
PARADE: Parameter-Efficient Fine-tuning with Prompt Aware
Representation ADjustmEnt

Anonymous ACL submission

Abstract

Despite the presence of many competitive001
PEFT methods like LoRA, we still need a002
PEFT method that is efficient under the single-003
backbone multi-tenant setting while perform-004
ing competitively in the downstream tasks. In005
this work, we propose a novel PEFT method,006
Prompt Aware Representation ADjustmEnt007
(PARADE). First, we propose to install a008
lightweight vector generator at each Trans-009
former layer to generate vectors that will010
modify the hidden states in the multi-head011
self-attention (MHSA) and position-wise feed-012
forward (FFN) modules and, as a result, modu-013
late the behaviors of the pre-trained backbone.014
Second, the vector generators are modules with015
a bottleneck architecture consisting of a pool-016
ing operation, two linear projections, and an ac-017
tivation function. To enhance the downstream018
performance of vector generators, we propose019
an attention-based capsule network as the pool-020
ing operation, which can effectively summa-021
rize the semantic information in the input in-022
structions. We have conducted experiments023
on various tasks, and the experimental results024
demonstrate that: (a) our PARADE method can025
outperform the recent baselines with compa-026
rable tunable parameters. (b) Our PARADE027
method is more efficient than LoRA under the028
single-backbone multi-tenant setting.1029

1 Introduction030

Large language models (LLMs) have been031

emerging and achieving state-of-the-art (SOTA) re-032

sults not only on a variety of natural language pro-033

cessing tasks (Qin et al., 2023; Zhu et al., 2023) but034

also on many challenging evaluation tasks (Huang035

et al., 2023; Li et al., 2023) such as question answer-036

ing in different domains, reasoning, mathematics,037

safety, and instruction following. Despite LLMs be-038

coming general task solvers, fine-tuning still plays039

1Codes and fine-tuned models will be open-sourced to
facilitate future research.

a vital role in efficient LLM inference and control- 040

ling the style of the LLMs’ generated contents.2 041

Fine-tuning such large models by full parameters 042

is prohibitive since it requires a large amount of 043

GPU memory and computations. Thus, parameter- 044

efficient fine-tuning (PEFT) (Zhang et al., 2023c; 045

Zhao et al., 2023) has raised much attention in the 046

research field since in PEFT, the tunable parame- 047

ters are often less than 1% of the LLMs and the 048

computation costs will be significantly decreased. 049

Recently, there has also been a trend to host an 050

LLM as a service (MaaS) (Gan et al., 2023), and 051

different tenants can specialize the LLM with their 052

privately owned PEFT modules (multi-tenant set- 053

ting) (Chen et al., 2023). 054

Many PEFT methods have been validated to be 055

effective across various models and tasks, often 056

yielding comparable results with full-parameter 057

fine-tuning (He et al., 2021; Zhu and Tan, 2023; 058

Zhang et al., 2023c). Among these PEFT meth- 059

ods, the reparameterization-based method low-rank 060

adaptation (LoRA) (Hu et al., 2021) is widely ap- 061

plied in the era of LLMs. Although LoRA is ef- 062

fective and can bring stable performance with the 063

original setting in Hu et al. (2021), it has a clear 064

drawback: it has to add LoRA modules to multiple 065

weights of the Transformer layer and introduce sig- 066

nificant additional latency in every generation step 067

under the multi-tenant setting. Thus, it is of cen- 068

tral importance to develop a novel PEFT method 069

that introduces minimum latency during generation 070

and still can perform competitively in downstream 071

tasks. 072

In this work, we propose a novel PEFT method 073

called Prompt Aware Representation ADjustmEnt 074

(PARADE) (depicted in Figure 1). Our method 075

fine-tuned the LLMs by directly modifying the hid- 076

den representations in the model via multiplying 077

2Recently, OpenAI also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.

1

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

Figure 1: Schematic illustration of our PARADE method. Left: The vector generator consists of a down-projection,
an attentional capsule-based pooler (AC pooler), an activation function, and an up-projection. The vector generator
uses the instructions’ hidden states as the input tensors and outputs the adjusting vectors. Right: The adjusting
vectors multiply the Query (Q) and Value (V) hidden states in the MHSA module and the Up (U) hidden states in
the feed-forward module.

them with certain vectors (called adjusting vectors)078

and thus regulating the attention patterns in the079

self-attention module and the activated knowledge080

in the feed-forward module. Unlike the previous081

literature like (Liu et al., 2022a) or BitFit (Ben-082

Zaken et al., 2021), the vectors are not randomly083

initialized and fixed across different input instruc-084

tions. Instead, we install a vector generator before085

each Transformer layer. The vector generator takes086

the hidden states of the input instructions as input087

and generates the adjusting vectors with a down-088

projection layer, a novel attentional capsule-based089

pooling layer, and an up-projection layer.090

We conduct extensive experiments on a com-091

prehensive collection of tasks, including sentiment092

classification, natural language inference, question093

answering, natural language generation under con-094

straint, math reasoning, SQL generation, and in-095

struction tuning, to demonstrate the effectiveness096

of our PARADE method. Notably, our method097

can consistently outperform strong PEFT baselines098

with comparable tunable parameter budgets, espe-099

cially the recent LoRA variants and IA3 (Liu et al.,100

2022a) or BitFit (Ben-Zaken et al., 2021). We also101

use experiments or analysis to show that: (a) our102

method has significantly lower latency under the103

multi-tenant setting than the LoRA-based methods104

with comparable tunable parameters. (b) our pro-105

posed attentional capsule-based pooling module106

effectively enhances our PARADE method.107

Our contributions are summarized as follows:108

• we propose a novel method, PARADE, to a109

novel PEFT method that generates adjusting 110

vectors to hidden representations conditioned 111

on the input instructions. 112

• We propose a novel attentional capsule-based 113

pooling module for effectively summarizing 114

the information of the input instruction se- 115

quences to the generated vectors. 116

• We have conducted extensive experiments and 117

analysis showing that our PARADE frame- 118

work is (a) practical and outperforms the base- 119

lines under comparable parameter budgets. (b) 120

efficient during inference for LLMs. 121

2 Related works 122

2.1 Parameter-efficient fine-tuning (PEFT) 123

methods 124

Parameter-efficient fine-tuning (PEFT) is an ap- 125

proach of optimizing a small portion of parame- 126

ters when fine-tuning a large pretrained backbone 127

model and keeping the backbone model untouched 128

for adaptation (Ding et al., 2022; Zhang et al., 129

2023c). The addition-based methods insert addi- 130

tional neural modules or parameters into the back- 131

bone model. Representative works in this direction 132

are Adapter (Houlsby et al., 2019; Rücklé et al., 133

2020; Zhang et al., 2023c), Prefix tuning (Li and 134

Liang, 2021), Prompt tuning (Lester et al., 2021), 135

P-tuning V2 (Liu et al., 2022b), (IA)3 (Liu et al., 136

2022a), and BitFit (Ben-Zaken et al., 2021). An- 137

other approach is called the specification-based 138

approach, which is to specify the particular param- 139

2

eters to be tunable or prunable (Ben-Zaken et al.,140

2021; Guo et al., 2021; Zhao et al., 2020). The141

reparameterization-based methods have attracted142

much attention (Hu et al., 2021). This branch of ap-143

proaches transforms the adaptive parameters during144

optimization into low-rank and parameter-efficient145

forms. This type of PEFT method is motivated by146

the observation that fine-tuning has a low intrin-147

sic dimension (Aghajanyan et al., 2021). LoRA148

(Hu et al., 2021) hypothesizes that the change of149

weights during model tuning has a low intrinsic150

rank and optimizes the low-rank decomposition for151

the change of original weight matrices. PEFT meth-152

ods are widely applied, especially with the popu-153

larization of open-sourced large language models154

(Zhao et al., 2023) and instruction tuning with these155

models for different application scenarios (Taori156

et al., 2023; Dettmers et al., 2023).157

In this work, we propose a novel framework,158

PARADE, for fine-tuning LLMs in a parameter-159

efficient fashion. Our method is efficient for LLM160

inference and performs well in downstream tasks.161

2.2 Capsule network162

Capsule networks encapsulate features into163

groups of neurons, that is, the so-called capsules164

(Sabour et al., 2017). Initially introduced for a165

handwritten digit image classification task, cap-166

sules have been shown to learn robust represen-167

tations. The capsule network is widely studied168

in computer vision (Pawan and Rajan, 2022) and169

natural language processing (Kim et al., 2018).170

(Zhang et al., 2018) demonstrates that the capsule171

network performs well for n-ary relations. (Xiao172

et al., 2018) uses a capsule network to differenti-173

ate different tasks and improve multi-task learning174

performances. (Aly et al., 2019; Srivastava et al.,175

2018) applied capsules for sentence classification176

tasks. Since the beginning of the era of large-scale177

pre-trained models, capsule networks have been178

paid less attention. In this work, we apply the idea179

of capsule networks to the pooling operation in the180

vector generators of our PARADE framework.181

3 Methods182

3.1 Preliminaries183

Transformer model Currently, the most widely184

used open-sourced language models and large lan-185

guage models adopt the stacked Transformer ar-186

chitecture (Vaswani et al., 2017). The transformer187

block is primarily constructed using two key sub-188

modules: a multi-head self-attention (MHA) layer 189

and a fully connected feed-forward (FFN) layer. 190

Denote the input sequence’s length as l, the hidden 191

states’ dimension as dmodel, and the dimension at 192

the FFN module as dffn. The MHA is given as 193

follows:3 194

softmax
(

QK√
dmodel

)
V, (1) 195

where Q = xWQ, K = xWK , V = xW V , x ∈ 196

Rl×dmodel is the input tensor. WQ,WK ,W V ∈ 197

Rdmodel×dmodel are the query, key, and value projec- 198

tion layers (denoted as the Query, Key, and Value 199

modules). The FFN module consists of linear trans- 200

formations and an activation function gffn such as 201

ReLU or GELU (Hendrycks and Gimpel, 2016). 202

Take the FFN module in the LlaMA-2 models (Tou- 203

vron et al., 2023) as example: 204

(gffn(G) ∗ U)WD, (2) 205

where G = xWG, U = xWU , WG,WU ∈ 206

Rdmodel×dffn (denoted as Gate and Up module). 207

Task formulation Denote the task’s training set 208

as Dtrain = (xm, ym),m = 1, 2, ...,M , where M 209

represents the number of samples. In this work, 210

we only consider the case where input xm and tar- 211

get ym are both text sequences. And we expect 212

the language modeling head of LLMs to decode 213

ym during inference. That is, no additional lin- 214

ear prediction heads are considered for predicting 215

categorical or numerical values. 216

3.2 Motivation 217

A good PEFT method should have the follow- 218

ing properties: (a) Introducing as few additional 219

tunable parameters as possible, limiting the addi- 220

tional storage and memory costs. (b) Strong perfor- 221

mance in the adaptation of LLMs for downstream 222

tasks. (c) efficient under the multi-tenant setting, 223

where a single LLM backbone has to be paired with 224

multiple sets of PEFT parameters from different 225

tenants, and during batch-wise inference, a batch 226

may contain samples from different tenants/tasks 227

corresponding to different PEFT methods. The 228

LoRA-based methods (Hu et al., 2021) are consid- 229

ered the most performant PEFT method for LLMs 230

(Ding et al., 2022; Zhu et al., 2023; Xu et al., 2023). 231

However, under the multi-tenant setting, signifi- 232

cant latency is introduced since these methods re- 233

quire the LoRA modules to be added to almost 234

3We omit the multi-head setting for simplicity of illustra-
tions.

3

all the Transformer modules. Prompt tuning (Liu235

et al., 2021, 2022b) inserts learnable soft prompts236

of length like 32 or 64 at the beginning of the in-237

put sequence, introducing additional complexity238

and latency. (IA)3 (Liu et al., 2022a) and BitFit239

(Ben-Zaken et al., 2021) modifies the hidden rep-240

resentations/activations by adding or multiplying241

learnable vectors in an element-wise fashion, thus242

are efficient for inference. However, IA3 (Liu et al.,243

2022a) or BitFit (Ben-Zaken et al., 2021) have the244

following drawbacks: (a) in-flexible since the tun-245

able parameters are fixed given a LLM backbone.246

(b) lag behind the LoRA method in terms of down-247

stream performance. One possible reason may be248

that they use the same learnable vectors for differ-249

ent samples of different difficulty and thus may not250

be effective in directing the attention mechanism251

of LLMs.252

3.3 PARADE253

Now we present the framework of our novel254

Prompt Aware Representation ADjustmEnt (PA-255

RADE) method, which can be seen as a novel ex-256

tension of (Liu et al., 2022a) and (Ben-Zaken et al.,257

2021).258

Formulation In order to generate responses, the259

input instructions have to go through the LLM260

backbone to obtain the hidden representations. De-261

note the hidden state of the input instruction with262

length Tins at the current Transformer layer as h.263

As shown in Figure 1, the vector generator VG()264

use h as input to generate three learned vectors,265

lq, lv ∈ Rdmodel and lu ∈ Rdffn , with a vector266

generator:267

lq, lv, lu = VG(h), (3)268

and these generated vectors are used to modify269

the hidden representations in the self-attention and270

FFN modules. Thus, under PARADE, the self-271

attention mechanism of Transformer (in Equation272

1) is changed to273

softmax

(
Q

′
K√

dmodel

)
V

′
, (4)274

where Q
′
= lq ⊙ Q, V

′
= lv ⊙ V , ⊙ denotes275

the element-wise product. And the FFN module276

(Equation 2) is modified to277

(gffn(G)⊙ U
′
)WD, (5)278

where U
′
= lu ⊙ U .45 279

Vector generator Now, we introduce the core 280

of our PARADE framework, the vector genera- 281

tor VG(). It takes h as input and consists of a 282

pooling module and a pair of projection opera- 283

tions. It first projects H from dimension dmodel 284

to dimension r < dmodel via a projection layer 285

W vg
down ∈ Rdmodel×r. Then, it obtains the vector 286

representation through a pooling module Pooler(). 287

Then the obtained vector representation will go 288

through an activation function gvg and be projected 289

to dimension dout = 2 ∗ dmodel + dffn via an- 290

other projection layer with weight W vg
up and bias 291

bvgup. Formally, the generator is given by the follow- 292

ing equation: 293

l = (gvg(Pooler(hW vg
down)))W

vg
up + bvgup, 294

lq, lv, lu = Split(l), (6) 295

where Split() is to split the vector into three vectors 296

of dimension dmodel, dmodel, dffn, respectively. 297

Note that the decoder-based causal language 298

models (CLM) usually employ the KV cache mech- 299

anism6 during generation to improve efficiency. 300

Our vector generators work seamlessly with the 301

KV cache mechanism since the generated vectors, 302

lq, lv, lu, are generated when the input instruction 303

(or prompt) is passed through the LLM for the first 304

time. These three vectors will be reused in the sub- 305

sequent generation steps, and the vector generators 306

will not be called again. In comparison, the LoRA 307

method provides reparameterizations to the model 308

parameters, and its low-rank weight matrices have 309

to participate in the forward calculations during 310

each generation step, causing higher latency. 311

Pooler From the above Equation 3, Pooler() is 312

responsible for extracting and aggregating the se- 313

mantic information from the input instructions into 314

a vector. For the vector generators to generate high- 315

quality vectors to regulate the behavior of the LLM 316

backbone, it is of great importance for the Pooler 317

to play its role. It is natural to use the most naive 318

pooler to take the last token’s hidden representa- 319

tions as the pooler’s output. However, with our 320

initial experiments, we find that applying a more 321

complex architecture for Pooler is beneficial. 322

4We use the "broadcasting notation" in the Equations 4 and
5. Take so that the (m,n)-th entry of U

′
is lu[n]⊙ U [m,n].

5From our preliminary experiments, we find that generat-
ing adjustment vectors for the other hidden states like K and
G will not result in clear performance gains.

6See the blog post for an in-depth explana-
tion of KV-cache: https://www.dipkumar.dev/
becoming-the-unbeatable/posts/gpt-kvcache/.

4

https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/
https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/

Inspired by the previous works of capsule net-323

work (Sabour et al., 2017; Zhang et al., 2018; Aly324

et al., 2019) in the field of both computer vision325

and natural language processing, we now propose a326

lightweight but effective pooler, called attentional327

capsule pooler (AC pooler). Denote the input of328

the pooler as h
′
. Being consistent with the termi-329

nology of capsule networks (Sabour et al., 2017),330

we call each hidden vector h
′
j = h

′
[j] as an in-331

put capsule (j < Tins), and our target is to ex-332

tract the semantic information of h
′

into K output333

capsules [c1, ..., cK], i.e., K fixed-length vectors,334

where ck ∈ Rdcap , and dcap = dmodel/K, k < K.335

Denote the parameters of the k-th output capsule336

as W cap
k ∈ Rdmodel×dcap . The information flowing337

from h
′
j to ck is denoted as mj→k:338

mj→k = h
′
jW

cap
k . (7)339

And then, ck is obtained by aggregating all the340

incoming information flow:341

sk =

Tins∑
j=1

nj,kmj→k,342

ck =
∥sk∥2

1 + ∥sk∥2
sk
∥sk∥

, (8)343

where nj,k is a scalar indicating how much infor-344

mation is transferred from hj to ck. The previous345

work (Zhang et al., 2018; Aly et al., 2019) usu-346

ally initialized nj,k with zeros and used an iterative347

process to calculate its value, which inevitably in-348

troduces high latency. In this work, we propose349

initializing nj,k with attention scores and obtaining350

a more appropriate value via one iteration step. We351

initialize a learnable vector vk ∈ Rdmodel for each352

output capsule, and nj,k is initialized with:353

mj,k = v⊺kh
′
j ,354

nj,k = Softmax(mj,k), (9)355

where Softmax denotes the softmax normalization356

among the j index. Now we have an initial value357

for nj,k, and ck can be calculated via Equations358

7 and 8. To adjust the values of nj,k, we now359

calculates its value once again via360

mj,k ← mj,k + c⊺kh
′
j ,361

nj,k = Softmax(mj,k). (10)362

With the new values of nj,k, the output capsule ck363

is calculated again. Finally, the K output capsules364

[c1, ..., cK] are concatenated to a single vector and365

are the output of the capsule pooler.366

4 Experiments 367

In this section, we conduct a series of experi- 368

ments to evaluate our PARADE method. 369

4.1 Baselines 370

We compare our PARADE framework with the 371

current SOTA PEFT baseline methods. 372

Representation modification We consider the 373

following methods for direct representation modifi- 374

cations: (a) BitFit (Ben-Zaken et al., 2021), which 375

fine-tunes the model by adding learnable vectors to 376

the hidden representations of LLMs as bias terms. 377

(b) (IA)3 (Liu et al., 2022a) multiplies learnable 378

vectors to the hidden representations. For these 379

two methods, the learnable vectors are fixed across 380

different samples of the task at hand. To adjust 381

the number of tunable parameters for these two 382

methods, we first initialize the vectors in a smaller 383

dimension r
′
< dmodel, then we use a learnable 384

matrix to project the vectors to dimension dmodel. 385

Adapter-based tuning We consider the follow- 386

ing adapter tuning baselines: (1) Houlsby-Adapter 387

(Houlsby et al., 2019); (2) Parallel-Adapter pro- 388

posed by He et al. (2021); (3) AdapterDrop (Rücklé 389

et al., 2020); (4) Learned-Adapter (Zhang et al., 390

2023c). 391

Prompt-based tuning For prompt-based tuning 392

methods, we compare with (a) P-tuning v2 (Liu 393

et al., 2021); (b) SPT (Zhu and Tan, 2023). 394

LoRA and its variants We consider the following 395

LoRA variants as baselines: (a) LoRA (Hu et al., 396

2021); (b) AdaLoRA (Zhang et al., 2023b). 397

Other PEFT methods We also compare (1) SSP 398

(Hu et al., 2022), which combines different PEFT 399

methods. 400

The baselines are implemented using Transform- 401

ers (Wolf et al., 2020a) or their open-sourced codes. 402

The hyper-parameter settings for the baselines are 403

detailed in Appendix E. 404

4.2 Datasets and evaluation metrics 405

We compare our approach to the baselines on 406

the following benchmark tasks: (a) four benchmark 407

question-answering tasks: SQuAD (Rajpurkar 408

et al., 2016) and three tasks from the SuperGLUE 409

benchmark(Wang et al., 2019) (BoolQ, COPA, 410

and ReCoRD). (b) three sentence level tasks from 411

GLUE benchmark (Wang et al., 2018), SST-2, RTE, 412

QNLI. (c) a constrained natural language genera- 413

tion task E2E (Novikova et al., 2017). (d) a math- 414

ematical solving dataset GSM8K (Cobbe et al., 415

5

Method Tunable SST-2 RTE QNLI BoolQ COPA ReCoRD SQuAD
Params (acc) (acc) (acc) (acc) (acc) (f1-em) (f1-em)

Baselines
P-Tuning 9.4M 92.4 79.7 91.9 84.1 89.6 89.2 86.5

P-tuning v2 9.4M 92.8 80.6 92.1 85.2 90.1 89.4 86.9
IDPG 8.4M 92.6 80.8 92.2 85.3 90.1 89.6 87.2
LPT 8.4M 92.8 81.3 92.3 85.7 90.2 89.9 87.4

Housbly-Adapter 9.4M 92.9 80.6 92.4 84.5 90.4 89.8 87.3
Parallel-Adapters 9.4M 93.0 80.5 92.5 85.1 90.2 90.1 87.7

AdapterDrop 9.2M 92.7 80.1 92.3 84.5 89.8 89.8 87.4
Learned-Adapter 9.5M 93.6 81.5 92.4 86.2 90.4 90.1 87.6

LoRA 10.0M 93.6 82.6 92.5 86.7 90.7 90.2 87.7
AdaLoRA 10.0M 93.6 82.9 92.6 86.6 90.8 90.5 87.5

SSP 8.6M 93.5 82.6 92.6 86.4 91.1 90.0 87.4
BitFit 10.9M 92.9 81.9 92.2 85.6 90.5 89.8 87.2
(IA)3 9.8M 93.0 82.7 92.5 86.4 90.7 90.1 87.6

Our proposed methods
PARADE 8.9M 94.2 83.7 93.2 87.4 91.8 91.0 88.3

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix B.7.

2021). (e) a SQL generation task WikiSQL (Zhong416

et al., 2017). (f) Alpaca dataset (Taori et al., 2023)417

for general-purpose instruction tuning, and MT-418

Bench (Zheng et al., 2023), to evaluate the instruc-419

tion tuning quality of LLMs. The dataset introduc-420

tions, statistics, and prompt-response templates for421

the above tasks are detailed in Appendix B. The422

above tasks’ evaluation metrics or protocols are in423

Appendix B.7.424

4.3 Experiment Settings425

Computing infrastures We run all our experi-426

ments on NVIDIA A40 (48GB) GPUs.427

Pretrained backbones The main experiments428

uses most recent open-sourced LLM, LlaMA-2 7B429

released by Meta (Touvron et al., 2023) as the pre-430

trained backbone model. In the ablation studies,431

we will also use GPT2-large model (Radford et al.,432

2019), and Pythia-1.4B (Biderman et al., 2023).433

Prediction heads When fine-tuning LlaMA-2434

7B, we only consider the supervised fine-tuning435

(SFT) setting (Ouyang et al., 2022). After receiv-436

ing a prompt or instruction, all the predictions are437

generated using the language modeling head (LM438

head). No additional prediction heads are installed439

for making categorical or numerical predictions.440

For decoding during inference, we use beam search441

with beam size 3.442

Hyper-parameters for the PARADE framework443

In our experiments, unless otherwise specified, we444

set: (a) the bottleneck dimension r of the PARADE 445

vector generator to 12, (b) the number of capsules 446

K to 4, (c) the activation function gvg to the GeLU 447

activation function (Hendrycks and Gimpel, 2016). 448

(d) The WG
down and W cap

k parameters are initialized 449

with uniformly with mean 0 and std 0.02. WG
up is 450

zero initialized, and bvgup is initialized with ones. Un- 451

der the above settings, our PARADE method will 452

introduce 8.9M tunable parameters to the LlaMA-2 453

7B backbone. The hyper-parameters for training is 454

specified in Appendix E. 455

Reproducibility We run each task under five 456

different random seeds and report the median per- 457

formance on the test set of each task. 458

Due to limited length, other experimental set- 459

tings for the baseline methods and the training pro- 460

cedure are in Appendix E. 461

4.4 Main results 462

Results on the GLUE and SuperGLUE tasks 463

The experimental results on the three classification 464

tasks and 4 question answering tasks are presented 465

in Table 1. We present the number of tunable pa- 466

rameters in the second column of Table 1. Table 1 467

reveals that our PARADE method outperforms the 468

baseline methods across all seven tasks, with com- 469

parable or fewer tunable parameters. In particular, 470

PARADE outperforms previous SOTA representa- 471

tion modification methods like (IA)3 and strong 472

LoRA style baselines like LoRA and AdaLoRA 473

6

Method E2E GSM8K WikiSQL
(rouge-l) (acc) (acc)

(IA)3 70.2 34.3 84.2
LoRA 70.7 35.1 85.4

AdaLoRA 70.8 35.2 85.2
PARADE 71.4 36.1 85.8

Table 2: Results for different PEFT methods on the
E2E, GSM8K, and WikiSQL benchmark. The backbone
LLM is LlaMA-2 7B. The metrics are explained in
Appendix B.7.

Method Avg GPT-4 score (↑) ROUGE-L (↑)
AdaLoRA 7.01 51.1
PARADE 7.23 52.6

Table 3: The performance of instruction tuning using
the AdaLoRA and PARADE methods. The backbone
model is LlaMA-2 7B. ↑ means the metric is higher the
better.

with comparable parameters. These results demon-474

strate that our method is good at downstream task475

adaptation of large language models.476

Results on the three specialized generation task477

For the E2E, GSM8K, and WikiSQL benchmarks,478

the results are reported in Table 2. The results479

show that our PARADE method successfully out-480

performs LoRA, AdaLoRA, and (IA)3 on the three481

tasks.482

Results for general-purpose instruction tuning483

After the LlaMA-2 7B is fine-tuned on the Alpaca484

dataset with our PARADE and AdaLoRA methods,485

we utilize the 80 instructions in the MT-Bench as486

the test set. We follow the current standard practice487

of utilizing GPT-4 as an unbiased reviewer (Zheng488

et al., 2023). The protocol of utilizing GPT-4 as489

the reviewer and scorer is specified in Appendix490

B.7. The average score provided by GPT-4 is pre-491

sented in Table 3, along with the ROUGE-L scores492

calculated by considering the GPT-4’s answers as493

ground truth. Consistent with the previous experi-494

ments (Table 1 and 2), our PARADE method out-495

performs the AdaLoRA method in terms of the496

GPT-4 scores and ROUGE-L, demonstrating that497

PARADE can enhance the instruction tuning qual-498

ity of large language models. A case study of an-499

swers generated by different methods is presented500

in Table 8, showcasing that PARADE leads to bet-501

ter instruction-tuned LLMs.502

Method Beam size Speed (tps) Memory cost (MiB)

LoRA
1 25.1 14616
3 21.9 16104

(IA)3
1 33.1 14572
3 27.6 16036

PARADE
1 32.5 14508
3 27.3 15982

Table 4: The memory and speed of LlaMA-2 7B for
generating responses given the input instruction (Ap-
pendix F), with different PEFT methods.

4.5 Ablation studies and analysis 503

Analysis of the inference efficiency To demon- 504

strate the inference efficiency of our PARADE 505

method, we now compare the GPU memory and 506

generation speed of PARADE, LoRA, and (IA)3. In 507

this experiment, LoRA parameters are not merged 508

to the backbone to mimic the single-LLM multi- 509

tenant setting (Chen et al., 2023). The detailed 510

settings for efficiency analysis are presented in Ap- 511

pendix F. We present two metrics for measuring 512

efficiency: (a) peak memory cost during generation. 513

(b) tokens generated per second (tps). The results 514

are presented in Table 4. 515

From Table 4, one can see that under the hyper- 516

parameter settings specified in the main experi- 517

ments (Table 1), our PARADE method can out- 518

perform (IA)3 with comparable tunable parame- 519

ters, memory costs, and generation speed during 520

generation. We can also see that the PARADE is 521

much faster than LoRA. The speed advantages of 522

PARADE over LoRA come from the following fac- 523

tors: (a) our vector generators are lightweight and 524

efficient during inference. (c) The vectors, lq, lv, lu, 525

are only generated once the input instructions are 526

passed to the LLM and before generating the first 527

new token. The vectors will be reused in the follow- 528

ing generation steps with KV-cache, and the vector 529

generators are not called repetitively. In contrast, 530

the LoRA method requires the model to call the 531

LoRA modules at each generation step, resulting 532

in higher latency. 533

Ablation study of our PARADE framework 534

We now consider the following variants of PA- 535

RADE: (a) PARADE-1 uses the most direct pool- 536

ing operation of using the instructions’ last tokens 537

as the pooled tensor. (b) PARADE-2: substituting 538

our attentional capsule pooler to the one in (Zhang 539

et al., 2018) with one iteration step. (c) PARADE- 540

3 asks the vector generators to generate lq, lk, lv, 541

lg, and lu, the adjusting vectors for Query, Key, 542

Value, Gate, and Up modules. We set r = 8 for 543

7

(a) BoolQ (b) E2E

Figure 2: Performances under different tunable parameter budgets. The x-axis represents the number of tunable
parameters, and the y-axis represents the performance score.

PARADE-3 so that the number of added tunable544

parameters is 9.8M. (d) PARADE-4 asks the vector545

generators to generate lq, lv, the adjusting vectors546

for the Query and Value modules. We set r = 24547

for PARADE-4 so that the number of added tunable548

parameters is 9.4M. The BoolQ, E2E, and SQuAD549

tasks’ experimental results are reported in Table 6550

of Appendix G. The results show that our primary551

model, PARADE (as in Table 1), outperforms the552

four variants, demonstrating that (a) our attentional553

capsule pooler is beneficial for the downstream554

task performance by providing better aggregation555

of the input instruction’s semantic information. (b)556

PARADE-2 fails since (Zhang et al., 2018) requires557

multiple iterations to calculate the proper informa-558

tion flow coefficients. (c) The comparison between559

PARADE and PARADE-3 shows that providing560

adjusting vectors for more modules does not lead561

to apparent performance gain. (c) The comparison562

between PARADE and PARADE-4 shows that not563

providing adjusting vectors for the FFN modules564

leads to worse downstream performance.565

Visualization of the attention maps under PA-566

RADE In this section, we visualize the atten-567

tion maps for the 0-th and 16-th attention heads568

on the 1-th, 9-th, 17-th and 25-th Transformer lay-569

ers, with PARADE or with (IA)3, in Figure 3, 4,570

5 and 6. Compared to the (IA)3 method, our PA-571

RADE method makes the LLM focus less attention572

on the ending token of the system prompt. It en-573

courages more attention among input instructions’574

token pairs.575

Comparisons under different budgets of tunable576

parameters We vary the budget of tunable pa-577

rameters for PARADE by modifying the values of578

r = 12 to {3, 6, 24, 48, 96, 192}. We also vary 579

the (IA)3 and LoRA methods’ tunable parameter 580

numbers. The experimental results on the BoolQ 581

and E2E tasks are presented in Figure 2(a) and 582

2(b). The results show that under different tunable 583

parameter budgets, our PARADE method can con- 584

sistently outperform the LoRA and (IA)3 methods. 585

Ablation on the pretrained backbones Our 586

main experiments are conducted on the LlaMA-2 587

7B model. To demonstrate the broad applicabil- 588

ity of our method, we now conduct experiments 589

on GPT2-large and Pythia-1.4b. The results are 590

reported in Table 7. We can see that on these two 591

backbones, our method can also outperform the 592

baseline methods. 593

5 Conclusion 594

This work presents the Prompt Aware 595

Representation ADjustmEnt (PARADE), a novel 596

method for parameter-efficient fine-tuning of large 597

language models. First, we install a vector gener- 598

ator to generate adjusting vectors for regulating 599

the behavior of the LLM backbones. The vector 600

generator takes the hidden states of the input 601

instructions as inputs and contains a lightweight 602

bottleneck architecture. PARADE is more efficient 603

than LoRA during inference since it works 604

seamlessly with the KV-cache mechanism. Second, 605

in order to enhance the performance of PARADE, 606

we propose an attentional capsule-based pooler 607

that can better aggregate semantic information 608

from the input instructions. Experiments on 609

various tasks demonstrate that our PARADE 610

method outperforms the baseline methods while 611

being efficient for inference. 612

8

Limitations613

We showed that our proposed method can greatly614

improve the performance of parameter-efficient tun-615

ing on diverse tasks and different pretrained models616

(i.e., LlaMA-2 7B, GPT2-large, Pythia-1.4b), while617

maintaining efficiency during inference. However,618

we acknowledge the following limitations: (a) the619

more super-sized open-sourced LLMs, such as620

LlaMA-2 13B and 70B, are not experimented due621

to limited computation resources. (b) Other tasks622

in natural language processing, like information623

extraction, were also not experimented. But our624

framework can be easily transferred to other back-625

bone architectures and different types of tasks. It626

would be of interest to investigate if the superiority627

of our method holds for other large-scaled back-628

bone models and broader types of tasks. And we629

will explore it in future work.630

Ethics Statement631

The finding and proposed method aims to im-632

prove the parameter-efficient tuning in terms of633

performance and efficiency. The used datasets are634

widely used in previous work and, to our knowl-635

edge, do not have any attached privacy or ethical636

issues. In this work, we have experimented with637

LlaMA-2 7B, a modern large language model. As638

with all LLMs, LlaMA-2’s potential outputs can-639

not be predicted in advance, and the model may in640

some instances produce inaccurate, biased or other641

objectionable responses to user prompts. However,642

this work’s intent is to conduct research on differ-643

ent fine-tuning methods for LLMs, not building644

applications to general users. In the future, we645

would like to conduct further testing to see how our646

method affects the safety aspects of LLMs.647

References648

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-649
moyer. 2021. Intrinsic dimensionality explains the650
effectiveness of language model fine-tuning. In Pro-651
ceedings of the 59th Annual Meeting of the Associa-652
tion for Computational Linguistics and the 11th Inter-653
national Joint Conference on Natural Language Pro-654
cessing (Volume 1: Long Papers), pages 7319–7328,655
Online. Association for Computational Linguistics.656

Rami Aly, Steffen Remus, and Chris Biemann. 2019.657
Hierarchical multi-label classification of text with658
capsule networks. In Annual Meeting of the Associa-659
tion for Computational Linguistics.660

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold- 661
berg. 2021. Bitfit: Simple parameter-efficient 662
fine-tuning for transformer-based masked language- 663
models. ArXiv, abs/2106.10199. 664

Stella Biderman, Hailey Schoelkopf, Quentin G. An- 665
thony, Herbie Bradley, Kyle O’Brien, Eric Halla- 666
han, Mohammad Aflah Khan, Shivanshu Purohit, 667
USVSN Sai Prashanth, Edward Raff, Aviya Skowron, 668
Lintang Sutawika, and Oskar van der Wal. 2023. 669
Pythia: A suite for analyzing large language models 670
across training and scaling. ArXiv, abs/2304.01373. 671

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis 672
Ceze, Arvind Krishnamurthy University of Washing- 673
ton, and Duke University. 2023. Punica: Multi-tenant 674
lora serving. ArXiv, abs/2310.18547. 675

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 676
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 677
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 678
Nakano, Christopher Hesse, and John Schulman. 679
2021. Training verifiers to solve math word prob- 680
lems. ArXiv, abs/2110.14168. 681

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 682
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine- 683
tuning of Quantized LLMs. arXiv e-prints, page 684
arXiv:2305.14314. 685

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong- 686
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 687
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, 688
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei 689
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong 690
Sun. 2022. Delta tuning: A comprehensive study of 691
parameter efficient methods for pre-trained language 692
models. ArXiv, abs/2203.06904. 693

Wensheng Gan, Shicheng Wan, and Philip S. Yu. 2023. 694
Model-as-a-service (maas): A survey. 2023 IEEE In- 695
ternational Conference on Big Data (BigData), pages 696
4636–4645. 697

Demi Guo, Alexander Rush, and Yoon Kim. 2021. 698
Parameter-efficient transfer learning with diff prun- 699
ing. In Proceedings of the 59th Annual Meeting of the 700
Association for Computational Linguistics and the 701
11th International Joint Conference on Natural Lan- 702
guage Processing (Volume 1: Long Papers), pages 703
4884–4896, Online. Association for Computational 704
Linguistics. 705

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 706
Kirkpatrick, and Graham Neubig. 2021. Towards a 707
unified view of parameter-efficient transfer learning. 708
ArXiv, abs/2110.04366. 709

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian 710
error linear units (gelus). arXiv: Learning. 711

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 712
Bruna Morrone, Quentin De Laroussilhe, Andrea 713
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 714
Parameter-efficient transfer learning for nlp. In In- 715
ternational Conference on Machine Learning, pages 716
2790–2799. PMLR. 717

9

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:196196857
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://api.semanticscholar.org/CorpusID:265128707
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan718
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,719
and Weizhu Chen. 2021. Lora: Low-rank adap-720
tation of large language models. arXiv preprint721
arXiv:2106.09685.722

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,723
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.724
2022. Sparse structure search for parameter-efficient725
tuning. ArXiv, abs/2206.07382.726

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei727
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,728
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.729
C-eval: A multi-level multi-discipline chinese eval-730
uation suite for foundation models. arXiv preprint731
arXiv:2305.08322.732

Shibo Jie and Zhifang Deng. 2022. Convolutional by-733
passes are better vision transformer adapters. ArXiv,734
abs/2207.07039.735

Jaeyoung Kim, Sion Jang, Sungchul Choi, and Eun-736
jeong Lucy Park. 2018. Text classification using737
capsules. ArXiv, abs/1808.03976.738

Dawid Jan Kopiczko, Tijmen Blankevoort, and739
Yuki Markus Asano. 2023. Vera: Vector-based ran-740
dom matrix adaptation. ArXiv, abs/2310.11454.741

Tuan Le, Marco Bertolini, Frank No’e, and Djork-Arné742
Clevert. 2021. Parameterized hypercomplex graph743
neural networks for graph classification. In Interna-744
tional Conference on Artificial Neural Networks.745

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.746
The power of scale for parameter-efficient prompt747
tuning. arXiv preprint arXiv:2104.08691.748

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai749
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-750
win. 2023. Cmmlu: Measuring massive multitask751
language understanding in chinese. arXiv preprint752
arXiv:2306.09212.753

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:754
Optimizing continuous prompts for generation. arXiv755
preprint arXiv:2101.00190.756

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-757
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.758
2022a. Few-shot parameter-efficient fine-tuning is759
better and cheaper than in-context learning. ArXiv,760
abs/2205.05638.761

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin762
Yang, and Jie Tang. 2021. P-tuning v2: Prompt763
tuning can be comparable to fine-tuning universally764
across scales and tasks. ArXiv, abs/2110.07602.765

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,766
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.767
P-tuning: Prompt tuning can be comparable to fine-768
tuning across scales and tasks. In Annual Meeting of769
the Association for Computational Linguistics.770

Rabeeh Karimi Mahabadi, James Henderson, and Se- 771
bastian Ruder. 2021. Compacter: Efficient low-rank 772
hypercomplex adapter layers. In NeurIPS. 773

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, 774
Younes Belkada, Sayak Paul, and Benjamin Bossan. 775
2022. Peft: State-of-the-art parameter-efficient fine- 776
tuning methods. https://github.com/huggingface/ 777
peft. 778

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 779
Hannaneh Hajishirzi. 2021. Cross-task generaliza- 780
tion via natural language crowdsourcing instructions. 781
In Annual Meeting of the Association for Computa- 782
tional Linguistics. 783

Nafise Sadat Moosavi, Quentin Delfosse, Kristian Ker- 784
sting, and Iryna Gurevych. 2022. Adaptable adapters. 785
In North American Chapter of the Association for 786
Computational Linguistics. 787

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 788
2017. The E2E dataset: New challenges for end- 789
to-end generation. In Proceedings of the 18th An- 790
nual SIGdial Meeting on Discourse and Dialogue, 791
pages 201–206, Saarbrücken, Germany. Association 792
for Computational Linguistics. 793

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints, 794
page arXiv:2303.08774. 795

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 796
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 797
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 798
2022. Training language models to follow instruc- 799
tions with human feedback. Advances in Neural 800
Information Processing Systems, 35:27730–27744. 801

S. J. Pawan and Jeny Rajan. 2022. Capsule networks 802
for image classification: A review. Neurocomputing, 803
509:102–120. 804

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 805
Kyunghyun Cho, and Iryna Gurevych. 2021. 806
AdapterFusion: Non-destructive task composition 807
for transfer learning. In Proceedings of the 16th Con- 808
ference of the European Chapter of the Association 809
for Computational Linguistics: Main Volume, pages 810
487–503, Online. Association for Computational Lin- 811
guistics. 812

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao 813
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is 814
chatgpt a general-purpose natural language process- 815
ing task solver? arXiv preprint arXiv:2302.06476. 816

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 817
Dario Amodei, Ilya Sutskever, et al. 2019. Language 818
models are unsupervised multitask learners. OpenAI 819
blog, 1(8):9. 820

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 821
Percy Liang. 2016. SQuAD: 100,000+ questions for 822
machine comprehension of text. In Proceedings of 823
the 2016 Conference on Empirical Methods in Natu- 824
ral Language Processing, pages 2383–2392, Austin, 825
Texas. Association for Computational Linguistics. 826

10

https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:51976955
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.48550/arXiv.2303.08774
https://api.semanticscholar.org/CorpusID:251702652
https://api.semanticscholar.org/CorpusID:251702652
https://api.semanticscholar.org/CorpusID:251702652
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman827
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna828
Gurevych. 2020. Adapterdrop: On the efficiency829
of adapters in transformers. In Conference on Empir-830
ical Methods in Natural Language Processing.831

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton.832
2017. Dynamic routing between capsules. ArXiv,833
abs/1710.09829.834

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.835
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine836
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,837
Manan Dey, M Saiful Bari, Canwen Xu, Urmish838
Thakker, Shanya Sharma Sharma, Eliza Szczechla,839
Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak,840
Debajyoti Datta, Jonathan D. Chang, Mike Tian-841
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,842
Zheng-Xin Yong, Harshit Pandey, Rachel Bawden,843
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht844
Sharma, Andrea Santilli, Thibault Févry, Jason Alan845
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali846
Bers, Thomas Wolf, and Alexander M. Rush. 2021.847
Multitask prompted training enables zero-shot task848
generalization. ArXiv, abs/2110.08207.849

Saurabh Srivastava, Prerna Khurana, and Vartika Tewari.850
2018. Identifying aggression and toxicity in com-851
ments using capsule network. In TRAC@COLING852
2018.853

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.854
Lst: Ladder side-tuning for parameter and memory855
efficient transfer learning. ArXiv, abs/2206.06522.856

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann857
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,858
and Tatsunori B. Hashimoto. 2023. Stanford al-859
paca: An instruction-following llama model. https:860
//github.com/tatsu-lab/stanford_alpaca.861

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter862
Albert, Amjad Almahairi, Yasmine Babaei, Niko-863
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,864
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-865
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,866
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin867
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,868
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-869
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor870
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.871
Korenev, Punit Singh Koura, Marie-Anne Lachaux,872
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai873
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,874
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew875
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan876
Saladi, Alan Schelten, Ruan Silva, Eric Michael877
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross878
Taylor, Adina Williams, Jian Xiang Kuan, Puxin879
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-880
gela Fan, Melanie Kambadur, Sharan Narang, Aure-881
lien Rodriguez, Robert Stojnic, Sergey Edunov, and882
Thomas Scialom. 2023. Llama 2: Open foundation883
and fine-tuned chat models. ArXiv, abs/2307.09288.884

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 885
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 886
Kaiser, and Illia Polosukhin. 2017. Attention is all 887
you need. ArXiv, abs/1706.03762. 888

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 889
preet Singh, Julian Michael, Felix Hill, Omer Levy, 890
and Samuel R. Bowman. 2019. Superglue: A stickier 891
benchmark for general-purpose language understand- 892
ing systems. ArXiv, abs/1905.00537. 893

Alex Wang, Amanpreet Singh, Julian Michael, Felix 894
Hill, Omer Levy, and Samuel R. Bowman. 2018. 895
Glue: A multi-task benchmark and analysis plat- 896
form for natural language understanding. In Black- 897
boxNLP@EMNLP. 898

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 899
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 900
Dai, and Quoc V. Le. 2021. Finetuned language mod- 901
els are zero-shot learners. ArXiv, abs/2109.01652. 902

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 903
Chaumond, Clement Delangue, Anthony Moi, Pierric 904
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 905
et al. 2020a. Transformers: State-of-the-art natu- 906
ral language processing. In Proceedings of the 2020 907
conference on empirical methods in natural language 908
processing: system demonstrations, pages 38–45. 909

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 910
Chaumond, Clement Delangue, Anthony Moi, Pier- 911
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 912
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 913
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 914
Scao, Sylvain Gugger, Mariama Drame, Quentin 915
Lhoest, and Alexander M. Rush. 2020b. Transform- 916
ers: State-of-the-art natural language processing. In 917
Proceedings of the 2020 Conference on Empirical 918
Methods in Natural Language Processing: System 919
Demonstrations, pages 38–45, Online. Association 920
for Computational Linguistics. 921

Liqiang Xiao, Honglun Zhang, Wenqing Chen, 922
Yongkun Wang, and Yaohui Jin. 2018. Mcapsnet: 923
Capsule network for text with multi-task learning. In 924
Conference on Empirical Methods in Natural Lan- 925
guage Processing. 926

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui 927
Tao, and Fu Lee Wang. 2023. Parameter-efficient 928
fine-tuning methods for pretrained language mod- 929
els: A critical review and assessment. ArXiv, 930
abs/2312.12148. 931

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen 932
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient 933
low-rank adaptation for large language models fine- 934
tuning. ArXiv, abs/2308.03303. 935

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Xi Chen, 936
Wei Zhang, and Huajun Chen. 2018. Attention-based 937
capsule networks with dynamic routing for relation 938
extraction. ArXiv, abs/1812.11321. 939

11

https://api.semanticscholar.org/CorpusID:3603485
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:59336566
https://api.semanticscholar.org/CorpusID:59336566
https://api.semanticscholar.org/CorpusID:59336566
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:53080947
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613
https://api.semanticscholar.org/CorpusID:53103613

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,940
Pengcheng He, Yu Cheng, Weizhu Chen, and941
Tuo Zhao. 2023b. Adaptive budget alloca-942
tion for parameter-efficient fine-tuning. ArXiv,943
abs/2303.10512.944

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-945
berger, and Yoav Artzi. 2020. Revisiting few-sample946
bert fine-tuning. ArXiv, abs/2006.05987.947

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo948
Zhu. 2023c. Learned adapters are better than man-949
ually designed adapters. In Annual Meeting of the950
Association for Computational Linguistics.951

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-952
rich Schütze. 2020. Masking as an efficient alterna-953
tive to finetuning for pretrained language models. In954
Proceedings of the 2020 Conference on Empirical955
Methods in Natural Language Processing (EMNLP),956
pages 2226–2241, Online. Association for Computa-957
tional Linguistics.958

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,959
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen960
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen961
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,962
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,963
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A964
Survey of Large Language Models. arXiv e-prints,965
page arXiv:2303.18223.966

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan967
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,968
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,969
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging970
LLM-as-a-Judge with MT-Bench and Chatbot Arena.971
arXiv e-prints, page arXiv:2306.05685.972

Victor Zhong, Caiming Xiong, and Richard Socher.973
2017. Seq2sql: Generating structured queries974
from natural language using reinforcement learning.975
ArXiv, abs/1709.00103.976

Wei Zhu and Ming Tan. 2023. SPT: Learning to se-977
lectively insert prompts for better prompt tuning.978
In Proceedings of the 2023 Conference on Empir-979
ical Methods in Natural Language Processing, pages980
11862–11878, Singapore. Association for Computa-981
tional Linguistics.982

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,983
and Buzhou Tang. 2023. PromptCBLUE: A Chinese984
Prompt Tuning Benchmark for the Medical Domain.985
arXiv e-prints, page arXiv:2310.14151.986

A Additional related works987

A.1 Adapter-based tuning.988

One of the most important research lines of989

PEFT is adapter-based tuning. Adapter (Houlsby990

et al., 2019) inserts adapter modules with bottle-991

neck architecture between every consecutive Trans-992

former (Vaswani et al., 2017) sublayers. Adapter-993

Fusion (Pfeiffer et al., 2021) only inserts sequential994

adapters after the feed-forward module. Adapter- 995

based tuning methods have comparable results with 996

model tuning when only tuning a fraction of the 997

backbone model’s parameter number. Due to their 998

strong performance, a branch of literature has in- 999

vestigated the architecture of adapters in search 1000

of further improvements. He et al. (2021) ana- 1001

lyze a wide range of PETuning methods and show 1002

that they are essentially equivalent. They also pro- 1003

pose the general architecture of PEFT, and derive 1004

the Parallel Adapter which connects the adapter 1005

modules in parallel to the self-attention and MLP 1006

modules in the Transformer block. AdapterDrop 1007

(Rücklé et al., 2020) investigates the efficiency of 1008

removing adapters from lower layers. Adaptive 1009

adapters (Moosavi et al., 2022) investigate the acti- 1010

vation functions of adapters and propose to learn 1011

the activation functions of adapters via optimiz- 1012

ing the parameters of rational functions as a part 1013

of the model parameters. Compacter (Mahabadi 1014

et al., 2021) uses low-rank parameterized hyper- 1015

complex multiplication (Le et al., 2021) to com- 1016

press adapters’ tunable parameters. LST (Sung 1017

et al., 2022) improves the memory efficiency by 1018

forming the adapters as a ladder along stacked 1019

Transformer blocks, and it enhances the adapter 1020

module by adding a self-attention module to its 1021

bottleneck architecture. (Sung et al., 2022; Jie and 1022

Deng, 2022) try to add different encoding opera- 1023

tions, like self-attention operations and convolu- 1024

tions between the bottleneck structure of adapters, 1025

and achieve better performances. Learned-Adapter 1026

(Zhang et al., 2023c) builds upon the above adapter- 1027

based methods and enhance the performance of 1028

adapter tuning by automatically learning better ar- 1029

chitectures for adapters. 1030

A.2 Literature on the LoRA methods 1031

Since LoRA is the most popular PEFT method 1032

in the era of large language models, there are many 1033

works that are orthogonal to AdaLoRA, SoRA and 1034

our work that are devoted to improve LoRA on 1035

many different aspects. QLoRA (Dettmers et al., 1036

2023) proposes a novel quantization method that 1037

can significantly reduce the memory consumptions 1038

of LLMs during LoRA fine-tuning. LoRA-FA 1039

(Zhang et al., 2023a) freezes parts of the randomly 1040

initialized LoRA matrices. (d) VERA (Kopiczko 1041

et al., 2023) investigate whether one could froze 1042

the randomly initialized LoRA matrices and only 1043

learns a set of scaling vectors. Tying LoRA matri- 1044

12

https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151

Datasets #train #dev #test |Y| Type Labels Metrics
SuperGLUE tasks

BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

ReCoRD 101k 1k 7.4k - Question Answering - f1-em
GLUE tasks

SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc

QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks

SQuAD 87k 1k 5.9k - Question Answering - f1-em
E2E 42k 4.6k 4.6k - NLG - rouge-l

GSM8K 7K 0.5K 1K - Math reasoning - acc
WikiSQL 61k 9K 17K - SQL generation - acc

Alpaca 51k - - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. |Y| is the
number of classes for a classification task.

ces across layers are also investigated by VERA.1045

B Appendix for the datsets and evaluation1046

metrics1047

B.1 Datasets from GLUE and SuperGLUE1048

We experiment on three tasks from the GLUE1049

(Wang et al., 2018) benchmark: (a) (a) a senti-1050

ment classification task, SST-2. (b) two benchmark1051

natural language inference tasks, RTE and QNLI.1052

We also experiment with three question-answering1053

tasks: (a) two question answering tasks in the for-1054

mat of binary choices, COPA and BoolQ. (b) A1055

SQuAD (Rajpurkar et al., 2016) style question an-1056

swering task, ReCoRD.1057

Since the original test sets are not publicly1058

available for these tasks, we follow Zhang et al.1059

(2020); Mahabadi et al. (2021) to construct the1060

train/dev/test splits as follows to ensure a fiar com-1061

parison: (a) for datasets with fewer than 10k sam-1062

ples (RTE, COPA, BoolQ), we divide the original1063

validation set in half, using one half for validation1064

and the other for testing. (b) for larger datasets, we1065

split 1k samples from the training set as the devel-1066

opment set, and use the original development set1067

as the test set. The detailed statistics of the GLUE1068

and SuperGLUE benchmark tasks is presented in1069

Table 5.1070

B.2 The SQuAD task1071

Stanford Question Answering Dataset (SQuAD)1072

(Rajpurkar et al., 2016) is a reading comprehension1073

dataset, consisting of questions posed by crowd-1074

workers on a set of Wikipedia articles, where the1075

answer to every question is a segment of text, or 1076

span, from the corresponding reading passage, or 1077

the question might be unanswerable. This task is 1078

one of the most widely studied question answering 1079

task in the field. 1080

In this work, we use the v1.1 version of SQuAD. 1081

Since the original test sets are not publicly avail- 1082

able for these tasks, we follow Zhang et al. (2020); 1083

Mahabadi et al. (2021) and split 1k samples from 1084

the training set as the development set, and use 1085

the original development set as the test set. The 1086

detailed statistics of this task is presented in Table 1087

5. 1088

B.3 E2E benchmark 1089

The E2E benchmark dataset for training end-to- 1090

end, data-driven natural language generation sys- 1091

tems in the restaurant domain. It asks a model to 1092

generate natural utterances based on a set of given 1093

key contents. This dataset has a 42061/4672/4693 1094

train/dev/test split. 1095

B.4 GSM8K benchmark 1096

GSM8K is a dataset of 8.5K high quality linguis- 1097

tically diverse grade school math word problems 1098

created by human problem writers. The dataset 1099

is segmented into 7.5K training problems and 1K 1100

test problems. These problems take between 2 and 1101

8 steps to solve, and solutions primarily involve 1102

performing a sequence of elementary calculations 1103

using basic arithmetic operations (+−×÷) to reach 1104

the final answer. A bright middle school student 1105

should be able to solve every problem. It can be 1106

13

used for multi-step mathematical reasoning. We1107

randomly select 0.5k samples from the training set1108

to be the dev set.1109

B.5 WikiSQL dataset1110

WikiSQL consists of a corpus of 87,726 hand-1111

annotated SQL query and natural language ques-1112

tion pairs. These SQL queries are further split into1113

training (61,297 examples), development (9,1451114

examples) and test sets (17,284 examples). It can1115

be used for natural language inference tasks related1116

to relational databases. In this work, we will ask1117

the LLMs to generate SQL queries based on the1118

given natural language questions.1119

B.6 Instruction tuning1120

Instruction tuning is an important method to im-1121

prove the general capabilities of large language1122

models (Ouyang et al., 2022). With the rise of1123

large language models in the scale of 10B param-1124

eters or more, like GPT-3, T5, PaLM, researchers1125

have actively explored the few-shot or zero-shot1126

capabilities of these models. (Mishra et al., 2021)1127

find that fine-tuning these LLMs on a large scale1128

datasets containing hundreds of NLP tasks signif-1129

icantly improves the zero-shot performances on1130

unseen tasks, establishing the scaling law of task1131

numbers. The previous works like (Wei et al., 2021)1132

and T0 (Sanh et al., 2021) establishes the instruc-1133

tion tuning datasets by transforming the traditional1134

NLP tasks into a unified prompt format. Instruct-1135

GPT (Ouyang et al., 2022) conducts instruction1136

tuning using the dataset constructed based the user1137

queries from the OpenAI API users. Note that this1138

work is also a seminal work for human feedback1139

learning with reinforcement learning. However, the1140

complete instruction tuning dataset from (Ouyang1141

et al., 2022) remains closed. With the launch of1142

ChatGPT, (Taori et al., 2023) (Alpaca) constructs1143

an instruction tuning dataset with diverse topics1144

using the self-instruct techniques.1145

For our experiment, we employ the Alpaca1146

dataset (Taori et al., 2023) for instruction tuning.1147

Specifically, we employs its cleaned version7. This1148

dataset comprises 51K instructions and demonstra-1149

tions, and is suitable for instruction tuning. The1150

cleaned version corrects multiple issues such as1151

hallucinations, merged instructions, and empty out-1152

puts.1153

7https://huggingface.co/datasets/yahma/
alpaca-cleaned.

B.7 Evaluation metrics/protocols 1154

For the three GLUE tasks we experiment on, we 1155

report accuracy (denoted as acc). For ReCoRD, we 1156

report the average of the F1 score and the exact 1157

match score (denoted as f1-em). For the BoolQ 1158

and COPA tasks, we report accuracy. The above 1159

choices of evaluation metrics strictly follow (Wang 1160

et al., 2018) and (Wang et al., 2019). 1161

For the SQuAD dataset, we also report the av- 1162

erage of the F1 score and the exact match score 1163

(denoted as f1-em). 1164

Following (Novikova et al., 2017), we report the 1165

ROUGE-L metric (denoted as rouge-l). We rely on 1166

the HuggingFace Evaluate package8 for computing 1167

this metric. 1168

For the GSM8K task, we will directly consider 1169

the correctness of the final answers. Thus, we re- 1170

port accuracy (denoted as acc). 1171

For the WikiSQL, we will consider the correct- 1172

ness of the generated SQL queries. A predicted 1173

SQL query is correct if and only if it can be exe- 1174

cuted and obtains the same results with the ground 1175

truth. 1176

For evaluating the quality of instruction tuned 1177

LlaMA-2 7B, we follow the current common prac- 1178

tice of utilizing GPT-4 as a unbiased reviewer 1179

(Zheng et al., 2023). 80 instructions from the MT- 1180

Bench is set as a test set. We generate model re- 1181

sponses from a fine-tuned model with beam size 5 1182

with the generation function in Huggingface Trans- 1183

formers (Wolf et al., 2020a). Then we compare 1184

AdaLoRA and PARADE’s answers with GPT-4. 1185

For each instruction in MT-Bench, GPT-4 (Ope- 1186

nAI, 2023) is asked to write a review for both an- 1187

swers from the two methods, and assigns a quanti- 1188

tative score on a scale of 10 to each response. The 1189

prompts of instructing GPT-4 for evaluation is pre- 1190

sented in Appendix D. ROUGE-L scores computed 1191

by considering the answers generated by GPT-4 as 1192

the ground truth. 1193

C Prompt templates for fine-tuning 1194

LlaMA-2 7B 1195

Since we fine-tune LlaMA-2 7B without intro- 1196

ducing task-specific prediction heads, we need to 1197

transform all the tasks into a prompt-response for- 1198

mat. First, following LlaMA-2 (Touvron et al., 1199

2023), we use a system prompting template, in 1200

which <query> denotes the user input, <response> 1201

8https://huggingface.co/docs/evaluate/index

14

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/docs/evaluate/index

denotes the assistants’ targeted responses. All the1202

samples will be input into this template before be-1203

ing fed to the LLMs.1204

<s>[INST] <<SYS>>1205

You are a helpful, respectful and honest1206

assistant.1207

<</SYS>>1208

1209

<query>[/INST]<response></s>1210

Now we present the prompt-response template1211

for each task.1212

Templates for RTE and QNLI Since these two1213

tasks are NLI tasks, the samples in them consists1214

of two input text, [sentence1] and [sentence1], and1215

a label [label_name] (entailment or not entailment).1216

Thus, we use the following templates:1217

Template for prompt:1218

sentence 1: [sentence1]1219

sentence 2: [sentence1]1220

Are sentence 1 and sentence 2 have1221

entailment relation or not?1222

Template for response:1223

[label_name]1224

Templates for SST-2 The samples in this task con-1225

sists of one input text, [sentence], and a label [la-1226

bel_name] (positive or negative).1227

Template for prompt:1228

[sentence]1229

The sentiment of the given sentence is:1230

Template for response:1231

[label_name]1232

Templates for BoolQ The samples in this task1233

consists of a reference document, [doc], a query,1234

[query], and a label [label_name] (yes or no).1235

Template for prompt:1236

Reference document:1237

[doc]1238

Question:1239

[query]1240

Template for response:1241

[label_name]1242

Templates for COPA The samples in this task con-1243

sists of a premise, [premise], two choices, [choice1]1244

and [choice2], a query, [query], and a label [la-1245

bel_name] (1 or 2, indicating which choice is con-1246

sistent with the premise).1247

Template for prompt:1248

Premise: 1249

[premise] 1250

Choice 1: [choice1] 1251

Choice 2: [choice2] 1252

Question: 1253

[query] 1254

Template for response: 1255

[label_name] 1256

Templates for ReCoRD and SQuAD The sam- 1257

ples in these two tasks consist of a context docu- 1258

ment, [context], a question, [query], and a answer- 1259

ing span, [answer]. 1260

Template for prompt: 1261

Context: 1262

[context] 1263

Question: 1264

[query] 1265

Template for response: 1266

[answer] 1267

Templates for E2E The samples in this task con- 1268

sists of a reference [ref], consisting required infor- 1269

mation, and a targeted response, [target], which is 1270

a customer review written according to the refer- 1271

ence’s contents. 1272

Template for prompt: 1273

Reference: 1274

[ref] 1275

Generate a customer review following the 1276

given reference. 1277

Template for response: 1278

[target] 1279

Templates for GSM8K The samples in this task 1280

consists of a math question [question], and a tar- 1281

geted response, [target] which is the reasoning or 1282

calculation steps for the math question. 1283

Template for prompt: 1284

Answer the following math quesition: 1285

[ref] 1286

Instruction: please think step by step. 1287

Template for response: 1288

[target] 1289

Templates for WikiSQL The samples in this task 1290

consists of a natural language query [query], and 1291

information for the SQL table [table_info], and a 1292

targeted response containing the SQL query, [tar- 1293

get] which is the reasoning or calculation steps for 1294

the math question. 1295

Template for prompt: 1296

15

Answer the following query by writing a1297

SQL query on the given table:1298

[query]1299

Table information:1300

[table_info].1301

Template for response:1302

[target]1303

D Prompt templates for GPT-41304

evaluations1305

In this work, we utilize the powerful LLM GPT-41306

(OpenAI, 2023) as the evaluator for comparing the1307

instruction tuning quality. As a reviewer, GPT-41308

will receive a query [query], two responses, [re-1309

sponse1] and [response2], from two assistants. We1310

will ask GPT-4 to write a review for each response,1311

assessing the quality of the response, and then ask1312

GPT-4 to assign a score on a scale of 10 to each1313

response.1314

Template for prompt:1315

Task Introduction1316

you will be given a query, and two responses1317

from two assistants,1318

could you compare the two responses,1319

and do the following:1320

(1) write a concise review for each1321

assistant's response, on how well the1322

response answers the query, and whether1323

it will be helpful to humans users, and any1324

issues in the response;1325

(2) assigns a quantitative score on a scale1326

of 10 to each response, reflecting1327

your assessment of the two responses1328

Query:1329

[query]1330

Response 1 from assistant 1:1331

[response1]1332

Response 2 from assistant 2:1333

[response2]1334

E Appendix for Experimental settings1335

Here, we provide more details for experimental1336

settings.1337

Hyper-parameters for the baseline PEFT meth-1338

ods For the P-tuning method, the soft prompts’1339

length is 64, and the soft prompts is first initialized1340

with dimension 36, and then a learnable projection1341

layer projects it to the same dimension with the1342

LlaMA-2 backbone. For P-tuning V2, the number1343

of prompt tokens at each layer is set to 64. For LPT1344

and IDPG, the bottleneck dimension is set to 1024, 1345

and the number of soft tokens is set to 4. 1346

For the adapter-based methods, Houlsby- 1347

Adapter and AdapterDrop, the bottleneck dimen- 1348

sion is set to 18, and the adapter modules are added 1349

on the self-attention and feed-forward module. For 1350

the Parallel-Adapter and Learned-Adapter, the bot- 1351

tleneck dimension is set to 36, and the adapter 1352

modules are connected to the whole block. 1353

For LoRA, the initial rank at each module is set 1354

to 4. For AdaLoRA, the initial rank at each module 1355

is set to 8, and half of the rank budget is pruned 1356

during fine-tuning. 1357

We adjust the sparsity for SSP so that the number 1358

of tunable parameters is comparable with PARADE 1359

and the other baselines. 1360

For BitFit, the bias vectors are initialized with 1361

dimension 8, and then a learnable projection layer 1362

projects it to the same dimension with the LlaMA- 1363

2 backbone. For (IA)3, the activation adjusting 1364

vectors are added the Query, Key, and Up activa- 1365

tions. The adjusting vectors are initialized with 1366

dimension 16, and then a learnable projection layer 1367

projects it to the same dimension with the LlaMA-2 1368

backbone. 1369

Training settings for PEFT methods We use 1370

the HugginFace Transformers (Wolf et al., 2020b), 1371

PEFT (Mangrulkar et al., 2022), or the original 1372

code repositories for implementing all the methods, 1373

and for training and making predictions. For fine- 1374

tuning LlaMA-2 7B model, the maximum sequence 1375

length is set to 2048. The maximum training epoch 1376

is set to 10. The batch size is set between 16 for 1377

task with less than 10k training set, and 128 oth- 1378

erwise. We use AdamW as the optimizer with a 1379

linear learning rate decay schedule and 6% of the 1380

training steps for warm-up. The learning rate is set 1381

to 1e-4. The other hyper-parameters are kept the 1382

same with (Wolf et al., 2020b). In every 200 steps, 1383

the model is evaluated on the dev set. Patience is 1384

set to 10, that is, if the model does not achieve a 1385

lower development set loss for 10 evaluation runs, 1386

the training stops early. The best checkpoint on the 1387

dev set is used to run predictions on the test set. 1388

F Appendix: settings for efficiency 1389

analysis 1390

In the Table 4 of the main contents, we conduct 1391

analysis on the PARADE and other PEFT methods’ 1392

memory and speed during inference. 1393

The example instruction we used in this analysis 1394

16

is presented below.1395

Generate a blog post of 500 words or less1396

that discusses the following news article:1397

1398

The Department of Child Protection (DCP)1399

must pay compensation and medical expenses1400

to a youth worker who developed pericarditis1401

after getting a Covid booster under a1402

workplace vaccination directive, the South1403

Australian Employment Tribunal has ruled.1404

1405

In a decision handed down on 15 January1406

2024, the Tribunal determined that Daniel1407

Shepherd’s employment was “a significant1408

contributing cause” to his injury, which1409

has since rendered him incapable of1410

performing his role at work.1411

1412

Shepherd got a Covid booster in February1413

2022 as a requirement for his ongoing1414

employment with the DCP. The DCP admitted1415

that Shepherd’s pericarditis had been1416

caused by the booster, but denied1417

responsibility for the injury, arguing that1418

it did not arise from Shepherd’s employment,1419

but from a lawful State Government Public1420

Health Order (PHO), issued under the1421

Emergency Management Act 2004 (EMA).1422

We restrict the number of newly generated to-1423

kens to be 32 under the method of beam search with1424

beam size equal to 1 or 3. The length of the initial1425

instruction is 278 after adding the soft prompts and1426

special tokens under the IAPT method, and 2741427

under the LoRA method. The LLM backbone is1428

LlaMA-2 7B model. We run the generation process1429

for 100 times to calculate the average metric values,1430

reducing the randomness.1431

G Ablation on the PARADE framework1432

In the main contents, we consider 4 variants of1433

the PARADE method, and the experiments on the1434

BoolQ, E2E and SQuAD tasks are provided in 61435

H Ablation on the pretrained backbones1436

Our main experiments are conducted on the1437

LlaMA-2 7B model. To demonstrate that our1438

method works well regardless of the backbone mod-1439

els, we now conduct experiments on the GPT-21440

large (774M parameters) and Pythia-1.4b models.1441

The other experimental settings are kept the same1442

Method BoolQ E2E SQuAD
(acc) (rouge-l) (f1-em)

PARADE 87.4 71.4 88.3
PARADE-1 86.6 70.8 87.8
PARADE-2 86.3 70.4 87.6
PARADE-3 87.1 71.0 88.1
PARADE-4 86.5 70.3 87.5

Table 6: The comparison of PARADE’s variants on
the BoolQ, ReCoRD, and SQuAD tasks. The backbone
model is LlaMA-2 7B.

Method BoolQ E2E SQuAD
(acc) (rouge-l) (f1-em)

Results for GPT-2 large
(IA)3 67.4 66.2 43.3
LoRA 67.5 66.6 43.8

AdaLoRA 67.6 66.5 43.7
PARADE 68.1 66.9 44.3

Results for Pythia-1.4b large
(IA)3 71.3 67.9 49.8
LoRA 71.6 68.4 50.4

AdaLoRA 71.5 68.5 50.4
PARADE 72.2 68.9 51.1

Table 7: Results for different PEFT methods on the
BoolQ, E2E and SQuAD benchmarks. The backbone
LMs are GPT2-large and Pythia-1.4b. The metrics are
explained in Appendix B.7.

with the main experiments (Table 1). We conduct 1443

experiments on the BoolQ, E2E and SQuAD tasks. 1444

The results are reported in Table 7. 1445

I Visualization of the attention maps 1446

In this section, we visual the attention maps for 1447

the first 64 tokens. The backbone model is LlaMA- 1448

2 7B at the 1-th, 9-th, 17-th and 25-th attention 1449

heads for the 1-th Transformer layer in Figure 3, 1450

for the 9-th Transformer layer in Figure 4, for the 1451

17-th Transformer layer in Figure 5, for the 25-th 1452

Transformer layer in Figure 6. 1453

J Case studies of Instruction tuning 1454

In the Section 4.4 of the main content, we 1455

present the overall performance of PARADE and 1456

AdaLoRA on the MT-Bench, after fine-tuning 1457

LlaMA-2 7B on the Alpaca dataset. Now we 1458

present a concrete examples in Table 8 to show- 1459

case the Superiority of PARADE. 1460

17

Query
Embrace the role of Sheldon from "The Big Bang Theory" as we delve into our
conversation. Don’t start with phrases like "As Sheldon". Let’s kick things off
with the following question: "What is your opinion on hand dryers?"

PARADE’s response

Responses

Oh, hand dryers. *adjusts glasses* Well, Sheldon’s opinion on hand dryers is
that they are an abomination. *pauses* I mean, think about it. You’re in a public
restroom, minding your own business, and then you’re forced to use a hand
dryer. *shudders* It’s just so... uncivilized. *adjusts glasses again* I mean,
what’s wrong with a good ol’ fashioned paper towel? *chuckles* Now that’s
civilized. *adjusts glasses once more* But hey, to each their own, right?
smirks* What’s your take on hand dryers, my friend?

GPT-4’s
comments

Response 1 Review: Assistant 1 effectively embraces the persona of Sheldon
with an engaging and character-consistent response. The use of mannerisms
such as adjusting glasses and pausing, along with the emotional expression
("shudders," "chuckles," "smirks"), adds to the authenticity of the portrayal.
The content is presented in a conversational tone that invites further discussion
by asking for the user’s opinion at the end. However, while entertaining,
Assistant 1’s response does not provide factual information or strong
arguments to support Sheldon’s (or their own) view on hand dryers; it stays
more within a subjective perspective that reflects personal distaste rather than
objective reasoning.

GPT-4 score 7
AdaLoRA’s response

Responses

As Sheldon, I have a strong opinion on hand dryers. I believe that paper towels
are superior to hand dryers for several reasons. First and foremost, paper towels
are more hygienic than hand dryers. Hand dryers can spread germs and bacteria,
while paper towels are disposable and can be thrown away after use.
Additionally, hand dryers can be loud and disruptive, while paper towels are
quieter and less intrusive. Finally, paper towels are more environmentally
friendly than hand dryers, as they require less energy to operate and produce
less waste.

GPT-4’s
comments

Response 2 Review: Assistant 2 begins by disregarding instructions not to start
with phrases like "As Sheldon", which indicates either an oversight or
misunderstanding of the task requirements. Despite this error, Assistant 2 offers
a well-structured argument against hand dryers from what could be perceived as
Sheldon’s point of view, citing hygiene concerns, noise levels, and environmental
impact as reasons paper towels might be considered superior. This response
includes logical reasoning that users can follow easily but lacks Sheldon’s
unique voice and personality traits which were part of what was asked for in
embodying his role.

GPT-4 score 6

Table 8: An example showcasing that the fine-tuning quality of PARADE is higher than AdaLoRA.

18

(a) 1-th head (b) 1-th head

(c) 9-th head (d) 9-th head

(e) 17-th head (f) 17-th head

Figure 3: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 1-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

19

(a) 1-th head (b) 1-th head

(c) 9-th head (d) 9-th head

(e) 17-th head (f) 17-th head

Figure 4: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 9-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

20

(a) 1-th head (b) 1-th head

(c) 9-th head (d) 9-th head

(e) 17-th head (f) 17-th head

Figure 5: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 17-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

21

(a) 1-th head (b) 1-th head

(c) 9-th head (d) 9-th head

(e) 17-th head (f) 17-th head

Figure 6: The attention maps of LlaMA-2 7B at the 1-th, 9-th and 17-th attention heads on the 25-th Transformer
layer. The left column is the attention maps from LlaMA-2 7B with PARADE, and the right column is the ones
from LlaMA-2 7B with (IA)3.

22

