 1. These shaped rewards are collected into the

set R′, standardized as:

r̂stepi (j) =
r̄stepi (j)− mean(R′)

std(R′)
,

and used to compute token-level advantages:

Âi,t =
∑

j: step(j)≥t

r̂stepi (j).

Finally, we optimize the policy using the enhanced GRPO objective, termed GRPO-R:

JGRPO-R(θ) = Eq∼P (Q), {oi}∼πθold (O|q)

[
G∑
i=1

|oi|∑
t=1

min
( πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
( πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− β ·DKL [πθ∥πref]

]
. (9)

Relation to Factuality-Based RL. Factuality-oriented RL methods improve a model’s alignment
with external world knowledge by assigning outcome-level factual rewards (Li & Ng, 2025). These
approaches address factual hallucinations and supervise only the final answer.

In contrast, GRPO-R targets reasoning hallucinations—errors originating from the model’s internal
multi-step reasoning process. Our method introduces a step-level reward derived from the Reasoning
Score (§ 3.1), which regularizes the model’s intermediate reasoning dynamics rather than factual
correctness alone.

These two types of RL are complementary: factual RL enhances knowledge faithfulness, while
GRPO-R improves process faithfulness by promoting deep, coherent reasoning. Empirically (Table 2),
reinforcing internal reasoning also brings secondary gains in factual reliability.

D RETRUTHQA CONSTRUCTION

D.1 DATA SOURCES AND MODELS

Due to the absence of dedicated datasets for evaluating reasoning hallucination detection—particularly
for strong open-source LRMs such as DeepSeek-R1-7B and R1-14B, we construct a new bench-
mark specifically tailored to multi-step reasoning tasks following the previous annotation process of
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the hallucination detection dataset (Niu et al., 2024). Unlike traditional hallucinations, reasoning
hallucinations are often embedded within logically coherent reasoning traces, which makes the
incorrect information more persuasive and substantially harder to identify. This intrinsic challenge
necessitates careful and fine-grained human annotation in order to ensure reliable evaluation.

We select three major categories of reasoning tasks: Math, Science, and MultiHopQA.

For Math, we construct the dataset using benchmark datasets commonly used for evaluating mathe-
matical reasoning capabilities, including MATH500 (Lightman et al., 2023), AMC 2023 (AI-MO,
2024b), and AIME 2024 (AI-MO, 2024a).

For Science, we adopt GPQA (Rein et al., 2024), a PhD-level science multiple-choice QA dataset
with questions authored by domain experts in physics, chemistry, and biology.

For MultiHopQA, we randomly sample 1000 questions from four multi-hop QA datasets:
HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,
2022), and Bamboogle (Press et al., 2022).

For each question, we generate 20 responses using DeepSeek-R1-Distill-Qwen-7B and
DeepSeek-R1-Distill-Qwen-14B via random sampling. The prompting format is as follows:

Math:

Please answer the following math question.
You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.
Question:\n\n

Science:

Please answer the following multiple-choice question.
You should provide your final choice in the format \boxed{YOUR_CHOICE}.
Separate your following steps using \n\n.
Question:\n\n

MultiHopQA:

Please answer the following question.
You should provide your final answer in the format \boxed{YOUR_ANSWER}.
Separate your following steps using \n\n.
Question:\n\n

D.2 REASONING STEP SEGMENTATION STRATEGY

We adopt a two-stage segmentation procedure. First, we split the reasoning trace based on cognitive
behavior tokens such as </think>, Wait, But, However, Hmm, Alternatively, which
typically mark transitions in reasoning patterns. Then, we apply a finer-grained split based on
formatting: as specified in the prompt, the LRM is instructed to separate reasoning steps using \n\n,
which we use as a delimiter. This hybrid approach ensures both rule-based and model-aligned step
boundaries.

D.3 ANNOTATION PROCESS

1. Automatic hallucination trace identification. To ensure precision and avoid noise caused by
random model errors, a reasoning trace is labeled as hallucinated only if its rollout becomes incorrect
with a failure rate exceeding 90% from a specific reasoning step onward, measured over 16 rollouts.
We adopt a binary search–style trace slicing procedure inspired by OmegaProcess (Luo et al., 2024) to
efficiently identify hallucination points. This strategy ensures stability and causality in hallucination
step detection, avoiding incidental errors due to sampling randomness. For the Science domain,
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Figure 5: Interface Display of the Data Annotation Platform.

which mainly consists of multiple-choice questions and may contain correct guesses, we additionally
perform multiple random rollouts for traces with correct answers to ensure a success rate above 90%
before labeling them as truthful.

2. Filtering non-hallucination failures. We use GPT-4o-Mini to exclude samples where the incorrect
final answer is due to clearly flawed or illogical reasoning, which does not satisfy our definition of
hallucination (i.e., coherent and persuasive chains with underlying logical or factual errors). The
filtering prompt is:

Please evaluate if the following reasoning for the given question is logically sound and leads
to a correct solution.
Only respond with a score between 0 and 1, where:
0: completely incorrect or illogical reasoning
1: perfectly sound and correct reasoning

Question: {question}
Reasoning: {reasoning}
Score (0–1):

3. Human validation. We further perform human annotation to verify borderline cases. Two
annotators with at least undergraduate-level backgrounds in computer science independently assess
whether the reasoning trace is valid. We developed a web-based annotation platform with a timer
(Figure 5) to standardize reading time. Based on average reading speeds (200–300 wpm for academic
text), and trace lengths (typically 2000–3000 words), we set the following maximum judgment times:
(1) MultiHopQA: 3 minutes (2) Math: 5 minutes (3) Science: 8 minutes

Annotators must determine within the allotted time whether a reasoning trace contains hallucinations.
If they fail to identify an error in time, the trace is labeled as correct. Cases judged correct by
humans but verified to be incorrect are labeled as hallucinations, ensuring that the resulting dataset
captures only traces that genuinely mislead users, which is aligned with the definition of reasoning
hallucination.
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Final dataset statistics are shown in Table 3. For the Multi-Trace Ranking Setting, we directly use
the collected hallucinated and truthful responses. For the Binary Detection Setting, which focuses
on single-response accuracy, we retain one hallucinated and one truthful response per question to
reflect more realistic ad-hoc usage scenarios.

E GSM-NOOP CONSTRUCTION PROCESS

Following the construction procedure proposed in Mirzadeh et al. (2024), we randomly sample 300
examples from the GSM8K dataset. For each question, we use GPT-4o to generate a No-Op phrase
using the following prompt:

Given the following math question, generate a seemingly relevant but ultimately inconsequen-
tial statement (No-Op) that can be added to the question without affecting its solution.
Question: {Question}
Generate a No-Op statement that:
1. Is short and concise
2. Seems relevant to the context
3. Does not affect the mathematical reasoning
4. Is natural and fits grammatically
No-Op statement:

We then use GPT-4o to combine the generated No-Op phrase with the original question using the
following prompt:

Please combine the following math question and No-Op phrase into a single, natural-sounding
question. The No-Op phrase should be integrated smoothly without changing the mathemati-
cal meaning.
Math Question: {Question} No-Op Phrase: {NoOp Phrase}
Combined Question:

The merged questions form our constructed GSM-NoOp dataset.

To evaluate whether the generated reasoning steps are misled by the inserted No-Op phrase, we
prompt GPT-4o with the following instruction:

Please evaluate if the following reasoning step is being misled by the given No-Op phrase.
Provide a score between 0 and 1, where:
a. 0 means the step is not misled by the No-Op phrase at all
b. 1 means the step is completely misled by the No-Op phrase
c. Values in between indicate partial misleading

Note: Simply mentioning the No-Op phrase does not count as being misled. If the step
mentions the No-Op phrase but explicitly rejects or explains why it is irrelevant to solving
the problem, this should be scored as 0.
Reasoning step: {Reasoning Step} No-Op phrase: {NoOp Phrase}
Please provide only a number between 0 and 1, with up to 2 decimal places, wrapped in
\boxed{}. For example: \boxed{0.85}

F DETAILS OF UNDERSTANDING THE MECHANISMS BEHIND REASONING
HALLUCINATION PATTERNS

In this section, we focus on analyzing the underlying cause of Pattern #1, as Pattern #2 has already
been explained through the attention behavior of LRMs in the previous section. Pattern #1 highlights
that hallucinated reasoning traces tend to exhibit larger fluctuations in reasoning depth, particularly in
the early steps. Inspired by our preliminary analysis in § 3.2.1, we hypothesize that this may stem
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from the model’s built-in verification capability. However, several key questions remain: Q1: What
triggers verification behavior in LRMs? Q2: Do excessively high reasoning scores genuinely indicate
overthinking? Q3: If Q2 holds, what factors lead to the emergence of such overthinking steps?

To answer these questions, we construct reasoning step triples (c1, c2, c3) with different properties
drawn from reasoning traces: Stable: The first type consists of triples from truthful traces where
adjacent steps differ in Rscore by less than 0.1, representing stable reasoning. Rising-1: The second
type contains hallucinated triples where Rscore(c3) − Rscore(c2) > 1 and Rscore(c3) < 4, used to
analyze verification triggered by shallow pattern-matching. Rising-2: The third type is similar to
Rising-1 but with Rscore(c3) > 4, aimed at understanding overthinking induced by verification. We
construct Stable, Rising-1, and Rising-2 triples to probe dynamics (early fluctuation, over-verification).
Each set contains 600 step-triples per domain (Math, Science, MultiHopQA), totaling 1,800 triples,
with balanced sizes for fair comparison.

Analysis. To investigate Q1, we analyze whether reasoning steps c1 and c2 in the stable and rising
(Rising-1 + Rising-2) triples are logically consistent, using GPT-4o as the judge (prompt details in
Appendix G). As shown in Figure 4(a), the stable triples exhibit significantly higher consistency
between c1 and c2 than rising triples, indicating that LRMs are more likely to trigger verification
when early steps are internally inconsistent.

To examine Q2, we evaluate the correctness of c2 and c3 in Rising-2 triples. Using ground-truth
answers and GPT-4o-based annotation (prompt details in Appendix G), we assess whether these steps
are logically aligned with the ground-truth answers. As shown in Figure 4(b), c2 in Rising-2 triples is
substantially more accurate than c3, confirming that verification in this case often modifies correct
reasoning into incorrect steps. These findings support the hypothesis that excessively high Rscore
values in hallucinated reasoning traces are symptomatic of overthinking—steps that exhibit apparent
reasoning depth but in fact reflect spurious or detrimental reasoning.

To address Q3, we analyze the relationship between perplexity and Rscore. Specifically, we randomly
sample 200 reasoning steps from ReTruthQA and compute their perplexities as follows:

PPL(ck) = exp

− 1

|ck|
∑

tkm+1∈ck

log p
(
tkm+1 | tk≤m

) , (10)

PPL(C) = ⟨PPL(c1),PPL(c2), . . . ,PPL(cK)⟩ . (11)
where p(tkm+1 | tk≤m) denotes the model’s predicted probability for token tkm+1 given the prefix tk≤m
within the reasoning trace.

As shown in Figure 4(c), perplexity and Rscore are strongly negatively correlated—steps with higher
reasoning depth tend to have lower perplexity, which is intuitive since deep reasoning often yields
more predictable outputs. However, when comparing the final step c3 across stable and Rising-2
triples, we find an interesting phenomenon in Figure 4(d): despite having higher Rscore, c3 in Rising-2
triples has higher perplexity than in stable triples. This suggests that overthinking steps induced by
an incorrect verification result in an uncertain or internally unstable generation.

We hypothesize that such overthinking may reflect spurious verification—a behavior where the model
performs superficial or misguided validation in pursuit of higher reward during RL fine-tuning. This
behavior can persist through distillation into smaller models, propagating reasoning hallucinations.
Based on this analysis, we identify a third hallucination pattern: Pattern #3: Overthinking reasoning
steps exhibit a positive correlation between Rscore and perplexity (PPL).

Experimental Validation. Building on this observation, to further validate whether excessively
high reasoning scores reflect overthinking steps, we sampled reasoning steps with scores ≥ 2.5
(excluding shallow pattern-matching steps) from various data types on R1-7B and used GPT-4o to
annotate the correctness of each step (using the same prompt as in Appendix G). We then used the
reasoning score to predict step correctness, searching for the optimal F1 threshold in the range 2.5–5
(step size 0.1). Results show that across different datasets, the optimal threshold for F1 is always ≥ 4,
which matches the hyperparameter τ set in Appendix H. This demonstrates a strong correspondence
between excessively high reasoning scores and overthinking steps. Interestingly, this phenomenon
aligns with findings in cognitive neuroscience: both insufficient and excessive reasoning can lead to
poor decisions (Langley, 1995; Cools & D’Esposito, 2011).
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Table 4: Optimal threshold τ for F1 across datasets.

MATH MultiHopQA Science

Best τ F1 Best τ F1 Best τ F1

Value 4.0 0.7617 4.4 0.7495 4.5 0.7821
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Figure 6: Evaluation of Pattern #1 and Pattern #2 on ReTruthQA. Asterisks indicate statistical
significance based on a t-test: * for p-value < 0.05, and *** for p-value < 0.001.

G PROMPT FOR HALLUCINATION PATTERNS ANALYSIS

Prompt for step consistency analysis of Q1:

Please evaluate whether the following reasoning step introduces a new solution approach
compared to the preceding steps. Respond with a score of 0 or 1, where:
0: The step follows the same solution approach as the previous steps.
1: The step explores a new solution approach or direction.
Reasoning step: {step content}
Previous steps: {step content}
Score (0/1):

Prompt for step correctness analysis of Q2:

Please evaluate whether the following reasoning step aligns with the final answer. Respond
with a score of 0 or 1, where:
0: The step is inconsistent with the final answer.
1: The step is consistent with the final answer.
Reasoning step: {step}
Final answer: {answer}
Score (0/1):

H MORE RESULTS OF REASONING HALLUCINATION PATTERN ANALYSIS

The hyperparameter settings involved in Section 3.2 are as follows. The constant r, which controls
the size of the early-step window, is empirically set to r = 2. The constant η, which defines the
portion of late reasoning steps, is set to η = 0.75. The constant K, used in computing attention to
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earlier steps, is set to K = 5. The threshold τ for identifying potentially overthinking steps is set to
τ = 4. These hyperparameters are derived from case analysis and are applied consistently throughout
the subsequent reasoning hallucination detection and mitigation experiments.

The validity of Pattern #1 and Pattern #2 is verified across all domains of ReTruthQA, with exper-
imental results shown in Figure 6, where across all three domains, hallucinated reasoning traces
consistently exhibit significantly higher CV scores and Attention scores than truthful traces.

I EVALUATION AND BASELINE DETAILS OF REASONING HALLUCINATION
DETECTION

Based on ReTruthQA, we design two evaluation settings for RHD model: (1) Binary Detection
Setting: This setting assesses the model’s ability to detect hallucinations in individual question-
reasoning pairs (Q,C), measuring detection performance using the Area Under the ROC Curve
(AUC) and Pearson Correlation Coefficient (PCC); (2) Multi-Trace Ranking Setting: This setting
evaluates the model’s ability to identify the truthful answer among multiple reasoning traces for the
same question (Q, {C1, C2, . . . , C3}). We follow the evaluation setup of TruthfulQA-MC (Lin et al.,
2021), and report the following metrics: MC1: The percentage of instances where the hallucination
score of the most hallucinated reasoning trace exceeds that of all truthful traces; MC2: The normalized
total hallucination score assigned to the hallucinated reasoning traces; MC3: The percentage of
hallucinated reasoning traces that receive a higher hallucination score than all truthful traces. These
metrics collectively measure the ranking quality of hallucination detection in multi-sample generation
settings.

For baselines, we consider the following categories: (1) Ensemble-based self-evaluation meth-
ods, where hallucination scores are obtained through repeated generation, self-verification, or peer
voting among LLMs. This category includes ChainPoll (Friel & Sanyal, 2023), LMvLM (Co-
hen et al., 2023), and SelfCheckGPT (Manakul et al., 2023). (2) Uncertainty-based methods,
which estimate hallucination likelihood based on model uncertainty, including P(True) (Kada-
vath et al., 2022), LN-Entropy (Ren et al., 2022), and Perplexity (PPL) (Malinin & Gales, 2020).
(3) Self-awareness-based methods, which rely on internal model representations to detect hal-
lucinations, such as UQAC (Li et al., 2025b) and EigenScore (Chen et al., 2024). (4) LLM-
as-Critic models, including GPT-4o (Achiam et al., 2023) and Qwen2.5-32B (Yang et al.,
2024), which act as external evaluators of reasoning traces. (5) Process reward models, such
as Qwen2.5-Math-7B-PRM800K (Zheng et al., 2024a) and Qwen2.5-Math-PRM-7B (Zhang
et al., 2025), trained with step-level supervision for reasoning evaluation. (6) Length-based scoring,
motivated by recent findings that longer reasoning traces are more prone to hallucinations (Zeng
et al., 2025), we include Length-Score, which directly uses the length of the reasoning trace as
its hallucination score.

J IMPLEMENTATION DETAILS FOR REASONING HALLUCINATION DETECTION

We conduct all experiments on machines equipped with NVIDIA A6000 GPUs and 52-core Intel(R)
Xeon(R) Gold 6230R CPUs running at 2.10GHz. We utilize the Huggingface Transformers and
TRL libraries to implement and run our experiments. During response generation, we use random
sampling with a temperature of 0.7 and a maximum decoding length of 15,000 tokens for Math tasks
and 10,000 tokens for all other tasks. For Reasoning Hallucination Detection (RHD), we perform
two-fold validation to select optimal hyperparameters, while baselines are tuned within the ranges
specified in their original works. To ensure stability, all randomized experiments are repeated three
times and the average results are reported.

We conduct a grid search to identify the optimal reasoning-score weights. Specifically, we search α2,
α3, and α4 over the interval [0, 1] with a step size of 0.1, and α1 over [−1, 1] with the same step size.
Two-fold cross-validation is used to select the final hyperparameters. For R1-7B, the best weights in
the Math domain are α1 = 0, α2 = 0.4, α3 = 0, and α4 = 0.3 for the Multi-Trace Ranking setting,
and α1 = 0, α2 = 0.9, α3 = 0.8, and α4 = 0.4 for the Binary Detection setting. In the Science
domain, the best weights are α1 = 0.1, α2 = 1.0, α3 = 0, and α4 = 0 for Multi-Trace Ranking, and
α1 = −0.4, α2 = 0.9, α3 = 0.5, and α4 = 0.1 for Binary Detection. In the MultiHopQA domain,
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Table 5: Ablation study of the RHD model on three different domains of ReTruthQA. Each row
removes one component of the hallucination score.

Model Variant MATH Science MultiHopQA

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

R1-7B

RHD 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7660 0.6255 0.7103
RHD (w/o Avg(Rscore)) 0.6591 0.4765 0.5699 0.6128 0.5307 0.5934 0.7383 0.6032 0.7082
RHD (w/o CV Score) 0.6364 0.4663 0.5330 0.4483 0.3862 0.4977 0.7447 0.6043 0.6996
RHD (w/o Attention Score) 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.6383 0.5372 0.6123
RHD (w/o PCC Score) 0.5909 0.3830 0.5210 0.6207 0.5448 0.6009 0.6809 0.5553 0.6323

R1-14B

RHD 0.3692 0.3005 0.4644 0.6667 0.4714 0.5671 0.5785 0.4421 0.5154
RHD (w/o Avg(Rscore)) 0.3538 0.2867 0.4847 0.7241 0.4609 0.5531 0.5589 0.4284 0.5290
RHD (w/o CV Score) 0.3692 0.2882 0.4725 0.6470 0.4484 0.5332 0.5455 0.4273 0.5403
RHD (w/o Attention Score) 0.3231 0.2692 0.4503 0.6724 0.4511 0.5190 0.5702 0.4322 0.5180
RHD (w/o PCC Score) 0.3692 0.2882 0.4725 0.6724 0.4601 0.5683 0.5785 0.4421 0.5154

the best weights are α1 = 0.4, α2 = 0.1, α3 = 0.6, and α4 = 0.4 for Multi-Trace Ranking, and
α1 = 0, α2 = 0, α3 = 0.3, and α4 = 0 for Binary Detection.

For R1-14B, the best weights in the Math domain are α1 = 0.3, α2 = 0.7, α3 = 0.1, and α4 = 0.1
for Multi-Trace Ranking, and α1 = 0, α2 = 0.3, α3 = 1.0, and α4 = 0.2 for Binary Detection. In the
Science domain, we obtain α1 = 0, α2 = 0.5, α3 = 0.5, and α4 = 0.1 for Multi-Trace Ranking,
and α1 = −0.2, α2 = 0.2, α3 = 0.9, and α4 = 0.1 for Binary Detection. In the MultiHopQA
domain, the optimal weights are α1 = 0.7, α2 = 0.9, α3 = 0.1, and α4 = 0.0 for Multi-Trace
Ranking, and α1 = 1.0, α2 = 0, α3 = 0.1, and α4 = 0.1 for Binary Detection.

Candidate reasoning score layers J are selected from {14, 16, 18, 20, 22, 24, 26} for R1-7B and
from {32, 36, 40, 42, 44, 46} for R1-14B, while attention score layers L are fixed across models as
{1, 3, 5, 7, 9, 11, 13}. The models used in our experiments, DeepSeek-R1-Distill-Qwen-7B
and DeepSeek-R1-Distill-Qwen-14B, are publicly available at https:
//huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B and
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B,
respectively.

K RHD ON LATENT COT MODELS

To validate whether our proposed hallucination detection framework can be effectively extended to
latent Chain-of-Thought (CoT) models, we conducted additional experiments on Huginn-0125, the
most mature and open-sourced latent reasoning model currently available (Geiping et al., 2025).

Application to Huginn-0125. The Huginn-0125 model is composed of a prelude block, a core
recurrent block (where latent reasoning primarily occurs), and a coda block. We treated each recurrent
block as a reasoning step and applied the Reasoning Score to measure reasoning depth, focusing on
Pattern #1 (CV score). Due to the model’s architectural design, Pattern #2 (AttnScore) and Pattern #3
(PCC) could not be applied. We sampled 100 examples from GSM8K as the test dataset. Since the
model itself does not possess self-reflection capability, hallucination labels were assigned based on
ground-truth correctness: correct answers were treated as non-hallucinated and incorrect answers
as hallucinated. Results in Table 6 show that our method achieved higher detection accuracy of
latent reasoning hallucination compared to the perplexity baseline (computed only on output tokens),
demonstrating RHD’s applicability to latent CoT architectures.

Comparison with Text-only Detection Methods. We further examined whether text-only detection
methods can serve as effective alternatives in the latent CoT setting. Specifically, we evaluated Process
Reward Model (Qwen2.5-PRM-7B) and ChainPoll. Experimental results in Table 6 indicate that
these methods, when applied directly to the final generated text without analyzing the latent reasoning
process, underperform compared to our latent reasoning-based approach.

To better understand this gap, we conducted a case study on Huginn-0125 outputs and identified
several sources of failure for text-only methods:

27

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B


1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Format confusion and ambiguous expression. Consider the following GSM8K problem:
Anthony and his friend Leonel read about the importance of keeping pets at home and
decided to start adopting cats and dogs from the local rescue center. Anthony has 12 cats
and dogs, 2/3 of which are cats. Leonel has half times as many cats as Anthony and seven
more dogs than Anthony. How many animals in total do the two have?
Huginn-0125 produced the following intermediate reasoning:

“0.67»10.67 cats. We’ll round this to 11 cats for simplicity. Anthony has 12-
11=«12-11=1»1 dog. Leonel has half as many cats as Anthony, so he has
(1/2)*11=«(1/2)*11=5.5»5.5 cats. We’ll round this to 6 cats for simplicity.”

Although the final answer was numerically correct, the text contained artifacts such as
“<<12-11=1>>” and “0.67>>10.67 cats.” These inconsistent notations suggest that
certain reasoning was carried out in the latent space before being partially surfaced, leading
to ambiguous expressions that mislead text-only detectors.

• Non-linear and highly jumping narration. Consider the following arithmetic problem:
John hits 70% of his free throws. For every foul he gets 2 shots. He gets fouled 5 times
a game. How many free throws does he get if he plays in 80% of the 20 games the team
plays?
Huginn-0125 generated:

“John gets 5 x 2 = 10 free throws per game. 80% of 20 = 16 games. Then says: 10
fouls per game = 3 x 10 Thus, John gets 16 x 3 = 48 free throws.”

The reasoning begins correctly but suddenly introduces nonsensical statements such as “10
fouls per game = 3 x 10,” which are mathematically incoherent. Such non-linear jumps
likely originate in the latent CoT process and cannot be effectively diagnosed from surface
text alone.

• Incomplete sentences. In several cases, Huginn-0125 generated outputs that began with
truncated phrases such as “ends each delivered...” without a subject or introductory clause.
These malformed sentences indicate leakage of incomplete latent reasoning into surface text,
further reducing the reliability of text-only detection models.

These observations highlight that text-only methods are limited in detecting hallucinations when
latent reasoning artifacts leak into surface text. By contrast, our approach explicitly analyzes the latent
reasoning process, enabling more reliable detection. Importantly, combining the two perspectives
proves complementary: empirical results show that integrating our method with ChainPoll achieves
the best overall performance.

Table 6: Performance of different hallucination detection methods on Huginn-0125. Our RHD
approach, when combined with ChainPoll, achieves the best results, indicating complementary
benefits.

Method AUC PCC

LNE 0.6343 0.2312
Qwen2.5-PRM-7B 0.6460 0.2640
ChainPoll 0.6732 0.3074
RHD 0.6914 0.3210
RHD+ChainPoll 0.7225 0.3564

L ADDITIONAL DETECTION RESULTS ON QWEN3-8B

To examine the generality of our detector beyond the R1-7B/14B backbones, we further evaluate
RHD on Qwen3-8B over the RETRUTHQA Math and Science domains. As shown in Figure 7, our
method forms the outer envelope across all five metrics (AUC, PCC, MC1/2/3), indicating consistent
improvements over diverse baselines. These results mirror the trends reported in the main paper
(R1-7B/14B), suggesting that (i) modeling early-stage depth fluctuations, (ii) penalizing misguided
backtracking, and (iii) recognizing overthinking (positive RScore–PPL correlation) remain effective
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(b) RETRUTHQA (Science).

Figure 7: Performance comparison on Qwen3-8B. Radar plots summarize five metrics: AUC,
PCC, and MC1/2/3. Our method (red, dashed outline) consistently dominates the baselines on both
domains.

cues on a different backbone and domains. Overall, RHD maintains strong binary detection ability
(AUC/PCC) while also excelling in multi-trace ranking (MC1/2/3), reinforcing its robustness across
architectures and tasks.

M ABLATION STUDY OF RHD

In this section, we analyze the contribution of each module within the RHD model to reasoning
hallucination detection. As shown in Table 5, removing any single component leads to a significant
performance drop on most datasets in the Reasoning Hallucination Detection task. This validates
the effectiveness of adopting a multivariate regression formulation, where all components jointly
serve as covariates. Although some coefficients may appear less influential in certain domains,
they demonstrate notable impact in others. This observation suggests that different domains exhibit
distinct hallucination pattern preferences, further supporting the validity of the empirically discovered
patterns, which can be effectively leveraged for reasoning hallucination detection.

Beyond component-level ablations, we also evaluate alternative step-level signals by replacing the
Reasoning Score with entropy and variance, resulting in RHD(Entropy) and RHD(Variance). As
shown in Table 9, both variants perform substantially worse than the original RHD across MATH, SCI-
ENCE, and MULTIHOPQA. The main reason is that entropy and variance only characterize properties
of single distributions, while our approach explicitly models distances between distributions across
layers, which is crucial for capturing mechanistic interpretability insights. Furthermore, leveraging
the logit lens mitigates the superposition problem in hidden states, enabling more accurate reasoning
hallucination detection.

Finally, we analyze the robustness of the shallow-step threshold used in the Attention Score com-
ponent. In the main method, we adopt the 25% quantile of early reasoning steps as the cutoff for
identifying shallow steps, which follows common statistical practice for lower-bound filtering and is
consistent with our CV-based fluctuation analysis in Appendix F. To further examine its stability, we
vary the threshold over {10%, 20%, 25%, 30%, 40%} and evaluate its impact on MATH–MC3 and
MultiHopQA–MC3 under the same setting as Figure 8. Table 8 shows the results.

We observe that performance remains stable across a wide range of threshold values, with the most
consistent and balanced results occurring around the 20–30% range. The 25% setting selected in
the main paper lies near the empirical optimum and yields strong performance on both benchmarks.
These results further confirm that RHD is robust to the choice of threshold and does not rely on
fine-grained hyperparameter tuning.
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Table 7: Impact of selecting candidate layers from different depth layers of LRMs.

Layers Math Science MultiHopQA

MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3

High 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7234 0.5957 0.6799
Middle 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7021 0.5862 0.6678
Low 0.6591 0.4765 0.5699 0.6207 0.5448 0.6009 0.7660 0.6255 0.7103

Table 8: Sensitivity of the shallow-step threshold in the Attention Score.

Threshold MATH–MC3 MultiHopQA–MC3

10% 0.5612 0.7035
20% 0.5683 0.7101
25% 0.5699 0.7103
30% 0.5707 0.7089
40% 0.5521 0.6974

N SENSITIVITY ANALYSIS OF RHD

In this section, we conduct sensitivity analysis experiments to investigate the impact of design choices
in RHD. Inspired by the underlying reasoning mechanism, we fix the reasoning score to be extracted
from the later layers of LRMs. Our primary focus is on selecting the appropriate layers for computing
the attention score. Specifically, we evaluate three different layer groups: shallow layers (1, 3, 5, 7, 9,
11, 13), middle layers (8, 10, 12, 14, 16, 18), and deep layers (14, 16, 18, 20, 22, 24, 26) on R1-7B.
The experimental results are shown in Table 7. We observe that, across the Math and Science
domains, the choice of attention layers has limited influence on final performance. In contrast,
for the MultiHopQA domain, shallow layers yield stronger results, aligning with the mechanistic
interpretation that earlier layers are primarily responsible for information transmission. Based on
these findings, we select the shallow layers as candidate layers for computing the attention score.

We further perform sensitivity analysis on influential feature weights in RHD across domains. We
vary the feature weights in {0.1, 0.3, 0.5, 0.7, 0.9}, and present the results in Figure 8. We observe that
most features exhibit an initial increase in performance followed by either a decline or stabilization.
The limited variance across settings indicates that the model is not overly sensitive to individual
hyperparameter values, demonstrating the robustness and stability of the RHD framework.

For the threshold τ , its selection is based on the analysis described in Appendix F; we performed
sensitivity experiments at values [4.0, 4.4, 4.5], and found that the optimal result is achieved at 4.0.
Setting the threshold too high improves precision but reduces recall. Encouraging an appropriate
depth of reasoning helps the model generalize better, which demonstrates the effectiveness of our
chosen hyperparameters.

O IMPLEMENTATION DETAILS FOR REASONING HALLUCINATION
MITIGATION

We fine-tune the models for reasoning hallucination mitigation using a RL framework with the
following hyperparameters: batch size of 8, learning rate of 1.0 × 10−6, and 1 training epoch.
We enable gradient checkpointing to reduce memory usage. The model is configured with a
maximum prompt length of 512 and a maximum completion length of 7680. For parameter-
efficient tuning, we adopt LoRA with rank r = 16 and α = 16, applied to all linear layers
(lora_target_modules=all-linear). During each training step, we sample 16 genera-
tions per query.

The reward function is a weighted sum of three components: (1) an accuracy reward that combines a
rule-based parser (Hugging Face, 2025) and LLM-as-a-Judge (Lightman et al., 2023) to determine
correctness, addressing the issue where the final answer is correct but fails rule-based extraction
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Table 9: Ablation results on R1-7B when replacing reasoning score with entropy or variance.

Math Science MultiHopQA
Method AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3 AUC PCC MC1 MC2 MC3

RHD 0.7978 0.4852 0.6591 0.4765 0.5699 0.6528 0.2662 0.6207 0.5448 0.6009 0.7361 0.3863 0.7660 0.6255 0.7103
RHD(Entropy) 0.6523 0.2687 0.6272 0.4293 0.5302 0.6085 0.2289 0.5910 0.5062 0.5836 0.6827 0.3310 0.6170 0.5004 0.5637
RHD(Variance) 0.6459 0.2657 0.6363 0.4295 0.5257 0.5576 0.1031 0.5172 0.4689 0.5805 0.5866 0.1674 0.5957 0.4776 0.5173
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Figure 8: We conduct a sensitivity analysis of each module in RHD, using R1-7B on the Math and
MultiHopQA subsets of ReTruthQA. We vary the weights assigned to different components and
observe the resulting performance on the MC3 metric.

(reward = 1 for correct, 0 for incorrect); (2) a format reward that ensures adherence to the required
reasoning format <think>\n...\n</think>\n<answer>\n...\n</answer> (reward =
1 if the format is correct, 0 otherwise); and (3) a tag count reward that softly encourages the inclusion
of each of the four required tags (<think>, </think>, <answer>, </answer>) by assigning
0.25 for each tag present. The reward weights are set to 1.0, 0.1, and 0.1 for the accuracy, format, and
tag count rewards, respectively.

For evaluation, we use the same accuracy-based metric as in training, and report re-
sults by averaging over four sampled generations per input. The fine-tuned model,
DeepSeek-R1-Distill-Qwen-1.5B, is publicly available at https://huggingface.
co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.
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Figure 9: We conduct a sensitivity analysis on the weight of the reasoning score reward in GRPO-R,
evaluating its impact on the accuracy metric. Experiments are carried out on both Qwen2.5-1.5B-
Instruct and DeepSeek-R1-1.5B by varying the weight parameter α.

P SENSITIVITY ANALYSIS OF REASONING SCORE WEIGHT IN GRPO-R

To investigate the sensitivity of the reasoning score reward weight α in the GRPO-R objective, we
conduct experiments on both DeepSeek-R1-1.5B and Qwen2.5-1.5B-Instruct. We vary
α in the range [0.05, 0.1, 0.2, 0.3] and evaluate the models’ performance accordingly.

Experimental results in Figure 9 indicate that both models achieve the best average performance
when α = 0.1. As α increases beyond this value, we observe a gradual decline in performance.
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Table 10: Sensitivity analysis of threshold τ across benchmarks.

Model MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)

GRPO-R τ = 4.0 0.788 0.367 0.414 0.371 0.357
GRPO-R τ = 4.4 0.788 0.367 0.409 0.371 0.352
GRPO-R τ = 4.5 0.784 0.333 0.389 0.355 0.348

Table 11: Accuracy of distilled models across benchmarks using different sampling strategies.
Distillation is performed on Qwen2.5-1.5B-Instruct using reasoning traces from R1-14B.

Method MATH500 AIME (2024) GPQA (diamond) GPQA (main) GPQA (extended)
Qwen2.5-1.5B-Instruct 0.466 0.100 0.202 0.197 0.211

Random 20% 0.504 0.100 0.247 0.230 0.242
RHD 20% 0.520 0.100 0.263 0.210 0.249
Random 50% 0.488 0.033 0.187 0.248 0.266
RHD 50% 0.516 0.200 0.247 0.250 0.242

100% 0.488 0.100 0.217 0.210 0.214

These results suggest that incorporating the reasoning score reward can effectively mitigate reasoning
hallucinations without compromising accuracy, as long as it remains a secondary signal. However,
overemphasizing the reasoning score (i.e., assigning it a large weight) can lead to a degradation in the
model’s ability to optimize for correctness, indicating that the reasoning signal should not dominate
the outcome-based reward objective.

Q RHD-GUIDED REASONING DISTILLATION

Distilling long-chain-of-thought data from large reasoning models to fine-tune smaller LLMs has be-
come a widely adopted strategy for improving reasoning capabilities (DeepSeek-AI, 2025). However,
directly fine-tuning small LLMs on raw LRM-generated data risks transferring undesirable reasoning
behaviors such as shallow pattern matching or overthinking, potentially introducing reasoning hallu-
cinations into the smaller models. To address this issue, we propose using the RHD score to rank
distillation data and select more truthful samples for training.

The distillation setup uses a learning rate of 5.0 × 10−5, batch size of 8, and LoRA applied to all
linear layers with parameters lora_r = 16 and lora_alpha = 16. We use the training data from
the hallucination mitigation experiment where R1-14B produces correct answers, along with their
corresponding reasoning traces and final answers. We then score each reasoning trace using the RHD
metric and sort the data in descending order. The top 20% and 50% of ranked samples are distilled
into a smaller model, R1-1.5B, and compared against randomly sampled subsets of 20%, 50%, and
100% of the same data.

Results, as shown in Table 11, demonstrate that RHD-guided distillation consistently yields better
performance across most evaluation benchmarks. In contrast, distillation using 100% of the raw data
results in degraded performance, likely due to noise introduced by hallucinated or low-quality samples.
These findings validate the effectiveness of RHD in selecting high-quality data and mitigating
reasoning hallucinations in downstream small LLMs during the distillation process.

R EXTENSION GRPO-R TO OTHER GRPO VARIANTS

Our hallucination mitigation framework in § 4.2 is designed as a general mechanism that can be
seamlessly integrated into diverse GRPO variants. By incorporating our mechanistically-inspired
step-level reasoning score via potential-based shaping, the framework is orthogonal to existing GRPO
improvements and can be applied on top of them without modification.

To further validate this claim, we conducted experiments on Dr. GRPO (Liu et al., 2025), a repre-
sentative variant that modifies the group relative optimization scheme. As shown in Table 12, Dr.
GRPO achieves stronger in-domain gains than vanilla GRPO but suffers from reduced robustness on
out-of-domain evaluation. Importantly, Dr. GRPO-R (our framework applied to Dr. GRPO) consis-
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tently improves over Dr. GRPO across both in-domain and out-of-domain settings. These results
demonstrate that our framework is compatible with and complementary to existing GRPO variants,
highlighting its effectiveness as a general-purpose strategy for mitigating reasoning hallucinations.

Table 12: Performance of Dr. GRPO and Dr. GRPO-R across benchmarks.

MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)

Base 0.772 0.333 0.354 0.333 0.339
+Dr. GRPO 0.778 0.367 0.364 0.333 0.342
+Dr. GRPO-R 0.792 0.367 0.394 0.364 0.357

In addition to Dr. GRPO, we further validate our hallucination mitigation framework against a widely
used step-level reward baseline. Specifically, we adopt a Process Reward Model (PRM) following
Shao et al. (2024), where step-level scores are provided by Qwen2.5-PRM-7B. We replace the
reasoning score in GRPO-R with PRM scores, denoted as GRPO+PRM, for comparison.

Experimental results show that on in-domain MATH datasets, GRPO+PRM achieves results compa-
rable to GRPO-R. However, on out-of-distribution SCIENCE datasets such as GPQA, GRPO+PRM
performs noticeably worse than GRPO-R, and in some cases even worse than the base model. This
indicates that compared to Qwen2.5-PRM-7B, using the reasoning score as a process reward not
only enhances reasoning within the training domain but also generalizes better across domains,
underscoring the robustness of GRPO-R. Moreover, incorporating PRM leads to significantly in-
creased training cost. Since PRM itself is a large model, GRPO+PRM requires more training time
compared to GRPO-R, further highlighting the efficiency advantage of our approach. Finally, our
framework is compatible with PRM. When combining PRM scores with reasoning scores as the final
process reward (denoted as GRPO-R+PRM), the performance drop on out-of-distribution GPQA
benchmarks is effectively alleviated, demonstrating the complementary benefits and generalizability
of GRPO-R.

Table 13: Comparison between GRPO-R and step-level reward baselines.

Method MATH500 AIME(2024) GPQA(diamond) GPQA(main) GPQA(extended)

Base 0.772 0.333 0.354 0.333 0.339
+GRPO-R 0.788 0.367 0.414 0.371 0.357
+GRPO+PRM 0.780 0.367 0.343 0.330 0.333
+GRPO-R+PRM 0.792 0.400 0.409 0.373 0.355

S NOTATION SUMMARY

To improve clarity and reproducibility, we provide a comprehensive summary of the key notations
used throughout the paper. These notations cover the main components of the Reasoning Score,
the RHD detection metric, and the GRPO-R reinforcement learning formulation. The table below
consolidates all symbols, their meanings, and where they are introduced in the manuscript.

This notation summary aims to make the paper easier to follow and ensures consistency across the
detection and mitigation components of our framework.

T COMPLEXITY AND EFFICIENCY ANALYSIS OF RHD

This section presents the theoretical complexity and empirical runtime of the proposed Reasoning
Hallucination Detection (RHD) method.

Theoretical Complexity. For a reasoning trace C = [c1, . . . , cK ] containing M tokens, the Rea-
soning Score is computed as the mean Jensen–Shannon Divergence (JSD) between the vocabulary
distributions of a small set of later layers (|J | = 4–6) and that of the final layer. Each JSD operation
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Table 14: Summary of the major notations used in the paper.

Notation Description

Rscore Step-level Reasoning Score measuring reasoning depth via later-layer
logit divergence.

CV (C) Coefficient of Variation of early-step reasoning scores, quantifying
reasoning fluctuation.

AttnScore(C) Attention-based metric capturing incorrect backtracking and overthink-
ing behaviors.

PPL(C) Step-level perplexity sequence used for detecting spurious verification.
PCC(Rscore,PPL(C)) Pearson correlation between reasoning depth and perplexity (Pattern #3

indicator).
α1, α2, α3, α4 Regression coefficients combining hallucination indicators into the final

RHD score.
Rfinal Terminal reward indicating correctness of the final reasoning answer in

GRPO-R.
Φ(st) Potential function based on the clipped reasoning score, used for

potential-based reward shaping.
γ Discount factor controlling reward-shaping dynamics; set to 1 for stabil-

ity and invariance.
τ Threshold separating normal vs. overthinking reasoning steps when

computing clipped potentials.
rt, r̄t Original and shaped step-level rewards in the GRPO-R formulation.
V ′(st) Value function after reward shaping, ensuring policy-invariance of the

optimal solution.

scales linearly with the vocabulary size V , i.e., O(V ), consisting of simple element-wise logarithm
and multiplication. Therefore, the overall complexity is

O(|J | ×M × V ).

For comparison, the computational cost of a single Transformer forward pass is

O(L×M × d2),

where L and d denote the number of layers and hidden dimension. Since the dominant cost comes
from quadratic attention and feedforward operations, the linear JSD computation introduces only a
negligible constant factor relative to model inference.

Moreover, the design of RHD follows mechanistic interpretability findings that early layers primarily
transmit shallow lexical signals. Hence, we compute divergences only over the final 4–6 layers,
reducing overall cost by roughly an order of magnitude while preserving its strong correlation with
reasoning depth.

Empirical Runtime. We further evaluate the practical overhead of RHD by measuring its detection
time per query on R1-7B and R1-14B models. All measurements are conducted using HuggingFace
Transformers with batch size = 1 on the ReTruthQA (MATH) benchmark.

Summary. RHD achieves competitive detection performance while maintaining a sub-second
runtime of approximately 0.3 seconds per query. Compared with ensemble-based or reward-model-
based detectors, RHD is 10–20× faster due to its lightweight design: it operates directly on cached
hidden states and performs JSD computation only on a few later layers. This efficiency makes RHD
suitable for large-scale or real-time reasoning hallucination analysis.

U FUTURE WORK

Our current framework relies on internal model activations and is thus restricted to open-source
LRMs with accessible activations. Extending this line of research to black-box models remains an
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Table 15: Average detection time per query (seconds) for representative hallucination detection
methods.

Category Method R1-7B R1-14B

Ensemble ChainPoll 7.02 7.64
Ensemble LM-v-LM 12.37 11.45
Uncertainty P(True) 0.10 0.11
Uncertainty LN-Entropy 0.05 0.09
Self-aware EigenScore 0.11 0.13
Self-aware UQAC 0.45 0.76
PRM-based Qwen2.5-PRM-7B 10.89 10.35
LCM Qwen2.5-32B 15.83 16.23
Mechanistic RHD (ours) 0.30 0.33

important open challenge. Nevertheless, the discovered patterns and metrics may inspire proxy-based
extensions that approximate internal reasoning signals without direct access.

Furthermore, our experiments are conducted on moderate-scale models and datasets due to compu-
tational constraints. A natural future direction is to scale the proposed framework to larger model
families and broader domains, which may provide deeper insights into the universality and robustness
of reasoning hallucination mitigation.
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