PARADE: Parameter-Efficient Fine-tuning with Prompt Aware
Representation ADjustmEnt

Anonymous ACL submission

Abstract

Despite the presence of many competitive
PEFT methods like LoRA, we still need a
PEFT method that is efficient under the single-
backbone multi-tenant setting while perform-
ing competitively in the downstream tasks. In
this work, we propose a novel PEFT method,
Prompt Aware Representation ADjustmEnt
(PARADE). First, we propose to install a
lightweight vector generator at each Trans-
former layer to generate vectors that will
modify the hidden states in the multi-head
self-attention (MHSA) and position-wise feed-
forward (FFN) modules and, as a result, modu-
late the behaviors of the pre-trained backbone.
Second, the vector generators are modules with
a bottleneck architecture consisting of a pool-
ing operation, two linear projections, and an ac-
tivation function. To enhance the downstream
performance of vector generators, we propose
an attention-based capsule network as the pool-
ing operation, which can effectively summa-
rize the semantic information in the input in-
structions. We have conducted experiments
on various tasks, and the experimental results
demonstrate that: (a) our PARADE method can
outperform the recent baselines with compa-
rable tunable parameters. (b) Our PARADE
method is more efficient than LoRA under the
single-backbone multi-tenant setting.'

1 Introduction

Large language models (LLMs) have been
emerging and achieving state-of-the-art (SOTA) re-
sults not only on a variety of natural language pro-
cessing tasks (Qin et al., 2023; Zhu et al., 2023) but
also on many challenging evaluation tasks (Huang
etal.,2023; Li et al., 2023) such as question answer-
ing in different domains, reasoning, mathematics,
safety, and instruction following. Despite LLMs be-
coming general task solvers, fine-tuning still plays

!Codes and fine-tuned models will be open-sourced to
facilitate future research.

a vital role in efficient LLM inference and control-
ling the style of the LLMs’ generated contents.”
Fine-tuning such large models by full parameters
is prohibitive since it requires a large amount of
GPU memory and computations. Thus, parameter-
efficient fine-tuning (PEFT) (Zhang et al., 2023c;
Zhao et al., 2023) has raised much attention in the
research field since in PEFT, the tunable parame-
ters are often less than 1% of the LLMs and the
computation costs will be significantly decreased.
Recently, there has also been a trend to host an
LLM as a service (MaaS) (Gan et al., 2023), and
different tenants can specialize the LLM with their
privately owned PEFT modules (multi-tenant set-
ting) (Chen et al., 2023).

Many PEFT methods have been validated to be
effective across various models and tasks, often
yielding comparable results with full-parameter
fine-tuning (He et al., 2021; Zhu and Tan, 2023;
Zhang et al., 2023c). Among these PEFT meth-
ods, the reparameterization-based method low-rank
adaptation (LoRA) (Hu et al., 2021) is widely ap-
plied in the era of LLMs. Although LoRA is ef-
fective and can bring stable performance with the
original setting in Hu et al. (2021), it has a clear
drawback: it has to add LoRA modules to multiple
weights of the Transformer layer and introduce sig-
nificant additional latency in every generation step
under the multi-tenant setting. Thus, it is of cen-
tral importance to develop a novel PEFT method
that introduces minimum latency during generation
and still can perform competitively in downstream
tasks.

In this work, we propose a novel PEFT method
called Prompt Aware Representation ADjustmEnt
(PARADE) (depicted in Figure 1). Our method
fine-tuned the LLMs by directly modifying the hid-
den representations in the model via multiplying

*Recently, OpenAl also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

[(/MM head

)
!

modifying |

i self-attn

| Layer L |
Up proj
e
AC Pooler
‘ Lav‘F - Dow: proj

‘ Layer 0 (embedding)

Instruction

“Tunable ﬁ% Frozen
B O

1
1
1
1
1
1
1
1
1
1
F
]
|
!
1
1
1
1

1

1

I

I

I

I

Figure 1: Schematic illustration of our PARADE method. Left: The vector generator consists of a down-projection,
an attentional capsule-based pooler (AC pooler), an activation function, and an up-projection. The vector generator
uses the instructions’ hidden states as the input tensors and outputs the adjusting vectors. Right: The adjusting
vectors multiply the Query (Q) and Value (V) hidden states in the MHSA module and the Up (U) hidden states in

the feed-forward module.

them with certain vectors (called adjusting vectors)
and thus regulating the attention patterns in the
self-attention module and the activated knowledge
in the feed-forward module. Unlike the previous
literature like (Liu et al., 2022a) or BitFit (Ben-
Zaken et al., 2021), the vectors are not randomly
initialized and fixed across different input instruc-
tions. Instead, we install a vector generator before
each Transformer layer. The vector generator takes
the hidden states of the input instructions as input
and generates the adjusting vectors with a down-
projection layer, a novel attentional capsule-based
pooling layer, and an up-projection layer.

We conduct extensive experiments on a com-
prehensive collection of tasks, including sentiment
classification, natural language inference, question
answering, natural language generation under con-
straint, math reasoning, SQL generation, and in-
struction tuning, to demonstrate the effectiveness
of our PARADE method. Notably, our method
can consistently outperform strong PEFT baselines
with comparable tunable parameter budgets, espe-
cially the recent LoRA variants and IA3 (Liu et al.,
2022a) or BitFit (Ben-Zaken et al., 2021). We also
use experiments or analysis to show that: (a) our
method has significantly lower latency under the
multi-tenant setting than the LoRA-based methods
with comparable tunable parameters. (b) our pro-
posed attentional capsule-based pooling module
effectively enhances our PARADE method.

Our contributions are summarized as follows:

* we propose a novel method, PARADE, to a

novel PEFT method that generates adjusting
vectors to hidden representations conditioned
on the input instructions.

* We propose a novel attentional capsule-based
pooling module for effectively summarizing
the information of the input instruction se-
quences to the generated vectors.

* We have conducted extensive experiments and
analysis showing that our PARADE frame-
work is (a) practical and outperforms the base-
lines under comparable parameter budgets. (b)
efficient during inference for LLMs.

2 Related works

2.1 Parameter-efficient fine-tuning (PEFT)
methods

Parameter-efficient fine-tuning (PEFT) is an ap-
proach of optimizing a small portion of parame-
ters when fine-tuning a large pretrained backbone
model and keeping the backbone model untouched
for adaptation (Ding et al., 2022; Zhang et al.,
2023c). The addition-based methods insert addi-
tional neural modules or parameters into the back-
bone model. Representative works in this direction
are Adapter (Houlsby et al., 2019; Riicklé et al.,
2020; Zhang et al., 2023c), Prefix tuning (Li and
Liang, 2021), Prompt tuning (Lester et al., 2021),
P-tuning V2 (Liu et al., 2022b), (IA)? (Liu et al.,
2022a), and BitFit (Ben-Zaken et al., 2021). An-
other approach is called the specification-based
approach, which is to specify the particular param-

eters to be tunable or prunable (Ben-Zaken et al.,
2021; Guo et al., 2021; Zhao et al., 2020). The
reparameterization-based methods have attracted
much attention (Hu et al., 2021). This branch of ap-
proaches transforms the adaptive parameters during
optimization into low-rank and parameter-efficient
forms. This type of PEFT method is motivated by
the observation that fine-tuning has a low intrin-
sic dimension (Aghajanyan et al., 2021). LoRA
(Hu et al., 2021) hypothesizes that the change of
weights during model tuning has a low intrinsic
rank and optimizes the low-rank decomposition for
the change of original weight matrices. PEFT meth-
ods are widely applied, especially with the popu-
larization of open-sourced large language models
(Zhao et al., 2023) and instruction tuning with these
models for different application scenarios (Taori
et al., 2023; Dettmers et al., 2023).

In this work, we propose a novel framework,
PARADE, for fine-tuning LLMs in a parameter-
efficient fashion. Our method is efficient for LLM
inference and performs well in downstream tasks.

2.2 Capsule network

Capsule networks encapsulate features into
groups of neurons, that is, the so-called capsules
(Sabour et al., 2017). Initially introduced for a
handwritten digit image classification task, cap-
sules have been shown to learn robust represen-
tations. The capsule network is widely studied
in computer vision (Pawan and Rajan, 2022) and
natural language processing (Kim et al., 2018).
(Zhang et al., 2018) demonstrates that the capsule
network performs well for n-ary relations. (Xiao
et al., 2018) uses a capsule network to differenti-
ate different tasks and improve multi-task learning
performances. (Aly et al., 2019; Srivastava et al.,
2018) applied capsules for sentence classification
tasks. Since the beginning of the era of large-scale
pre-trained models, capsule networks have been
paid less attention. In this work, we apply the idea
of capsule networks to the pooling operation in the
vector generators of our PARADE framework.

3 Methods

3.1 Preliminaries

Transformer model Currently, the most widely
used open-sourced language models and large lan-
guage models adopt the stacked Transformer ar-
chitecture (Vaswani et al., 2017). The transformer
block is primarily constructed using two key sub-

modules: a multi-head self-attention (MHA) layer
and a fully connected feed-forward (FFN) layer.
Denote the input sequence’s length as [, the hidden
states’ dimension as d,,,,4e;, and the dimension at
the FFN module as d,. The MHA is given as

follows:?
K
ﬁ? — > V, (D

where Q = 2W9 K = aWE, V =aWV, 2z €
R!*@modet is the input tensor. W@ WK WV ¢
RmoderXdmodel are the query, key, and value projec-
tion layers (denoted as the Query, Key, and Value
modules). The FFN module consists of linear trans-
formations and an activation function ¢/™ such as
ReLU or GELU (Hendrycks and Gimpel, 2016).
Take the FFN module in the L1aMA-2 models (Tou-
vron et al., 2023) as example:

(g ™(@) «U)ywP,)

where G = W&, U = zWVY, WG, wvl e
Rmoderdn (denoted as Gate and Up module).
Task formulation Denote the task’s training set
as Diain = (Tmy Ym),m = 1,2, ..., M, where M
represents the number of samples. In this work,
we only consider the case where input z,, and tar-
get y,, are both text sequences. And we expect
the language modeling head of LLMs to decode
Ym during inference. That is, no additional lin-
ear prediction heads are considered for predicting
categorical or numerical values.

softmax <

3.2 Motivation

A good PEFT method should have the follow-
ing properties: (a) Introducing as few additional
tunable parameters as possible, limiting the addi-
tional storage and memory costs. (b) Strong perfor-
mance in the adaptation of LLMs for downstream
tasks. (c) efficient under the multi-tenant setting,
where a single LLM backbone has to be paired with
multiple sets of PEFT parameters from different
tenants, and during batch-wise inference, a batch
may contain samples from different tenants/tasks
corresponding to different PEFT methods. The
LoRA-based methods (Hu et al., 2021) are consid-
ered the most performant PEFT method for LLMs
(Ding et al., 2022; Zhu et al., 2023; Xu et al., 2023).
However, under the multi-tenant setting, signifi-
cant latency is introduced since these methods re-
quire the LoRA modules to be added to almost

3We omit the multi-head setting for simplicity of illustra-
tions.

all the Transformer modules. Prompt tuning (Liu
et al., 2021, 2022b) inserts learnable soft prompts
of length like 32 or 64 at the beginning of the in-
put sequence, introducing additional complexity
and latency. (IA)? (Liu et al., 2022a) and BitFit
(Ben-Zaken et al., 2021) modifies the hidden rep-
resentations/activations by adding or multiplying
learnable vectors in an element-wise fashion, thus
are efficient for inference. However, IA3 (Liu et al.,
2022a) or BitFit (Ben-Zaken et al., 2021) have the
following drawbacks: (a) in-flexible since the tun-
able parameters are fixed given a LLM backbone.
(b) lag behind the LoRA method in terms of down-
stream performance. One possible reason may be
that they use the same learnable vectors for differ-
ent samples of different difficulty and thus may not
be effective in directing the attention mechanism
of LLMs.

3.3 PARADE

Now we present the framework of our novel

Prompt Aware Representation ADjustmEnt (PA-
RADE) method, which can be seen as a novel ex-
tension of (Liu et al., 2022a) and (Ben-Zaken et al.,
2021).
Formulation In order to generate responses, the
input instructions have to go through the LLM
backbone to obtain the hidden representations. De-
note the hidden state of the input instruction with
length T;,5 at the current Transformer layer as h.
As shown in Figure 1, the vector generator VG()
use h as input to generate three learned vectors,
lg, 1, € Rémodet and 1, € R/, with a vector
generator:

lg, Ly, ly = VG(h), 3)

and these generated vectors are used to modify
the hidden representations in the self-attention and
FFN modules. Thus, under PARADE, the self-
attention mechanism of Transformer (in Equation
1) is changed to

QK ,
softmax [————— |V, 4)
< Vv dmodel

where Q' = lg ©Q, V' =1, ®V, ® denotes
the element-wise product. And the FFN module
(Equation 2) is modified to

('@ o U WP,)

where U’ = l,oU®»

Vector generator Now, we introduce the core
of our PARADE framework, the vector genera-
tor VG(). It takes h as input and consists of a
pooling module and a pair of projection opera-
tions. It first projects H from dimension d,;,oge;
to dimension r < dn0de; Via a projection layer
W39 € RémodetT Then, it obtains the vector
representation through a pooling module Pooler().
Then the obtained vector representation will go
through an activation function ¢g“9 and be projected
to dimension doyt = 2 * dpoder + dypp via an-
other projection layer with weight 1,3 and bias
buy. Formally, the generator is given by the follow-
ing equation:

I = (¢"9(Pooler(hW ;Y

down

IWa + b

up’
lg> Lo, L = Split(1), (©6)

where Split() is to split the vector into three vectors
of dimension dy,odel> Amodels df fn,> respectively.
Note that the decoder-based causal language
models (CLM) usually employ the KV cache mech-
anism® during generation to improve efficiency.
Our vector generators work seamlessly with the
KV cache mechanism since the generated vectors,
lg, Ly, Ly, are generated when the input instruction
(or prompt) is passed through the LLM for the first
time. These three vectors will be reused in the sub-
sequent generation steps, and the vector generators
will not be called again. In comparison, the LoRA
method provides reparameterizations to the model
parameters, and its low-rank weight matrices have
to participate in the forward calculations during
each generation step, causing higher latency.
Pooler From the above Equation 3, Pooler() is
responsible for extracting and aggregating the se-
mantic information from the input instructions into
a vector. For the vector generators to generate high-
quality vectors to regulate the behavior of the LLM
backbone, it is of great importance for the Pooler
to play its role. It is natural to use the most naive
pooler to take the last token’s hidden representa-
tions as the pooler’s output. However, with our
initial experiments, we find that applying a more
complex architecture for Pooler is beneficial.

*We use the "broadcasting notation" in the Equations 4 and
5. Take so that the (mn, n)-th entry of U is lu[n] @ U[m,n].

>From our preliminary experiments, we find that generat-
ing adjustment vectors for the other hidden states like K and
G will not result in clear performance gains.

®See the blog post for an in-depth explana-
tion of KV-cache: https://www.dipkumar.dev/
becoming-the-unbeatable/posts/gpt-kvcache/.

https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/
https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/

Inspired by the previous works of capsule net-
work (Sabour et al., 2017; Zhang et al., 2018; Aly
et al., 2019) in the field of both computer vision
and natural language processing, we now propose a
lightweight but effective pooler, called attentional
capsule pooler (AC pooler). Denote the input of
the pooler as h'. Being consistent with the termi-
nology of capsule networks (Sabour et al., 2017),
we call each hidden vector h; = h'[j] as an in-
put capsule (57 < Tj,s), and our target is to ex-
tract the semantic information of h’ into K output
capsules [c1, ..., ck], i.e., K fixed-length vectors,
where ¢j, € Rear and deap = dmodel/ K, k < K.
Denote the parameters of the k-th output capsule
as WP € Rdmodei*dean The information flowing
from h;- to ¢y, is denoted as m;j_:

o = WG,)

And then, c; is obtained by aggregating all the
incoming information flow:

Tins
Sk = Z N LMk,
j=1
2
Sk Sk
o sl &

L+ |skl? skl

where n; . is a scalar indicating how much infor-
mation is transferred from h; to c¢j. The previous
work (Zhang et al., 2018; Aly et al., 2019) usu-
ally initialized n; ;, with zeros and used an iterative
process to calculate its value, which inevitably in-
troduces high latency. In this work, we propose
initializing n; 5 with attention scores and obtaining
a more appropriate value via one iteration step. We
initialize a learnable vector v;, € R%modet for each
output capsule, and n; x is initialized with:

»

n; i = Softmax(m;), ©)

T
M = vih

where Softmax denotes the softmax normalization
among the j index. Now we have an initial value
for n; 1, and ¢ can be calculated via Equations
7 and 8. To adjust the values of n;, we now
calculates its value once again via

T I
My < Mk + Ckhj>

nj i = Softmax(m;). (10)

With the new values of n; ;, the output capsule ci,
is calculated again. Finally, the K output capsules
[c1, ..., cx] are concatenated to a single vector and
are the output of the capsule pooler.

4 Experiments

In this section, we conduct a series of experi-
ments to evaluate our PARADE method.

4.1 Baselines

We compare our PARADE framework with the
current SOTA PEFT baseline methods.
Representation modification We consider the
following methods for direct representation modifi-
cations: (a) BitFit (Ben-Zaken et al., 2021), which
fine-tunes the model by adding learnable vectors to
the hidden representations of LLMs as bias terms.
(b) (IA)? (Liu et al., 2022a) multiplies learnable
vectors to the hidden representations. For these
two methods, the learnable vectors are fixed across
different samples of the task at hand. To adjust
the number of tunable parameters for these two
methods, we first initialize the vectors in a smaller
dimension ' < dmodel» then we use a learnable
matrix to project the vectors to dimension d,;,oqe;-
Adapter-based tuning We consider the follow-
ing adapter tuning baselines: (1) Houlsby-Adapter
(Houlsby et al., 2019); (2) Parallel-Adapter pro-
posed by He et al. (2021); (3) AdapterDrop (Riicklé
et al., 2020); (4) Learned-Adapter (Zhang et al.,
2023c¢).

Prompt-based tuning For prompt-based tuning
methods, we compare with (a) P-tuning v2 (Liu
et al., 2021); (b) SPT (Zhu and Tan, 2023).

LoRA and its variants We consider the following
LoRA variants as baselines: (a) LoRA (Hu et al.,
2021); (b) AdaLoRA (Zhang et al., 2023b).
Other PEFT methods We also compare (1) SSP
(Hu et al., 2022), which combines different PEFT
methods.

The baselines are implemented using Transform-
ers (Wolf et al., 2020a) or their open-sourced codes.
The hyper-parameter settings for the baselines are
detailed in Appendix E.

4.2 Datasets and evaluation metrics

We compare our approach to the baselines on
the following benchmark tasks: (a) four benchmark
question-answering tasks: SQuAD (Rajpurkar
et al., 2016) and three tasks from the SuperGLUE
benchmark(Wang et al., 2019) (BoolQ, COPA,
and ReCoRD). (b) three sentence level tasks from
GLUE benchmark (Wang et al., 2018), SST-2, RTE,
QNLI. (c) a constrained natural language genera-
tion task E2E (Novikova et al., 2017). (d) a math-
ematical solving dataset GSM8K (Cobbe et al.,

Method Tunable | SST-2 RTE QNLI BoolQ COPA ReCoRD SQuAD
Params | (acc) (acc) (acc) (acc) (acc) (fl-em) (fl-em)
Baselines
P-Tuning 9.4M 924 797 919 84.1 89.6 89.2 86.5
P-tuning v2 9.4M 92.8 80.6 92.1 85.2 90.1 89.4 86.9
IDPG 8.4M 926 80.8 922 85.3 90.1 89.6 87.2
LPT 8.4M 928 813 923 85.7 90.2 89.9 87.4
" Housbly-Adapter | 9.4M | 929 806 924 85 904 898 873
Parallel-Adapters 9.4M 930 805 925 85.1 90.2 90.1 87.7
AdapterDrop 9.2M 92.7 80.1 92.3 84.5 89.8 89.8 87.4
Learned-Adapter 9.5M 936 815 924 86.2 90.4 90.1 87.6
~ LoRA | 10.0M | 936 826 925 8.7 907 902 877
AdalLoRA 10.0M 93.6 829 926 86.6 90.8 90.5 87.5
- ssp | 86M | 935 826 926 8.4 911 9.0 = 874
BitFit 10.9M 929 819 922 85.6 90.5 89.8 87.2
(IA)3 9.8M 93.0 827 925 86.4 90.7 90.1 87.6
- " ourproposed methods
PARADE ‘ 8.9M 942 837 932 87.4 91.8 91.0 88.3

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix B.7.

2021). (e) a SQL generation task WikiSQL (Zhong
etal., 2017). (f) Alpaca dataset (Taori et al., 2023)
for general-purpose instruction tuning, and MT-
Bench (Zheng et al., 2023), to evaluate the instruc-
tion tuning quality of LLMs. The dataset introduc-
tions, statistics, and prompt-response templates for
the above tasks are detailed in Appendix B. The
above tasks’ evaluation metrics or protocols are in
Appendix B.7.

4.3 Experiment Settings

Computing infrastures We run all our experi-
ments on NVIDIA A40 (48GB) GPUs.
Pretrained backbones The main experiments
uses most recent open-sourced LLM, LlaMA-2 7B
released by Meta (Touvron et al., 2023) as the pre-
trained backbone model. In the ablation studies,
we will also use GPT2-large model (Radford et al.,
2019), and Pythia-1.4B (Biderman et al., 2023).
Prediction heads When fine-tuning LIaMA-2
7B, we only consider the supervised fine-tuning
(SFT) setting (Ouyang et al., 2022). After receiv-
ing a prompt or instruction, all the predictions are
generated using the language modeling head (LM
head). No additional prediction heads are installed
for making categorical or numerical predictions.
For decoding during inference, we use beam search
with beam size 3.

Hyper-parameters for the PARADE framework
In our experiments, unless otherwise specified, we

set: (a) the bottleneck dimension r of the PARADE
vector generator to 12, (b) the number of capsules
K to 4, (c) the activation function ¢g*9 to the GeLU
activation function (Hendrycks and Gimpel, 2016).
(d) The W and W *? parameters are initialized
with uniformly with mean 0 and std 0.02. qu; is
zero initialized, and b3 is initialized with ones. Un-
der the above settings, our PARADE method will
introduce 8.9M tunable parameters to the LlaMA-2
7B backbone. The hyper-parameters for training is
specified in Appendix E.
Reproducibility We run each task under five
different random seeds and report the median per-
formance on the test set of each task.

Due to limited length, other experimental set-
tings for the baseline methods and the training pro-
cedure are in Appendix E.

4.4 Main results

Results on the GLUE and SuperGLUE tasks
The experimental results on the three classification
tasks and 4 question answering tasks are presented
in Table 1. We present the number of tunable pa-
rameters in the second column of Table 1. Table 1
reveals that our PARADE method outperforms the
baseline methods across all seven tasks, with com-
parable or fewer tunable parameters. In particular,
PARADE outperforms previous SOTA representa-
tion modification methods like (IA)? and strong
LoRA style baselines like LoRA and AdaLoRA

Method E2E GSMS8K WikiSQL
(rouge-1) (acc) (acc)
IA)? 70.2 34.3 84.2
LoRA 70.7 35.1 85.4
AdaLLoRA 70.8 35.2 85.2
" PARADE | 714 361 85.8

Table 2: Results for different PEFT methods on the
E2E, GSM8K, and WikiSQL benchmark. The backbone
LLM is LlaMA-2 7B. The metrics are explained in
Appendix B.7.

Method | Avg GPT-4 score () ROUGE-L (1)
_AdaLoRA | or o SuLL o
PARADE 7.23 52.6

Table 3: The performance of instruction tuning using
the AdaLoRA and PARADE methods. The backbone
model is LlaMA-2 7B. 1 means the metric is higher the
better.

with comparable parameters. These results demon-
strate that our method is good at downstream task
adaptation of large language models.

Results on the three specialized generation task
For the E2E, GSM8K, and WikiSQL benchmarks,
the results are reported in Table 2. The results
show that our PARADE method successfully out-
performs LoRA, AdalLoRA, and (IA)? on the three
tasks.

Results for general-purpose instruction tuning
After the LlaMA-2 7B is fine-tuned on the Alpaca
dataset with our PARADE and AdaLLoRA methods,
we utilize the 80 instructions in the MT-Bench as
the test set. We follow the current standard practice
of utilizing GPT-4 as an unbiased reviewer (Zheng
et al., 2023). The protocol of utilizing GPT-4 as
the reviewer and scorer is specified in Appendix
B.7. The average score provided by GPT-4 is pre-
sented in Table 3, along with the ROUGE-L scores
calculated by considering the GPT-4’s answers as
ground truth. Consistent with the previous experi-
ments (Table 1 and 2), our PARADE method out-
performs the AdaLoRA method in terms of the
GPT-4 scores and ROUGE-L, demonstrating that
PARADE can enhance the instruction tuning qual-
ity of large language models. A case study of an-
swers generated by different methods is presented
in Table 8, showcasing that PARADE leads to bet-
ter instruction-tuned LLMs.

Method Beam size Speed (tps) Memory cost (MiB)

B I T T T
LW s e e
PARADE | 3 5 15982

Table 4: The memory and speed of LlaMA-2 7B for
generating responses given the input instruction (Ap-
pendix F), with different PEFT methods.

4.5 Ablation studies and analysis

Analysis of the inference efficiency To demon-
strate the inference efficiency of our PARADE
method, we now compare the GPU memory and
generation speed of PARADE, LoRA, and (IA)3. In
this experiment, LORA parameters are not merged
to the backbone to mimic the single-LLM multi-
tenant setting (Chen et al., 2023). The detailed
settings for efficiency analysis are presented in Ap-
pendix F. We present two metrics for measuring
efficiency: (a) peak memory cost during generation.
(b) tokens generated per second (tps). The results
are presented in Table 4.

From Table 4, one can see that under the hyper-
parameter settings specified in the main experi-
ments (Table 1), our PARADE method can out-
perform (IA)? with comparable tunable parame-
ters, memory costs, and generation speed during
generation. We can also see that the PARADE is
much faster than LoRA. The speed advantages of
PARADE over LoRA come from the following fac-
tors: (a) our vector generators are lightweight and
efficient during inference. (c) The vectors, I, [y, 1y,
are only generated once the input instructions are
passed to the LLM and before generating the first
new token. The vectors will be reused in the follow-
ing generation steps with KV-cache, and the vector
generators are not called repetitively. In contrast,
the LoRA method requires the model to call the
LoRA modules at each generation step, resulting
in higher latency.

Ablation study of our PARADE framework
We now consider the following variants of PA-
RADE: (a) PARADE-1 uses the most direct pool-
ing operation of using the instructions’ last tokens
as the pooled tensor. (b) PARADE-2: substituting
our attentional capsule pooler to the one in (Zhang
et al., 2018) with one iteration step. (c) PARADE-
3 asks the vector generators to generate lg, li, y,
l4, and [, the adjusting vectors for Query, Key,
Value, Gate, and Up modules. We set » = 8 for

BoolQ
8.0
87.5
7.0
>
Q9
S 8.5
=
3
< .0
/s
&5 s —4— PARADE
S
4 -e- (1A)3
\ ¥
5ol ¢ —%- LoRA
5‘1 '\du Jdll '\OEIM ZObM

Tunable Params

(a) BoolQ

E2E

- —— PARADE
-e- (1A)3
—-¥ LoRA

3‘4 1dM SdM WOhM ZOIHM
Tunable Params

(b) E2E

Figure 2: Performances under different tunable parameter budgets. The z-axis represents the number of tunable
parameters, and the y-axis represents the performance score.

PARADE-3 so that the number of added tunable
parameters is 9.8M. (d) PARADE-4 asks the vector
generators to generate Iy, [,,, the adjusting vectors
for the Query and Value modules. We set r = 24
for PARADE-4 so that the number of added tunable
parameters is 9.4M. The BoolQ, E2E, and SQuAD
tasks’ experimental results are reported in Table 6
of Appendix G. The results show that our primary
model, PARADE (as in Table 1), outperforms the
four variants, demonstrating that (a) our attentional
capsule pooler is beneficial for the downstream
task performance by providing better aggregation
of the input instruction’s semantic information. (b)
PARADE-2 fails since (Zhang et al., 2018) requires
multiple iterations to calculate the proper informa-
tion flow coefficients. (c) The comparison between
PARADE and PARADE-3 shows that providing
adjusting vectors for more modules does not lead
to apparent performance gain. (c) The comparison
between PARADE and PARADE-4 shows that not
providing adjusting vectors for the FFN modules
leads to worse downstream performance.

Visualization of the attention maps under PA-
RADE In this section, we visualize the atten-
tion maps for the O-th and 16-th attention heads
on the 1-th, 9-th, 17-th and 25-th Transformer lay-
ers, with PARADE or with (IA)3, in Figure 3, 4,
5 and 6. Compared to the (IA)? method, our PA-
RADE method makes the LLM focus less attention
on the ending token of the system prompt. It en-
courages more attention among input instructions’
token pairs.

Comparisons under different budgets of tunable
parameters We vary the budget of tunable pa-
rameters for PARADE by modifying the values of

r = 12 to {3, 6, 24, 48, 96, 192}. We also vary
the (IA)® and LoRA methods’ tunable parameter
numbers. The experimental results on the BoolQ
and E2E tasks are presented in Figure 2(a) and
2(b). The results show that under different tunable
parameter budgets, our PARADE method can con-
sistently outperform the LoRA and (IA)? methods.
Ablation on the pretrained backbones Our
main experiments are conducted on the LlaMA-2
7B model. To demonstrate the broad applicabil-
ity of our method, we now conduct experiments
on GPT2-large and Pythia-1.4b. The results are
reported in Table 7. We can see that on these two
backbones, our method can also outperform the
baseline methods.

5 Conclusion

This work presents the Prompt Aware
Representation ADjustmEnt (PARADE), a novel
method for parameter-efficient fine-tuning of large
language models. First, we install a vector gener-
ator to generate adjusting vectors for regulating
the behavior of the LLM backbones. The vector
generator takes the hidden states of the input
instructions as inputs and contains a lightweight
bottleneck architecture. PARADE is more efficient
than LoRA during inference since it works
seamlessly with the KV-cache mechanism. Second,
in order to enhance the performance of PARADE,
we propose an attentional capsule-based pooler
that can better aggregate semantic information
from the input instructions. Experiments on
various tasks demonstrate that our PARADE
method outperforms the baseline methods while
being efficient for inference.

Limitations

We showed that our proposed method can greatly
improve the performance of parameter-efficient tun-
ing on diverse tasks and different pretrained models
(i.e., LlaMA-2 7B, GPT2-large, Pythia-1.4b), while
maintaining efficiency during inference. However,
we acknowledge the following limitations: (a) the
more super-sized open-sourced LL.Ms, such as
LlaMA-2 13B and 70B, are not experimented due
to limited computation resources. (b) Other tasks
in natural language processing, like information
extraction, were also not experimented. But our
framework can be easily transferred to other back-
bone architectures and different types of tasks. It
would be of interest to investigate if the superiority
of our method holds for other large-scaled back-
bone models and broader types of tasks. And we
will explore it in future work.

Ethics Statement

The finding and proposed method aims to im-
prove the parameter-efficient tuning in terms of
performance and efficiency. The used datasets are
widely used in previous work and, to our knowl-
edge, do not have any attached privacy or ethical
issues. In this work, we have experimented with
LlaMA-2 7B, a modern large language model. As
with all LLMs, LlaMA-2’s potential outputs can-
not be predicted in advance, and the model may in
some instances produce inaccurate, biased or other
objectionable responses to user prompts. However,
this work’s intent is to conduct research on differ-
ent fine-tuning methods for LLMs, not building
applications to general users. In the future, we
would like to conduct further testing to see how our
method affects the safety aspects of LLMs.

References

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319-7328,
Online. Association for Computational Linguistics.

Rami Aly, Steffen Remus, and Chris Biemann. 2019.
Hierarchical multi-label classification of text with
capsule networks. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv, abs/2106.10199.

Stella Biderman, Hailey Schoelkopf, Quentin G. An-
thony, Herbie Bradley, Kyle O’Brien, Eric Halla-
han, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. ArXiv, abs/2304.01373.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, Arvind Krishnamurthy University of Washing-
ton, and Duke University. 2023. Punica: Multi-tenant
lora serving. ArXiv, abs/2310.18547.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv, abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine-
tuning of Quantized LLMs. arXiv e-prints, page
arXiv:2305.14314.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. ArXiv, abs/2203.06904.

Wensheng Gan, Shicheng Wan, and Philip S. Yu. 2023.
Model-as-a-service (maas): A survey. 2023 IEEE In-
ternational Conference on Big Data (BigData), pages
4636-4645.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884-4896, Online. Association for Computational
Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
ArXiv, abs/2110.04366.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv: Learning.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://api.semanticscholar.org/CorpusID:265128707
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-

tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022. Sparse structure search for parameter-efficient
tuning. ArXiv, abs/2206.07382.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.
C-eval: A multi-level multi-discipline chinese eval-

uation suite for foundation models. arXiv preprint
arXiv:2305.08322.

Shibo Jie and Zhifang Deng. 2022. Convolutional by-
passes are better vision transformer adapters. ArXiv,
abs/2207.07039.

Jaeyoung Kim, Sion Jang, Sungchul Choi, and Eun-
jeong Lucy Park. 2018. Text classification using
capsules. ArXiv, abs/1808.03976.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-based ran-
dom matrix adaptation. ArXiv, abs/2310.11454.

Tuan Le, Marco Bertolini, Frank No’e, and Djork-Arné
Clevert. 2021. Parameterized hypercomplex graph
neural networks for graph classification. In Interna-
tional Conference on Artificial Neural Networks.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. ArXiv,
abs/2205.05638.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. ArXiv, abs/2110.07602.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.
P-tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Annual Meeting of
the Association for Computational Linguistics.

10

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
2022. Peft: State-of-the-art parameter-efficient fine-
tuning methods. https://github.com/huggingface/
peft.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Nafise Sadat Moosavi, Quentin Delfosse, Kristian Ker-
sting, and Iryna Gurevych. 2022. Adaptable adapters.
In North American Chapter of the Association for
Computational Linguistics.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201-206, Saarbriicken, Germany. Association
for Computational Linguistics.

OpenAl. 2023. GPT-4 Technical Report. arXiv e-prints,
page arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

. J. Pawan and Jeny Rajan. 2022. Capsule networks
for image classification: A review. Neurocomputing,
509:102-120.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.48550/arXiv.2303.08774
https://api.semanticscholar.org/CorpusID:251702652
https://api.semanticscholar.org/CorpusID:251702652
https://api.semanticscholar.org/CorpusID:251702652
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the efficiency
of adapters in transformers. In Conference on Empir-
ical Methods in Natural Language Processing.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton.
2017. Dynamic routing between capsules. ArXiv,
abs/1710.09829.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak,
Debajyoti Datta, Jonathan D. Chang, Mike Tian-
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng-Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Févry, Jason Alan
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali
Bers, Thomas Wolf, and Alexander M. Rush. 2021.
Multitask prompted training enables zero-shot task
generalization. ArXiv, abs/2110.08207.

Saurabh Srivastava, Prerna Khurana, and Vartika Tewari.
2018. Identifying aggression and toxicity in com-
ments using capsule network. In TRAC@COLING
2018.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. ArXiv, abs/2206.06522.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

11

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. ArXiv, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2021. Finetuned language mod-
els are zero-shot learners. ArXiv, abs/2109.01652.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020a. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of the 2020
conference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020b. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Ligiang Xiao, Honglun Zhang, Wenqing Chen,
Yongkun Wang, and Yaohui Jin. 2018. Mcapsnet:
Capsule network for text with multi-task learning. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. ArXiv,
abs/2312.12148.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. ArXiv, abs/2308.03303.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Xi Chen,
Wei Zhang, and Huajun Chen. 2018. Attention-based
capsule networks with dynamic routing for relation
extraction. ArXiv, abs/1812.11321.

https://api.semanticscholar.org/CorpusID:3603485
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:59336566
https://api.semanticscholar.org/CorpusID:59336566
https://api.semanticscholar.org/CorpusID:59336566
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. ArXiv, abs/2006.05987.

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo
Zhu. 2023c. Learned adapters are better than man-
ually designed adapters. In Annual Meeting of the
Association for Computational Linguistics.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schiitze. 2020. Masking as an efficient alterna-
tive to finetuning for pretrained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2226-2241, Online. Association for Computa-
tional Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
Survey of Large Language Models. arXiv e-prints,
page arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv e-prints, page arXiv:2306.05685.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

Wei Zhu and Ming Tan. 2023. SPT: Learning to se-
lectively insert prompts for better prompt tuning.
In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
11862—-11878, Singapore. Association for Computa-
tional Linguistics.

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,
and Buzhou Tang. 2023. PromptCBLUE: A Chinese
Prompt Tuning Benchmark for the Medical Domain.
arXiv e-prints, page arXiv:2310.14151.

A Additional related works
A.1 Adapter-based tuning.

One of the most important research lines of
PEFT is adapter-based tuning. Adapter (Houlsby
et al., 2019) inserts adapter modules with bottle-
neck architecture between every consecutive Trans-
former (Vaswani et al., 2017) sublayers. Adapter-
Fusion (Pfeiffer et al., 2021) only inserts sequential

12

adapters after the feed-forward module. Adapter-
based tuning methods have comparable results with
model tuning when only tuning a fraction of the
backbone model’s parameter number. Due to their
strong performance, a branch of literature has in-
vestigated the architecture of adapters in search
of further improvements. He et al. (2021) ana-
lyze a wide range of PETuning methods and show
that they are essentially equivalent. They also pro-
pose the general architecture of PEFT, and derive
the Parallel Adapter which connects the adapter
modules in parallel to the self-attention and MLP
modules in the Transformer block. AdapterDrop
(Riicklé et al., 2020) investigates the efficiency of
removing adapters from lower layers. Adaptive
adapters (Moosavi et al., 2022) investigate the acti-
vation functions of adapters and propose to learn
the activation functions of adapters via optimiz-
ing the parameters of rational functions as a part
of the model parameters. Compacter (Mahabadi
et al., 2021) uses low-rank parameterized hyper-
complex multiplication (Le et al., 2021) to com-
press adapters’ tunable parameters. LST (Sung
et al., 2022) improves the memory efficiency by
forming the adapters as a ladder along stacked
Transformer blocks, and it enhances the adapter
module by adding a self-attention module to its
bottleneck architecture. (Sung et al., 2022; Jie and
Deng, 2022) try to add different encoding opera-
tions, like self-attention operations and convolu-
tions between the bottleneck structure of adapters,
and achieve better performances. Learned-Adapter
(Zhang et al., 2023c¢) builds upon the above adapter-
based methods and enhance the performance of
adapter tuning by automatically learning better ar-
chitectures for adapters.

A.2 Literature on the LoRA methods

Since LoRA is the most popular PEFT method
in the era of large language models, there are many
works that are orthogonal to AdaLoRA, SoRA and
our work that are devoted to improve LoRA on
many different aspects. QLoRA (Dettmers et al.,
2023) proposes a novel quantization method that
can significantly reduce the memory consumptions
of LLMs during LoRA fine-tuning. LoRA-FA
(Zhang et al., 2023a) freezes parts of the randomly
initialized LoRA matrices. (d) VERA (Kopiczko
et al., 2023) investigate whether one could froze
the randomly initialized LoRA matrices and only
learns a set of scaling vectors. Tying LoRA matri-

https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151

Datasets ~ #train #dev #test |} Type Labels Metrics
SuperGLUE tasks
BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choicel, choice2 acc
ReCoRD 101k 1k 7.4k - Question Answering - fl-em
GLUE tasks
SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc
QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks
SQuAD 87k 1k 5.9k - Question Answering - fl-em
E2E 42k 4.6k 4.6k - NLG - rouge-1
GSMSK 7K 0.5K 1K - Math reasoning - acc
WikiSQL 61k 9K 17K - SQL generation - acc
Alpaca 51k - - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. || is the

number of classes for a classification task.

ces across layers are also investigated by VERA.

B Appendix for the datsets and evaluation
metrics

B.1 Datasets from GLUE and SuperGLUE

We experiment on three tasks from the GLUE
(Wang et al., 2018) benchmark: (a) (a) a senti-
ment classification task, SST-2. (b) two benchmark
natural language inference tasks, RTE and QNLI.
We also experiment with three question-answering
tasks: (a) two question answering tasks in the for-
mat of binary choices, COPA and BoolQ. (b) A
SQuAD (Rajpurkar et al., 2016) style question an-
swering task, ReCoRD.

Since the original test sets are not publicly
available for these tasks, we follow Zhang et al.
(2020); Mahabadi et al. (2021) to construct the
train/dev/test splits as follows to ensure a fiar com-
parison: (a) for datasets with fewer than 10k sam-
ples (RTE, COPA, BoolQ), we divide the original
validation set in half, using one half for validation
and the other for testing. (b) for larger datasets, we
split 1k samples from the training set as the devel-
opment set, and use the original development set
as the test set. The detailed statistics of the GLUE
and SuperGLUE benchmark tasks is presented in
Table 5.

B.2 The SQuAD task

Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) is a reading comprehension
dataset, consisting of questions posed by crowd-
workers on a set of Wikipedia articles, where the

13

answer to every question is a segment of text, or
span, from the corresponding reading passage, or
the question might be unanswerable. This task is
one of the most widely studied question answering
task in the field.

In this work, we use the v1.1 version of SQuAD.
Since the original test sets are not publicly avail-
able for these tasks, we follow Zhang et al. (2020);
Mahabadi et al. (2021) and split 1k samples from
the training set as the development set, and use
the original development set as the test set. The
detailed statistics of this task is presented in Table
5.

B.3 E2E benchmark

The E2E benchmark dataset for training end-to-
end, data-driven natural language generation sys-
tems in the restaurant domain. It asks a model to
generate natural utterances based on a set of given
key contents. This dataset has a 42061/4672/4693
train/dev/test split.

B.4 GSMSK benchmark

GSMBSK is a dataset of 8.5K high quality linguis-
tically diverse grade school math word problems
created by human problem writers. The dataset
is segmented into 7.5K training problems and 1K
test problems. These problems take between 2 and
8 steps to solve, and solutions primarily involve
performing a sequence of elementary calculations
using basic arithmetic operations (+— X +) to reach
the final answer. A bright middle school student
should be able to solve every problem. It can be

used for multi-step mathematical reasoning. We
randomly select 0.5k samples from the training set
to be the dev set.

B.5 WikiSQL dataset

WikiSQL consists of a corpus of 87,726 hand-
annotated SQL query and natural language ques-
tion pairs. These SQL queries are further split into
training (61,297 examples), development (9,145
examples) and test sets (17,284 examples). It can
be used for natural language inference tasks related
to relational databases. In this work, we will ask
the LLMs to generate SQL queries based on the
given natural language questions.

B.6 Instruction tuning

Instruction tuning is an important method to im-
prove the general capabilities of large language
models (Ouyang et al., 2022). With the rise of
large language models in the scale of 10B param-
eters or more, like GPT-3, TS5, PaLLM, researchers
have actively explored the few-shot or zero-shot
capabilities of these models. (Mishra et al., 2021)
find that fine-tuning these LLMs on a large scale
datasets containing hundreds of NLP tasks signif-
icantly improves the zero-shot performances on
unseen tasks, establishing the scaling law of task
numbers. The previous works like (Wei et al., 2021)
and TO (Sanh et al., 2021) establishes the instruc-
tion tuning datasets by transforming the traditional
NLP tasks into a unified prompt format. Instruct-
GPT (Ouyang et al., 2022) conducts instruction
tuning using the dataset constructed based the user
queries from the OpenAl API users. Note that this
work is also a seminal work for human feedback
learning with reinforcement learning. However, the
complete instruction tuning dataset from (Ouyang
et al., 2022) remains closed. With the launch of
ChatGPT, (Taori et al., 2023) (Alpaca) constructs
an instruction tuning dataset with diverse topics
using the self-instruct techniques.

For our experiment, we employ the Alpaca
dataset (Taori et al., 2023) for instruction tuning.
Specifically, we employs its cleaned version’. This
dataset comprises 51K instructions and demonstra-
tions, and is suitable for instruction tuning. The
cleaned version corrects multiple issues such as
hallucinations, merged instructions, and empty out-
puts.

"https://huggingface.co/datasets/yahma/
alpaca-cleaned

14

B.7 Evaluation metrics/protocols

For the three GLUE tasks we experiment on, we
report accuracy (denoted as acc). For ReCoRD, we
report the average of the F1 score and the exact
match score (denoted as f1-em). For the BoolQ
and COPA tasks, we report accuracy. The above
choices of evaluation metrics strictly follow (Wang
et al., 2018) and (Wang et al., 2019).

For the SQuAD dataset, we also report the av-
erage of the F1 score and the exact match score
(denoted as f1-em).

Following (Novikova et al., 2017), we report the
ROUGE-L metric (denoted as rouge-1). We rely on
the HuggingFace Evaluate package® for computing
this metric.

For the GSMSK task, we will directly consider
the correctness of the final answers. Thus, we re-
port accuracy (denoted as acc).

For the WikiSQL, we will consider the correct-
ness of the generated SQL queries. A predicted
SQL query is correct if and only if it can be exe-
cuted and obtains the same results with the ground
truth.

For evaluating the quality of instruction tuned
LlaMA-2 7B, we follow the current common prac-
tice of utilizing GPT-4 as a unbiased reviewer
(Zheng et al., 2023). 80 instructions from the MT-
Bench is set as a test set. We generate model re-
sponses from a fine-tuned model with beam size 5
with the generation function in Huggingface Trans-
formers (Wolf et al., 2020a). Then we compare
AdalLLoRA and PARADE’s answers with GPT-4.
For each instruction in MT-Bench, GPT-4 (Ope-
nAl, 2023) is asked to write a review for both an-
swers from the two methods, and assigns a quanti-
tative score on a scale of 10 to each response. The
prompts of instructing GPT-4 for evaluation is pre-
sented in Appendix D. ROUGE-L scores computed
by considering the answers generated by GPT-4 as
the ground truth.

C Prompt templates for fine-tuning
LlaMA-2 7B

Since we fine-tune LIaMA-2 7B without intro-
ducing task-specific prediction heads, we need to
transform all the tasks into a prompt-response for-
mat. First, following LlaMA-2 (Touvron et al.,
2023), we use a system prompting template, in
which <query> denotes the user input, <response>

8https://huggingface.co/docs/evaluate/index

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/docs/evaluate/index

denotes the assistants’ targeted responses. All the
samples will be input into this template before be-
ing fed to the LLMs.

<s>[INST] <<SYS>>

You are a helpful, respectful and honest
assistant.

<</SYS>>

<query>[/INST]<response></s>

Now we present the prompt-response template
for each task.
Templates for RTE and QNLI Since these two
tasks are NLI tasks, the samples in them consists
of two input text, [sentencel] and [sentencel], and
a label [label_name] (entailment or not entailment).
Thus, we use the following templates:

Template for prompt:

sentence 1: [sentencel]

sentence 2: [sentencel]

Are sentence 1 and sentence 2 have
entailment relation or not?

Template for response:
[label_name]

Templates for SST-2 The samples in this task con-
sists of one input text, [sentence], and a label [la-
bel_name] (positive or negative).

Template for prompt:

[sentence]
The sentiment of the given sentence is:

Template for response:
[label_name]

Templates for BoolQ The samples in this task

consists of a reference document, [doc], a query,

[query], and a label [label_name] (yes or no).
Template for prompt:

Reference document:
[doc]

Question:

Lquery]

Template for response:
[label_name]

Templates for COPA The samples in this task con-
sists of a premise, [premise], two choices, [choicel]
and [choice2], a query, [query], and a label [la-
bel_name] (1 or 2, indicating which choice is con-
sistent with the premise).

Template for prompt:

15

Premise:
[premise]
Choice 1:
Choice 2:
Question:
[query]

[choicel]
[choice2]

Template for response:
[label_name]

Templates for ReCoRD and SQuAD The sam-
ples in these two tasks consist of a context docu-
ment, [context], a question, [query], and a answer-
ing span, [answer].

Template for prompt:
Context:
[context]
Question:
[query]

Template for response:
Lanswer]

Templates for E2E The samples in this task con-
sists of a reference [ref], consisting required infor-
mation, and a targeted response, [target], which is
a customer review written according to the refer-
ence’s contents.

Template for prompt:

Reference:

[ref]

Generate a customer review following the
given reference.

Template for response:
[target]

Templates for GSM8K The samples in this task
consists of a math question [question], and a tar-
geted response, [target] which is the reasoning or
calculation steps for the math question.

Template for prompt:

Answer the following math quesition:
[ref]
Instruction: please think step by step.

Template for response:
[target]

Templates for WikiSQL The samples in this task
consists of a natural language query [query], and
information for the SQL table [table_info], and a
targeted response containing the SQL query, [tar-
get] which is the reasoning or calculation steps for
the math question.

Template for prompt:

Answer the following query by writing a
SQL query on the given table:

[query]

Table information:

[table_info].

Template for response:

[target]

D Prompt templates for GPT-4
evaluations

In this work, we utilize the powerful LLM GPT-4
(OpenAl, 2023) as the evaluator for comparing the
instruction tuning quality. As a reviewer, GPT-4
will receive a query [query], two responses, [re-
sponsel] and [response2], from two assistants. We
will ask GPT-4 to write a review for each response,
assessing the quality of the response, and then ask
GPT-4 to assign a score on a scale of 10 to each
response.

Template for prompt:

Task Introduction

you will be given a query, and two responses
from two assistants,

could you compare the two responses,

and do the following:

(1) write a concise review for each
assistant's response, on how well the
response answers the query, and whether
it will be helpful to humans users, and any
issues in the response;

(2) assigns a quantitative score on a scale
of 10 to each response, reflecting

your assessment of the two responses
Query:

Lquery]

Response 1 from assistant 1:

[responsel]

Response 2 from assistant 2:

[response2]

E Appendix for Experimental settings

Here, we provide more details for experimental
settings.
Hyper-parameters for the baseline PEFT meth-
ods For the P-tuning method, the soft prompts’
length is 64, and the soft prompts is first initialized
with dimension 36, and then a learnable projection
layer projects it to the same dimension with the
LlaMA-2 backbone. For P-tuning V2, the number
of prompt tokens at each layer is set to 64. For LPT

16

and IDPG, the bottleneck dimension is set to 1024,
and the number of soft tokens is set to 4.

For the adapter-based methods, Houlsby-
Adapter and AdapterDrop, the bottleneck dimen-
sion is set to 18, and the adapter modules are added
on the self-attention and feed-forward module. For
the Parallel-Adapter and Learned-Adapter, the bot-
tleneck dimension is set to 36, and the adapter
modules are connected to the whole block.

For LoRA, the initial rank at each module is set
to 4. For AdaLLoRA, the initial rank at each module
is set to 8, and half of the rank budget is pruned
during fine-tuning.

We adjust the sparsity for SSP so that the number
of tunable parameters is comparable with PARADE
and the other baselines.

For BitFit, the bias vectors are initialized with

dimension 8, and then a learnable projection layer
projects it to the same dimension with the LIaMA-
2 backbone. For (IA)3, the activation adjusting
vectors are added the Query, Key, and Up activa-
tions. The adjusting vectors are initialized with
dimension 16, and then a learnable projection layer
projects it to the same dimension with the LIaMA-2
backbone.
Training settings for PEFT methods We use
the HugginFace Transformers (Wolf et al., 2020b),
PEFT (Mangrulkar et al., 2022), or the original
code repositories for implementing all the methods,
and for training and making predictions. For fine-
tuning LlaMA-2 7B model, the maximum sequence
length is set to 2048. The maximum training epoch
is set to 10. The batch size is set between 16 for
task with less than 10k training set, and 128 oth-
erwise. We use AdamW as the optimizer with a
linear learning rate decay schedule and 6% of the
training steps for warm-up. The learning rate is set
to le-4. The other hyper-parameters are kept the
same with (Wolf et al., 2020b). In every 200 steps,
the model is evaluated on the dev set. Patience is
set to 10, that is, if the model does not achieve a
lower development set loss for 10 evaluation runs,
the training stops early. The best checkpoint on the
dev set is used to run predictions on the test set.

F Appendix: settings for efficiency
analysis

In the Table 4 of the main contents, we conduct
analysis on the PARADE and other PEFT methods’
memory and speed during inference.

The example instruction we used in this analysis

is presented below.

Generate a blog post of 500 words or less
that discusses the following news article:

The Department of Child Protection (DCP)
must pay compensation and medical expenses
to a youth worker who developed pericarditis
after getting a Covid booster under a
workplace vaccination directive, the South
Australian Employment Tribunal has ruled.

In a decision handed down on 15 January
2024, the Tribunal determined that Daniel
Shepherd’s employment was “a significant
contributing cause” to his injury, which
has since rendered him incapable of
performing his role at work.

Shepherd got a Covid booster in February
2022 as a requirement for his ongoing
employment with the DCP. The DCP admitted
that Shepherd’s pericarditis had been
caused by the booster, but denied
responsibility for the injury, arguing that
it did not arise from Shepherd’s employment,
but from a lawful State Government Public
Health Order (PHO), issued under the
Emergency Management Act 2004 (EMA).

We restrict the number of newly generated to-
kens to be 32 under the method of beam search with
beam size equal to 1 or 3. The length of the initial
instruction is 278 after adding the soft prompts and
special tokens under the IAPT method, and 274
under the LoRA method. The LLM backbone is
LlaMA-2 7B model. We run the generation process
for 100 times to calculate the average metric values,
reducing the randomness.

G Ablation on the PARADE framework

In the main contents, we consider 4 variants of
the PARADE method, and the experiments on the
BoolQ, E2E and SQuAD tasks are provided in 6

H Ablation on the pretrained backbones

Our main experiments are conducted on the
LIaMA-2 7B model. To demonstrate that our
method works well regardless of the backbone mod-
els, we now conduct experiments on the GPT-2
large (774M parameters) and Pythia-1.4b models.
The other experimental settings are kept the same

17

BoolQ E2E SQuAD

Method (acc) (rouge-l) (fl-em)
PARADE 87.4 71.4 88.3
PARADE-1 86.6 70.8 87.8
PARADE-2 | 86.3 70.4 87.6
PARADE-3 | 87.1 71.0 88.1
PARADE-4 | 86.5 70.3 87.5

Table 6: The comparison of PARADE’s variants on
the BoolQ, ReCoRD, and SQuAD tasks. The backbone
model is LlaMA-2 7B.

BoolQ E2E SQuAD
Method (acc) (rouge-l) (fl-em)
Results for GPT-2 large
(IA)3 67.4 66.2 43.3
LoRA 67.5 66.6 43.8
AdalLoRA | 67.6 66.5 43.7
" PARADE | 681 669 443
Results for Pythia-1.4b large
(IA)? 71.3 67.9 49.8
LoRA 71.6 68.4 50.4
AdaLLoRA | 71.5 68.5 50.4
" PARADE | 722 689 511

Table 7: Results for different PEFT methods on the
BoolQ, E2E and SQuAD benchmarks. The backbone
LMs are GPT2-large and Pythia-1.4b. The metrics are
explained in Appendix B.7.

with the main experiments (Table 1). We conduct
experiments on the BoolQ, E2E and SQuAD tasks.
The results are reported in Table 7.

I Visualization of the attention maps

In this section, we visual the attention maps for
the first 64 tokens. The backbone model is LIaMA-
2 7B at the 1-th, 9-th, 17-th and 25-th attention
heads for the 1-th Transformer layer in Figure 3,
for the 9-th Transformer layer in Figure 4, for the
17-th Transformer layer in Figure 5, for the 25-th
Transformer layer in Figure 6.

J Case studies of Instruction tuning

In the Section 4.4 of the main content, we
present the overall performance of PARADE and
AdalLoRA on the MT-Bench, after fine-tuning
LIaMA-2 7B on the Alpaca dataset. Now we
present a concrete examples in Table 8 to show-
case the Superiority of PARADE.

Query

Embrace the role of Sheldon from "The Big Bang Theory" as we delve into our
conversation. Don’t start with phrases like "As Sheldon". Let’s kick things off
with the following question: "What is your opinion on hand dryers?"

PARADE’s response

Responses

GPT-4’s
comments

GPT-4 score

Oh, hand dryers. *adjusts glasses* Well, Sheldon’s opinion on hand dryers is
that they are an abomination. *pauses* I mean, think about it. You’re in a public
restroom, minding your own business, and then you’re forced to use a hand
dryer. *shudders* It’s just so... uncivilized. *adjusts glasses again* I mean,
what’s wrong with a good ol” fashioned paper towel? *chuckles* Now that’s
civilized. *adjusts glasses once more* But hey, to each their own, right?
smirks* What’s your take on hand dryers, my friend?

Response 1 Review: Assistant 1 effectively embraces the persona of Sheldon
with an engaging and character-consistent response. The use of mannerisms
such as adjusting glasses and pausing, along with the emotional expression
("shudders," "chuckles," "smirks"), adds to the authenticity of the portrayal.
The content is presented in a conversational tone that invites further discussion
by asking for the user’s opinion at the end. However, while entertaining,
Assistant 1’s response does not provide factual information or strong
arguments to support Sheldon’s (or their own) view on hand dryers; it stays
more within a subjective perspective that reflects personal distaste rather than
objective reasoning.

Adal.oRA’s response

Responses

GPT-4’s
comments

GPT-4 score

As Sheldon, I have a strong opinion on hand dryers. I believe that paper towels
are superior to hand dryers for several reasons. First and foremost, paper towels
are more hygienic than hand dryers. Hand dryers can spread germs and bacteria,
while paper towels are disposable and can be thrown away after use.
Additionally, hand dryers can be loud and disruptive, while paper towels are
quieter and less intrusive. Finally, paper towels are more environmentally
friendly than hand dryers, as they require less energy to operate and produce
less waste.

Response 2 Review: Assistant 2 begins by disregarding instructions not to start
with phrases like "As Sheldon", which indicates either an oversight or
misunderstanding of the task requirements. Despite this error, Assistant 2 offers
a well-structured argument against hand dryers from what could be perceived as
Sheldon’s point of view, citing hygiene concerns, noise levels, and environmental
impact as reasons paper towels might be considered superior. This response
includes logical reasoning that users can follow easily but lacks Sheldon’s
unique voice and personality traits which were part of what was asked for in
embodying his role.

Table 8: An example showcasing that the fine-tuning quality of PARADE is higher than AdaLoRA.

18

(a) 1-th head

(c) 9-th head

(e) 17-th head

Figure 3: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 1-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones

from LlaMA-2 7B with (IA)3.

19

loyer sl ot hesd 1

(b) 1-th head

(d) 9-th head

oyer Ll atn head 17

(f) 17-th head

930l atin bead 1 B loyer .5l atn hesd 1

(a) 1-th head (b) 1-th head

(c) 9-th head (d) 9-th head

ayer 9.5 atin head 17 . oyer sl atn hesd 17

(e) 17-th head (f) 17-th head

Figure 4: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 9-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

20

ayer 17,0t bead 1 B oper 17564 atn b 1

(a) 1-th head (b) 1-th head

ayer 17501 atin pesd 9 . oyer 17501 atn pesd 9

(c) 9-th head (d) 9-th head

loyer 1756 atn head 17

(e) 17-th head (f) 17-th head

Figure 5: The attention maps of LIaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 17-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

21

ayer25 st bead 1 B loyer 2556 atn e 1

(a) 1-th head (b) 1-th head

ayer 25 501 atin pead 9 . loyer 2550 atn pesd 9

(c) 9-th head (d) 9-th head

loyer 2556 aten head 17

(e) 17-th head (f) 17-th head

Figure 6: The attention maps of LIaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 25-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

22

