

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MECHANISTIC DETECTION AND MITIGATION OF HAL- LUCINATION IN LARGE REASONING MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have shown impressive capabilities in multi-step reasoning tasks. However, alongside these successes, a more deceptive form of model error has emerged—*Reasoning Hallucination*—where logically coherent but factually incorrect reasoning traces lead to persuasive yet faulty conclusions. Unlike traditional hallucinations, these errors are embedded within structured reasoning, making them more difficult to detect and potentially more harmful. In this work, we investigate reasoning hallucinations from a mechanistic perspective. We propose the **Reasoning Score**, which quantifies the depth of reasoning by measuring the divergence between logits obtained from projecting late layers of LRMs to the vocabulary space, effectively distinguishing shallow pattern-matching from genuine deep reasoning. Using this score, we conduct an in-depth analysis on the ReTruthQA dataset and identify two key reasoning hallucination patterns: early-stage fluctuation in reasoning depth and incorrect backtracking to flawed prior steps. These insights motivate our **Reasoning Hallucination Detection (RHD)** framework, which achieves state-of-the-art performance across multiple domains. To mitigate reasoning hallucinations, we further introduce **GRPO-R**, an enhanced reinforcement learning algorithm that incorporates step-level deep reasoning rewards via potential-based shaping. Our theoretical analysis establishes stronger generalization guarantees, and experiments demonstrate improved reasoning quality and reduced hallucination rates. The source code and dataset are available at: https://anonymous.4open.science/r/Reasoning_Hallucination-B7F8/.

1 INTRODUCTION

Hallucination has long been a critical safety challenge for Large Language Models (LLMs). In this context, hallucination refers to outputs that appear fluent and coherent but are semantically inaccurate or lack factual grounding. With the advent of Large Reasoning Models (LRMs)—such as DeepSeek-R1 (DeepSeek-AI, 2025) and OpenAI’s O-series (OpenAI, 2025)—AI systems have demonstrated unprecedented potential in solving complex real-world tasks. These models are typically trained with outcome-based reinforcement learning (RL) and explicitly generate multi-step reasoning traces prior to final answers.

Recent studies have uncovered a subtler form of hallucination emerging in LRMs (Lu et al., 2025; Vectara Research, 2025; OpenAI, 2025), which is referred to as **Reasoning Hallucination**. Unlike traditional hallucinations, reasoning hallucinations are often embedded within logically coherent reasoning traces, making incorrect information more persuasive and harder to detect. This form of “plausible but incorrect” reasoning can elicit user trust, resembling the conjunction fallacy, where detailed yet misleading explanations are perceived as more credible than simpler ones (Tentori et al., 2004; Valmeekam et al.). Prior studies mainly assess the correctness of reasoning paths in standard Chain-of-Thought (CoT) tasks over relatively simple problems (Xu et al., 2024; Prasad et al., 2023; Li et al., 2024b), with limited investigation into the mechanisms of hallucinations in LRMs. Recent work has extended evaluation to long CoT generated by LRMs (He et al., 2025; Lu et al., 2025), yet remains focused on error identification rather than uncovering underlying causes from mechanistic perspective. However, directly analyzing model-generated traces can be misleading due to the subtle nature of reasoning hallucinations. The emergence of Latent CoT, where reasoning is embedded in hidden states rather than surface text, further obscures detection (Hao et al., 2024). These challenges

054 call for probing the internal mechanisms behind reasoning hallucinations, enabling interpretable and
 055 robust hallucination detection.

056 Recent studies on the reasoning capabilities of LRM (Mirzadeh et al., 2024; Yan et al., 2025) have
 057 shown that models often produce incorrect answers when their reasoning process relies on shallow
 058 pattern-matching rather than genuine deep reasoning. This mirrors findings in cognitive science,
 059 where human thinking patterns are closely linked to the emergence of cognitive illusions (Kahneman,
 060 2011; Weis & Kunde, 2024). Inspired by these observations, we investigate reasoning hallucinations
 061 in LRM through the lens of internal thinking patterns, where a central challenge is how to quantify
 062 whether a model is performing deep reasoning or merely matching surface-level patterns from training
 063 data. Prior mechanistic interpretability studies highlight a functional division within language models:
 064 early layers primarily transmit information, while later layers perform more complex reasoning over
 065 aggregated context (Nikankin et al., 2025; Chen et al., 2025a). Based on this insight, we introduce
 066 **Reasoning Score**, which measures the divergence between logits obtained from projecting late layers
 067 of LRM to the vocabulary space. Through synthetic experiments, we validate the effectiveness of
 068 the Reasoning Score in measuring the depth of reasoning in LRM, which reflects whether the model
 069 engages in shallow pattern-matching or deep reasoning (§ 3.1).

070 Building on the proposed reasoning score, we conduct extensive analyses on reasoning hallucinations
 071 using the ReTruthQA dataset. We identify three key patterns of reasoning hallucination: **Pattern #1**:
 072 large fluctuations in reasoning depth during the early steps, and **Pattern #2**: incorrect backtracking
 073 from later steps to earlier incorrect steps. We attribute these patterns to the presence of shallow
 074 pattern-matching and overthinking steps, which undermine the LRM’s inherent abilities in self-
 075 verification and backtracking, ultimately leading to reasoning hallucinations (§ 3.2). Moreover, we
 076 observe that **Pattern #3**: overthinking steps exhibit a positive correlation between reasoning scores
 077 and perplexity, indicating spurious verification behaviors (§ 3.3). Based on these findings, we design
 078 the **Reasoning Hallucination Detection (RHD)** method, which significantly outperforms baselines
 079 across diverse domains in the reasoning hallucination detection dataset (§ 4.1).

080 We further investigate the underlying cause of shallow pattern-matching and overthinking steps in
 081 LRM and attribute it to the outcome-based RL paradigm commonly used during training. This
 082 paradigm incentivizes correct final answers but neglects whether intermediate reasoning steps reflect
 083 deep and meaningful thinking. To address this challenge, we introduce a step-level deep reasoning
 084 reward based on the reasoning score and propose **GRPO-R**, a variant of Group Relative Policy
 085 Optimization (GRPO) (Shao et al., 2024; DeepSeek-AI, 2025) that incorporates potential-based
 086 reward shaping. GRPO-R encourages deep—but not excessive—reasoning during RL fine-tuning.
 087 Our theoretical analysis shows that GRPO-R leads to better generalization in outcome-based RL, and
 088 empirical results confirm that it improves reasoning accuracy compared to standard GRPO (§ 4.2).

089 2 RELATED WORKS

090 **Hallucination of Language Models.** Hallucination remains a fundamental safety concern for
 091 LLMs, and outcome-supervised LRM (DeepSeek-AI, 2025; OpenAI, 2025) exacerbate this issue by
 092 generating logically flawed but persuasive reasoning traces, a consequence of reward-seeking behavior
 093 induced by outcome-based RL without step-level supervision (Chen et al., 2025b; Valmeekam et al.;
 094 Li & Ng, 2025). Detection approaches span uncertainty estimation (Kadavath et al., 2022; Ren
 095 et al., 2022), internal signal probing (Chen et al., 2024; Li et al., 2025b; 2024a), process-level
 096 critique models (He et al., 2025), and Process Reward Models (PRMs) (Zhang et al., 2025), though
 097 challenges remain due to the deceptive nature of hallucinated traces and the poor generalization
 098 of PRM signals (Zheng et al., 2024b). We address this by conducting a mechanistic analysis of
 099 reasoning hallucinations and proposing a detection method grounded in internal model behavior.

100 **Mechanistic Interpretability.** Mechanistic interpretability (Ferrando et al., 2024; Elhage et al.,
 101 2021) explains model behavior by attributing predictions to internal components, e.g., attention heads
 102 contextualize token representations (Ferrando & Voita, 2024; Wu et al., 2024), while FFNs serve as
 103 knowledge storage (Geva et al., 2021). Intervention-based studies further reveal a division of labor
 104 across layers, where early layers transmit contextual information and later layers conduct complex
 105 reasoning (Chen et al., 2025a; Nikankin et al., 2025; Li et al., 2024c). These insights motivate our
 106 *Reasoning Score*, which quantifies hidden state shifts in later layers to capture thinking patterns and
 107 analyze reasoning hallucinations in LRM.

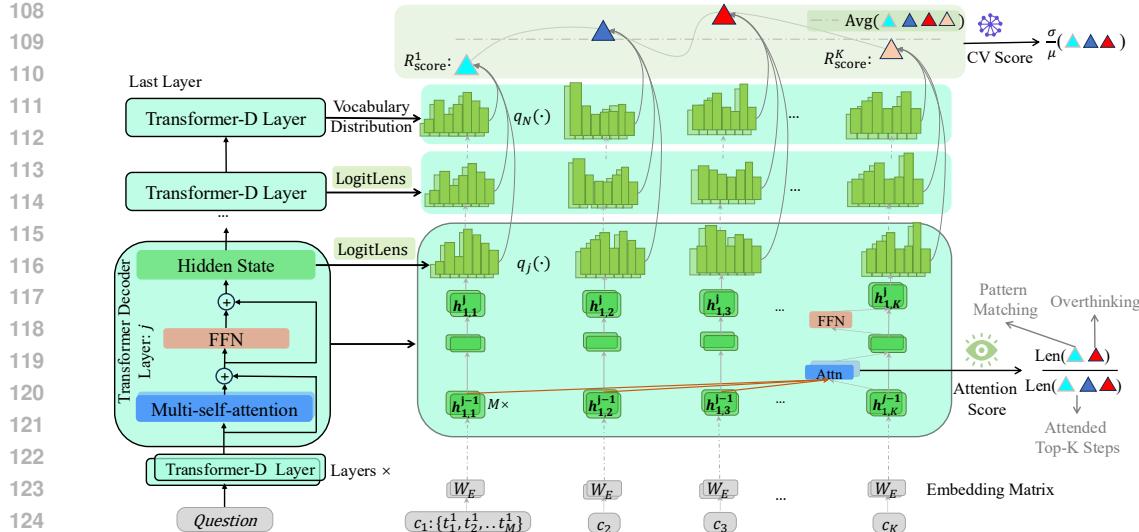


Figure 1: The illustration of the calculation processes for the Reasoning Score (Eq. 2), CV Score (Eq. 3), and Attention Score (Eq. 4).

3 EMPIRICAL STUDY OF REASONING HALLUCINATION

Our empirical study investigates the relationship between reasoning hallucinations and the thinking patterns of LRM, where thinking patterns are quantified using a reasoning score derived from mechanistic interpretability. This analysis reveals key reasoning hallucination patterns and guides the design of more effective detection and mitigation strategies.

3.1 REASONING SCORE: MEASURING REASONING DEPTH IN LARGE REASONING MODEL

To determine whether a reasoning step is generated via shallow pattern matching or genuine deep reasoning, we propose a *Reasoning Score* inspired by mechanistic interpretability. Prior studies analyzing the internal mechanisms of language models reveal a layered functional division: early layers primarily transmit information, while later layers perform more complex reasoning over aggregated context to produce correct outputs (Stolfo et al., 2023; Nikankin et al., 2025; Li et al., 2024c). Building on this insight, we define the reasoning score under the hypothesis that deeper reasoning is reflected by meaningful transformations in later-layer representations during generation.

Formally, a LRM-generated reasoning trace $C = [c_1, c_2, \dots, c_K]$ consists of multiple reasoning steps, each associated with a step-level reasoning score R_{score}^k that quantifies the depth of reasoning in step c_k . Each reasoning step $c_k = \langle t_1^k, \dots, t_M^k \rangle$ is composed of M tokens. The overall reasoning trace score $\mathcal{R}_{\text{score}}$ is represented as a sequence $[R_{\text{score}}^1, R_{\text{score}}^2, \dots, R_{\text{score}}^K]$, capturing the model’s reasoning dynamics across steps. As shown in Figure 1, each score is defined as the mean Jensen–Shannon divergence (JSD) between vocabulary distributions induced by hidden states from selected later layers and the anchor distribution from the final layer. To obtain the output distribution from each token hidden state $h_{m,k}^{(j)}$ of token t_m^k at layer j , we apply the LogitLens (nostalgia, 2020), which projects each layer-normalized hidden state into vocabulary space via the unembedding matrix \mathbf{W}_U : $\text{LogitLens}(h_{m,k}^{(j)}) = \text{LayerNorm}(h_{m,k}^{(j)})\mathbf{W}_U$. This provides a layer-wise interpretation of token prediction behavior and has been widely adopted for interpreting LLM internal representations (Hanna et al., 2024; Zhou et al., 2024; Yu et al., 2023).

The final step-level Reasoning Score R_{score}^k is computed as:

$$R_{\text{score}}^k = \frac{1}{|c_k|} \sum_{t_{m+1}^k \in c_k} \frac{1}{|\mathcal{J}|} \sum_{j \in \mathcal{J}} \text{JSD}(q_N(t_{m+1}^k), q_j(t_{m+1}^k)), \quad (1)$$

$$q_j(t_{m+1}^k) = \text{softmax}(\text{LogitLens}(h_{m,k}^{(j)})), \quad j \in \mathcal{J}, \quad (2)$$

where \mathcal{J} denotes the set of selected later layers and q_N is the anchor distribution from the final layer.

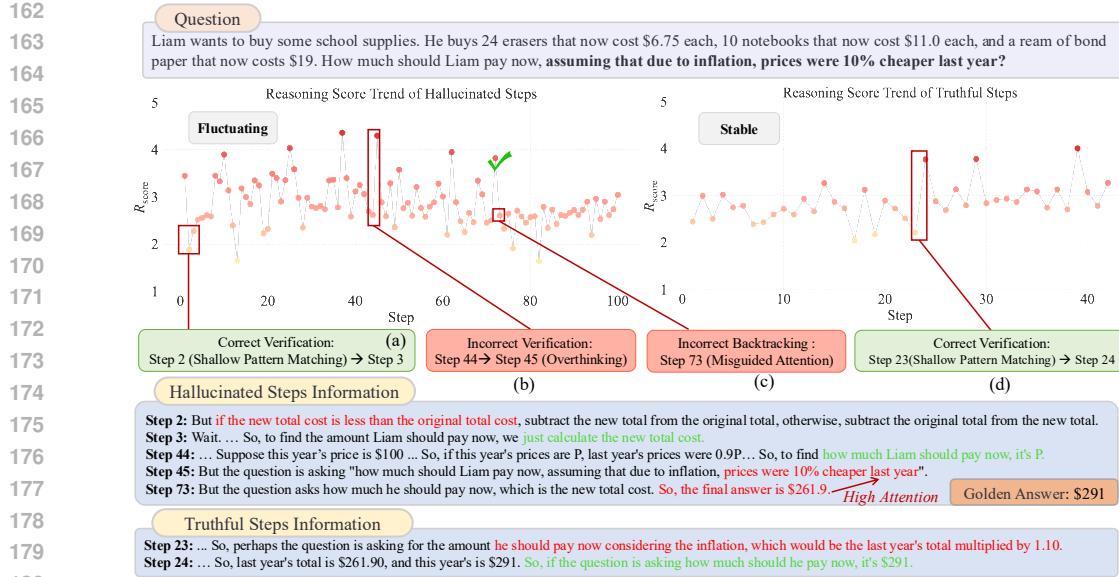


Figure 2: Case study from GSM-NoOp dataset Mirzadeh et al. (2024) on R1-7B. We sample both a hallucinated reasoning trace (left) and a truthful reasoning trace (right) for the same question as a preliminary analysis of reasoning hallucinations. Reasoning scores are scaled by 1e5.

Intuitively, a larger score R_{score} indicates substantial transformation in output distributions within late layers, suggesting the model is actively engaging in deep reasoning by integrating earlier contextual information. In contrast, a smaller score implies distributional stability in late layers, indicating shallow pattern matching or heuristic-based processing without further reasoning, consistent with prior findings on the differential roles of early versus later layers.

Validating the Reasoning Score with GSM-NoOp. We validate whether the Reasoning Score faithfully reflects reasoning depth using GSM-NoOp (Mirzadeh et al., 2024), a GSM8K-derived dataset where semantically irrelevant but plausible `NoOp` phrases are injected into problems. Although these phrases do not alter the correct reasoning path, prior work shows that LRM_s are often misled by them, revealing their reliance on shallow pattern matching (Mirzadeh et al., 2024). This makes GSM-NoOp a suitable testbed: if the Reasoning Score captures reasoning depth, then steps misled by `NoOp` phrases should yield lower scores. We validate this using correct outputs from DeepSeek-R1-Distill-Qwen-7B (R1-7B) to avoid confounds from hallucinated traces. Misled steps are labeled via GPT-4o. As GSM-NoOp is not publicly available, we re-implement a compatible version following the original paper’s methodology, with prompts and details provided in Appendix E.

Results. Our empirical results in Figure 3 (a) show that reasoning steps misled by `NoOp` phrases consistently receive significantly lower Reasoning Scores compared to non-misled steps. This supports our hypothesis that the Reasoning Score effectively captures shallow pattern-matching behavior and serves as an indicator of whether a model is engaging in deep reasoning.

3.2 REASONING HALLUCINATION ANALYSIS BASED ON REASONING SCORE

In this section, we leverage the mechanistically derived Reasoning Score as a proxy for the thinking patterns of LRM_s and investigate its relationship with the emergence of reasoning hallucinations. We begin with a preliminary analysis to identify characteristic patterns associated with hallucinated reasoning traces. We then analyze the generality of these patterns across domains using the ReTruthQA dataset, and further examine the underlying mechanism that leads LRM_s to exhibit such behaviors.

3.2.1 CASE ANALYSIS ON GSM-NOOPS

In this section, we conduct a preliminary analysis using the LRM R1-7B on a question from GSM-NoOp (Mirzadeh et al., 2024), where a “`NoOp`” statement is appended to the end of a math problem.

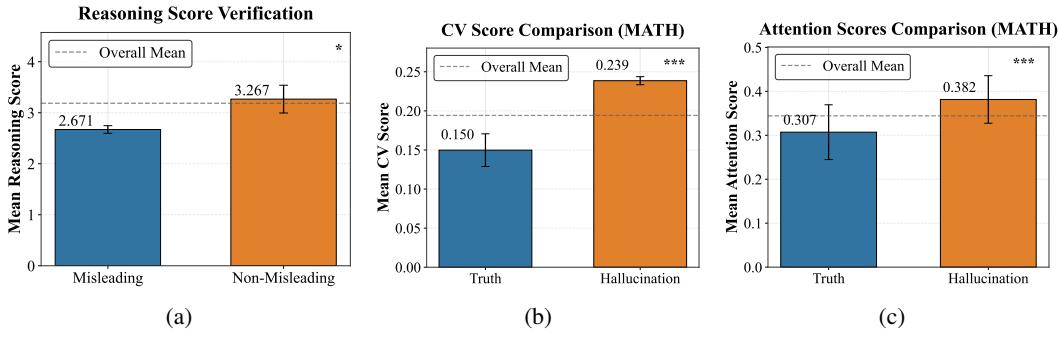


Figure 3: (a) Reasoning Score validation on GSM-NoOp. (b) Evaluation of Pattern #1 (early fluctuations), and (c) Pattern #2 (misguidedly attention) on ReTruthQA. Asterisks indicate statistical significance based on a t-test: * for p -value < 0.05 , and *** for p -value < 0.001 .

To enable controlled comparison of reasoning hallucination patterns, we sample both a truthful and a hallucinated response from R1-7B on the same question. Figure 2 presents the question along with step-level reasoning scores R_{score} , which quantify the depth of thinking at each step.

We observe that when the model generates reasoning steps that attend to the added NoOp content, these steps typically receive lower R_{score} , which in turn triggers the model’s *Self-Verification* mechanism (Li et al., 2025a), producing later steps with higher R_{score} that attempt to correct the earlier deviation (e.g., (a) and (d) in Figure 2). However, in the hallucinated reasoning trace, we also observe *overthinking* phenomena—steps with excessively high R_{score} that incorrectly revise the previous correct reasoning steps (e.g., (b) in Figure 2). These hallucinated traces contain more shallow pattern-matching and overthinking steps, resulting in an overall unstable reasoning trajectory. From this case study, we identify the reasoning hallucination **Pattern #1**: hallucinated traces typically exhibit large fluctuations in reasoning score, especially during the early steps of the process.

Furthermore, we observe that even when the model briefly arrives at correct intermediate steps, it often fails to maintain this correctness. In later steps, it performs *Incorrect Backtracking*, attending to earlier shallow or overthinking steps, ultimately leading to hallucination (e.g., (c) in Figure 2). This motivates the reasoning hallucination **Pattern #2**: in the later stages of reasoning, the model tends to misguidedly attend to earlier hallucinated steps, either shallow or overthinking, making it difficult to correct earlier errors and leading to hallucinated reasoning.

3.2.2 REASONING HALLUCINATION PATTERN ANALYSIS

In this section, we validate the two reasoning hallucination patterns identified in preliminary analysis (§ 3.2.1): **Pattern #1**: large fluctuations in reasoning scores during early steps, and **Pattern #2**: incorrect backtracking to earlier hallucinated reasoning steps in later stages. We aim to assess whether these patterns generalize across broader domains and tasks. To this end, we conduct experiments on the ReTruthQA dataset using the R1-7B model. ReTruthQA covers three reasoning domains: Math, Science, and MultiHopQA (Details in § 5.1). For each domain, we construct two balanced subsets using gold hallucination labels: one with hallucinated traces and one with truthful traces.

To evaluate **Pattern #1**, we measure the fluctuation of reasoning depth in the early phase of reasoning using the Coefficient of Variation (CV Score) (Everitt, 1998), a standard metric for quantifying sequence variability (shown in Figure 1). Specifically, we focus on the first $\lceil K/r \rceil$ steps of the reasoning trace $\mathcal{C} = \langle c_1, c_2, \dots, c_K \rangle$, and define: $\mathcal{R}_{\text{score}}^{\text{early}} = [R_{\text{score}}^1, R_{\text{score}}^2, \dots, R_{\text{score}}^{\lceil K/r \rceil}]$, where $r > 1$ is a constant controlling the size of the early-step window. The CV score over early reasoning steps is then given by:

$$\text{CV}(\mathcal{C}) = \frac{\sigma(\mathcal{R}_{\text{score}}^{\text{early}})}{\mu(\mathcal{R}_{\text{score}}^{\text{early}})}, \quad (3)$$

where $\mu(\cdot)$ and $\sigma(\cdot)$ denote the mean and standard deviation, respectively.

To assess **Pattern #2**, we introduce a **Attention Score** that quantifies the extent to which later reasoning steps attend to earlier shallow-pattern matching or overthinking steps (Figure 1). Let the full reasoning trace be $\mathcal{C} = \langle c_1, c_2, \dots, c_K \rangle$, and define the later reasoning steps as $\mathcal{C}_{\text{later}} = \{c_k\}_{k=\lceil \eta K \rceil}^K$.

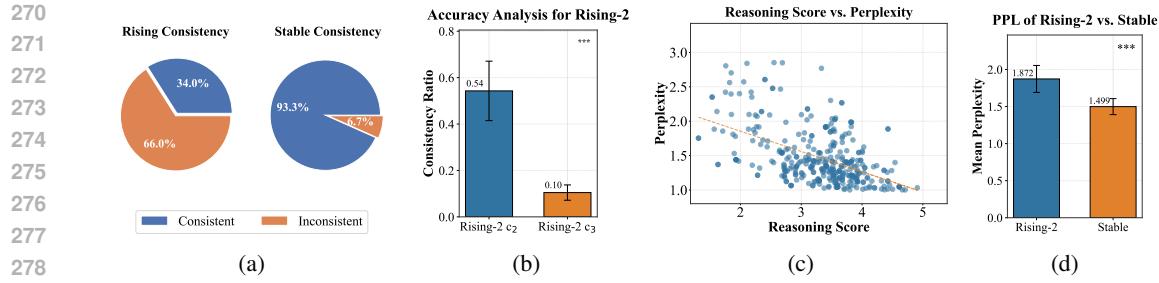


Figure 4: Analysis of Pattern #1: (a) Consistency Analysis (Q1); (b) Accuracy Comparison in Rising-2 triples (Q2); (c) Reasoning score vs. perplexity and (d) Perplexity of Rising-2 vs. Stable (Q3).

For a step $c_k \in \mathcal{C}_{\text{later}}$, we compute the mean attention from c_k to each earlier step c_j as:

$$\bar{a}_{k \rightarrow j} = \frac{1}{|c_k||c_j|} \sum_{t \in c_k} \sum_{s \in c_j} \left(\frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \frac{1}{H} \sum_{h=1}^H a_{t,s}^{l,h} \right),$$

where $a_{t,s}^{l,h}$ denotes the attention weight from token t to token s at head h in layer l , H is the number of heads per layer, \mathcal{L} is the set of selected layers for aggregation, and the constant η defines late steps.

We then identify the top- K most attended earlier steps based on $\bar{a}_{k \rightarrow j}$: $\mathcal{T}_k = \text{TopK}(\{\bar{a}_{k \rightarrow j}\}_{j=1}^{k-1}, K)$, where \mathcal{T}_k is the set of indices corresponding to the top-attended steps. The step-level attention score for c_k is then defined as the proportion of these steps whose Reasoning Scores fall outside the normal range, either in the lower quartile or exceeding a high threshold τ :

$$\text{AttnScore}(c_k) = \frac{1}{K} \sum_{j \in \mathcal{T}_k} \mathbb{1}(R_{\text{score}}^j \leq \text{Quantile}_{1/4}(\mathcal{R}_{\text{score}}) \text{ or } R_{\text{score}}^j \geq \tau),$$

where $\mathbb{1}(\cdot)$ is the indicator function, $\text{Quantile}_{1/4}(\mathcal{R}_{\text{score}})$ denotes the first quartile of the reasoning scores (i.e., potentially shallow pattern-matching steps), and τ is a threshold identifying potentially overthinking steps.

The trace-level attention score is computed by averaging over all later steps:

$$\text{AttnScore}(\mathcal{C}) = \frac{1}{|\mathcal{C}_{\text{later}}|} \sum_{c_k \in \mathcal{C}_{\text{later}}} \text{AttnScore}(c_k), \quad (4)$$

which reflects the extent to which later reasoning steps attend to earlier incorrect steps.

Results. As shown in Figure 3(b) and (c) and Appendix H, across all three domains, hallucinated reasoning traces consistently yield significantly higher CV scores and Attention scores than truthful traces. This confirms that hallucinated traces are more fluctuating in reasoning depth (Pattern #1) and more likely to attend prior incorrect steps (Pattern #2), demonstrating the generalizability of both patterns beyond the initial case study (Section 3.2.1). Detailed settings are shown in Appendix H.

3.3 ANALYZING THE MECHANISMS BEHIND REASONING FLUCTUATION

We investigate the underlying mechanism behind **Pattern #1**, where hallucinated reasoning traces exhibit large fluctuations in reasoning depth. Building on our case study in Section 3.2.1, we hypothesize this stems from a built-in self-verification mechanism. Key questions still include: **Q1**: What triggers verification behavior in LRM? **Q2**: Do excessively high reasoning scores reliably signal overthinking? **Q3**: If Q2 holds, what factors lead to the emergence of such overthinking steps?

To explore these, we construct step triples (c_1, c_2, c_3) from reasoning traces: (1) **Stable** triples with minimal score variation from truthful traces; (2) **Rising-1** triples from hallucinated traces with a moderate score spike ($R_{\text{score}}(c_3) < \tau$), potentially triggered by shallow pattern-matching in c_2 ; and (3) **Rising-2** triples with extreme score spikes ($R_{\text{score}}(c_3) > \tau$), to probe overthinking behaviors.

324 **Analysis.** For **Q1**, we compare the logical consistency between c_1 and c_2 in Rising vs. Stable triples
 325 using GPT-4o judgments. As shown in Figure 4(a), stable triples show significantly higher consistency,
 326 suggesting that verification is more likely to be triggered when earlier steps are inconsistent.
 327

328 Regarding **Q2**, we assess the accuracy of c_2 and c_3 in Rising-2 triples. Figure 4(b) shows that while
 329 c_2 is often correct, c_3 introduces errors, confirming that excessively high reasoning scores reliably
 330 signal overthinking. Prompts of **Q1** and **Q2** are shown in Appendix G.

331 To investigate **Q3**, we firstly analyze the correlation between reasoning depth and perplexity. As
 332 shown in Figure 4(c), reasoning steps with higher R_{score} generally exhibit lower perplexity, indicating
 333 more certainty outputs. However, Figure 4(d) reveals that in Rising-2 triples, c_3 steps, despite higher
 334 reasoning scores, have higher perplexity than those in stable triples, suggesting that overthinking may
 335 produce internally unstable generations. We term this phenomenon *spurious verification*, where the
 336 model performs misguided validation driven by outcome-based reward optimization. This insight
 337 leads us to identify a new hallucination pattern: **Pattern #3:** Overthinking steps exhibit a positive
 338 correlation between R_{score} and perplexity. More details analysis are provided in Appendix F.
 339

340 4 METHODS

341 4.1 REASONING HALLUCINATION DETECTION

343 Building upon the patterns uncovered in our empirical study, we propose the **Reasoning Hallucination**
 344 **Detection algorithm (RHD)**. Our approach leverages the step-level Reasoning Score R_{score} to quanti-
 345 fy thinking depth throughout the reasoning trace, and incorporates three identified indicators of
 346 hallucination: (1) Pattern #1: large fluctuations in reasoning scores during early steps, (2) Pattern #2:
 347 incorrect backtracking to earlier shallow or overthinking steps in later stages, and (3) Pattern #3:
 348 overthinking behavior where R_{score} and perplexity exhibit a positive correlation.

349 Given a question Q and its reasoning trace \mathcal{C} with step-level scores $\mathcal{R}_{\text{score}}$, we define the overall
 350 Reasoning Hallucination Score as:

$$351 \mathcal{H}_{\mathcal{C}} = \underbrace{\alpha_1 \cdot \text{Avg}(\mathcal{R}_{\text{score}})}_{\text{Overall Reasoning Depth}} + \underbrace{\alpha_2 \cdot \text{CV}(\mathcal{C})}_{\text{Pattern #1}} + \underbrace{\alpha_3 \cdot \text{AttnScore}(\mathcal{C})}_{\text{Pattern #2}} + \underbrace{\alpha_4 \cdot \text{PCC}(\mathcal{R}_{\text{score}}, \text{PPL}(\mathcal{C}))}_{\text{Pattern #3}}, \quad (5)$$

354 where $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are regression coefficients. Avg denotes the average reasoning score, CV
 355 (Eq. 3) measures fluctuations during early-steps, AttnScore (Eq. 4) captures attention on earlier
 356 hallucinated steps, and PCC refers to the Pearson correlation coefficient between reasoning scores
 357 and step-level perplexity $\text{PPL}(\mathcal{C})$, computed according to Eq. 11.

358 4.2 MITIGATING HALLUCINATIONS VIA STEP-LEVEL REASONING SCORE SHAPING

360 Reasoning hallucinations often stem from two types of flawed steps: (1) shallow pattern-matching,
 361 reflecting shortcut behaviors, and (2) overthinking, induced by excessive and misguided verification.
 362 A core factor is outcome-based RL, which only rewards the final answer and neglects intermediate
 363 steps (Chen et al., 2025b; Valmeeekam et al.; Translue Research, 2024; Kalai et al., 2025), encouraging
 364 reward-hacking heuristics that may propagate through distillation (Wang et al., 2025).

365 To address this, we introduce an auxiliary process-level reward based on the **reasoning score** R_{score}
 366 from Section 3.1, which measures the reasoning depth at each step. This encourages meaningful
 367 reasoning while penalizing shallow or overthinking steps. We model the reasoning process as a
 368 finite-horizon MDP $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$, where $s_t \in \mathcal{S}$ is the reasoning state at step t , $a_t \in \mathcal{A}$ denotes the
 369 next reasoning step, P is the transition probability and r_t is the reward:

$$370 \quad r_t = \begin{cases} 0, & t < T, \\ R_{\text{final}}, & t = T. \end{cases}$$

373 **Reward Shaping with Reasoning Score.** We apply potential-based reward shaping (Ng et al.,
 374 1999):

$$375 \quad \bar{r}_t = r_t + \gamma \Phi(s_{t+1}) - \Phi(s_t), \quad \text{with } \Phi(s_T) = 0,$$

376 which preserves the optimal policy while redistributing credit: $V'(s_t) = V(s_t) - \Phi(s_t)$, where
 377 $V(s_t) = \mathbb{E}_{\pi} \left[\sum_{k=t}^T \gamma^{k-t} r_k \mid s_t \right]$ is the value function of original reward and $V'(s_t)$ is the shaped.

378 **Table 1:** Performance comparisons between RHD and baselines for Reasoning Hallucination Detec-
 379 tion. The boldface represents the best performance, and the underline represents the second-best. \dagger
 380 means improvements are significant (paired t-test or DeLong test at p -value < 0.05).
 381

382 LRM	383 Categories	384 Methods	385 ReTruthQA (MATH)						386 ReTruthQA (Science)						387 ReTruthQA (MultiHopQA)					
			388 Binary Detection			389 Multi-Trace Ranking			390 Binary Detection			391 Multi-Trace Ranking			392 Binary Detection			393 Multi-Trace Ranking		
			AUC	PCC	394 MC1	MC2	MC3	AUC	PCC	395 MC1	MC2	MC3	AUC	PCC	396 MC1	MC2	MC3			
388 R1-7B	389 Ensemble	ChainPoll	0.6384	0.2603	0.3020	0.2952	0.3583	0.6468	0.2612	0.2700	0.2580	0.3098	0.6297	0.2233	0.4208	0.3019	0.3954			
		LMvLM	0.6364	0.3728	0.3204	0.2504	0.3402	0.5345	0.1890	0.2600	0.2100	0.3113	0.6331	0.2759	0.3649	0.3049	0.3984			
		SelfCheckGPT	0.7727	<u>0.4598</u>	0.4091	0.2784	0.4119	0.6819	<u>0.2669</u>	0.3793	0.3655	0.5320	0.6886	<u>0.2955</u>	0.2553	0.1915	0.3118			
	390 Uncertainty	P(True)	0.7216	0.2681	0.5455	0.4068	0.5182	0.6207	0.2572	0.5172	0.4276	0.5533	0.5400	0.1684	0.4026	0.3030	0.4032			
		LN-Entropy	0.6896	0.3099	0.5000	0.3917	0.5096	0.5553	0.1129	0.3700	0.3200	0.4329	0.6123	0.2149	0.4156	0.3208	0.4461			
		PPL	0.7025	0.2856	<u>0.5909</u>	0.4205	0.5267	0.5434	0.1144	0.3793	0.3034	0.3990	0.6432	0.2249	0.5745	0.4532	0.5241			
391 R1-14B	392 Length	Length-Score	0.5351	0.0922	0.4318	0.2568	0.3408	0.5510	0.0911	<u>0.5793</u>	<u>0.5034</u>	<u>0.5737</u>	0.5815	0.1496	0.5106	0.3887	0.4674			
		PRM	0.6601	0.2746	0.4773	0.3000	0.4572	0.6153	0.2203	0.4400	0.3605	0.4444	0.5694	0.1074	0.5065	0.4167	0.4990			
		Qwen2.5-PRM-7B	0.5563	0.1354	0.4318	0.2701	0.3913	0.5690	0.1275	0.2200	0.1425	0.2382	0.5422	0.0866	0.4026	0.2952	0.3947			
	393 LCM	GPT4-o	0.7513	0.3794	0.4091	0.2705	0.4131	<u>0.7045</u>	0.2026	0.2500	0.2965	0.3200	<u>0.7123</u>	0.2204	0.4043	0.2830	0.3704			
		Qwen2.5-32B	0.6942	0.2082	0.2500	0.1955	0.2935	0.6525	0.2635	0.3103	0.2897	0.4458	0.6424	0.2056	0.4400	0.3300	0.4187			
		Self-Aware	0.6671	0.2902	0.5833	0.3715	<u>0.5298</u>	0.6030	0.2369	0.4700	0.3925	0.4885	0.6736	0.2583	<u>0.6623</u>	<u>0.5335</u>	0.6425			
	394 UQAC	EigenScore	0.7539	0.3868	0.4583	0.3250	0.3007	0.6488	0.2601	0.4266	0.3777	0.3815	0.6696	0.2858	0.5195	0.4113	0.3885			
		Ours	RHD	0.7978[†]	0.4852[†]	0.6591[†]	0.4765[†]	0.5699[†]	0.7194	0.3060[†]	0.6207[†]	0.5448[†]	0.6009[†]	0.7361[†]	0.3863[†]	0.7660[†]	0.6255[†]	0.7103[†]		
		ChainPoll	0.5858	0.1658	0.2704	0.2535	0.3394	0.6640	0.3134	0.3261	0.1775	0.2188	0.5846	0.1607	0.2319	0.1972	0.2638			
	395 Ensemble	LMvLM	0.6620	0.3835	0.2563	0.2507	0.3133	0.5435	0.2132	0.3333	0.2300	0.3421	0.6250	0.2914	0.2042	0.1885	0.2506			
		SelfCheckGPT	0.5823	0.2923	0.2462	0.2167	0.2930	0.5109	0.1048	0.3287	0.2566	0.3683	0.5208	0.1268	0.3167	0.3083	0.3030			
		P(True)	0.6460	0.1443	0.2615	0.2374	0.4570	0.6645	0.2582	0.4828	0.3460	0.4885	0.6090	0.2057	0.3147	0.2508	0.4107			
	396 Uncertainty	LN-Entropy	0.6423	0.2242	0.3479	0.2939	<u>0.4754</u>	0.6248	0.2134	0.5862	0.4147	0.5264	0.5337	0.0494	0.3125	0.2340	0.3678			
		PPL	0.6526	0.2330	0.3846	0.2744	0.4444	0.6219	0.1182	0.6000	<u>0.4215</u>	0.5162	0.5337	0.1701	0.3058	0.2521	0.3630			
		Length-Score	0.5184	0.0810	0.2817	0.2329	0.3400	0.5814	0.1487	0.5345	0.3848	0.4211	0.5971	0.1843	0.4711	0.3434	0.4284			
	397 PRM	Qwen2.5-PRM800K	0.5708	0.1285	0.3077	0.2697	0.4028	<u>0.7267</u>	<u>0.4100</u>	0.5862	0.3819	0.5132	0.6579	0.2451	0.4476	0.3366	0.4702			
		Qwen2.5-PRM-7B	0.5416	0.1249	0.3538	0.2918	0.4429	0.6983	0.3633	0.6133	0.4556	<u>0.5449</u>	0.6674	0.2758	0.5045	0.3642	0.4853			
		GPT4-o	0.6064	0.2458	0.2154	0.1785	0.3073	0.6265	0.1344	0.3333	0.1628	0.1933	0.6328	0.2356	0.2517	0.1878	0.2683			
	398 LCM	Qwen2.5-32B	0.6650	0.3055	0.2676	0.2451	0.3632	0.6974	0.2381	0.3833	0.2150	0.3428	<u>0.7071</u>	0.2716	0.3472	0.2517	0.4177			
		Self-Aware	0.6374	0.2303	0.3444	0.2836	0.5104	0.7157	0.3732	<u>0.6207</u>	0.4170	0.5050	0.6952	<u>0.3397</u>	<u>0.5417</u>	<u>0.4222</u>	<u>0.4988</u>			
		Ours	RHD	0.7292[†]	0.3476	<u>0.3692</u>	0.3005	0.4644	0.7686[†]	0.4625[†]	0.6667[†]	0.4714[†]	0.5671[†]	0.7255[†]	0.3742[†]	0.5785[†]	0.4421[†]	0.5154[†]		

402 **Potential Function Design.** To avoid encouraging overthinking, we clip the reasoning score:

403

404

$$405 \tilde{R}_{\text{score}}(s_t) = \begin{cases} \alpha \cdot R_{\text{score}}(s_t), & R_{\text{score}}(s_t) \leq \tau, \\ 406 0, & \text{otherwise,} \end{cases} \quad \Phi(s_t) = -\tilde{R}_{\text{score}}(s_t),$$

407 where $\alpha > 0$ and τ control the weighting strength and the threshold for overthinking, respectively.

408 To understand the generalization benefit of our proposed reasoning score-based shaping, we derive a
 409 uniform convergence bound under augmented rewards:

410 **Theorem 1** (Generalization Gap with Augmented Rewards). *Let the policy class Π be such that
 411 for any $\pi \in \Pi$, the augmented return $R(\pi, \xi) = \sum_{t=1}^T \gamma^{t-1} \bar{r}_t(\xi)$ is uniformly bounded in $[0, \bar{R}_{\max}]$
 412 for any trajectory ξ sampled from the environment. Each trajectory $\xi = (s_1, a_1, \bar{r}_1, \dots, s_T, a_T, \bar{r}_T)$
 413 denotes a complete multi-step reasoning trace. Suppose that Π has Rademacher complexity $\mathcal{R}_n(\Pi)$
 414 based on n independent training samples $\{\xi_i\}_{i=1}^n$. Then, with probability at least $1 - \delta$, for any
 415*

416 *$\pi \in \Pi$ the following holds: $J_{\text{test}}(\pi) - J_{\text{train}}(\pi) \leq 2\bar{R}_{\max} \mathcal{R}_n(\Pi) + \bar{R}_{\max} \sqrt{\frac{\log(1/\delta)}{2n}}$, where $J_{\text{test}}(\pi) =$
 417 $\mathbb{E}_{\xi} [R(\pi, \xi)]$ is the expected test return and $J_{\text{train}}(\pi) = \frac{1}{n} \sum_{i=1}^n R(\pi, \xi_i)$ is the empirical training
 418 return.*

419 The proof is given in Appendix B. Intuitively, our reasoning score acts as a regularizer that encourages
 420 logically consistent behaviors and effectively reduces the Rademacher complexity $\mathcal{R}_n(\Pi)$, thereby
 421 tightening the bound and improving generalization to unseen reasoning tasks.

422 **Integrate into GRPO.** To demonstrate compatibility with standard RL algorithms, we integrate
 423 the reasoning score shaping framework into the Group Relative Policy Optimization (GRPO), a
 424 scalable and widely used RL algorithm for reasoning model training DeepSeek-AI (2025); Shao et al.
 425 (2024), yielding **GRPO-R**. All implementation and formulation details of GRPO-R are provided in
 426 Appendix C.

Table 2: Performance comparisons between GRPO-R and baselines. Bold indicates the best result.

Models	DeepSeek-R1-1.5B					Qwen2.5-1.5B-Instruct				
	MATH500	AIME(2024)	GPQA(diamond)	GPQA(main)	GPQA(extended)	MATH500	AIME(2024)	GPQA(diamond)	GPQA(main)	GPQA(extended)
Base	0.772	0.333	0.354	0.333	0.339	0.466	0.100	0.202	0.197	0.211
+GRPO	0.770	0.333	0.359	0.335	0.359	0.480	0.033	0.247	0.214	0.266
+GRPO-R	0.788	0.367	0.414	0.371	0.357	0.490	0.133	0.247	0.243	0.275

5 EXPERIMENTS

5.1 REASONING HALLUCINATION DETECTION

Data and Evaluation. We evaluate our RHD method on the **ReTruthQA** dataset spanning three reasoning domains: Math, Science, and MultiHopQA (construction details in Appendix D). We adopt two evaluation settings: (1) **Binary Detection**, which assesses the model’s ability to detect hallucinations in individual (Q, C) pairs using AUC and PCC; (2) **Multi-Trace Ranking**, which evaluates whether the model can rank truthful traces higher among multiple candidates $(Q, \{C_1, \dots, C_N\})$, following TruthfulQA-MC (Lin et al., 2021). We report MC1, MC2, and MC3 to measure hallucination ranking accuracy (Evaluation details are in Appendix I).

Models and Baselines. We conduct experiments on two open-source LRM: DeepSeek-R1-Distill-Qwen-7B (R1-7B) and DeepSeek-R1-Distill-Qwen-14B (R1-14B) DeepSeek-AI (2025). We compare our method against six categories of hallucination detection baselines: (1) Ensemble based self-evaluation (e.g., ChainPoll (Friel & Sanyal, 2023)); (2) Uncertainty based methods (e.g., P(True) Kadavath et al. (2022)); (3) Self-Awareness based approaches (e.g., UQAC Li et al. (2025b)); (4) LLM-as-Critic (LCM) models (e.g., GPT-4o); (5) Process Reward Models (PRMs) with step-level supervision (e.g., Qwen2.5-Math-PRM); (6) Length-based scoring, which uses trace length as a proxy for hallucination likelihood. Baselines and RHD implementation details are in Appendix I and J.

Main Results. As shown in Table 1, RHD consistently outperforms most baselines across all ReTruthQA domains, model backbones, and evaluation settings, demonstrating strong robustness. Ensemble and LCM methods perform well in binary detection but struggle in multi-trace ranking, indicating difficulty in fine-grained comparison. Uncertainty-based methods are sensitive to output length, while Process Reward Models often suffer from limited generalization. In contrast, RHD directly leverages reasoning mechanisms for more accurate detection. Self-awareness methods perform competitively but lack explicit reasoning analysis. The Length-based baseline performs well in multi-trace settings—supporting the intuition that overly long traces are more error-prone, but underperforms in binary detection, limiting its generality. These findings highlight the effectiveness of RHD modeling internal reasoning patterns for hallucination detection. Additional Qwen3-8B Yang et al. (2025) results, ablations and sensitivity studies are provided in Appendix L, M, N, and K.

5.2 REASONING HALLUCINATION MITIGATION

Experimental Setting. To assess the effectiveness of GRPO-R in reducing reasoning hallucinations, we fine-tune Qwen2.5-1.5B-Instruct and DeepSeek-R1-1.5B on 2,000 examples from OpenR1-Math-220K (Team, 2024) using either GRPO or our proposed GRPO-R. We evaluate the accuracy (Hugging Face, 2025) on two in-domain math benchmarks—MATH500 Lightman et al. (2023) and AIME 2024 AI-MO (2024a)—and an out-of-distribution science benchmark—GPQA (Rein et al., 2024). Implementation details are in Appendix O.

Main Results. As shown in Table 2, GRPO-R outperforms GRPO across most of the tasks, indicating that shaping reasoning steps via the reasoning score enhances both factual accuracy and reasoning reliability. Gains on GPQA further suggest improved generalization beyond training distribution. Additional sensitive and GRPO-variants analyses are in Appendix P and R. Hallucination mitigation experiments in data distillation in Appendix Q further validate the effectiveness of RHD model.

6 CONCLUSION

We study *Reasoning Hallucination* in LRMs from a mechanistic perspective, probing internal model behaviors rather than surface text. We propose the **Reasoning Score**, a step-level metric grounded

486 in mechanistic interpretability that quantifies reasoning depth. Using this lens, we uncover three
 487 characteristic hallucination patterns—early-stage depth fluctuations, incorrect backtracking, and
 488 spurious verification-induced overthinking—and build the **RHD** framework for their detection.
 489 Finally, we introduce **GRPO-R**, which integrates reasoning-score-based shaping into reinforcement
 490 learning, improving accuracy and robustness across reasoning benchmarks. This establishes a unified
 491 pipeline from mechanistic analysis to practical mitigation of reasoning hallucinations.
 492

493 REPRODUCIBILITY STATEMENT

494
 495 We have made substantial efforts to ensure the reproducibility of our work. Our proposed
 496 methods (RHD and GRPO-R) are presented with complete algorithmic details in Sections 4.1
 497 and 4.2, and the corresponding hyperparameters, and ablation studies are documented in Ap-
 498 pendix O and J. To further support reproducibility, we submit an anonymous code repository as part
 499 of the supplementary materials (https://anonymous.4open.science/r/Reasoning_Hallucination-B7F8/), which contains the full implementation, training scripts, and dataset
 500 for reproducing all main results. Datasets used in our experiments are all available, and we provide a
 501 detailed description of the preprocessing and evaluation protocols in Appendix D and I. Together,
 502 these resources enable independent verification of our findings.
 503

504 REFERENCES

505
 506 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 507 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 508 [arXiv preprint arXiv:2303.08774](https://arxiv.org/abs/2303.08774), 2023.
 509
 510 AI-MO. Ai-mo/aimo-validation-aime. <https://huggingface.co/datasets/AI-MO/aimo-validation-aime>, 2024a. Apache 2.0 License.
 511
 512 AI-MO. Ai-mo/aimo-validation-amc. <https://huggingface.co/datasets/AI-MO/aimo-validation-amc>, 2024b. Apache 2.0 License.
 513
 514 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
 515 Llms’ internal states retain the power of hallucination detection. In The Twelfth International
 516 Conference on Learning Representations, 2024.
 517
 518 Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and
 519 Junxian He. Bring reason to vision: Understanding perception and reasoning through model
 520 merging. [arXiv preprint arXiv:2505.05464](https://arxiv.org/abs/2505.05464), 2025a.
 521
 522 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
 523 Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
 524 say what they think. [arXiv preprint arXiv:2505.05410](https://arxiv.org/abs/2505.05410), 2025b.
 525
 526 Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. Lm vs lm: Detecting factual errors via
 527 cross examination. [arXiv preprint arXiv:2305.13281](https://arxiv.org/abs/2305.13281), 2023.
 528
 529 Roshan Cools and Mark D’Esposito. Inverted-u-shaped dopamine actions on human working memory
 530 and cognitive control. *Biological psychiatry*, 69(12):e113–e125, 2011.
 531
 532 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
 533 [arXiv preprint arXiv:2501.12948](https://arxiv.org/abs/2501.12948), 2025. URL <https://arxiv.org/abs/2501.12948>.
 534
 535 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 536 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
 537 Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
 538 Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
 539 mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021. URL
<https://transformer-circuits.pub/2021/framework/index.html>.
 540
 541 Brian Everitt. The cambridge dictionary of statistics. In The Cambridge dictionary of statistics, pp.
 542 360–360. 1998.

540 Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
 541 models at scale. [arXiv preprint arXiv:2403.00824](https://arxiv.org/abs/2403.00824), 2024.

542

543 Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
 544 workings of transformer-based language models. [arXiv preprint arXiv:2405.00208](https://arxiv.org/abs/2405.00208), 2024.

545 Robert Friel and Atindriyo Sanyal. Chainpoll: A high efficacy method for llm hallucination detection.
 546 [arXiv preprint arXiv:2310.18344](https://arxiv.org/abs/2310.18344), 2023.

547

548 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
 549 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
 550 reasoning: A recurrent depth approach. [arXiv preprint arXiv:2502.05171](https://arxiv.org/abs/2502.05171), 2025.

551 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 552 key-value memories. In [Proceedings of the 2021 Conference on Empirical Methods in Natural](https://aclanthology.org/2021.emnlp-main.473)
 553 [Language Processing](https://aclanthology.org/2021.emnlp-main.473), pp. 5484–5495, 2021.

554 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
 555 preting mathematical abilities in a pre-trained language model. [Advances in Neural Information](https://openreview.net/pdf?id=1uXWzJzDw)
 556 [Processing Systems](https://openreview.net/pdf?id=1uXWzJzDw), 36, 2024.

557

558 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 559 Tian. Training large language models to reason in a continuous latent space. [arXiv preprint](https://arxiv.org/abs/2412.06769)
 560 [arXiv:2412.06769](https://arxiv.org/abs/2412.06769), 2024.

561 Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,
 562 Zhaoxiang Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng. Can large language models detect
 563 errors in long chain-of-thought reasoning?, 2025. URL <https://arxiv.org/abs/2502.19361>.

564

565 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 566 qa dataset for comprehensive evaluation of reasoning steps. [arXiv preprint arXiv:2011.01060](https://arxiv.org/abs/2011.01060),
 567 2020.

568

569 Hugging Face. Math-verify: A rule-based mathematical answer verification library, 2025. URL
 570 <https://github.com/huggingface/Math-Verify>.

571

572 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 573 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
 574 know what they know. [arXiv preprint arXiv:2207.05221](https://arxiv.org/abs/2207.05221), 2022.

575

576 Daniel Kahneman. [Thinking, fast and slow](https://www.macmillan.com/9780330533515). macmillan, 2011.

577

578 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models hal-
 579 lucinate. 2025. URL <https://api.semanticscholar.org/CorpusID:281194798>.

580

581 Ann Langley. Between 'paralysis by analysis' and 'extinction by instinct'. [Sloan Management](https://doi.org/10.2307/241205135)
 582 [Review](https://doi.org/10.2307/241205135), 36:63–76, 1995.

583

584 Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
 585 Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from
 586 demonstrations structure, not content, is what matters! [arXiv preprint arXiv:2502.07374](https://arxiv.org/abs/2502.07374), 2025a.

587

588 Junyi Li and Hwee Tou Ng. The hallucination dilemma: Factuality-aware reinforcement learning for
 589 large reasoning models. [arXiv preprint arXiv:2505.24630](https://arxiv.org/abs/2505.24630), 2025.

590

591 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 592 intervention: Eliciting truthful answers from a language model. [Advances in Neural Information](https://openreview.net/pdf?id=1uXWzJzDw)
 593 [Processing Systems](https://openreview.net/pdf?id=1uXWzJzDw), 36, 2024a.

594

595 Ruosen Li, Ziming Luo, and Xinya Du. Fg-prm: Fine-grained hallucination detection and mitigation
 596 in language model mathematical reasoning. [arXiv preprint arXiv:2410.06304](https://arxiv.org/abs/2410.06304), 2024b.

597

598 Yinghao Li, Rushi Qiang, Lama Moukheiber, and Chao Zhang. Language model uncertainty
 599 quantification with attention chain, 2025b. URL <https://arxiv.org/abs/2503.19168>.

594 Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei. Understanding and
 595 patching compositional reasoning in llms. [arXiv preprint arXiv:2402.14328](https://arxiv.org/abs/2402.14328), 2024c.
 596

597 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 598 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In [The Twelfth](https://openreview.net/forum?id=O9YTT26r2P)
 599 [International Conference on Learning Representations](https://openreview.net/forum?id=O9YTT26r2P), 2023.

600 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 601 falsehoods. [arXiv preprint arXiv:2109.07958](https://arxiv.org/abs/2109.07958), 2021.
 602

603 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 604 Lin. Understanding r1-zero-like training: A critical perspective. [arXiv preprint arXiv:2503.20783](https://arxiv.org/abs/2503.20783),
 605 2025.

606 Haolang Lu, Yilian Liu, Jingxin Xu, Guoshun Nan, Yuanlong Yu, Zhican Chen, and Kun Wang.
 607 Auditing meta-cognitive hallucinations in reasoning large language models. [arXiv preprint](https://arxiv.org/abs/2505.13143)
 608 [arXiv:2505.13143](https://arxiv.org/abs/2505.13143), 2025.

609 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
 610 Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by automated
 611 process supervision. [arXiv preprint arXiv:2406.06592](https://arxiv.org/abs/2406.06592), 2024.

612 Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction.
 613 [arXiv preprint arXiv:2002.07650](https://arxiv.org/abs/2002.07650), 2020.
 614

615 Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box hallucina-
 616 tion detection for generative large language models. In [Proceedings of the 2023 Conference on](https://openreview.net/forum?id=9004-9017)
 617 [Empirical Methods in Natural Language Processing](https://openreview.net/forum?id=9004-9017), pp. 9004–9017, 2023.

618 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
 619 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
 620 language models. [arXiv preprint arXiv:2410.05229](https://arxiv.org/abs/2410.05229), 2024.

621 Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 622 Theory and application to reward shaping. In [Icml](https://icml.cc/2019/papers/99.pdf), volume 99, pp. 278–287. Citeseer, 1999.

623 Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
 624 rithms: Language models solve math with a bag of heuristics. In [The Thirteenth International](https://openreview.net/forum?id=O9YTT26r2P)
 625 [Conference on Learning Representations](https://openreview.net/forum?id=O9YTT26r2P), 2025. URL <https://openreview.net/forum?id=O9YTT26r2P>.

626 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Juntong Song, and
 627 Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented lan-
 628 guage models. In [Proceedings of the 62nd Annual Meeting of the Association for Computational](https://www.aclweb.org/anthology/V24-1086.pdf)
 629 [Linguistics \(Volume 1: Long Papers\)](https://www.aclweb.org/anthology/V24-1086.pdf), pp. 10862–10878, 2024.

630 nostalgebraist. Interpreting GPT: the logit lens. [AI Alignment Forum](https://www.alignmentforum.org/posts/AcKRB8wDpdAN6v6ru/interpreting-gpt-the-logit-lens), 2020.
 631 URL <https://www.alignmentforum.org/posts/AcKRB8wDpdAN6v6ru/interpreting-gpt-the-logit-lens>.

632 OpenAI. Openai o3 and o4-mini system card, April 2025. URL <https://openai.com/index/o3-o4-mini-system-card/>.

633 Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. Receval: Evaluating reasoning
 634 chains via correctness and informativeness. [arXiv preprint arXiv:2304.10703](https://arxiv.org/abs/2304.10703), 2023.

635 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 636 and narrowing the compositionality gap in language models. [arXiv preprint arXiv:2210.03350](https://arxiv.org/abs/2210.03350),
 637 2022.

638 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 639 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 640 [First Conference on Language Modeling](https://openreview.net/forum?id=O9YTT26r2P), 2024.

648 Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, and
 649 Peter J Liu. Out-of-distribution detection and selective generation for conditional language models.
 650 In [The Eleventh International Conference on Learning Representations](#), 2022.

651

652 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 653 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 654 reasoning in open language models. [arXiv preprint arXiv:2402.03300](#), 2024.

655 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
 656 arithmetic reasoning in language models using causal mediation analysis. In [The 2023 Conference](#)
 657 [on Empirical Methods in Natural Language Processing](#), 2023. URL <https://openreview.net/forum?id=aB3Hwh4UzP>.

658

659 Open-R1 Team. Openr1-math-220k: A dataset for mathematical reasoning, 2024. URL <https://huggingface.co/datasets/open-r1/OpenR1-Math-220k>.

660

661 Katya Tentori, Nicolao Bonini, and Daniel Osherson. The conjunction fallacy: A misunderstanding
 662 about conjunction? [Cognitive Science](#), 28(3):467–477, 2004.

663

664 Translince Research. Investigating truthfulness in a pre-release o3 model, 2024. URL <https://translince.org/investigating-o3-truthfulness>.

665

666 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 667 questions via single-hop question composition. [Transactions of the Association for Computational](#)
 668 [Linguistics](#), 10:539–554, 2022.

669

670 Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can't plan; can lrms? a
 671 preliminary evaluation of openai's o1 on planbench. In [NeurIPS 2024 Workshop on Open-World](#)
 672 [Agents](#).

673

674 Vectara Research. Deepseek-r1 hallucinates more than deepseek-v3, 2025. URL <https://www.vectara.com/blog/deepseek-r1-hallucinates-more-than-deepseek-v3>.

675

676 Xinyi Wang, Shawn Tan, Mingyu Jin, William Yang Wang, Rameswar Panda, and Yikang Shen. Do
 677 larger language models imply better reasoning? a pretraining scaling law for reasoning. [arXiv](#)
 678 [preprint arXiv:2504.03635](#), 2025.

679

680 Patrick P Weis and Wilfried Kunde. Switching between different cognitive strategies induces switch
 681 costs as evidenced by switches between manual and mental object rotation. [Scientific Reports](#), 14
 682 (1):6217, 2024.

683

684 Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
 685 explains long-context factuality. [arXiv preprint arXiv:2404.15574](#), 2024.

686

687 Xin Xu, Shizhe Diao, Can Yang, and Yang Wang. Can we verify step by step for incorrect answer
 688 detection? [arXiv preprint arXiv:2402.10528](#), 2024.

689

690 Kai Yan, Yufei Xu, Zhengyin Du, Xuesong Yao, Zheyu Wang, Xiaowen Guo, and Jiecao Chen.
 691 Recitation over reasoning: How cutting-edge language models can fail on elementary school-level
 692 reasoning problems? [arXiv preprint arXiv:2504.00509](#), 2025.

693

694 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 695 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. [arXiv preprint](#)
 696 [arXiv:2412.15115](#), 2024.

697

698 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 699 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. [arXiv preprint arXiv:2505.09388](#),
 700 2025.

701

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 702 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 703 answering. [arXiv preprint arXiv:1809.09600](#), 2018.

702 Qinan Yu, Jack Merullo, and Ellie Pavlick. Characterizing mechanisms for factual recall in language
703 models. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.
704

705 Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
706 test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? *arXiv*
707 preprint arXiv:2502.12215, 2025.

708 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
709 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
710 reasoning. *arXiv* preprint arXiv:2501.07301, 2025.

711 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
712 gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning.
713 *arXiv* preprint arXiv:2412.06559, 2024a.

714 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
715 gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
716 2024b. URL <https://arxiv.org/abs/2412.06559>.

717

718 Hanzhang Zhou, Zijian Feng, Zixiao Zhu, Junlang Qian, and Kezhi Mao. Unibias: Unveiling and mit-
719 igating llm bias through internal attention and ffn manipulation. *arXiv* preprint arXiv:2405.20612,
720 2024.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Related Works	2
762		
763	3 Empirical Study of Reasoning Hallucination	3
764	3.1 Reasoning Score: Measuring Reasoning Depth in Large Reasoning Model	3
765		
766	3.2 Reasoning Hallucination Analysis Based on Reasoning Score	4
767	3.2.1 Case Analysis on GSM-NoOps	4
768	3.2.2 Reasoning Hallucination Pattern Analysis	5
769		
770	3.3 Analyzing the Mechanisms Behind Reasoning Fluctuation	6
771		
772	4 Methods	7
773		
774	4.1 Reasoning Hallucination Detection	7
775	4.2 Mitigating Hallucinations via Step-Level Reasoning Score Shaping	7
776		
777	5 Experiments	9
778		
779	5.1 Reasoning Hallucination Detection	9
780	5.2 Reasoning Hallucination Mitigation	9
781		
782	6 Conclusion	9
783		
784	Appendix	15
785		
786		
787	A Use of Large Language Models	17
788		
789	B Proof of Generalization Gap with Augmented Rewards	17
790		
791	C Detailed Implementation of GRPO-R	19
792		
793		
794	D ReTruthQA Construction	20
795		
796	D.1 Data Sources and Models	20
797	D.2 Reasoning Step Segmentation Strategy	21
798	D.3 Annotation Process	21
799		
800	E GSM-NoOp Construction Process	23
801		
802		
803	F Details of Understanding the Mechanisms Behind Reasoning Hallucination Patterns	23
804		
805	G Prompt for Hallucination Patterns Analysis	25
806		
807	H More Results of Reasoning Hallucination Pattern Analysis	25
808		
809	I Evaluation and Baseline Details of Reasoning Hallucination Detection	26

810	J Implementation Details for Reasoning Hallucination Detection	26
811		
812	K RHD on Latent CoT Models	27
813		
814	L Additional Detection Results on Qwen3-8B	28
815		
816	M Ablation Study of RHD	29
817		
818	N Sensitivity Analysis of RHD	30
819		
820	O Implementation Details for Reasoning Hallucination Mitigation	30
821		
822	P Sensitivity Analysis of Reasoning Score Weight in GRPO-R	31
823		
824	Q RHD-Guided Reasoning Distillation	32
825		
826	R Extension GRPO-R to Other GRPO Variants	32
827		
828	S Notation Summary	33
829		
830	T Complexity and Efficiency Analysis of RHD	33
831		
832	U Future Work	34
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 A USE OF LARGE LANGUAGE MODELS
865

866 In accordance with the ICLR 2026 policy on the disclosure of language model usage, we confirm that
867 Large Language Models (LLMs) were utilized in the preparation of this paper. The usage was limited
868 to aiding with language fluency, grammar checking, and polishing of the writing. The research ideas,
869 experimental design, theoretical analysis, and all scientific contributions were solely developed by
870 the authors. No LLMs contributed at the level of a contributing author.

871 **Disclosure:** Yes, to aid or polish writing. Details are described in the paper.
872

873 B PROOF OF GENERALIZATION GAP WITH AUGMENTED REWARDS
874

875 *Proof of Theorem 1.* For any policy $\pi \in \Pi$, define the augmented return
876

$$877 R(\pi, \xi) = \sum_{t=1}^T \gamma^{t-1} \bar{r}_t(\xi).$$

880 Assume that $\bar{r}_t(\xi) \in [0, \bar{r}_{\max}]$ for each t , so that
881

$$882 R(\pi, \xi) \in [0, \bar{R}_{\max}].$$

883 Define the expected return:
884

$$885 J_{\text{test}}(\pi) = \mathbb{E}_{\xi \sim \mathcal{D}} [R(\pi, \xi)],$$

886 and the empirical return:
887

$$888 J_{\text{train}}(\pi) = \frac{1}{n} \sum_{i=1}^n R(\pi, \xi_i).$$

889 We aim to bound the expected generalization gap between the test return and empirical return for
890 policies in class Π via Rademacher complexity. Let the function class be defined as
891

$$892 \mathcal{F} = \{f_{\pi}(\xi) = R(\pi, \xi) \mid \pi \in \Pi\},$$

893 where $R(\pi, \xi)$ is the total return over trajectory ξ under policy π using the augmented reward \bar{r}_t . Our
894 goal is to bound:
895

$$896 \sup_{\pi \in \Pi} |J_{\text{test}}(\pi) - J_{\text{train}}(\pi)| = \sup_{f \in \mathcal{F}} \left| \mathbb{E}[f(\xi)] - \frac{1}{n} \sum_{i=1}^n f(\xi_i) \right|.$$

897 Let ξ_1, \dots, ξ_n be the training samples drawn i.i.d. from the environment distribution \mathcal{D} , and
898 ξ'_1, \dots, ξ'_n be another independent copy drawn from the same distribution. By using an independent
899 ghost sample set and the triangle inequality, we have:
900

$$901 \mathbb{E}_{\{\xi_i\}} \left[\sup_{f \in \mathcal{F}} \left(\mathbb{E}_{\xi \sim \mathcal{D}} [f(\xi)] - \frac{1}{n} \sum_{i=1}^n f(\xi_i) \right) \right] = \mathbb{E}_{\{\xi_i\}, \{\xi'_i\}} \left[\sup_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n f(\xi'_i) - f(\xi_i) \right) \right] \\ 902 \leq \mathbb{E}_{\{\xi_i\}, \{\xi'_i\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(\xi'_i) - f(\xi_i)) \right].$$

903 To simplify the expression, we now introduce independent Rademacher variables $\sigma_1, \dots, \sigma_n \in$
904 $\{-1, +1\}$, where each σ_i takes value $+1$ or -1 with equal probability. Since $f(\xi'_i) - f(\xi_i)$ is
905 symmetric around zero due to $\xi_i \sim \xi'_i$, we can write:
906

$$907 \mathbb{E}_{\{\xi_i\}, \{\xi'_i\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(\xi'_i) - f(\xi_i)) \right] = \mathbb{E}_{\{\xi_i\}, \{\xi'_i\}, \{\sigma_i\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i (f(\xi'_i) - f(\xi_i)) \right].$$

908 We now apply the triangle inequality again:
909

$$910 \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i (f(\xi'_i) - f(\xi_i)) \leq \sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(\xi'_i) + \sup_{f \in \mathcal{F}} \sum_{i=1}^n (-\sigma_i) f(\xi_i).$$

918 Since $-\sigma_i$ is still a Rademacher variable and ξ_i and ξ'_i have the same distribution, the two expectations
 919 are equal. Thus, we obtain:
 920

$$\begin{aligned} 921 \mathbb{E}_{\{\xi_i\}, \{\xi'_i\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(\xi'_i) - f(\xi_i)) \right] &\leq 2 \mathbb{E}_{\{\xi_i\}, \{\sigma_i\}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(\xi_i) \right] \\ 922 &= 2 \mathcal{R}_n(\mathcal{F}), \\ 923 \end{aligned}$$

924 where $\mathcal{R}_n(\mathcal{F})$ is the empirical Rademacher complexity of \mathcal{F} .
 925

926 Assume every return is bounded, $0 \leq f_\pi(\xi) \leq \bar{R}_{\max}$, and that $f_\pi(\xi)$ is linear in the augmented
 927 per-step rewards $\bar{r}_t(\xi)$:
 928

$$929 f_\pi(\xi) = \sum_{t=1}^T \gamma^{t-1} \bar{r}_t(\xi). \\ 930$$

931 Introduce the normalised return $\tilde{f}_\pi(\xi) := f_\pi(\xi) / \bar{R}_{\max} \in [0, 1]$ and let $\tilde{\mathcal{F}} := \{\tilde{f}_\pi \mid \pi \in \Pi\}$. Because
 932 Rademacher complexity is positively homogeneous in its function class,
 933

$$934 \mathcal{R}_n(\mathcal{F}) = \mathcal{R}_n(\bar{R}_{\max} \tilde{\mathcal{F}}) = \bar{R}_{\max} \mathcal{R}_n(\tilde{\mathcal{F}}). \\ 935$$

936 We measure the complexity of the policy class precisely through these normalised returns and set
 937

$$938 \mathcal{R}_n(\Pi) := \mathcal{R}_n(\tilde{\mathcal{F}}). \\ 939$$

940 *Justification.* Even if the mapping $\pi \mapsto \tilde{f}_\pi$ is not injective, Rademacher complexity is **monotone**
 941 with respect to set inclusion: enlarging the function class can only increase \mathcal{R}_n . Hence analysing the
 942 (possibly larger) class $\tilde{\mathcal{F}}$ yields a conservative upper bound on the true policy complexity—exactly
 943 what we need for a valid generalisation bound.
 944

Combining the two displays yields

$$945 \mathcal{R}_n(\mathcal{F}) \leq \bar{R}_{\max} \mathcal{R}_n(\Pi) \\ 946$$

947 (the identity can be written as “ \leq ” because any alternative normalisation would only shrink the
 948 right-hand side).
 949

Substituting the above bound into the symmetrisation result, we obtain

$$951 \mathbb{E} \left[\sup_{\pi \in \Pi} |J_{\text{test}}(\pi) - J_{\text{train}}(\pi)| \right] \leq 2 \bar{R}_{\max} \mathcal{R}_n(\Pi), \\ 952$$

953 We now move from the expected generalization gap to a high-probability bound that holds uniformly
 954 over all policies $\pi \in \Pi$.
 955

956 Let $X_i = R(\pi, \xi_i) = \sum_{t=1}^T \gamma^{t-1} \bar{r}_t(\xi_i)$ be the augmented return of policy π on the i -th training
 957 trajectory. Then $J_{\text{train}}(\pi) = \frac{1}{n} \sum_{i=1}^n X_i$ and $J_{\text{test}}(\pi) = \mathbb{E}_{\xi \sim \mathcal{D}}[X_i]$. By assumption, $X_i \in [0, \bar{R}_{\max}]$.
 958

959 Applying Hoeffding’s inequality for bounded i.i.d. variables, we have for any fixed $\pi \in \Pi$:

$$960 \Pr (|J_{\text{test}}(\pi) - J_{\text{train}}(\pi)| \geq \varepsilon) \leq 2 \exp \left(- \frac{2n\varepsilon^2}{(\bar{R}_{\max})^2} \right). \\ 961$$

963 Solving for ε yields that with probability at least $1 - \delta$,

$$965 |J_{\text{test}}(\pi) - J_{\text{train}}(\pi)| \leq \bar{R}_{\max} \sqrt{\frac{\log(1/\delta)}{2n}}. \\ 966 \quad (16) \\ 967$$

968 Define the worst-case generalization gap over the policy class:

$$970 \Delta(\mathcal{S}) := \sup_{\pi \in \Pi} (J_{\text{test}}(\pi) - J_{\text{train}}(\pi)), \\ 971$$

972 where $\mathcal{S} = \{\xi_1, \dots, \xi_n\}$ is the training set.

972 (i) *Expected bound from above*: Using symmetrization and Rademacher complexity arguments, we
 973 already established:

$$974 \quad \mathbb{E}_{\mathcal{S}}[\Delta(\mathcal{S})] \leq 2\bar{R}_{\max}\mathcal{R}_n(\Pi). \quad (6)$$

976 (ii) *High-probability deviation bound via McDiarmid's inequality*: Let us show that $\Delta(\mathcal{S})$ concentrates
 977 around its expectation. Consider replacing any single sample ξ_i in \mathcal{S} by an independent copy ξ'_i .
 978 Because each return $X_i = R(\pi, \xi_i)$ is bounded in $[0, \bar{R}_{\max}]$ and each contributes $\frac{1}{n}$ to the empirical
 979 mean, the influence of changing ξ_i is bounded by:

$$980 \quad 981 \quad \left| \Delta(\mathcal{S}) - \Delta(\mathcal{S}^{(i)}) \right| \leq \frac{\bar{R}_{\max}}{n}.$$

983 Hence, $\Delta(\mathcal{S})$ is \bar{R}_{\max}/n -Lipschitz in each of its n arguments.

984 Applying McDiarmid's inequality:

$$985 \quad \Pr(\Delta(\mathcal{S}) - \mathbb{E}[\Delta(\mathcal{S})] \geq \varepsilon) \leq \exp\left(-\frac{2\varepsilon^2}{\sum_{i=1}^n (\bar{R}_{\max}/n)^2}\right) = \exp\left(-\frac{2n\varepsilon^2}{(\bar{R}_{\max})^2}\right).$$

989 Solving for ε again yields that with probability at least $1 - \delta$,

$$990 \quad 991 \quad \Delta(\mathcal{S}) \leq \mathbb{E}[\Delta(\mathcal{S})] + \bar{R}_{\max} \sqrt{\frac{\log(1/\delta)}{2n}}. \quad (7)$$

993 (iii) *Final generalization gap*: Combining Equation 6 and 7, with probability at least $1 - \delta$ over the
 994 random draw of the training set \mathcal{S} , we obtain:

$$996 \quad 997 \quad \sup_{\pi \in \Pi} [J_{\text{test}}(\pi) - J_{\text{train}}(\pi)] \leq 2\bar{R}_{\max}\mathcal{R}_n(\Pi) + \bar{R}_{\max} \sqrt{\frac{\log(1/\delta)}{2n}}.$$

999 Equivalently, for all $\pi \in \Pi$,

$$1000 \quad 1001 \quad J_{\text{test}}(\pi) - J_{\text{train}}(\pi) \leq 2\bar{R}_{\max}\mathcal{R}_n(\Pi) + \bar{R}_{\max} \sqrt{\frac{\log(1/\delta)}{2n}} \quad (8)$$

1003 \square

1005 **Conclusion.** Equation 8 provides a uniform generalization gap for any policy $\pi \in \Pi$, showing
 1006 that the expected test-time performance is lower bounded by the training performance minus a
 1007 complexity-dependent regularization term. According to this theorem, as the augmented reward
 1008 $R_{\text{score}}(s_t)$ is well-aligned with genuine logical reasoning, it acts as a regularizer that effectively
 1009 reduces the Rademacher complexity $\mathcal{R}_n(\Pi)$, thereby tightening the bound. This theoretical result
 1010 highlights that our proposed process supervision framework not only improves credit assignment
 1011 during training but also enhances generalization to unseen reasoning tasks.

1012 This theoretical result not only explains why our process supervision framework enhances generalization
 1013 to unseen reasoning tasks, but also sheds light on the hallucination risk in outcome-based RL.
 1014 Because outcome-only reward collapses trajectories with differing reasoning quality into a shared
 1015 positive label, it greatly increases the functional hypothesis class and thereby the generalization gap.
 1016 As a result, models trained with such reward signals are more likely to memorize spurious patterns
 1017 and produce hallucinated reasoning at test time.

1019 C DETAILED IMPLEMENTATION OF GRPO-R

1021 Our proposed process-level reasoning score supervision is compatible with any token-level RL
 1022 algorithm. In this work, we instantiate it within Group Relative Policy Optimization (GRPO),
 1023 yielding **GRPO-R**. GRPO is a scalable and widely used RL framework for reasoning model training,
 1024 which promotes the generation of high-quality reasoning trajectories by ranking G candidate outputs
 1025 based on their relative returns, without relying on explicit value estimation DeepSeek-AI (2025);
 Shao et al. (2024).

Table 3: Statistics of ReTruthQA dataset across domains.

Dataset	#Samples	#Traces	Avg Truthful Traces	Avg Hallucination Traces
MATH	57	417	3.35	3.96
Science	88	541	3.05	3.10
MultiHopQA	184	1186	2.74	3.70

Given a prompt q and G outputs $\{o_i\}_{i=1}^G$, each output o_i corresponds to a sequence of reasoning states $\{s_{i,1}, \dots, s_{i,K}\}$ produced over K reasoning steps. In the original GRPO setup, only the final step receives a nonzero reward:

$$r_i^{\text{step}}(j) = \begin{cases} r_i^{\text{final}}, & j = K, \\ 0, & j < K, \end{cases}$$

where r_i^{final} denotes the scalar reward assigned to the final outcome.

We replace this sparse signal with our shaped step-level reward using potential-based reward shaping:

$$\bar{r}_i^{\text{step}}(j) = \tilde{r}_i^{\text{step}}(j) - \gamma \tilde{R}_{\text{score}}(s_{i,j+1}) + \tilde{R}_{\text{score}}(s_{i,j}),$$

where $\tilde{R}_{\text{score}}(s) = \min(R_{\text{score}}(s), \tau)$ and we set $\gamma = 1$. These shaped rewards are collected into the set \mathbf{R}' , standardized as:

$$\hat{r}_i^{\text{step}}(j) = \frac{\bar{r}_i^{\text{step}}(j) - \text{mean}(\mathbf{R}')}{\text{std}(\mathbf{R}')},$$

and used to compute token-level advantages:

$$\hat{A}_{i,t} = \sum_{j: \text{step}(j) \geq t} \hat{r}_i^{\text{step}}(j).$$

Finally, we optimize the policy using the enhanced GRPO objective, termed GRPO-R:

$$\begin{aligned} \mathcal{J}_{\text{GRPO-R}}(\theta) = \mathbb{E}_{q \sim P(Q), \{o_i\} \sim \pi_{\theta_{\text{old}}}(O|q)} \left[\sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(\frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})} \hat{A}_{i,t}, \right. \right. \\ \left. \left. \text{clip} \left(\frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right) \right. \\ \left. - \beta \cdot \text{D}_{\text{KL}} [\pi_{\theta} \| \pi_{\text{ref}}] \right]. \end{aligned} \quad (9)$$

Relation to Factuality-Based RL. Factuality-oriented RL methods improve a model’s alignment with external world knowledge by assigning outcome-level factual rewards (Li & Ng, 2025). These approaches address factual hallucinations and supervise only the final answer.

In contrast, GRPO-R targets reasoning hallucinations—errors originating from the model’s internal multi-step reasoning process. Our method introduces a step-level reward derived from the Reasoning Score (§ 3.1), which regularizes the model’s intermediate reasoning dynamics rather than factual correctness alone.

These two types of RL are complementary: factual RL enhances knowledge faithfulness, while GRPO-R improves process faithfulness by promoting deep, coherent reasoning. Empirically (Table 2), reinforcing internal reasoning also brings secondary gains in factual reliability.

D RETruthQA CONSTRUCTION

D.1 DATA SOURCES AND MODELS

Due to the absence of dedicated datasets for evaluating reasoning hallucination detection—particularly for strong open-source LLMs such as DeepSeek-R1-7B and R1-14B, we construct a new benchmark specifically tailored to multi-step reasoning tasks following the previous annotation process of

1080 the hallucination detection dataset (Niu et al., 2024). Unlike traditional hallucinations, *reasoning*
 1081 *hallucinations* are often embedded within logically coherent reasoning traces, which makes the
 1082 incorrect information more persuasive and substantially harder to identify. This intrinsic challenge
 1083 necessitates careful and fine-grained human annotation in order to ensure reliable evaluation.

1084 We select three major categories of reasoning tasks: Math, Science, and MultiHopQA.

1085 For Math, we construct the dataset using benchmark datasets commonly used for evaluating mathematical
 1086 reasoning capabilities, including MATH500 (Lightman et al., 2023), AMC 2023 (AI-MO,
 1087 2024b), and AIME 2024 (AI-MO, 2024a).

1088 For Science, we adopt GPQA (Rein et al., 2024), a PhD-level science multiple-choice QA dataset
 1089 with questions authored by domain experts in physics, chemistry, and biology.

1090 For MultiHopQA, we randomly sample 1000 questions from four multi-hop QA datasets:
 1091 HotpotQA (Yang et al., 2018), 2WikiMultihopQA (Ho et al., 2020), MuSiQue (Trivedi et al.,
 1092 2022), and Bamboogle (Press et al., 2022).

1093 For each question, we generate 20 responses using DeepSeek-R1-Distill-Qwen-7B and
 1094 DeepSeek-R1-Distill-Qwen-14B via random sampling. The prompting format is as follows:

1095 **Math:**

1096

1097 Please answer the following math question.
 1098 You should provide your final answer in the format \boxed{YOUR_ANSWER} .
 1099 Separate your following steps using \n\n .
 1100 Question : \n\n

1101

1102 **Science:**

1103

1104 Please answer the following multiple-choice question.
 1105 You should provide your final choice in the format \boxed{YOUR_CHOICE} .
 1106 Separate your following steps using \n\n .
 1107 Question : \n\n

1108

1109 **MultiHopQA:**

1110

1111 Please answer the following question.
 1112 You should provide your final answer in the format \boxed{YOUR_ANSWER} .
 1113 Separate your following steps using \n\n .
 1114 Question : \n\n

1115

1116 **D.2 REASONING STEP SEGMENTATION STRATEGY**

1117

1118 We adopt a two-stage segmentation procedure. First, we split the reasoning trace based on cognitive
 1119 behavior tokens such as </think>, Wait, But, However, Hmm, Alternatively, which
 1120 typically mark transitions in reasoning patterns. Then, we apply a finer-grained split based on
 1121 formatting: as specified in the prompt, the LRM is instructed to separate reasoning steps using \n\n ,
 1122 which we use as a delimiter. This hybrid approach ensures both rule-based and model-aligned step
 1123 boundaries.

1124

1125 **D.3 ANNOTATION PROCESS**

1126

1127 **1. Automatic hallucination trace identification.** To ensure precision and avoid noise caused by
 1128 random model errors, a reasoning trace is labeled as hallucinated only if its rollout becomes incorrect
 1129 with a failure rate exceeding 90% from a specific reasoning step onward, measured over 16 rollouts.
 1130 We adopt a binary search-style trace slicing procedure inspired by OmegaProcess (Luo et al., 2024) to
 1131 efficiently identify hallucination points. This strategy ensures stability and causality in hallucination
 1132 step detection, avoiding incidental errors due to sampling randomness. For the Science domain,
 1133

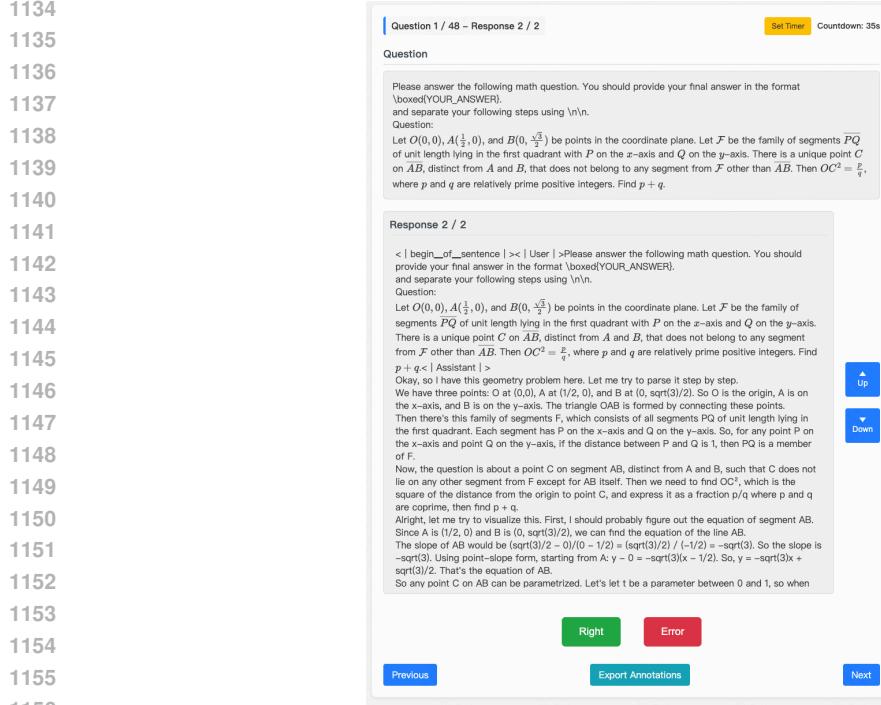


Figure 5: Interface Display of the Data Annotation Platform.

which mainly consists of multiple-choice questions and may contain correct guesses, we additionally perform multiple random rollouts for traces with correct answers to ensure a success rate above 90% before labeling them as truthful.

2. Filtering non-hallucination failures. We use GPT-4o-Mini to exclude samples where the incorrect final answer is due to clearly flawed or illogical reasoning, which does not satisfy our definition of hallucination (i.e., coherent and persuasive chains with underlying logical or factual errors). The filtering prompt is:

Please evaluate if the following reasoning for the given question is logically sound and leads to a correct solution.

Only respond with a score between 0 and 1, where:

0: completely incorrect or illogical reasoning

1: perfectly sound and correct reasoning

Question: {question}

Reasoning: {reasoning}

Score (0-1):

3. Human validation. We further perform human annotation to verify borderline cases. Two annotators with at least undergraduate-level backgrounds in computer science independently assess whether the reasoning trace is valid. We developed a web-based annotation platform with a timer (Figure 5) to standardize reading time. Based on average reading speeds (200–300 wpm for academic text), and trace lengths (typically 2000–3000 words), we set the following maximum judgment times: (1) MultiHopQA: 3 minutes (2) Math: 5 minutes (3) Science: 8 minutes

Annotators must determine within the allotted time whether a reasoning trace contains hallucinations. If they fail to identify an error in time, the trace is labeled as correct. Cases judged correct by humans but verified to be incorrect are labeled as hallucinations, ensuring that the resulting dataset captures only traces that genuinely mislead users, which is aligned with the definition of reasoning hallucination.

1188 Final dataset statistics are shown in Table 3. For the **Multi-Trace Ranking Setting**, we directly use
 1189 the collected hallucinated and truthful responses. For the **Binary Detection Setting**, which focuses
 1190 on single-response accuracy, we retain one hallucinated and one truthful response per question to
 1191 reflect more realistic ad-hoc usage scenarios.
 1192

1193 E GSM-NOOP CONSTRUCTION PROCESS

1194
 1195 Following the construction procedure proposed in Mirzadeh et al. (2024), we randomly sample 300
 1196 examples from the GSM8K dataset. For each question, we use GPT-4○ to generate a No-Op phrase
 1197 using the following prompt:
 1198

1199 Given the following math question, generate a seemingly relevant but ultimately inconsequen-
 1200 tial statement (No-Op) that can be added to the question without affecting its solution.
 1201 Question: {Question}
 1202 Generate a No-Op statement that:
 1203 1. Is short and concise
 1204 2. Seems relevant to the context
 1205 3. Does not affect the mathematical reasoning
 1206 4. Is natural and fits grammatically
 1207 No-Op statement:
 1208

1209 We then use GPT-4○ to combine the generated No-Op phrase with the original question using the
 1210 following prompt:
 1211

1212 Please combine the following math question and No-Op phrase into a single, natural-sounding
 1213 question. The No-Op phrase should be integrated smoothly without changing the mathemati-
 1214 cal meaning.
 1215 Math Question: {Question} No-Op Phrase: {NoOp Phrase}
 1216 Combined Question:
 1217

1218 The merged questions form our constructed **GSM-NoOp** dataset.
 1219

1220 To evaluate whether the generated reasoning steps are misled by the inserted No-Op phrase, we
 1221 prompt GPT-4○ with the following instruction:
 1222

1223 Please evaluate if the following reasoning step is being misled by the given No-Op phrase.
 1224 Provide a score between 0 and 1, where:
 1225 a. 0 means the step is not misled by the No-Op phrase at all
 1226 b. 1 means the step is completely misled by the No-Op phrase
 1227 c. Values in between indicate partial misleading
 1228

1229 Note: Simply mentioning the No-Op phrase does not count as being misled. If the step
 1230 mentions the No-Op phrase but explicitly rejects or explains why it is irrelevant to solving
 1231 the problem, this should be scored as 0.
 1232 Reasoning step: {Reasoning Step} No-Op phrase: {NoOp Phrase}
 1233 Please provide only a number between 0 and 1, with up to 2 decimal places, wrapped in
 1234 `\boxed{ }.` For example: `\boxed{0.85}`

1235 F DETAILS OF UNDERSTANDING THE MECHANISMS BEHIND REASONING 1236 HALLUCINATION PATTERNS

1237 In this section, we focus on analyzing the underlying cause of **Pattern #1**, as **Pattern #2** has already
 1238 been explained through the attention behavior of LRM in the previous section. Pattern #1 highlights
 1239 that hallucinated reasoning traces tend to exhibit larger fluctuations in reasoning depth, particularly in
 1240 the early steps. Inspired by our preliminary analysis in § 3.2.1, we hypothesize that this may stem
 1241

1242 from the model’s built-in verification capability. However, several key questions remain: **Q1**: What
 1243 triggers verification behavior in LRM? **Q2**: Do excessively high reasoning scores genuinely indicate
 1244 overthinking? **Q3**: If Q2 holds, what factors lead to the emergence of such overthinking steps?
 1245

1246 To answer these questions, we construct reasoning step triples (c_1, c_2, c_3) with different properties
 1247 drawn from reasoning traces: **Stable**: The first type consists of triples from truthful traces where
 1248 adjacent steps differ in R_{score} by less than 0.1, representing stable reasoning. **Rising-1**: The second
 1249 type contains hallucinated triples where $R_{\text{score}}(c_3) - R_{\text{score}}(c_2) > 1$ and $R_{\text{score}}(c_3) < 4$, used to
 1250 analyze verification triggered by shallow pattern-matching. **Rising-2**: The third type is similar to
 1251 Rising-1 but with $R_{\text{score}}(c_3) > 4$, aimed at understanding overthinking induced by verification. **We**
 1252 **construct Stable, Rising-1, and Rising-2 triples to probe dynamics (early fluctuation, over-verification).**
 1253 **Each set contains 600 step-triples per domain (Math, Science, MultiHopQA), totaling 1,800 triples,**
 1254 **with balanced sizes for fair comparison.**

1255 **Analysis.** To investigate **Q1**, we analyze whether reasoning steps c_1 and c_2 in the stable and rising
 1256 (Rising-1 + Rising-2) triples are logically consistent, using GPT-4o as the judge (prompt details in
 1257 Appendix G). As shown in Figure 4(a), the stable triples exhibit significantly higher consistency
 1258 between c_1 and c_2 than rising triples, indicating that LRM are more likely to trigger verification
 1259 when early steps are internally inconsistent.

1260 To examine **Q2**, we evaluate the correctness of c_2 and c_3 in Rising-2 triples. Using ground-truth
 1261 answers and GPT-4o-based annotation (prompt details in Appendix G), we assess whether these steps
 1262 are logically aligned with the ground-truth answers. As shown in Figure 4(b), c_2 in Rising-2 triples is
 1263 substantially more accurate than c_3 , confirming that verification in this case often modifies correct
 1264 reasoning into incorrect steps. These findings support the hypothesis that excessively high R_{score}
 1265 values in hallucinated reasoning traces are symptomatic of overthinking—steps that exhibit apparent
 1266 reasoning depth but in fact reflect spurious or detrimental reasoning.

1267 To address **Q3**, we analyze the relationship between perplexity and R_{score} . Specifically, we randomly
 1268 sample 200 reasoning steps from ReTruthQA and compute their perplexities as follows:

$$1269 \quad \text{PPL}(c_k) = \exp \left(-\frac{1}{|c_k|} \sum_{t_{m+1}^k \in c_k} \log p(t_{m+1}^k \mid t_{\leq m}^k) \right), \quad (10)$$

$$1272 \quad \text{PPL}(\mathcal{C}) = \langle \text{PPL}(c_1), \text{PPL}(c_2), \dots, \text{PPL}(c_K) \rangle. \quad (11)$$

1273 where $p(t_{m+1}^k \mid t_{\leq m}^k)$ denotes the model’s predicted probability for token t_{m+1}^k given the prefix $t_{\leq m}^k$
 1274 within the reasoning trace.

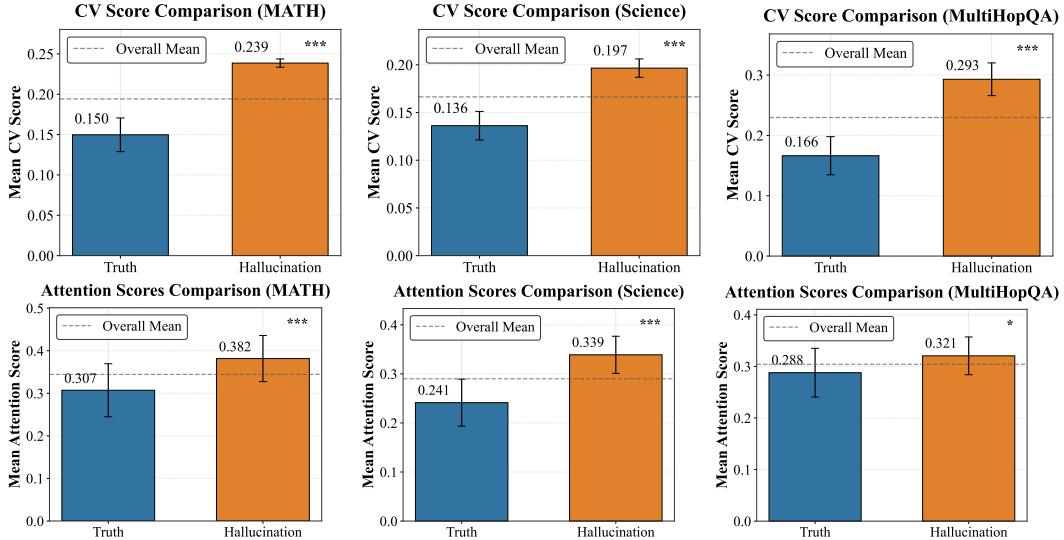
1275 As shown in Figure 4(c), perplexity and R_{score} are strongly negatively correlated—steps with higher
 1276 reasoning depth tend to have lower perplexity, which is intuitive since deep reasoning often yields
 1277 more predictable outputs. However, when comparing the final step c_3 across stable and Rising-2
 1278 triples, we find an interesting phenomenon in Figure 4(d): despite having higher R_{score} , c_3 in Rising-2
 1279 triples has higher perplexity than in stable triples. This suggests that overthinking steps induced by
 1280 an incorrect verification result in an uncertain or internally unstable generation.

1281 We hypothesize that such overthinking may reflect *spurious verification*—a behavior where the model
 1282 performs superficial or misguided validation in pursuit of higher reward during RL fine-tuning. This
 1283 behavior can persist through distillation into smaller models, propagating reasoning hallucinations.
 1284 Based on this analysis, we identify a third hallucination pattern: **Pattern #3**: Overthinking reasoning
 1285 steps exhibit a positive correlation between R_{score} and perplexity (PPL).

1287 **Experimental Validation.** Building on this observation, to further validate whether excessively
 1288 high reasoning scores reflect overthinking steps, we sampled reasoning steps with scores ≥ 2.5
 1289 (excluding shallow pattern-matching steps) from various data types on R1-7B and used GPT-4o to
 1290 annotate the correctness of each step (using the same prompt as in Appendix G). We then used the
 1291 reasoning score to predict step correctness, searching for the optimal F1 threshold in the range 2.5–5
 1292 (step size 0.1). Results show that across different datasets, the optimal threshold for F1 is always ≥ 4 ,
 1293 which matches the hyperparameter τ set in Appendix H. This demonstrates a strong correspondence
 1294 between excessively high reasoning scores and overthinking steps. Interestingly, this phenomenon
 1295 aligns with findings in cognitive neuroscience: both insufficient and excessive reasoning can lead to
 poor decisions (Langley, 1995; Cools & D’Esposito, 2011).

Table 4: Optimal threshold τ for F1 across datasets.

	MATH		MultiHopQA		Science	
	Best τ	F1	Best τ	F1	Best τ	F1
Value	4.0	0.7617	4.4	0.7495	4.5	0.7821

**Figure 6:** Evaluation of Pattern #1 and Pattern #2 on ReTruthQA. Asterisks indicate statistical significance based on a t-test: * for p -value < 0.05 , and *** for p -value < 0.001 .

G PROMPT FOR HALLUCINATION PATTERNS ANALYSIS

Prompt for step consistency analysis of **Q1**:

Please evaluate whether the following reasoning step introduces a new solution approach compared to the preceding steps. Respond with a score of 0 or 1, where:
 0: The step follows the same solution approach as the previous steps.
 1: The step explores a new solution approach or direction.
 Reasoning step: {step content}
 Previous steps: {step content}
 Score (0/1):

Prompt for step correctness analysis of **Q2**:

Please evaluate whether the following reasoning step aligns with the final answer. Respond with a score of 0 or 1, where:
 0: The step is inconsistent with the final answer.
 1: The step is consistent with the final answer.
 Reasoning step: {step}
 Final answer: {answer}
 Score (0/1):

H MORE RESULTS OF REASONING HALLUCINATION PATTERN ANALYSIS

The hyperparameter settings involved in Section 3.2 are as follows. The constant r , which controls the size of the early-step window, is empirically set to $r = 2$. The constant η , which defines the portion of late reasoning steps, is set to $\eta = 0.75$. The constant K , used in computing attention to

1350 earlier steps, is set to $K = 5$. The threshold τ for identifying potentially overthinking steps is set to
 1351 $\tau = 4$. These hyperparameters are derived from case analysis and are applied consistently throughout
 1352 the subsequent reasoning hallucination detection and mitigation experiments.

1353 The validity of Pattern #1 and Pattern #2 is verified across all domains of ReTruthQA, with exper-
 1354 imental results shown in Figure 6, where across all three domains, hallucinated reasoning traces
 1355 consistently exhibit significantly higher CV scores and Attention scores than truthful traces.

1358 I EVALUATION AND BASELINE DETAILS OF REASONING HALLUCINATION 1359 DETECTION

1361 Based on ReTruthQA, we design two evaluation settings for RHD model: **(1) Binary Detection**
 1362 **Setting:** This setting assesses the model’s ability to detect hallucinations in individual question-
 1363 reasoning pairs (Q, C) , measuring detection performance using the Area Under the ROC Curve
 1364 (**AUC**) and Pearson Correlation Coefficient (**PCC**); **(2) Multi-Trace Ranking Setting:** This setting
 1365 evaluates the model’s ability to identify the truthful answer among multiple reasoning traces for the
 1366 same question $(Q, \{C_1, C_2, \dots, C_3\})$. We follow the evaluation setup of TruthfulQA-MC (Lin et al.,
 1367 2021), and report the following metrics: **MC1**: The percentage of instances where the hallucination
 1368 score of the most hallucinated reasoning trace exceeds that of all truthful traces; **MC2**: The normalized
 1369 total hallucination score assigned to the hallucinated reasoning traces; **MC3**: The percentage of
 1370 hallucinated reasoning traces that receive a higher hallucination score than all truthful traces. These
 1371 metrics collectively measure the ranking quality of hallucination detection in multi-sample generation
 1372 settings.

1373 For baselines, we consider the following categories: **(1) Ensemble-based self-evaluation meth-**
 1374 **ods**, where hallucination scores are obtained through repeated generation, self-verification, or peer
 1375 voting among LLMs. This category includes ChainPoll (Friel & Sanyal, 2023), LMvLM (Co-
 1376 hen et al., 2023), and SelfCheckGPT (Manakul et al., 2023). **(2) Uncertainty-based methods**,
 1377 which estimate hallucination likelihood based on model uncertainty, including P(True) (Kada-
 1378 vath et al., 2022), LN-Entropy (Ren et al., 2022), and Perplexity (PPL) (Malinin & Gales, 2020).
 1379 **(3) Self-awareness-based methods**, which rely on internal model representations to detect hal-
 1380 lucinations, such as UQAC (Li et al., 2025b) and EigenScore (Chen et al., 2024). **(4) LLM-**
 1381 **as-Critic models**, including GPT-4○ (Achiam et al., 2023) and Qwen2.5-32B (Yang et al.,
 1382 2024), which act as external evaluators of reasoning traces. **(5) Process reward models**, such
 1383 as Qwen2.5-Math-7B-PRM800K (Zheng et al., 2024a) and Qwen2.5-Math-PRM-7B (Zhang
 1384 et al., 2025), trained with step-level supervision for reasoning evaluation. **(6) Length-based scoring**,
 1385 motivated by recent findings that longer reasoning traces are more prone to hallucinations (Zeng
 1386 et al., 2025), we include Length-Score, which directly uses the length of the reasoning trace as
 1387 its hallucination score.

1388 J IMPLEMENTATION DETAILS FOR REASONING HALLUCINATION DETECTION

1390 We conduct all experiments on machines equipped with NVIDIA A6000 GPUs and 52-core Intel(R)
 1391 Xeon(R) Gold 6230R CPUs running at 2.10GHz. We utilize the Huggingface Transformers and
 1392 TRL libraries to implement and run our experiments. During response generation, we use random
 1393 sampling with a temperature of 0.7 and a maximum decoding length of 15,000 tokens for Math tasks
 1394 and 10,000 tokens for all other tasks. For Reasoning Hallucination Detection (RHD), we perform
 1395 two-fold validation to select optimal hyperparameters, while baselines are tuned within the ranges
 1396 specified in their original works. To ensure stability, all randomized experiments are repeated three
 1397 times and the average results are reported.

1398 We conduct a grid search to identify the optimal reasoning-score weights. Specifically, we search α_2 ,
 1399 α_3 , and α_4 over the interval $[0, 1]$ with a step size of 0.1, and α_1 over $[-1, 1]$ with the same step size.
 1400 Two-fold cross-validation is used to select the final hyperparameters. For R1-7B, the best weights in
 1401 the Math domain are $\alpha_1 = 0$, $\alpha_2 = 0.4$, $\alpha_3 = 0$, and $\alpha_4 = 0.3$ for the Multi-Trace Ranking setting,
 1402 and $\alpha_1 = 0$, $\alpha_2 = 0.9$, $\alpha_3 = 0.8$, and $\alpha_4 = 0.4$ for the Binary Detection setting. In the Science
 1403 domain, the best weights are $\alpha_1 = 0.1$, $\alpha_2 = 1.0$, $\alpha_3 = 0$, and $\alpha_4 = 0$ for Multi-Trace Ranking, and
 $\alpha_1 = -0.4$, $\alpha_2 = 0.9$, $\alpha_3 = 0.5$, and $\alpha_4 = 0.1$ for Binary Detection. In the MultiHopQA domain,

1404
1405 **Table 5:** Ablation study of the RHD model on three different domains of ReTruthQA. Each row
1406 removes one component of the hallucination score.

Model	Variant	MATH			Science			MultiHopQA		
		MC1	MC2	MC3	MC1	MC2	MC3	MC1	MC2	MC3
R1-7B	RHD	0.6591	0.4765	0.5699	0.6207	0.5448	0.6009	0.7660	0.6255	0.7103
	RHD (w/o Avg($\mathcal{R}_{\text{score}}$))	0.6591	0.4765	0.5699	0.6128	0.5307	0.5934	0.7383	0.6032	0.7082
	RHD (w/o CV Score)	0.6364	0.4663	0.5330	0.4483	0.3862	0.4977	0.7447	0.6043	0.6996
	RHD (w/o Attention Score)	0.6591	0.4765	0.5699	0.6207	0.5448	0.6009	0.6383	0.5372	0.6123
	RHD (w/o PCC Score)	0.5909	0.3830	0.5210	0.6207	0.5448	0.6009	0.6809	0.5553	0.6323
R1-14B	RHD	0.3692	0.3005	0.4644	0.6667	0.4714	0.5671	0.5785	0.4421	0.5154
	RHD (w/o Avg($\mathcal{R}_{\text{score}}$))	0.3538	0.2867	0.4847	0.7241	0.4609	0.5531	0.5589	0.4284	0.5290
	RHD (w/o CV Score)	0.3692	0.2882	0.4725	0.6470	0.4484	0.5332	0.5455	0.4273	0.5403
	RHD (w/o Attention Score)	0.3231	0.2692	0.4503	0.6724	0.4511	0.5190	0.5702	0.4322	0.5180
	RHD (w/o PCC Score)	0.3692	0.2882	0.4725	0.6724	0.4601	0.5683	0.5785	0.4421	0.5154

1419 the best weights are $\alpha_1 = 0.4$, $\alpha_2 = 0.1$, $\alpha_3 = 0.6$, and $\alpha_4 = 0.4$ for Multi-Trace Ranking, and
1420 $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0.3$, and $\alpha_4 = 0$ for Binary Detection.

1421 For R1-14B, the best weights in the Math domain are $\alpha_1 = 0.3$, $\alpha_2 = 0.7$, $\alpha_3 = 0.1$, and $\alpha_4 = 0.1$
1422 for Multi-Trace Ranking, and $\alpha_1 = 0$, $\alpha_2 = 0.3$, $\alpha_3 = 1.0$, and $\alpha_4 = 0.2$ for Binary Detection. In the
1423 Science domain, we obtain $\alpha_1 = 0$, $\alpha_2 = 0.5$, $\alpha_3 = 0.5$, and $\alpha_4 = 0.1$ for Multi-Trace Ranking,
1424 and $\alpha_1 = -0.2$, $\alpha_2 = 0.2$, $\alpha_3 = 0.9$, and $\alpha_4 = 0.1$ for Binary Detection. In the MultiHopQA
1425 domain, the optimal weights are $\alpha_1 = 0.7$, $\alpha_2 = 0.9$, $\alpha_3 = 0.1$, and $\alpha_4 = 0.0$ for Multi-Trace
1426 Ranking, and $\alpha_1 = 1.0$, $\alpha_2 = 0$, $\alpha_3 = 0.1$, and $\alpha_4 = 0.1$ for Binary Detection.

1427 Candidate reasoning score layers \mathcal{J} are selected from $\{14, 16, 18, 20, 22, 24, 26\}$ for R1-7B and
1428 from $\{32, 36, 40, 42, 44, 46\}$ for R1-14B, while attention score layers \mathcal{L} are fixed across models as
1429 $\{1, 3, 5, 7, 9, 11, 13\}$. The models used in our experiments, DeepSeek-R1-Distill-Qwen-7B
1430 and DeepSeek-R1-Distill-Qwen-14B, are publicly available at <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B> and
1431 <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B>,
1432 respectively.

1435 K RHD ON LATENT COT MODELS

1437 To validate whether our proposed hallucination detection framework can be effectively extended to
1438 latent Chain-of-Thought (CoT) models, we conducted additional experiments on Huginn-0125, the
1439 most mature and open-sourced latent reasoning model currently available (Geiping et al., 2025).

1441 **Application to Huginn-0125.** The Huginn-0125 model is composed of a prelude block, a core
1442 recurrent block (where latent reasoning primarily occurs), and a coda block. We treated each recurrent
1443 block as a reasoning step and applied the Reasoning Score to measure reasoning depth, focusing on
1444 Pattern #1 (CV score). Due to the model’s architectural design, Pattern #2 (AttnScore) and Pattern #3
1445 (PCC) could not be applied. We sampled 100 examples from GSM8K as the test dataset. Since the
1446 model itself does not possess self-reflection capability, hallucination labels were assigned based on
1447 ground-truth correctness: correct answers were treated as non-hallucinated and incorrect answers
1448 as hallucinated. Results in Table 6 show that our method achieved higher detection accuracy of
1449 latent reasoning hallucination compared to the perplexity baseline (computed only on output tokens),
1450 demonstrating RHD’s applicability to latent CoT architectures.

1451 **Comparison with Text-only Detection Methods.** We further examined whether text-only detection
1452 methods can serve as effective alternatives in the latent CoT setting. Specifically, we evaluated Process
1453 Reward Model (Qwen2.5-PRM-7B) and ChainPoll. Experimental results in Table 6 indicate that
1454 these methods, when applied directly to the final generated text without analyzing the latent reasoning
1455 process, underperform compared to our latent reasoning-based approach.

1456 To better understand this gap, we conducted a case study on Huginn-0125 outputs and identified
1457 several sources of failure for text-only methods:

1458
 1459
 1460
 1461
 1462
 1463

- **Format confusion and ambiguous expression.** Consider the following GSM8K problem:
 Anthony and his friend Leonel read about the importance of keeping pets at home and decided to start adopting cats and dogs from the local rescue center. Anthony has 12 cats and dogs, 2/3 of which are cats. Leonel has half times as many cats as Anthony and seven more dogs than Anthony. How many animals in total do the two have?

1464 Huginn-0125 produced the following intermediate reasoning:

1465 “0.67»10.67 cats. We’ll round this to 11 cats for simplicity. Anthony has 12-
 1466 11=«12-11=1»1 dog. Leonel has half as many cats as Anthony, so he has
 1467 $(1/2)*11=«(1/2)*11=5.5»5.5$ cats. We’ll round this to 6 cats for simplicity.”

1468 Although the final answer was numerically correct, the text contained artifacts such as
 1469 “<<12-11=1>>” and “0.67>>10.67 cats.” These inconsistent notations suggest that
 1470 certain reasoning was carried out in the latent space before being partially surfaced, leading
 1471 to ambiguous expressions that mislead text-only detectors.

1472
 1473
 1474

- **Non-linear and highly jumping narration.** Consider the following arithmetic problem:
 John hits 70% of his free throws. For every foul he gets 2 shots. He gets fouled 5 times
 a game. How many free throws does he get if he plays in 80% of the 20 games the team
 plays?

1475 Huginn-0125 generated:

1476 “John gets $5 \times 2 = 10$ free throws per game. 80% of 20 = 16 games. Then says: 10
 1477 fouls per game = 3×10 Thus, John gets $16 \times 3 = 48$ free throws.”

1478 The reasoning begins correctly but suddenly introduces nonsensical statements such as “10
 1479 fouls per game = 3×10 ,” which are mathematically incoherent. Such non-linear jumps
 1480 likely originate in the latent CoT process and cannot be effectively diagnosed from surface
 1481 text alone.

1482
 1483
 1484
 1485
 1486

- **Incomplete sentences.** In several cases, Huginn-0125 generated outputs that began with
 truncated phrases such as “ends each delivered...” without a subject or introductory clause.
 These malformed sentences indicate leakage of incomplete latent reasoning into surface text,
 further reducing the reliability of text-only detection models.

1487 These observations highlight that text-only methods are limited in detecting hallucinations when
 1488 latent reasoning artifacts leak into surface text. By contrast, our approach explicitly analyzes the latent
 1489 reasoning process, enabling more reliable detection. Importantly, combining the two perspectives
 1490 proves complementary: empirical results show that integrating our method with ChainPoll achieves
 1491 the best overall performance.

1492
 1493 **Table 6:** Performance of different hallucination detection methods on Huginn-0125. Our RHD
 1494 approach, when combined with ChainPoll, achieves the best results, indicating complementary
 1495 benefits.

1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504

Method	AUC	PCC
LNE	0.6343	0.2312
Qwen2.5-PRM-7B	0.6460	0.2640
ChainPoll	0.6732	0.3074
RHD	0.6914	0.3210
RHD+ChainPoll	0.7225	0.3564

1505 **L ADDITIONAL DETECTION RESULTS ON QWEN3-8B**
 1506

1507 To examine the generality of our detector beyond the R1-7B/14B backbones, we further evaluate
 1508 RHD on Qwen3-8B over the RETRUTHQA Math and Science domains. As shown in Figure 7, our
 1509 method forms the outer envelope across all five metrics (AUC, PCC, MC1/2/3), indicating consistent
 1510 improvements over diverse baselines. These results mirror the trends reported in the main paper
 1511 (R1-7B/14B), suggesting that (i) modeling early-stage depth fluctuations, (ii) penalizing misguided
 backtracking, and (iii) recognizing overthinking (positive RScore–PPL correlation) remain effective

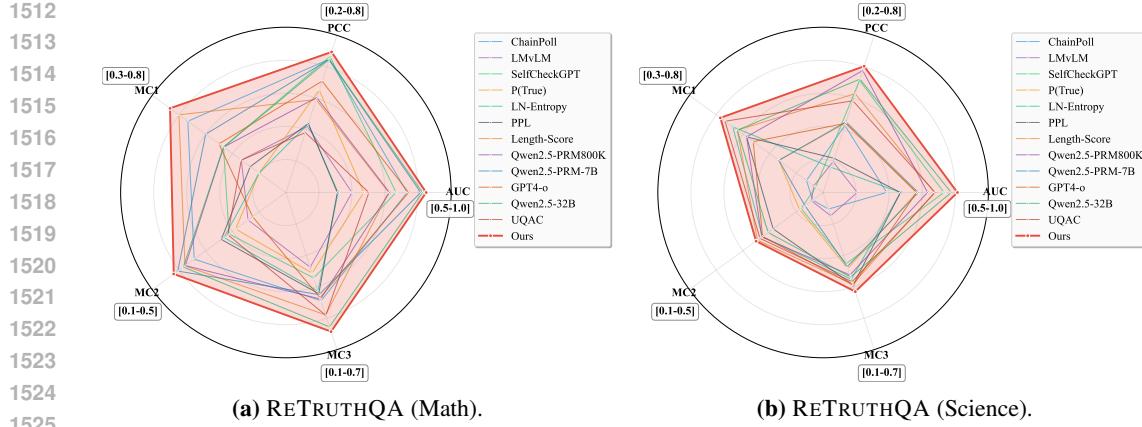


Figure 7: Performance comparison on Qwen3-8B. Radar plots summarize five metrics: AUC, PCC, and MC1/2/3. Our method (red, dashed outline) consistently dominates the baselines on both domains.

ques on a different backbone and domains. Overall, RHD maintains strong binary detection ability (AUC/PCC) while also excelling in multi-trace ranking (MC1/2/3), reinforcing its robustness across architectures and tasks.

M ABLATION STUDY OF RHD

In this section, we analyze the contribution of each module within the RHD model to reasoning hallucination detection. As shown in Table 5, removing any single component leads to a significant performance drop on most datasets in the Reasoning Hallucination Detection task. This validates the effectiveness of adopting a multivariate regression formulation, where all components jointly serve as covariates. Although some coefficients may appear less influential in certain domains, they demonstrate notable impact in others. This observation suggests that different domains exhibit distinct hallucination pattern preferences, further supporting the validity of the empirically discovered patterns, which can be effectively leveraged for reasoning hallucination detection.

Beyond component-level ablations, we also evaluate alternative step-level signals by replacing the Reasoning Score with entropy and variance, resulting in RHD(Entropy) and RHD(Variance). As shown in Table 9, both variants perform substantially worse than the original RHD across MATH, SCIENCE, and MULTIOPQA. The main reason is that entropy and variance only characterize properties of single distributions, while our approach explicitly models distances between distributions across layers, which is crucial for capturing mechanistic interpretability insights. Furthermore, leveraging the logit lens mitigates the superposition problem in hidden states, enabling more accurate reasoning hallucination detection.

Finally, we analyze the robustness of the shallow-step threshold used in the Attention Score component. In the main method, we adopt the 25% quantile of early reasoning steps as the cutoff for identifying shallow steps, which follows common statistical practice for lower-bound filtering and is consistent with our CV-based fluctuation analysis in Appendix F. To further examine its stability, we vary the threshold over {10%, 20%, 25%, 30%, 40%} and evaluate its impact on MATH-MC3 and MultiHopQA-MC3 under the same setting as Figure 8. Table 8 shows the results.

We observe that performance remains stable across a wide range of threshold values, with the most consistent and balanced results occurring around the 20–30% range. The 25% setting selected in the main paper lies near the empirical optimum and yields strong performance on both benchmarks. These results further confirm that RHD is robust to the choice of threshold and does not rely on fine-grained hyperparameter tuning.

1566

Table 7: Impact of selecting candidate layers from different depth layers of LRM.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

Layers	Math			Science			MultiHopQA		
	MC1	MC2	MC3	MC1	MC2	MC3	MC1	MC2	MC3
High	0.6591	0.4765	0.5699	0.6207	0.5448	0.6009	0.7234	0.5957	0.6799
Middle	0.6591	0.4765	0.5699	0.6207	0.5448	0.6009	0.7021	0.5862	0.6678
Low	0.6591	0.4765	0.5699	0.6207	0.5448	0.6009	0.7660	0.6255	0.7103

Table 8: Sensitivity of the shallow-step threshold in the Attention Score.

N SENSITIVITY ANALYSIS OF RHD

In this section, we conduct sensitivity analysis experiments to investigate the impact of design choices in RHD. Inspired by the underlying reasoning mechanism, we fix the reasoning score to be extracted from the later layers of LRM. Our primary focus is on selecting the appropriate layers for computing the attention score. Specifically, we evaluate three different layer groups: shallow layers (1, 3, 5, 7, 9, 11, 13), middle layers (8, 10, 12, 14, 16, 18), and deep layers (14, 16, 18, 20, 22, 24, 26) on R1-7B. The experimental results are shown in Table 7. We observe that, across the Math and Science domains, the choice of attention layers has limited influence on final performance. In contrast, for the MultiHopQA domain, shallow layers yield stronger results, aligning with the mechanistic interpretation that earlier layers are primarily responsible for information transmission. Based on these findings, we select the shallow layers as candidate layers for computing the attention score.

We further perform sensitivity analysis on influential feature weights in RHD across domains. We vary the feature weights in $\{0.1, 0.3, 0.5, 0.7, 0.9\}$, and present the results in Figure 8. We observe that most features exhibit an initial increase in performance followed by either a decline or stabilization. The limited variance across settings indicates that the model is not overly sensitive to individual hyperparameter values, demonstrating the robustness and stability of the RHD framework.

For the threshold τ , its selection is based on the analysis described in Appendix F; we performed sensitivity experiments at values $[4.0, 4.4, 4.5]$, and found that the optimal result is achieved at 4.0. Setting the threshold too high improves precision but reduces recall. Encouraging an appropriate depth of reasoning helps the model generalize better, which demonstrates the effectiveness of our chosen hyperparameters.

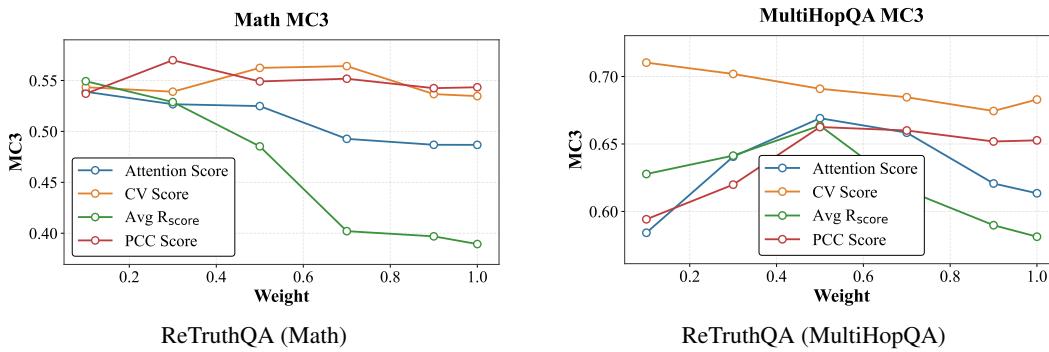
O IMPLEMENTATION DETAILS FOR REASONING HALLUCINATION MITIGATION

We fine-tune the models for reasoning hallucination mitigation using a RL framework with the following hyperparameters: batch size of 8, learning rate of 1.0×10^{-6} , and 1 training epoch. We enable gradient checkpointing to reduce memory usage. The model is configured with a maximum prompt length of 512 and a maximum completion length of 7680. For parameter-efficient tuning, we adopt LoRA with rank $r = 16$ and $\alpha = 16$, applied to all linear layers (`lora_target_modules=all-linear`). During each training step, we sample 16 generations per query.

The reward function is a weighted sum of three components: (1) an accuracy reward that combines a rule-based parser (Hugging Face, 2025) and LLM-as-a-Judge (Lightman et al., 2023) to determine correctness, addressing the issue where the final answer is correct but fails rule-based extraction

1620
1621
1622
1623
1624
1625**Table 9:** Ablation results on R1-7B when replacing reasoning score with entropy or variance.

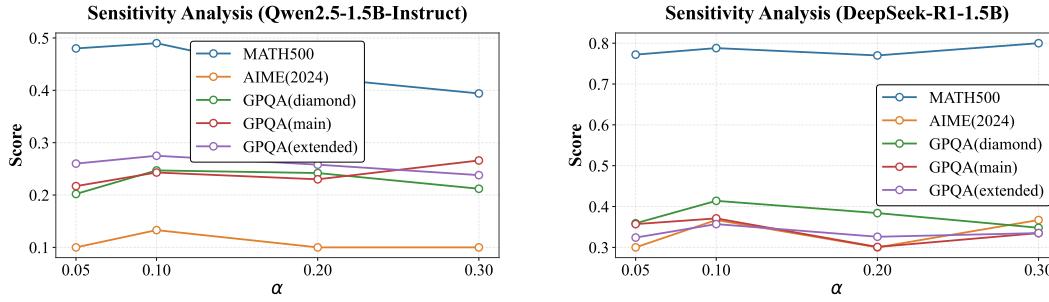
Method	Math					Science					MultiHopQA				
	AUC	PCC	MC1	MC2	MC3	AUC	PCC	MC1	MC2	MC3	AUC	PCC	MC1	MC2	MC3
RHD	0.7978	0.4852	0.6591	0.4765	0.5699	0.6528	0.2662	0.6207	0.5448	0.6099	0.7361	0.3863	0.7660	0.6255	0.7103
RHD(Entropy)	0.6523	0.2687	0.6272	0.4293	0.5302	0.6085	0.2289	0.5910	0.5062	0.5836	0.6827	0.3310	0.6170	0.5004	0.5637
RHD(Variance)	0.6459	0.2657	0.6363	0.4295	0.5257	0.5576	0.1031	0.5172	0.4689	0.5805	0.5866	0.1674	0.5957	0.4776	0.5173

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
16371638
1639
1640**Figure 8:** We conduct a sensitivity analysis of each module in RHD, using R1-7B on the Math and MultiHopQA subsets of ReTruthQA. We vary the weights assigned to different components and observe the resulting performance on the MC3 metric.1641
1642
1643
1644
1645
1646
1647

(reward = 1 for correct, 0 for incorrect); (2) a **format reward** that ensures adherence to the required reasoning format `<think>\n...</think>\n<answer>\n...</answer>` (reward = 1 if the format is correct, 0 otherwise); and (3) a **tag count reward** that softly encourages the inclusion of each of the four required tags (`<think>`, `</think>`, `<answer>`, `</answer>`) by assigning 0.25 for each tag present. The reward weights are set to 1.0, 0.1, and 0.1 for the accuracy, format, and tag count rewards, respectively.

1648
1649
1650
1651

For evaluation, we use the same accuracy-based metric as in training, and report results by averaging over four sampled generations per input. The fine-tuned model, DeepSeek-R1-Distill-Qwen-1.5B, is publicly available at <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B>.

1652
1653
1654
1655
1656
1657
1658
1659
1660
16611662
1663
1664
1665
1666**Figure 9:** We conduct a sensitivity analysis on the weight of the reasoning score reward in GRPO-R, evaluating its impact on the accuracy metric. Experiments are carried out on both Qwen2.5-1.5B-Instruct and DeepSeek-R1-1.5B by varying the weight parameter α .1667
1668
1669
1670
1671
1672
1673

P SENSITIVITY ANALYSIS OF REASONING SCORE WEIGHT IN GRPO-R

To investigate the sensitivity of the reasoning score reward weight α in the GRPO-R objective, we conduct experiments on both DeepSeek-R1-1.5B and Qwen2.5-1.5B-Instruct. We vary α in the range [0.05, 0.1, 0.2, 0.3] and evaluate the models' performance accordingly.

Experimental results in Figure 9 indicate that both models achieve the best average performance when $\alpha = 0.1$. As α increases beyond this value, we observe a gradual decline in performance.

1674
1675 **Table 10:** Sensitivity analysis of threshold τ across benchmarks.
1676

Model	MATH500	AIME(2024)	GPQA(diamond)	GPQA(main)	GPQA(extended)
GRPO-R $\tau = 4.0$	0.788	0.367	0.414	0.371	0.357
GRPO-R $\tau = 4.4$	0.788	0.367	0.409	0.371	0.352
GRPO-R $\tau = 4.5$	0.784	0.333	0.389	0.355	0.348

1681
1682 **Table 11:** Accuracy of distilled models across benchmarks using different sampling strategies.
1683 Distillation is performed on Qwen2.5-1.5B-Instruct using reasoning traces from R1-14B.

Method	MATH500	AIME (2024)	GPQA (diamond)	GPQA (main)	GPQA (extended)
Qwen2.5-1.5B-Instruct	0.466	0.100	0.202	0.197	0.211
Random 20%	0.504	0.100	0.247	0.230	0.242
RHD 20%	0.520	0.100	0.263	0.210	0.249
Random 50%	0.488	0.033	0.187	0.248	0.266
RHD 50%	0.516	0.200	0.247	0.250	0.242
100%	0.488	0.100	0.217	0.210	0.214

1691 These results suggest that incorporating the reasoning score reward can effectively mitigate reasoning
1692 hallucinations without compromising accuracy, as long as it remains a secondary signal. However,
1693 overemphasizing the reasoning score (i.e., assigning it a large weight) can lead to a degradation in the
1694 model’s ability to optimize for correctness, indicating that the reasoning signal should not dominate
1695 the outcome-based reward objective.

Q RHD-GUIDED REASONING DISTILLATION

1700 Distilling long-chain-of-thought data from large reasoning models to fine-tune smaller LLMs has be-
1701 come a widely adopted strategy for improving reasoning capabilities (DeepSeek-AI, 2025). However,
1702 directly fine-tuning small LLMs on raw LRM-generated data risks transferring undesirable reasoning
1703 behaviors such as shallow pattern matching or overthinking, potentially introducing reasoning hallu-
1704 cinations into the smaller models. To address this issue, we propose using the RHD score to rank
1705 distillation data and select more truthful samples for training.

1706 The distillation setup uses a learning rate of 5.0×10^{-5} , batch size of 8, and LoRA applied to all
1707 linear layers with parameters `lora_r` = 16 and `lora_alpha` = 16. We use the training data from
1708 the hallucination mitigation experiment where R1-14B produces correct answers, along with their
1709 corresponding reasoning traces and final answers. We then score each reasoning trace using the RHD
1710 metric and sort the data in descending order. The top 20% and 50% of ranked samples are distilled
1711 into a smaller model, R1-1.5B, and compared against randomly sampled subsets of 20%, 50%, and
1712 100% of the same data.

1713 Results, as shown in Table 11, demonstrate that RHD-guided distillation consistently yields better
1714 performance across most evaluation benchmarks. In contrast, distillation using 100% of the raw data
1715 results in degraded performance, likely due to noise introduced by hallucinated or low-quality samples.
1716 These findings validate the effectiveness of RHD in selecting high-quality data and mitigating
1717 reasoning hallucinations in downstream small LLMs during the distillation process.

R EXTENSION GRPO-R TO OTHER GRPO VARIANTS

1721 Our hallucination mitigation framework in § 4.2 is designed as a general mechanism that can be
1722 seamlessly integrated into diverse GRPO variants. By incorporating our mechanistically-inspired
1723 step-level reasoning score via potential-based shaping, the framework is orthogonal to existing GRPO
1724 improvements and can be applied on top of them without modification.

1725 To further validate this claim, we conducted experiments on **Dr. GRPO** (Liu et al., 2025), a repre-
1726 sentative variant that modifies the group relative optimization scheme. As shown in Table 12, Dr.
1727 GRPO achieves stronger in-domain gains than vanilla GRPO but suffers from reduced robustness on
out-of-domain evaluation. Importantly, **Dr. GRPO-R** (our framework applied to Dr. GRPO) consis-

tently improves over Dr. GRPO across both in-domain and out-of-domain settings. These results demonstrate that our framework is compatible with and complementary to existing GRPO variants, highlighting its effectiveness as a general-purpose strategy for mitigating reasoning hallucinations.

Table 12: Performance of Dr. GRPO and Dr. GRPO-R across benchmarks.

	MATH500	AIME(2024)	GPQA(diamond)	GPQA(main)	GPQA(extended)
Base	0.772	0.333	0.354	0.333	0.339
+Dr. GRPO	0.778	0.367	0.364	0.333	0.342
+Dr. GRPO-R	0.792	0.367	0.394	0.364	0.357

In addition to Dr. GRPO, we further validate our hallucination mitigation framework against a widely used step-level reward baseline. Specifically, we adopt a Process Reward Model (PRM) following Shao et al. (2024), where step-level scores are provided by Qwen2.5-PRM-7B. We replace the reasoning score in GRPO-R with PRM scores, denoted as **GRPO+PRM**, for comparison.

Experimental results show that on in-domain MATH datasets, GRPO+PRM achieves results comparable to GRPO-R. However, on out-of-distribution SCIENCE datasets such as GPQA, GRPO+PRM performs noticeably worse than GRPO-R, and in some cases even worse than the base model. This indicates that compared to Qwen2.5-PRM-7B, using the reasoning score as a process reward not only enhances reasoning within the training domain but also generalizes better across domains, underscoring the robustness of GRPO-R. Moreover, incorporating PRM leads to significantly increased training cost. Since PRM itself is a large model, GRPO+PRM requires more training time compared to GRPO-R, further highlighting the efficiency advantage of our approach. Finally, our framework is compatible with PRM. When combining PRM scores with reasoning scores as the final process reward (denoted as **GRPO-R+PRM**), the performance drop on out-of-distribution GPQA benchmarks is effectively alleviated, demonstrating the complementary benefits and generalizability of GRPO-R.

Table 13: Comparison between GRPO-R and step-level reward baselines.

Method	MATH500	AIME(2024)	GPQA(diamond)	GPQA(main)	GPQA(extended)
Base	0.772	0.333	0.354	0.333	0.339
+GRPO-R	0.788	0.367	0.414	0.371	0.357
+GRPO+PRM	0.780	0.367	0.343	0.330	0.333
+GRPO-R+PRM	0.792	0.400	0.409	0.373	0.355

S NOTATION SUMMARY

To improve clarity and reproducibility, we provide a comprehensive summary of the key notations used throughout the paper. These notations cover the main components of the Reasoning Score, the RHD detection metric, and the GRPO-R reinforcement learning formulation. The table below consolidates all symbols, their meanings, and where they are introduced in the manuscript.

This notation summary aims to make the paper easier to follow and ensures consistency across the detection and mitigation components of our framework.

T COMPLEXITY AND EFFICIENCY ANALYSIS OF RHD

This section presents the theoretical complexity and empirical runtime of the proposed Reasoning Hallucination Detection (RHD) method.

Theoretical Complexity. For a reasoning trace $C = [c_1, \dots, c_K]$ containing M tokens, the Reasoning Score is computed as the mean Jensen–Shannon Divergence (JSD) between the vocabulary distributions of a small set of later layers ($|J| = 4–6$) and that of the final layer. Each JSD operation

Table 14: Summary of the major notations used in the paper.

Notation	Description
R_{score}	Step-level Reasoning Score measuring reasoning depth via later-layer logit divergence.
$CV(C)$	Coefficient of Variation of early-step reasoning scores, quantifying reasoning fluctuation.
$\text{AttnScore}(C)$	Attention-based metric capturing incorrect backtracking and overthinking behaviors.
$\text{PPL}(C)$	Step-level perplexity sequence used for detecting spurious verification.
$\text{PCC}(R_{\text{score}}, \text{PPL}(C))$	Pearson correlation between reasoning depth and perplexity (Pattern #3 indicator).
$\alpha_1, \alpha_2, \alpha_3, \alpha_4$	Regression coefficients combining hallucination indicators into the final RHD score.
R_{final}	Terminal reward indicating correctness of the final reasoning answer in GRPO-R.
$\Phi(s_t)$	Potential function based on the clipped reasoning score, used for potential-based reward shaping.
γ	Discount factor controlling reward-shaping dynamics; set to 1 for stability and invariance.
τ	Threshold separating normal vs. overthinking reasoning steps when computing clipped potentials.
r_t, \bar{r}_t	Original and shaped step-level rewards in the GRPO-R formulation.
$V'(s_t)$	Value function after reward shaping, ensuring policy-invariance of the optimal solution.

1808 scales linearly with the vocabulary size V , i.e., $O(V)$, consisting of simple element-wise logarithm
 1809 and multiplication. Therefore, the overall complexity is
 1810

$$O(|J| \times M \times V).$$

1812 For comparison, the computational cost of a single Transformer forward pass is
 1813

$$O(L \times M \times d^2),$$

1815 where L and d denote the number of layers and hidden dimension. Since the dominant cost comes
 1816 from quadratic attention and feedforward operations, the linear JSD computation introduces only a
 1817 negligible constant factor relative to model inference.

1818 Moreover, the design of RHD follows mechanistic interpretability findings that early layers primarily
 1819 transmit shallow lexical signals. Hence, we compute divergences only over the final 4–6 layers,
 1820 reducing overall cost by roughly an order of magnitude while preserving its strong correlation with
 1821 reasoning depth.

1823 **Empirical Runtime.** We further evaluate the practical overhead of RHD by measuring its detection
 1824 time per query on R1-7B and R1-14B models. All measurements are conducted using HuggingFace
 1825 Transformers with batch size = 1 on the ReTruthQA (MATH) benchmark.

1827 **Summary.** RHD achieves competitive detection performance while maintaining a sub-second
 1828 runtime of approximately 0.3 seconds per query. Compared with ensemble-based or reward-model-
 1829 based detectors, RHD is 10–20× faster due to its lightweight design: it operates directly on cached
 1830 hidden states and performs JSD computation only on a few later layers. This efficiency makes RHD
 1831 suitable for large-scale or real-time reasoning hallucination analysis.

U FUTURE WORK

1832 Our current framework relies on internal model activations and is thus restricted to open-source
 1833 LRM s with accessible activations. Extending this line of research to black-box models remains an
 1834

1836 **Table 15:** Average detection time per query (seconds) for representative hallucination detection
 1837 methods.

Category	Method	R1-7B	R1-14B
Ensemble	ChainPoll	7.02	7.64
Ensemble	LM-v-LM	12.37	11.45
Uncertainty	P(True)	0.10	0.11
Uncertainty	LN-Entropy	0.05	0.09
Self-aware	EigenScore	0.11	0.13
Self-aware	UQAC	0.45	0.76
PRM-based	Qwen2.5-PRM-7B	10.89	10.35
LCM	Qwen2.5-32B	15.83	16.23
Mechanistic	RHD (ours)	0.30	0.33

1850
 1851 important open challenge. Nevertheless, the discovered patterns and metrics may inspire proxy-based
 1852 extensions that approximate internal reasoning signals without direct access.

1853 Furthermore, our experiments are conducted on moderate-scale models and datasets due to compu-
 1854 tational constraints. A natural future direction is to scale the proposed framework to larger model
 1855 families and broader domains, which may provide deeper insights into the universality and robustness
 1856 of reasoning hallucination mitigation.

1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889