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Abstract. Despite recent advancements medical image segmentation,
achieving robust pan-cancer segmentation across diverse anatomical re-
gions remains a significant challenge. To address challenges such as tumor
diversity, data heterogeneity, and high computational demands, we ex-
plored a more streamlined and efficient approach for whole-body tumor
segmentation based on nnU-Net. Specifically, we designed a lightweight 4-
layer network architecture, optimized patch size and spacing during pre-
processing, and developed a fine-tuned training strategy with extended
epochs. Our method achieved an average score of 53.48% and 43.84% for
the lesion DSC and NSD on the MICCAI FLARE 2025 challenge public
validation dataset and the average running time and area under GPU
memory-time curve are 17.8s and 64115MB, respectively.
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1 Introduction

Accurate whole-body cancer segmentation in 3D CT scans is essential for pre-
cise oncology diagnosis, treatment planning, and therapy monitoring. While re-
cent advances in medical image segmentation—particularly for abdominal can-
cers through initiatives like FLARE—have shown promise, robust pan-cancer
segmentation across diverse anatomical regions remains a significant challenge.
FLARE 2025 Task 1 addresses this gap with an expansive dataset of over 10,000
CT scans spanning heterogeneous cancer types, requiring automated methods
capable of delineating tumors throughout the entire body. This task faces mul-
tifaceted challenges:

• Tumor diversity: Lesions vary widely in morphology and location. Metastatic
tumors often appear irregular and diffusely distributed, while primary tu-
mors exhibit organ-specific characteristics (e.g., lung nodules versus liver
masses), complicating the development of a unified segmentation approach.

• Data inconsistency: Multi-source training data suffers from discrepancies
in voxel spacing and scan dimensions. Public datasets’ organ-centric focus
further widens the domain gap, hindering generalization to whole-body con-
texts.
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• Dataset partial labeling: Only primary lesions are marked in each case, while
other lesions (e.g., metastatic lesions) may remain unlabeled. Consequently,
models may struggle to identify lesions beyond the primary tumor.

• Computational demands: Whole-body CT volumes—comprising thousands
of slices—pose substantial processing burdens, making real-time analysis
challenging.

Current pan-cancer segmentation methods primarily build upon SAM and
nnU-Net architectures.While SAM offers zero-shot segmentation capability and
can be adapted to medical image segmentation through fine-tuning on medi-
cal datasets [26,30], these approaches require computationally intensive training
with massive parameters on 3D CT volumes. Moreover, they rely on manual
input of points, boxes, or text prompts to generate target masks, leading to a
semi-automated workflow. Some methods have improved upon SAM to achieve
pan-cancer segmentation. Lin et al. [14] enhanced local features and introduced
a task-indicator prompt encoder, extending the SAM-based model into a pan-
cancer automatic segmentation model. Gao et al. [6] integrated the strong feature
extraction capability of SAM, the powerful auto-configuration design capabil-
ity of nnU-Net, and dynamic convolution to enhance the model’s performance
in pan-cancer segmentation. Despite these innovations, SAM-based pan-cancer
adaptations exhibit poor cross-cancer generalization and suffer from high GPU
memory consumption and prolonged inference times during deployment.

nnU-Net [12] has emerged as the most widely used method in medical im-
age segmentation due to its self-configuring pipeline and robust performance in
organ-specific tasks. Researchers have adapted this framework for pan-cancer
segmentation through key innovations. Bai et al. [2] treated all lesions as a sin-
gle class and directly training a universal lesion segmentation model using large
image spacing and input volumes. Luo et al. [15] designed a cropping strategy
based on the maximum connected component and an organ-interference segmen-
tation method to address the issue where training models often misclassify most
organ regions as tumors.

Given its robustness, flexibility, and efficiency in medical image segmentation,
nnU-Net is adopted as the basic framework in this study. We propose several
methods to enhance the efficiency and accuracy of pan-cancer segmentation:

• Lightweight Model Architecture: A streamlined 4-layer nnU-Net variant is
proposed, significantly reducing model complexity and memory footprint
while effectively preserving tumor segmentation capability.

• Data-Adaptive Preprocessing Optimization: Reconstruction of target patch
size and spacing during preprocessing substantially increases the anatomical
coverage per patch, enhancing contextual information capture.

• Training Strategy Optimization: Fine-tuning the training epochs ensures suf-
ficient learning without overfitting, improving the model’s generalization per-
formance.
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2 Method

2.1 Preprocessing

Fig. 1. Data-adaptive preprocessing with optimized patch size and spacing to capture
extended contextual information.

• Statistical analysis: Flare2025 Task 1 comprises 10,328 annotated CT vol-
umes aggregated from multiple public datasets. Among these, the annota-
tions for the DeepLesion5K subset were generated by MedSAM2, while the
remaining 5,328 cases originate from various other datasets. Most of these
datasets are single-tumor annotation datasets, with 7 of them involving lung
tumors or lesions—and the lung-related datasets also constitute the largest
proportion of samples. The lesion volumes exhibit substantial variability,
ranging from approximately 11 mm³ (the smallest lesion from the LIDC-
IDRI dataset) to 7,375,883 mm³ (the largest lesion from the KiTS23 dataset).
Note that this analysis excludes multi-lesion datasets such as PSMA.

• Data Selection: Due to the critical impact of annotation accuracy on segmen-
tation performance, we exclusively utilized 5,328 rigorously verified cases for
training.

• Resampling: Figure 1 demonstrates our optimization of the sampling method.
The default nnU-Net parameters specify a patch size of 96×160×160 and a
normalized spacing of 1.0×0.79×0.79 mm³. We adjusted these to a patch size
of 128×160×160 and a normalized spacing of 2.4×1.6×1.6 mm³. This modifi-
cation expanded the spatial coverage from 96×126×126 mm³ to 307×256×256
mm³, while simultaneously reducing GPU memory consumption and accel-
erating training speed.

• Normalization: Hounsfield Unit (HU) values were clipped at the 0.05% and
99.5% percentiles computed exclusively from foreground voxels across the
entire training dataset, followed by z-score normalization using the global
mean and standard deviation of the foreground intensities.

2.2 Proposed Method

Figure 2 illustrates the architecture of our model. Our method builds upon
the state-of-the-art nnU-Net framework, streamlining it to a 4-layer architec-
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Fig. 2. A streamlined 4-layer network architecture that significantly reduces computa-
tional complexity and memory footprint.

ture, significantly reducing GPU memory consumption and computational time.
While deeper networks may marginally improve accuracy, they are prone to
overfitting with diminishing returns, especially when dealing with partially la-
beled data. During preprocessing, we resampled the CT scans to a resolution
of 2.4×1.6×1.6 mm³. At this lower resolution, the high-resolution feature ex-
traction stages in deeper networks contribute minimally to final segmentation
quality. The 4-layer architecture optimally aligns with low-resolution feature ex-
traction requirements, eliminating redundant computations while maintaining
an ideal efficiency-accuracy balance.

Fig. 3. Comparison chart of segmentation results between training for 2000 epochs
and training for 5000 epochs.
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We employ a fine-tuned approach to determine the number of training epochs.
The initial training is set to 2,000 epochs; however, we observe that this proves
insufficient, as all metrics indicate further potential for improvement. Conse-
quently, the number of epochs is systematically increased, with validation per-
formed every 500 additional epochs. The training curves and validation met-
rics are closely monitored to prevent overfitting. Based on continual monitoring,
5,000 epochs are identified as the optimal setting, achieving the best performance
without signs of overfitting. Figure 3 demonstrates superior segmentation results
from 5,000 training epochs versus 2,000 epochs.

Loss function: we use the summation between Dice loss and cross-entropy loss
because compound loss functions have proven robust in various medical image
segmentation tasks [16].

3 Experiments

3.1 Dataset and evaluation measures

The segmentation targets cover various lesions. The training dataset is cu-
rated from more than 50 medical centers under the license permission, includ-
ing TCIA [4], LiTS [3], MSD [24], KiTS [9,11,10], autoPET [8,7], TotalSeg-
mentator [25], and AbdomenCT-1K [21], FLARE 2023 [20], DeepLesion [28],
COVID-19-CT-Seg-Benchmark [18], COVID-19-20 [23], CHOS [13], LNDB [22],
and LIDC [1]. The training set includes more than 10000 abdomen CT scans
where 2200 CT scans with partial labels and 1800 CT scans without labels. The
validation and testing sets include 100 and 400 CT scans, respectively, which
cover various abdominal cancer types, such as liver cancer, kidney cancer, pan-
creas cancer, colon cancer, gastric cancer, and so on. The lesion annotation
process used ITK-SNAP [29], nnU-Net [12], MedSAM [17,19], and Slicer Plug-
ins [5,19].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 45 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols Our training protocols followed the default settings of
nnU-Net.

No specific strategy is employed for processing unlabeled images and partial
labels. We use only the 5,328 annotated cases for training, without utilizing
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Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU 2x AMD EPYC 7542 32-Core Processor
RAM 512GB
GPU (number and type) 8x NVIDIA GeForce RTX 4090
CUDA version 12.6
Programming language Python 3.10
Deep learning framework Pytorch (Torch 2.7.1)
Specific dependencies nnU-Net 2.6.2
Code

unlabeled data or labels generated by MedSAM2. The default data augmentation
techniques and patch sampling strategies from nnU-Net are employed, with no
additional modifications.

Table 2. Training protocols.

Network initialization He
Batch size 2
Patch size 128×160×160
Total epochs 5000
Optimizer SGD
Initial learning rate (lr) 0.001
Lr decay schedule poly
Training time 62 hours
Loss function Dice plus CE
Number of model parameters 45.2M1

Number of flops 1665.8G2

CO2eq 34.14KG3

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative results are shown in Table 3. On the public validation set, our
method achieved a mean Dice of 53.48% and NSD of 43.84%. However, no Dice
or NSD metrics were obtained for the hidden validation and test sets.

4.2 Qualitative results on validation set

Figure 4 shows two examples with good segmentation results and two examples
with bad segmentation results in the validation set.The first two rows demon-
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Table 3. Quantitative evaluation results.

Methods Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Algorithm1 53.48 ± 38.06 43.84 ± 35.29 - -

Table 4. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 21.18 6904 71904
0051 (512, 512, 100) 13.75 7068 49261
0017 (512, 512, 150) 13.94 6878 48888
0019 (512, 512, 215) 14.06 6888 49187
0099 (512, 512, 334) 25.92 6920 111241
0063 (512, 512, 448) 14.03 6874 48860
0048 (512, 512, 499) 20.53 6869 69476
0029 (512, 512, 554) 18.74 6888 64100

Fig. 4. Two examples with good segmentation results and two examples with bad
segmentation results in the validation set.
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strate successful examples where the tumor regions are accurately segmented,
achieving Dice scores above 95%. The latter two rows show failure examples
with extremely low segmentation precision, including instances where the Dice
score drops to zero. When the tumor region is particularly small, the model may
misclassify other areas as tumors (as shown in Row 3), leading to suboptimal
segmentation. Additionally, when low contrast exists between tumor regions and
surrounding tissues, the model may completely fail to segment the tumor areas
(as seen in Row 4), mistakenly classifying the image as healthy and resulting in
extremely poor segmentation performance.

4.3 Segmentation efficiency results on validation set

Table 4 shows running times and VRAM utilization for the eight representa-
tive cases from the public validation set. Average runtime is around 18 seconds
per scan, with peak GPU usage below 7.1 GB, showing efficient computational
performance for segmentation tasks.

4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI.

4.5 Limitation and future work

Our method is exclusively trained on labeled datas without employing any semi-
supervised techniques , which constrains the model’s generalization capability.
We use a streamlined four-layer nnU-Net for training; however, by increasing
the number of training epochs, we gain little advantage in terms of training
parameters, training duration, and computational load. Additionally, the model
still struggles to accurately segment extremely small tumor regions as well as
tumors with low contrast and poor resolution, indicating considerable room for
improvement in segmentation accuracy.

5 Conclusion

In this study, we propose a lightweight and modified nnU-Net framework for au-
tomatic whole-body tumor segmentation in CT images. By reducing the network
depth to four layers, optimizing patch size and spacing during preprocessing,
and carefully extending training epochs to 5,000, we developed a model that
balances computational efficiency and segmentation performance. We validated
the method on the MICCAI FLARE 2025 Challenge dataset, and both quantita-
tive and qualitative results demonstrate its significant efficacy in the whole-body
pan-cancer segmentation task.
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