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ABSTRACT

Estimating potential outcomes for treatments over time based on observational data
is important for personalized decision-making in medicine. Yet, existing neural
methods for this task either (1) do not perform proper adjustments for time-varying
confounders, or (2) have a problematic adjustment strategy. In order to address
both limitations, we introduce the G-transformer (GT). Our GT is a novel, neural
end-to-end model which adjusts for time-varying confounders in order to estimate
conditional average potential outcomes (CAPOs) over time. Specifically, our GT is
the first neural model to perform fully regression-based iterative G-computation
for CAPOs in the time-varying setting. We evaluate the effectiveness of our GT
across various experiments. In sum, this work represents a significant step towards
personalized decision-making from electronic health records.

1 INTRODUCTION

Causal machine learning has recently garnered significant attention with the aim to personalize
treatment decisions in medicine (Feuerriegel et al., 2024). Here, an important task is to estimate
conditional average potential outcomes (CAPOs) from observational data over time (see Fig. 1).
Recently, such data has become prominent in medicine due to the growing prevalence of electronic
health records (EHRs) (Allam et al., 2021; Bica et al., 2021) and wearable devices (Battalio et al.,
2021; Murray et al., 2016).

Several neural methods have been developed for estimating CAPOs over time. However, existing
methods suffer from one of two possible limitations (see Table 1): 1 Methods without proper
adjustments for time-varying confounding (Bica et al., 2020; Melnychuk et al., 2022; Seedat
et al., 2022) exhibit significant bias, as they do not target the correct estimand. Hence, these
methods have irreducible estimation errors irrespective of the amount of available data, which renders
them unsuitable for medical applications. 2 Existing methods that perform proper time-varying
adjustments (Li et al., 2021; Lim et al., 2018) have a problematic adjustment strategy. Here,
the causal adjustments are based on the estimation of either the distributions of all time-varying
covariates, or on inverse propensity weighting at several time steps in the future. While the former is
impracticable when granular patient information is available, the latter suffers from strong overlap
violations in the time-varying setting. To the best of our knowledge, there is no method that can
address both 1 and 2 .

To fill the above research gap, we propose the G-transformer (GT), a novel, neural end-to-end
transformer that overcomes both limitations of existing methods. Our GT builds upon G-computation
(Bang & Robins, 2005; Robins & Hernán, 2009). However, unlike existing neural models that
perform G-computation (Li et al., 2021), our GT is based on an iterative regression scheme and does
not require estimating any probability distribution. As a result, our GT has two clear strengths: it
performs 1 proper adjustments for time-varying confounding, and it is 2 fully regression-based
with low-variance pseudo-outcomes.

Our contributions are three-fold:1 (1) We introduce the first neural end-to-end method for estimating
CAPOs over time with 1 proper adjustments for time-varying confounding, while 2 avoiding

1Code and data are anonymized in https://anonymous.4open.science/r/G_
transformer-130D. Upon acceptance, it will be moved to a public Github repository.
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CRN TE-CDE CT RMSNs G-Net GT
(Bica et al., 2020) (Seedat et al., 2022) (Melnychuk et al., 2022) (Lim et al., 2018) (Li et al., 2021) (ours)

1 Proper adjustments for time-varying confounding ✗ ✗ ✗ ✓ ✓ ✓

2
Fully regression-based ✓ ✓ ✓ ✓ ✗ ✓

Low-variance pseudo-outcomes — — — ✗ — ✓

Table 1: Overview of key neural methods for estimating CAPOs over time. Methods that perform
proper adjustments for time-varying confounding target the correct causal estimand and, therefore,
have no infinite-data bias. Fully regression-based methods avoid estimating high-dimensional
probability distributions. Further, we show that IPW generates pseudo-outcomes with larger variance
than G-computation (Prop. 3).

a problematic adjustment strategy. (2) To the best of our knowledge, we are the first to leverage
regression-based iterative G-computation for estimating CAPOs over time in a neural end-to-end
training algorithm. (3) We demonstrate the effectiveness of our GT across various experiments. In the
future, we expect our GT to help personalize decision-making from patient trajectories in medicine.
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Figure 1: Trajectories with outcomes under obser-
vational vs. interventional treatment sequences.

We discuss methods for estimating CAPOs
in the static setting, survival analysis with
pseudo-outcomes, Q-learning, and other liter-
ature streams in an extended related work in
Supplement A.

Estimating APOs over time: Estimating aver-
age potential outcomes (APOs) over time has a
long-ranging history in classical statistics and
epidemiology (Lok, 2008; Robins, 1986; Ryt-
gaard et al., 2022; van der Laan & Gruber, 2012).
Popular approaches are the G-methods (Robins
& Hernán, 2009), which include marginal struc-
tural models (MSMs) (Robins & Hernán, 2009;
Robins et al., 2000), structural nested models (Robins, 1994; Robins & Hernán, 2009) and the
G-computation (Bang & Robins, 2005; Robins, 1999; Robins & Hernán, 2009), and TMLE (?),
which involves a targeting step for the APO. G-computation has also been incorporated into neu-
ral models such as LSTMs (Frauen et al., 2023a), and TMLE to transformers (Shirakawa et al.,
2024). However, all of these works do not focus estimating CAPOs. In particular, (Shirakawa et al.,
2024) is explicitly biased by sequentially targeting the APO and, thereby, ignores individual patient
characteristics. Further, it require estimation of additional nuisance such as the propensity score.
Finally, it is only evaluated for estimating APOs. As this entire literature stream does not account
for individual-level patient characteristics, it serves a different purpose and is thus not suitable for
personalized decision-making in medicine.

Estimating CAPOs over time: In this work, we focus on the task of estimating the heterogeneous
response to a sequence of treatments through conditional average potential outcomes (CAPOs).2
Hence, we now summarize key neural methods that have been developed for estimating CAPOs
over time (see Table 1). However, these methods fall into two groups with important limitations, as
discussed in the following:

Limitation 1 proper adjustments: A number of neural methods for estimating CAPOs have been
proposed that do not properly adjust for time-varying confounders (Bica et al., 2020; Melnychuk
et al., 2022; Seedat et al., 2022). Therefore, they are biased as they do not target the correct estimand.
Here, key examples are the counterfactual recurrent network (CRN) (Bica et al., 2020), the treatment
effect neural controlled differential equation (TE-CDE) (Seedat et al., 2022) and the causal transformer
(CT) (Melnychuk et al., 2022). These methods try to account for time-varying confounders through
balanced representations. However, balancing was originally designed for reducing finite-sample

2This is frequently known as counterfactual prediction. However, our work follows the potential outcomes
framework (Neyman, 1923; Rubin, 1978), and we thus use the terminology of CAPO estimation.
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estimation variance and not for mitigating confounding bias (Shalit et al., 2017). Hence, this is
a heuristic and may even introduce another source of representation-induced confounding bias
(Melnychuk et al., 2024). Unlike these methods, our GT performs proper adjustments for time-
varying confounders.

Limitation 2 adjustment strategy: Existing neural methods with proper causal adjustments require
estimating full probability distributions at several time steps in the future, or inverse propensity
weighting, both of which are problematic adjustment strategies. Prominent examples are the
recurrent marginal structural networks (RMSNs) (Lim et al., 2018) and the G-Net (Li et al., 2021).
Here, the RMSNs leverage MSMs (Robins & Hernán, 2009; Robins et al., 2000) and construct pseudo
outcomes through inverse propensity weighting (IPW).However, IPW constructs pseudo-outcomes
with large variance compared to G-computation as we show in Prop. 3. Further, the G-Net (Li et al.,
2021) uses G-computation (Robins, 1999; Robins & Hernán, 2009) to adjust for confounding (see
Supplement C). For this, G-Net proceeds by estimating the entire distribution of all confounders
at several time-steps in the future. Therefore, may suffer from large estimation variance. Different
to G-Net, our GT makes use of regression-based G-computation. We discuss key differences in
Section 4.4 and Supplement F.

Research gap: None of the above neural methods leverages G-computation (Bang & Robins, 2005;
Robins, 1999) for estimating CAPOs through iterative regressions. Therefore, to the best of our
knowledge, we propose the first neural end-to-end model that 1 properly adjusts for time-varying
confounders through regression-based iterative G-computation. Hence, our GT yields estimates of
CAPOs over time that have 2 are fully regression-based with low-variance pseudo-outcomes.

3 PROBLEM FORMULATION

Setup: We follow previous literature (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melny-
chuk et al., 2022) and consider data that consist of realizations of the following random variables:
(i) outcomes Yt ∈ Rdy , (ii) covariates Xt ∈ Rdx , and (iii) treatments At ∈ {0, 1}da at time
steps t ∈ {0, . . . , T} ⊂ N0, where T is the time window that follows some unknown counting pro-
cess. We are interested in estimating CAPOs for τ steps in the future. For any random variable
Ut ∈ {Yt, Xt, At}, we write Ut:t+τ = (Ut, . . . , Ut+τ ) to refer to a specific subsequence of a random
variable. We further write Ūt = U0:t to denote the full trajectory of U including time t. Finally, we
write H̄t

t+δ = (Ȳt+δ, X̄t+δ, Āt−1) for δ ≥ 0, and we let H̄t = H̄t
t denote the collective history of

(i)–(iii).

Estimation task: We are interested in estimating the conditional average potential outcome (CAPO)
for a future, interventional sequence of treatments, given the observed history. For this, we build
upon the potential outcomes framework (Neyman, 1923; Rubin, 1978) for the time-varying setting
(Robins & Hernán, 2009; Robins et al., 2000). Hence, we aim to estimate the potential outcome
Yt+τ [at:t+τ−1] at future time t+τ , τ ∈ N, for an interventional sequence of treatments a = at:t+τ−1,
conditionally on the observed history H̄t = h̄t. That is, our objective is to estimate

E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
. (1)

Identifiability: In order to estimate the causal quantity in Eq. (1) from observational data, we
make the following identifiability assumptions (Robins & Hernán, 2009; Robins et al., 2000) that
are standard in the literature (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk et al.,
2022; Seedat et al., 2022): (1) Consistency: For an observed sequence of treatments Āt = āt, the
observed outcome Yt+1 equals the corresponding potential outcome Yt+1[āt]. (2) Positivity: For
any history H̄t = h̄t that has non-zero probability P(H̄t = h̄t) > 0, there is a positive probability
P(At = at | H̄t = h̄t) > 0 of receiving any treatment At = at, where at ∈ {0, 1}da . (3) Sequential
ignorability: Given a history H̄t = h̄t, the treatment At is independent of the potential outcome
Yt+δ[at:t+δ−1], that is, At ⊥ Yt+δ[at:t+δ−1] | H̄t = h̄t for all at:t+δ−1 ∈ {0, 1}δ×da .

The above assumptions are standard in the literature (Bica et al., 2020; Li et al., 2021; Lim et al.,
2018; Melnychuk et al., 2022; Seedat et al., 2022). In clinical scenarios, (i) consistency is typically
guaranteed as long as data is properly recorded. Positivity can be guaranteed by filtering the data
or by using propensity score clipping. Further, with growing amounts of observational data, this
becomes less of a restriction. Finally, relaxations of (iii) ignorability are typically studies in sensitivity

3
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analysis (Frauen et al., 2023b; Oprescu et al., 2023) and partial identification (Duarte et al., 2023),
which is orthogonal to our work. We provide a discussion on the applicability in medical scenarios in
Supplement B.

G-computation: Estimating CAPOs without confounding bias poses a non-trivial challenge in the
time-varying setting. The issue lies in the complexity of handling future time-varying confounders.
In particular, for τ ≥ 2 and 1 ≤ δ ≤ δ′ ≤ τ − 1, future covariates Xt+δ and outcomes Yt+δ may
affect the probability of receiving certain treatments At+δ′ .Importantly, the time-varying confounders
are unobserved during inference time, which is generally known as runtime confounding (Coston
et al., 2020). Therefore, in order to estimate the direct effect of an interventional treatment sequence,
one needs to adjust for the time-varying confounders. That is, it is in general insufficient to only
adjust for the history (Frauen et al., 2024) via

E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
̸= E

[
Yt+τ | H̄t = h̄t, At:t+τ−1 = at:t+τ−1

]
. (2)

As a side note, the problem of time-varying confounding does not arise for one-step ahead predictions
(i.e., τ = 1). Here, under assumptions (i)–(iii), conditioning on the observed history is equivalent to
backdoor-adjustments in the static setting.

One way to adjust for time-varying confounders is IPW (Robins & Hernán, 2009; Robins et al., 2000),
which is leveraged by RMSNs (Lim et al., 2018). However, as we show in Supplement E, IPW is
subject to large variance. Instead, we leverage G-computation (Bang & Robins, 2005; Robins, 1999;
Robins & Hernán, 2009), which provides a rigorous way to account for the time-varying confounders
through proper adjustments. Formally, G-computation identifies the causal quantity in Eq. (1) via

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
(3)

. . .
∣∣H̄t

t+1, At:t+1 = at:t+1

]∣∣H̄t = h̄t, At = at

}
.

A derivation of the G-computation formula for CAPOs is given in Supplement C. However, due to
the nested structure of G-computation, estimating Eq. (3) from data is challenging.

So far, only G-Net (Li et al., 2021) has used G-computation for estimating CAPOs in a neural model.
For this, G-Net makes a Monte Carlo approximation of Eq. (3) through∫

Rdx×τ−1×Rdy×τ−1

E[Yt+τ | H̄t
t+τ−1 = h̄t

t+τ−1, At:t+τ−1 = at:t+τ−1]

×
τ−1∏
δ=1

p(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1) d(xt+1:t+τ−1, yt+1:t+τ−1). (4)

However, Eq. (76) requires estimating the entire distribution of all time-varying confounders at
several time steps in the future, which may lead to large estimation variance. In particular, all
moments of a (τ − 1)× (dx + dy)-dimensional random variable need to be estimated, which leads to
estimation of nuisance. We provide more details in Supplement F.

In contrast, our GT does not rely on high-dimensional integral approximation through Monte
Carlo sampling. Further, our GT does not require estimating any probability distribution. Instead,
it performs regression-based iterative G-computation in an end-to-end transformer architecture.
Thereby, we perform proper adjustments for time-varying confounding through Eq. (3), while
relying only on regressions of via low-variance pseudo-outcomes.

4 G-TRANSFORMER

In the following, we present our G-transformer. Inspired by (Bang & Robins, 2005; Robins, 1999;
Robins & Hernán, 2009) for APOs, we reframe G-computation for CAPOs over time through
recursive conditional expectations. Thereby, we precisely formulate the training objective of our GT
through iterative regressions. Importantly, existing approaches for estimating APOs do not estimate
potential outcomes on an individual level for a given history H̄t = h̄t, because of which they are not

4
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sufficient for estimating CAPOs. Therefore, we proceed below by first extending regression-based
iterative G-computation to account for the heterogeneous response to a treatment intervention. We
then detail the architecture of our GT and provide details on the end-to-end training and inference.

4.1 REGRESSION-BASED ITERATIVE G-COMPUTATION FOR CAPOS

Our GT leverages G-computation as in Eq. (3) and, therefore, properly adjusts for time-varying
confounders in Eq. (1). However, we do not attempt to integrate over the estimated distribution of
all time-varying confounders. Instead, one of our main novelties is that our GT performs iterative
regressions in a neural end-to-end architecture. This allows us to estimate Eq. (1) without estimating
high-dimensional probability distributions.

We reframe Eq. (3) equivalently as a recursion of conditional expectations. Thereby, we can formulate
the iterative regression objective of our GT. In particular, our approach resembles an iterative pseudo-
outcome regression. For this, let

gat+δ(h̄
t
t+δ) = E[Ga

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ], (5)

where the pseudo-outcomes are defined as

Ga
t+τ = Yt+τ (6)

and

Ga
t+δ = gat+δ(H̄

t
t+δ) (7)

for δ = 0, . . . , τ − 1. By reformulating the G-computation formula through recursions, the nested
expectations in Eq. (3) are now given by

Ga
t+τ−1 = E[Yτ | H̄t

t−1, At:t+τ−1 = at:t+τ−1], (8)

Ga
t+τ−2 = E

[
E[Yτ | H̄t

t−1, At:t+τ−1 = at:t+τ−1] | H̄t
t−2, At:t+τ−2 = at:t+τ−2

]
, (9)

. . . (10)

Hence, the G-computation formula in Eq. (3) can be rewritten as

gat (h̄t) = E[Yt+τ [at:t+τ−1] | H̄t = h̄t]. (11)

We show in the following proposition that iterative pseudo-outcome regression recovers the CAPOs
and thus performs proper adjustments for time-varying confounding. We summarize the iterative
pseudo-outcome regression for CAPOs in the following proposition.
Proposition 1. The regression-based iterative G-computation yields the CAPO in Eq. (1).

Proof. See Supplement D.1.

To further illustrate our regression-based iterative G-computation, we provide two examples in
Supplement D.3, where we show step-by-step how our approach adjusts for time-varying confounding.

In order to correctly estimate Eq. (2) for a given history H̄t = h̄t and an interventional treatment
sequence a = at:t+τ−1, all subsequent pseudo-outcomes in Eq. (7) are required. However, the
ground-truth realizations of the pseudo-outcomes Ga

t+δ are not available in the data. Instead, only
realizations of Ga

t+τ = Yt+τ in Eq. (6) are observed during the training. Hence, when training our
GT, it alternately generates predictions G̃a

t+δ of the pseudo-outcomes for δ =0, . . . τ − 1, which it
then uses for learning the estimator of Eq. (5).

Therefore, the training of our GT completes two steps in an iterative scheme: First, it runs a
A generation step, where it generates predictions of the pseudo-outcomes Eq. (7). Then, it runs a
B learning step, where it regresses the predictions G̃a

t+δ for Eq. (7) and the observed Ga
t+τ = Yt+τ

in Eq. (6) on the history to update the estimator for Eq. (5). Finally, the updated estimators are
used again in the next A generation step. This procedure resembles an iterative pseudo-outcome
regression. Thereby, our GT is designed to simultaneously A generate predictions and B learn
during the training. Both steps are performed in an end-to-end architecture, ensuring that information
is shared across time and data is used efficiently. We detail the architecture as well as training and
inference of our GT in the following sections.

5
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Figure 2: Neural end-to-end architecture and training of our G-transformer.

4.2 MODEL ARCHITECTURE

We first introduce the architecture of our GT. Then, we explain the iterative prediction and learning
scheme inside our GT, which presents one of the main novelties. Finally, we introduce the inference
procedure.

Our GT consists of two key components (see Fig. 2): (i) a multi-input transformer zθ(·), and
(ii) several G-computation heads {gδϕ(·)}

τ−1
δ=0 , where θ, ϕ denote the trainable weights. First, the

multi-input transformer encodes the entire observed history. Then, the G-computation heads take
the encoded history and perform the iterative regressions according to Eq. (5). We provide further
details on the transformer architecture and an illustration in Supplement J. For all t = 1, . . . , T − τ
and δ = 0, . . . , τ − 1, the components are designed as follows:

(i) Multi-input transformer: The backbone of our GT is a multi-input transformer zθ(·), which
consists of three connected encoder-only sub-transformers zkθ (·), k ∈ {1, 2, 3} and is directly inspired
by (Melnychuk et al., 2022). We provide details on the architecture in Supplement J. At time t, the
transformer zθ(·) receives data H̄t = (Ȳt, X̄t, Āt−1) as input and passes them to one corresponding
sub-transformer. In particular, each sub-transformer zkθ (·) is responsible to focus on one particular
Ūk
t ∈ {Ȳt, X̄t, Āt−1} in order to effectively process the different types of inputs. Further, we ensure

that information is shared between the sub-transformers, as we detail below. The output of the
multi-input transformer are hidden states ZA

t , which are then passed to the (ii) G-computation heads.

(ii) G-computation heads: The G-computation heads {gδϕ(·)}
τ−1
δ=0 are the read-out component of our

GT. As input at time t+ δ, the G-computation heads receive the hidden state ZA
t+δ from the above

multi-input-transformer. Recall that we seek to perform the iterative regressions in Eq. (5) and Eq. (2),
respectively. For this, we require estimators of E[Ga

t+δ+1 | H̄t+δ, Āt+δ]. Hence, the G-computation
heads compute

Ê[Ga
t+δ+1 | H̄t+δ, At+δ] = gδϕ(Z

A
t+δ, At+δ), (12)

where

ZA
t+δ = zθ(H̄t+δ) (13)

for δ = 0, . . . , τ − 1. As a result, the G-computation heads and the multi-input transformer together
give the estimators that are required for the regression-based iterative G-computation. In particular,
we thereby ensure that, for δ = 0, the last G-computation head g0ϕ(·) is trained as the estimator for
the CAPO as given in Eq. (2). That is, for a fully trained multi-input transformer and G-computation
heads, our GT estimates the CAPO via

Ê[Yt+τ [at:t+τ−1] | H̄t = h̄t] = g0ϕ(zθ(h̄t), at). (14)

6
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4.3 ITERATIVE TRAINING AND INFERENCE TIME

We now introduce the iterative training of our GT, which consists of a A generation step and a
B learning step. Then, we show how inference for a given history H̄t = h̄t can be achieved. We

provide pseudocode in Supplement K.

Iterative training: Our GT is designed to estimate the CAPO gat (h̄t) in Eq. (2) for a given history
H̄t = h̄t and an interventional treatment sequence a = at:t+τ−1 via Eq. (14). Therefore, the G-
computation heads in Eq. (12) require the pseudo-outcomes {Ga

t+δ}τδ=1 from Eq. (7) during training.
However, they are only available in the training data for δ = τ . That is, we only observe the factual
outcomes Ga

t+τ = Yτ .

As a remedy, our GT first predicts the remaining pseudo-outcomes {Ga
t+δ}

τ−1
δ=1 in the A generation

step. Then, it can use these generated pseudo-outcomes and the observed Ga
t+τ for learning the

network weights ϕ in the B learning step. In the following, we write {G̃a
t+δ}

τ−1
δ=1 for the generated

pseudo-outcomes and, for notational convenience, we also write G̃a
t+τ = Ga

t+τ .

A Generation step: In this step, our GT generates G̃a
t+δ ≈ gat+δ(H̄

t
t+δ) as substitutes for Eq. (7),

which are the pseudo-outcomes in the iterative regression-based G-computation. Formally, our GT
predicts these via

G̃a
t+δ = gδϕ(Z

a
t+δ, at+δ), (15)

where

Za
t+δ = zθ(H̄

t
t+δ, at:t+δ−1), (16)

for δ = 0, . . . , τ − 1. For this, all operations are detached from the computational graph. Hence, our
GT now has pseudo-outcomes {G̃a

t+δ}τδ=0, which it can use in the following B learning step. Of
note, these generated pseudo-outcomes will be noisy for early training epochs. However, as training
progresses, the G-computation heads perform increasingly more accurate predictions, as we explain
below.

B Learning step: This step is responsible for updating the weights ϕ of the multi-input transformer
zθ(·) and the G-computation heads {gδϕ(·)}

τ−1
δ=0 . For this, our GT learns the estimator for Eq. (5) via

Ê[Ga
t+δ+1 | H̄t

t+δ, At:t+δ] = gδϕ(Z
A
t+δ, At+δ), (17)

where

ZA
t+δ = zθ(H̄t+δ) (18)

for δ = 0, . . . , τ − 1. In particular, the estimator is optimized by backpropagating the squared error
loss L for all δ = 0, . . . , τ − 1 and t = 1, . . . , T − τ via

L =
1

T − τ

T−τ∑
t=1

(
1

τ

τ−1∑
δ=0

(
gδϕ(Z

A
t+δ, At+δ)− G̃a

t+δ+1

)2)
. (19)

Then, after ϕ is updated, we can use the updated estimator in the next A generation step.

Here, it is important that for δ = τ , the pseudo-outcome G̃a
t+τ = Yt+τ is available in the data. By

estimating Yt+τ with gτ−1
ϕ (ZA

t+τ−1, At+τ−1), it is ensured the last G-computation head gτ−1
ϕ (·) is

learned on a ground-truth quantity. Thereby, the weights of gτ−1
ϕ (·) are gradually optimized during

training. Hence, the predicted pseudo-outcome

G̃a
t+τ−1 = gτ−1

ϕ (Za
t+τ−1, at+τ−1) (20)

in the next A generation step become mores accurate. Therefore, the G-computation head gτ−2
ϕ (·) is

learned on a more accurate prediction in the following B learning step, which thus leads to a better
generated pseudo-outcome G̃a

t+τ−2, and so on. As a result, the optimization of the G-computation
heads gradually improves from gτ−1

ϕ (·) up to g0ϕ(·).
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Inference at runtime: Finally, we introduce how inference is achieved with our GT. Given a history
H̄t = h̄t and an interventional treatment sequence a = at:t+τ−1, our GT is trained to estimate of
Eq. (1) through Eq. (2). For this, our GT computes the CAPO via

ĝat (h̄t) = Ê[Ga
t+1 | H̄t = h̄t, At = at] = g0ϕ(zθ(h̄t), at). (21)

We summarize this in the following proposition.

Proposition 2. Our GT estimates the G-computation formula as in Eq. (2) and, therefore, performs
proper adjustments for time-varying confounders.

Proof. See Supplement D.2.

4.4 ADVANTAGES OVER EXISTING APPROACHES

In the following, we explain the differences of our GT compared to (i) CT (Melnychuk et al., 2022)
and (ii) G-Net (Li et al., 2021), and (iii) RMSNs (Lim et al., 2018). Importantly, our method has an
entirely different learning algorithm that allows for proper adjustments in an end-to-end approach
through iterative regressions.

Our GT vastly differs from CT (Melnychuk et al., 2022). Recall that CT does not perform proper
adjustments for time-varying confounding. In particular, CT targets E[Yt+τ | Ht = ht, At:t+τ =
at:t+τ ], which is not the CAPO (Frauen et al., 2024). Hence, it targets an incorrect estimand, leading
to irreducible bias. Therefore, deploying it to medical scenarios would be irresponsible. In contrast,
our GT leverages iterative regression based on the G-computation to correctly target the CAPO
(Prop. 2). To achieve this, we propose a new generation-learning approach inside our GT.

Our GT is also vastly different from G-Net (Li et al., 2021). In order to estimate a τ -step-ahead
CAPO, G-Net requires (i) a dy-dimensional regression as well as estimating the entire distribution of
a (τ − 1)× (dy + dx)-dimensional confounding variable. That is, it needs to estimate all moments
of a high-dimensional random variable. In contrast, our GT only requires τ regressions of a dy-
dimensional outcome and, hence, only needs to estimate the first moment of a much lower dimensional
random variable. Compared to G-Net, our estimation strategy is unproblematic as it does not fit
unnecessary nuisance. We provide a detailed comparison in Supplement F.

Finally, RMSNs (Lim et al., 2018) also rely on pseudo-outcome regressions. However, their pseudo-
outcomes are constructed via inverse propensity weighting, which leads to pseudo-outcomes with
larger variance than ours:

Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. See Supplement E.

5 EXPERIMENTS

We show the performance of our GT against key neural methods for estimating CAPOs over time
(see Table 1). Further details (e.g., implementation details, hyperparameter tuning, runtime) are given
in Supplement L. We report ablation studies of our GT in Supplement G.1.

5.1 SYNTHETIC DATA

First, we follow common practice in benchmarking for causal inference (Bica et al., 2020; Li et al.,
2021; Lim et al., 2018; Melnychuk et al., 2022) and evaluate the performance of our GT against other
baselines on fully synthetic data. The use of synthetic data is beneficial as it allows us to simulate the
outcomes under a sequence of interventions, which are unknown in real-world datasets. Thereby, we
are able to evaluate the performance of all methods for estimating CAPOs over time. Here, our main
aim is to show that our GT is robust against increasing levels of confounding.
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γ = 10 γ = 11 γ = 12 γ = 13 γ = 14 γ = 15 γ = 16 γ = 17 γ = 18 γ = 19 γ = 20

CRN (Bica et al., 2020) 4.05± 0.55 5.45± 1.68 6.17± 1.27 4.98± 1.49 5.24± 0.33 4.84± 0.95 5.41± 1.20 5.09± 0.77 5.08± 0.87 4.47± 0.84 4.80± 0.70

TE-CDE (Seedat et al., 2022) 4.08± 0.54 4.21± 0.42 4.33± 0.11 4.48± 0.47 4.39± 0.38 4.67± 0.65 4.84± 0.46 4.31± 0.38 4.44± 0.53 4.61± 0.42 4.72± 0.45

CT (Melnychuk et al., 2022) 3.44± 0.73 3.70± 0.77 3.60± 0.62 3.87± 0.68 3.88± 0.75 3.87± 0.65 5.26± 1.67 4.04± 0.74 4.13± 0.90 4.30± 0.72 4.49± 0.94

RMSNs (Lim et al., 2018) 3.34± 0.20 3.41± 0.17 3.61± 0.25 3.76± 0.25 3.92± 0.26 4.22± 0.40 4.30± 0.52 4.48± 0.59 4.60± 0.46 4.47± 0.53 4.62± 0.51

G-Net (Li et al., 2021) 3.51± 0.37 3.71± 0.33 3.80± 0.29 3.89± 0.27 3.91± 0.26 3.94± 0.26 4.05± 0.37 4.09± 0.41 4.22± 0.53 4.21± 0.55 4.24± 0.45

GT (ours) 3.13± 0.22 3.16± 0.14 3.31± 0.20 3.27± 0.14 3.30± 0.11 3.49± 0.30 3.53± 0.26 3.50± 0.26 3.41± 0.29 3.59± 0.21 3.71± 0.27

Rel. improvement 6.4% 7.3% 7.9% 12.9% 15.0% 9.9% 12.9% 13.1% 17.4% 14.8% 12.5%

Table 2: RMSE on synthetic data based on the tumor growth model with τ = 2. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE ± standard deviation over five seeds.

Our main evaluation metric is the root mean squared error (RMSE), which is the appropriate
evaluation metric for estimating CAPOs and is standard in the literature (Bica et al., 2020; Li
et al., 2021; Lim et al., 2018; Melnychuk et al., 2022). Of note, all baselines and our GT are
inherently designed for CAPO estimation. Hence, the best-performing method for estimating CAPOs
is immediately the best at estimating conditional average treatment effects CATEs).

Setting: For this, we use data based on the pharmacokinetic-pharmacodynamic tumor growth model
(Geng et al., 2017), which is a standard dataset for benchmarking causal inference methods in the
time-varying setting (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk et al., 2022).
Here, the outcome Yt is the volume of a tumor that evolves according to the stochastic process
Yt+1 = (1+ ρ log

(
K
Yt

)
−αcct − (αrdt + βrd

2
t )+ ϵt)Yt, where αc, αr, and βr control the strength

of chemo- and radiotherapy, respectively, and where K corresponds to the carrying capacity, and
where ρ is the growth parameter. The radiation dosage dt and chemotherapy drug concentration ct
are applied with probabilities σ(γ/Dmax(D̄15(Ȳt−1 − D̄max/2), where Dmax is the maximum tumor
volume, D̄15 the average tumor diameter of the last 15 time steps, and γ controls the confounding
strength. We use the same parameterization as in (Melnychuk et al., 2022). For training, validation,
and testing, we sample N = 1000 trajectories of lengths T ≤ 30 each.

We are interested in the performance of our GT for increasing levels of confounding. We thus
increase the confounding from γ = 10 to γ = 20. For each level of confounding, we fix an arbitrary
intervention sequence and simulate the outcomes under this intervention for testing.

Results: Table 2 shows the average RMSE over five different runs for a prediction horizon of τ = 2.
Of note, we emphasize that our comparison is fair (see hyperparameter tuning in Supplement L.1).
We make the following observations:

First, our GT outperforms all baselines by a significant margin. Importantly, as our GT performs
proper adjustments for time-varying confounding, it is robust against increasing γ. In particular,
our GT achieves a performance improvement over the best-performing baseline of up to 17.4%.
Further, our GT is highly stable, as can be seen by low standard deviation in the estimates, especially
compared to the baselines. In sum, our GT performs best in estimating the CAPOs, especially under
increasing confounding strength.

Second, the 1 baselines that do not perform proper adjustments (i.e., CRN (Bica et al., 2020), TE-
CDE (Seedat et al., 2022), and CT (Melnychuk et al., 2022)) exhibit large variations in performance
and are thus highly unstable. This is expected, as they do not target the correct causal estimand and,
accordingly, suffer from the increasing confounding.

Third, the baselines with 2 problematic adjustment strategies (i.e., RMSNs (Lim et al., 2018) and
G-Net (Li et al., 2021)) are slightly more stable than the no-adjustment baselines. This can be
attributed to that the tumor growth model has no time-varying covariates Xt and to that we are only
focusing on τ = 2-step ahead predictions, both of which reduce the variance. However, the RMSNs
and G-Net are still significantly worse than the estimates provided by our GT.

5.2 SEMI-SYNTHETIC DATA

Next, we study how our GT performs when (i) the covariate space is high-dimensional and when
(ii) the prediction windows τ become larger. For this, we use semi-synthetic data, which, similar
to the fully-synthetic dataset allows us to access the ground-truth outcomes under an interventional
sequence of treatments for benchmarking.
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N = 1000 N = 2000 N = 3000

τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

CRN (Bica et al., 2020) 0.42± 0.11 0.58± 0.21 0.74± 0.31 0.84± 0.42 0.95± 0.51 0.39± 0.12 0.50± 0.14 0.58± 0.15 0.64± 0.16 0.70± 0.17 0.37± 0.10 0.46± 0.11 0.56± 0.13 0.65± 0.16 0.75± 0.24

TE-CDE (Seedat et al., 2022) 0.76± 0.09 0.91± 0.15 1.07± 0.22 1.15± 0.25 1.24± 0.28 0.76± 0.16 0.87± 0.17 0.98± 0.17 1.06± 0.18 1.14± 0.19 0.71± 0.09 0.78± 0.09 0.88± 0.11 0.94± 0.12 1.02± 0.13

CT (Melnychuk et al., 2022) 0.33± 0.14 0.44± 0.18 0.53± 0.21 0.57± 0.19 0.60± 0.19 0.31± 0.11 0.41± 0.13 0.49± 0.15 0.55± 0.15 0.60± 0.15 0.32± 0.10 0.40± 0.11 0.49± 0.12 0.55± 0.13 0.61± 0.15

RMSNs (Lim et al., 2018) 0.57± 0.16 0.73± 0.20 0.87± 0.22 0.94± 0.20 1.02± 0.20 0.62± 0.25 0.73± 0.21 0.85± 0.25 0.96± 0.26 1.05± 0.28 0.66± 0.27 0.76± 0.24 0.86± 0.23 0.93± 0.21 1.00± 0.20

G-Net (Li et al., 2021) 0.56± 0.14 0.73± 0.17 0.86± 0.18 0.95± 0.20 1.03± 0.21 0.55± 0.12 0.73± 0.14 0.87± 0.18 1.00± 0.22 1.12± 0.26 0.54± 0.11 0.72± 0.16 0.88± 0.21 1.00± 0.26 1.11± 0.32

GT (ours) 0.30± 0.07 0.36± 0.11 0.44± 0.13 0.47± 0.12 0.54± 0.13 0.27± 0.07 0.32± 0.09 0.38± 0.10 0.42± 0.08 0.45± 0.10 0.24± 0.07 0.31± 0.08 0.36± 0.09 0.42± 0.10 0.48± 0.10

Rel. improvement 9.5% 19.7% 16.3% 16.7% 10.8% 15.3% 22.5% 22.5% 22.6% 25.0% 26.7% 24.0% 25.2% 24.6% 21.6%

Table 3: RMSE on semi-synthetic data based on the MIMIC-III extract. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE ± standard deviation over five seeds.

Setting: We build upon the MIMIC-extract (Wang et al., 2020), which is based on the MIMIC-III
dataset (Johnson et al., 2016). Here, we use dx = 25 different vital signs as time-varying covariates
and as well as gender, ethnicity, and age as static covariates. Then, we simulate observational
outcomes for training and validation, and interventional outcomes for testing, respectively. Our
data-generating process is taken from (Melnychuk et al., 2022), which we refer to for more details. In
summary, the data generation consists of three steps: (1) dy = 2 untreated outcomes Ỹ j

t , j = 1, 2, are
simulated according to Ỹ j

t = αj
sB-spline(t) + αj

gg
j(t) + αj

ff
j
Y (Xt) + ϵt, where αj

s, αj
g and αj

f are
weight parameters, B-spline(t) is sampled from a mixture of three different cubic splines, and f j

Y (·)
is a random Fourier features approximation of a Gaussian process. (2) A total of da = 3 synthetic
treatments Al

t, l = 1, 2, 3, are applied with probability σ(γl
Y Y

A,l
t−1 + γl

Xf l
Y (Xt) + bl) where γl

Y and
γl
X are fixed parameters that control the confounding strength for treatment Al, Y A,l

t is an averaged
subset of the previous l treated outcomes, bl is a bias term, and f l

Y (·) is a random function that
is sampled from an RFF (random Fourier features) approximation of a Gaussian process. (3) The
treatments are applied to the untreated outcomes via

Y j
t = Ỹ j

t +

t∑
i=t−ωl

minl=1,...,da
1{Al

i=1}p
l
iβ

l,j

(ωl − i)2
, (22)

where ωl is the effect window for treatment Al and βl,j controls the maximum effect of treatment Al.

We run different experiments for training, testing, and validation sizes of N = 1000, N = 2000,
and N = 3000, respectively, and set the time window to 30 ≤ T ≤ 50. As the covariate space is
high-dimensional, we thereby study how robust our GT is with respect to estimation variance.

Results: Table 3 shows the average RMSE over five different runs. Again, we emphasize that our
comparison is fair (see hyperparameter tuning in Supplement L). We make three observations:

First, our GT consistently outperforms all baselines by a large margin. The performance of GT
is robust across all sample sizes N .Further, it is stable across different prediction windows τ . We
observe that our GT has a better performance compared to the strongest baseline of up to 26.7%.
Further, the results show the clear benefits of our GT in high-dimensional covariate settings and for
longer prediction windows τ .In addition, our GT is highly stable, as its estimates exhibit the lowest
standard deviation among all baselines. In sum, our GT consistently outperforms all the baselines.

Second, 1 baselines that do not perform proper adjustments (i.e., CRN (Bica et al., 2020), CT
(Melnychuk et al., 2022)) tend to perform better than baselines with problematic adjustment strategies
(i.e., RMSNs (Lim et al., 2018), G-Net (Li et al., 2021)). The reason is that the former baselines
are (i) regression-based (ii) do not require IPW pseudo-outcomes. Hence, they can better handle the
high-dimensional covariate space. They are, however, biased as they do not adjust for time-varying
confounders and thus still perform significantly worse than our GT.

Third, baselines with 2 problematic adjustment strategies (i.e., RMSNs (Lim et al., 2018), G-Net
(Li et al., 2021)) struggle with the high-dimensional covariate space and larger prediction windows τ .
This can be expected, as RMSNs suffer from overlap violations and thus produce unstable inverse
propensity weights. Similarly, G-Net suffers from the curse of dimensionality, as it requires estimating
a (dx + dy)× (τ − 1)-dimensional distribution.

Conclusion: In this paper, we propose the GT, a novel end-to-end method that adjusts for time-
varying confounding, while avoiding problematic adjustment strategies for estimating of CAPOs. For
this, we propose a regression-based learning algorithm that sets our GT apart from existing baselines.
Therefore, we expect our GT to be an important step toward personalized medicine.
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A EXTENDED RELATED WORK

Estimating CAPOs in the static setting: Extensive work on estimating potential outcomes focuses
on the static setting (e.g., Alaa & van der Schaar, 2017; Frauen et al., 2023b; Johansson et al., 2016;
Louizos et al., 2017; Melnychuk et al., 2023; Yoon et al., 2018; Zhang et al., 2020)). However,
observational data such as electronic health records (EHRs) in clinical settings are typically measured
over time (Allam et al., 2021; Bica et al., 2021). Additionally, treatments are rarely applied all at
once but rather sequentially over time (Apperloo et al., 2024). Therefore, the underlying assumption
of these methods prohibitive and does not properly reflect medical reality. Hence, static methods
are not tailored to accurately estimate potential outcomes when (i) time series data is observed and
(ii) multiple treatments in the future are of interest.

Additional literature on estimating CAPOs over time: There are some non-parametric methods for
this task (Schulam & Saria, 2017; Soleimani et al., 2017; Xu et al., 2016), yet these suffer from
poor scalability and have limited flexibility regarding the outcome distribution, the dimension of
the outcomes, and static covariate data; because of that, we do not explore non-parametric methods
further but focus on neural methods instead.3

Survival analysis: Some works in survival analysis (Andersen & Perme, 2010; Andersen et al.,
2017; Su et al., 2022) employ pseudo-outcomes, which is similar to our approach. However, these
works are different in that they are aimed at survival outcomes and not CAPOs for sequences of
treatments. Further, they do not consider neural networks as estimators. Additionally, (Andersen
et al., 2017) only considers a single, static treatment, and (Andersen & Perme, 2010) only uses
linear estimators. Finally, (Su et al., 2022) focuses on average causal effects and is therefore not
applicable to personalized medicine.

G-computation and Q-learning: Q-learning (Murphy, 2003; Kallus & Uehara, 2019) from the
reinforcement learning literature (Furuta et al., 2022; Jang et al., 2022; Kumar et al., 2019; Pashevich
et al., 2021) is closely related to G-computation, although both have a different purpose. They are
similar in that they share a common goal of understanding the effect of treatments/actions, but operate
in complementary domains: G-computation is grounded in causal inference for evaluating potential
outcomes, whereas Q-learning is rooted in reinforcement learning to derive policies that maximize
long-term rewards. We show more details on the two in the following:

G-computation can be written as the iterative update
gat+δ(h̄

t
t+δ) = E[Ga

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ], (23)

In our setting, we aim to estimate E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
.

However, we could also consider the expected cumulative rewards E
[
Ȳt+τ [at:t+τ−1] | H̄t = h̄t

]
,

where we define Ȳt+τ [at:t+τ−1] =
∑t+τ

ℓ=1 γ
ℓYt+ℓ[at:t+ℓ−1] and where γ < 1 is a so-called discount

factor that weighs the importance of immediate and future rewards. One can show that the G-
computation update becomes

gat+δ(h̄
t
t+δ) = E[Yt+δ + γGa

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ]. (24)
If we only care about the optimal treatment sequence a∗ (i.e., the one that maximizes the cumulative
reward), we can write

ga
∗

t+δ(h̄
t
t+δ) = E[Yt+δ + γ max

a∗
t+δ+1

Ga∗

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = a∗t:t+δ]. (25)

Eq. (25) is known as Q-learning in the literature on dynamic treatment regimes (Murphy, 2003;
Kallus & Uehara, 2019) and can be used to compute an optimal dynamic policy.

In reinforcement learning, one often makes additional Markov and stationarity assumptions such
that the history h̄t

t+δ simplifies to a single state st+δ and the function ga
∗
t (st) is not dependent on

time. These assumptions allow us to consider infinite time-horizons and break the so-called curse of
horizon (Kallus & Uehara, 2022; Uehara et al., 2022). Then, Q-learning simplifies to

ga
∗
t (st) = E[Yt + γmax

a∗
t+1

Ga∗
| St = st, At = a∗t ], (26)

3Other works are orthogonal to ours. For example, (Hess et al., 2024; Vanderschueren et al., 2023) are
approaches for informative sampling and uncertainty quantification, respectively. However, they do not focus on
the causal structure in the data, and are therefore not primarily designed for our task of interest.
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which is often called fitted Q-iteration in the RL literature (Kallus & Uehara, 2020; Uehara et al.,
2022). In contrast, our work does not make these assumptions.

State-of-the-art neural instantiations such as (Chebotar et al., 2023) are different to our work in
that they (i) serve the purpose of learning long-term rewards, and (ii) rely on restrictive Markov
assumptions. In contrast, our GT is designed to estimate CAPOs for sequences of treatments,
conditionally on the entire individual patient history.
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B DISCUSSION ON ESTIMATING OUTCOMES FOR SEQUENCES OF
TREATMENTS IN MEDICAL SCENARIOS

In this study, we present a novel neural network, the G-transformer, for estimating conditional average
potential outcomes (CAPOs) from observational data such as electronic health records (EHRs). Our
GT addresses a crucial question in personalized medicine: “What would the outcome be for patient X
if they were administered treatments A, B, and C sequentially over the next 5 days, given their unique
clinical history?” Unlike many existing methods that focus on static or single-point interventions
(Alaa & van der Schaar, 2017; Johansson et al., 2016; Zhang et al., 2020), our method is specifically
designed to handle the sequential nature of treatments in medical practice – a feature that is both
realistic and necessary, as treatments are rarely applied all at once but rather sequentially over time
(Apperloo et al., 2024). With the growing availability of large-scale observational data from EHRs
(Allam et al., 2021; Feuerriegel et al., 2024; Bica et al., 2021) and wearable devices (Battalio et al.,
2021), there is an increasing need for robust methods that estimate the effect of multiple treatments,
given the individual patient history.

Our framework builds on three key assumptions: (i) consistency, (ii) positivity, and (iii) sequential
ignorability (see Section 3). These assumptions are the standard assumptions for estimating CAPOs
over time (Bica et al., 2020; Li et al., 2021; Melnychuk et al., 2022; Seedat et al., 2022). Notably,
compared to other methods that rely on even stricter assumptions, such as additional Markov or
independence assumptions (Özyurt et al., 2021), our assumptions are less restrictive. Furthermore,
these assumptions are the dynamic analogues of the standard causal inference assumptions in static
settings (Alaa & van der Schaar, 2017; Muandet et al., 2021; Johansson et al., 2016). Importantly,
methods for the static setting implicitly impose unrealistic assumption that treatments occur only once
and that covariates and outcomes remain static over time. Such limitations can introduce significant
bias in sequential decision-making contexts. In contrast, our approach models the time-varying nature
of clinical interventions and patient evolution, making it less restrictive and far more aligned with
real-world medical scenarios.

Further, we argue that these assumptions are both plausible and practical in medical applications.
First, consistency is generally satisfied as long as EHR data is accurately and systematically recorded.
Second, positivity can be ensured through thoughtful data pre-processing, such as filtering obser-
vations or applying propensity clipping. Additionally, as the scale of observational datasets grows,
this assumption becomes less restrictive. Third, the sequential ignorability assumption is a standard
assumption in epidemiology (Little & Rubin, 2000), and studies in digital health interventions may
satisfy this assumption by design. Furthermore, advances in sensitivity analysis (Frauen et al., 2023b;
Oprescu et al., 2023) and partial identification frameworks (Duarte et al., 2023) offer complementary
pathways to relax this assumption. That is, these literature streams are orthogonal to our work. In
practice, our GT thus integrates into established workflows that include point estimation, uncertainty
quantification, and sensitivity analysis.

From a practical perspective, our GT addresses key challenges in estimating CAPOs for sequences of
treatments. Specifically, our GT provides a neural end-to-end solution that adjusts for time-varying
confounding. On top, it neither relies on large-variance pseudo-outcomes (Prop. 3) nor on estimating
high-dimensional probability distributions. Therefore, we are convinced that our GT is an important
step towards reliable personalized medicine.
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C DERIVATION OF G-COMPUTATION FOR CAPOS

Future treatment

Unobserved during
inference

Direct effect of
interest

Criticial confounding
effect

History 

Figure 3: During inference, future time-varying confounders are unobserved (here: (Xt+1, Yt+1)). In
order to estimate CAPOs for an interventional treatment sequence without time-varying confounding
bias, proper causal adjustments such as G-computation are required.

In the following, we provide a derivation of the G-computation formula (Bang & Robins, 2005;
Robins, 1999; Robins & Hernán, 2009) for CAPOs over time. Recall that G-computation for CAPOs
is given by

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
(27)

. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
.

The following derivation follows the steps in (Frauen et al., 2023a) and extends them to CAPOs:

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E[Yt+τ [at:t+τ−1] | H̄t = h̄t, At = at] (28)

=E[E{Yt+τ [at:t+τ−1] | H̄t
t+1, At = at} (29)

| H̄t = h̄t, At = at]

=E[E{Yt+τ [at:t+τ−1] | H̄t
t+1, At:t+1 = at:t+1} (30)

| H̄t = h̄t, At = at]

=E[E{E[Yt+τ [at:t+τ−1] | H̄t
t+2, At:t+1 = at:t+1] (31)

| H̄t
t+1, At:t+1 = at:t+1}

| H̄t = h̄t, At = at]

=E[E{E[Yt+τ [at:t+τ−1] | H̄t
t+2, At:t+2 = at:t+2] (32)

| H̄t
t+1, At:t+1 = at:t+1}

| H̄t = h̄t, At = at]

= . . .

=E[. . .E{E[Yt+τ [at:t+τ−1] | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] (33)

| H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2}

| . . .
| H̄t = h̄t, At = at]

=E[. . .E{E[Yt+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] (34)

| H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2}

| . . .
| H̄t = h̄t, At = at],
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where Eq. (28) follows from the positivity and sequential ignorability assumptions, Eq. (29) holds due
to the law of total probability, Eq. (30) again follows from the positivity and sequential ignorability
assumptions, Eq. (31) is the tower rule, Eq. (32) is again due to the positivity and sequential
ignorability assumptions, Eq. (33) follows by iteratively repeating the previous steps, and Eq. (34)
follows from the consistency assumption.
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D REGRESSION-BASED ITERATIVE G-COMPUTATION

D.1 UNBIASED ESTIMAND

Proposition 1. Our regression-based iterative G-computation yields the CAPO in Eq. (1).

Proof. For the proof, we only need to apply the definition of the pseudo-outcomes Ga
t+δ:

E[Yt+τ [at:t+τ−1] | H̄t = h̄t] (35)

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(36)

=E
{
E
[
. . .E

{
E[Ga

t+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(37)

=E
{
E
[
. . .E

{
gat+τ−1(H̄

t
t+τ−1) | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(38)

=E
{
E
[
. . .E

{
Ga

t+τ−1 | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(39)

=E
{
E
[
. . . gat+τ−2(H̄

t
t+τ−2) . . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(40)

= . . . (41)

=E
{
Ga

t+1

∣∣∣∣H̄t = h̄t, At = at

}
(42)

=gat (h̄t), (43)

where Eq. (36) holds due the G-computation formula (see Supplement C).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 TARGET OF OUR GT

Proposition 2. Our GT estimates G-computation formula as in and, therefore, performs proper
adjustments for time-varying confounders.

Proof. For the proof, we perform the steps as in Supplement D.1:

Ê[Yt+τ [at:t+τ−1] | H̄t = h̄t] (44)

=Ê
{
Ê
[
. . . Ê

{
Ê[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(45)

=Ê
{
Ê
[
. . . Ê

{
Ê[G̃a

t+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(46)

=Ê
{
Ê
[
. . . Ê

{
gτ−1
ϕ (at+τ−1, zθ(H̄t+τ−1, at:t+τ−2)) | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(47)

=Ê
{
Ê
[
. . . Ê

{
G̃a

t+τ−1 | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(48)

=Ê
{
Ê
[
. . . gτ−2

ϕ (at+τ−2, zθ(H̄t+τ−2, at:t+τ−3)) . . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(49)

= . . . (50)

=Ê
{
G̃a

t+1

∣∣∣∣H̄t = h̄t, At = at

}
(51)

=g0ϕ(at, zθ(h̄t)). (52)
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D.3 EXAMPLES

To illustrate how regression-based iterative G-computation works, we apply the procedure to two
examples. First, we show the trivial case for (τ = 1)-step-ahead predictions and, then, for (τ =
2)-step-ahead predictions. Recall that the following only holds under our standard assumptions
(i) consistency, (ii) positivity, and (iii) sequential ignorability.

(τ = 1)-step-ahead prediction:

This is the trivial case, as there is no time-varying confounding. Instead, all confounders are observed
in the history. Therefore, we can simply condition on the observed history and resemble the backdoor-
adjustment from the static setting. Importantly, this is not the focus of our work, but we show it for
illustrative purposes:

E
[
Yt+1[at] | H̄t = h̄t

]
(53)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
Yt+1[at] | H̄t = h̄t, At = at

]
(54)

=︸︷︷︸
Ass. (i)

E
[
Yt+1 | H̄t = h̄t, At = at

]
(55)

=︸︷︷︸
Def. Ga

t+1

E
[
Ga

t+1 | H̄t = h̄t, At = at
]

(56)

=︸︷︷︸
Def. ga

t

gat (h̄t). (57)

(τ = 2)-step-ahead prediction:

(τ = 2)-step-ahead predictions already incorporate all the difficulties that are present for multi-step
ahead predictions. Here, we need to account for future time-varying confounders such as (Xt+1, Yt+1)
as in Figure 3:

E
[
Yt+2[at:t+1] | H̄t = h̄t

]
(58)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
Yt+2[at:t+1] | H̄t = h̄t, At = at

]
(59)

=︸︷︷︸
Law of total prob.

E
[
E
[
Yt+2[at:t+1] | H̄t

t+1, At = at
]
| H̄t = h̄t, At = at

]
(60)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
E
[
Yt+2[at:t+1] | H̄t

t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(61)

=︸︷︷︸
Ass. (i)

E
[
E
[
Yt+2 | H̄t

t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(62)

=︸︷︷︸
Def. Ga

t+2

E
[
E
[
Ga

t+2 | H̄t
t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(63)

=︸︷︷︸
Def. ga

t+1

E
[
gat+1(H̄

t
t+1) | H̄t = h̄t, At = at

]
(64)

=︸︷︷︸
Def. Ga

t+1

= E
[
Ga

t+1 | H̄t = h̄t, At = at
]

(65)

=︸︷︷︸
Def. ga

t

gat (h̄t). (66)
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E VARIANCE OF INVERSE PROPENSITY WEIGHTING

In this section, we compare two possible approaches to adjust for time-varying confounders: G-
computation and inverse propensity weighting (IPW) (Robins & Hernán, 2009; Robins et al., 2000),
which is leveraged by RMSNs (Lim et al., 2018).

For a fair comparison of G-computation and IPW, we compare the variance of the ground-truth
pseudo-outcomes that each method relies on – that is, the Ga

t+δ of our GT and the inverse propensity
weighted outcomes of RMSNs. Importantly, a larger variance of the pseudo-outcomes will directly
translate into a larger variance of the respective estimator. We find that IPW leads to a larger variance,
which is why we prefer G-computation in our GT.
Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. To simplify notation, we consider the variance of the pseudo-outcomes in the static setting.
The analog directly translates into the time-varying setting.

Let Y be the outcome, X the covariates, and A the treatment. Without loss of generality, we consider
the potential outcome for A = 1.

For G-computation, the variance of the pseudo-outcome g1(X) is given by

Var[g1(X)] = Var[E[Y | X,A = 1]] (67)

= E
[
E[Y | X,A = 1]2

]
− E

[
E[Y | X,A = 1]

]2
(68)

= E
[
E[Y | X,A = 1]2

]
− E

[
Y [1]

]2
. (69)

For IPW, the variance of the pseudo-outcome is

Var
[ Y A

π(X)

]
= E

[( Y A

π(X)

)2 ]
− E

[ Y A

π(X)

]2
(70)

= E
[
E
[ Y 2A

π2(X)
| X
]]

− E
[
Y [1]

]2
(71)

= E
[
E
[Y 2π(X)

π2(X)
| X,A = 1

]]
− E

[
Y [1]

]2
(72)

= E
[ 1

π(X)︸ ︷︷ ︸
≥1

E[Y 2 | X,A = 1]
]
− E

[
Y [1]

]2
, (73)

and, with
E[Y | X,A = 1]2 + Var[Y | X,A = 1]︸ ︷︷ ︸

≥0

= E[Y 2 | X,A = 1], (74)

we have that

Var
[ Y A

π(X)

]
≥ Var[g1(X)]. (75)

Therefore, we conclude that G-computation leads to a lower variance than IPW and, hence, our GT
has a lower variance than RMSNs.

Remarks:

• The inverse propensity weight is what really drives the difference in variance between
the approaches. Note that, in the time-varying setting, IPW relies on products of inverse
propensities, which can lead to even more extreme weights for multi-step ahead predictions.

• IPW is particularly problematic when there are overlap violations in the data. However, as
the input history H̄t in the time-varying setting is very high-dimensional (i.e., t× (dx + dy)-
dimensional), overlap violations are even more problematic. This is another advantage for
our method.
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F COMPARISON TO G-NET

In this section, we compare our iterative regression-based approach to G-computation to the version
that is employed by G-Net (Li et al., 2021).

G-Net makes a Monte Carlo approximation of Eq. (3) through∫
Rdx×τ−1×Rdy×τ−1

E[Yt+τ | H̄t
t+τ−1 = h̄t

t+τ−1, At:t+τ−1 = at:t+τ−1]

×
τ−1∏
δ=1

p(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1) d(xt+1:t+τ−1, yt+1:t+τ−1). (76)

For this, G-Net requires estimating the full distribution

τ−1∏
δ=1

dp(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1). (77)

That is, for τ -step ahead predictions, G-Net estimates a (τ − 1)× (dx + dy)-dimensional probability
distribution.

We compare the approach of G-Net to to our regression-based G-computation in Table 4.

Estimated moment 1st 2nd 3rd 4th . . . ∞

Dimension G-Net (Li et al., 2021) (τ − 1)× (dx + dy) + dy (τ − 1)× (dx + dy) (τ − 1)× (dx + dy) (τ − 1)× (dx + dy) . . . (τ − 1)× (dx + dy)

GT (ours) τ × dy − − − . . . −

Table 4: We compare the approach to G-computation of G-Net (Li et al., 2021) to our regression-based
version. For this, we compare the dimensions of the estimated moments for each method, respectively.
G-Net requires estimating the full distribution of all time-varying confounders in the future. This
means that all moments of all time-varying confounders at all time steps in the future need to be
estimated. In contrast, our GT only requires estimation of the first moment of the lower-dimensional
target variable, which is a clear advantage.
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G ADDITIONAL RESULTS

G.1 ADDITIONAL RESULTS AND ABLATIONS

In the following, we report the performance of two ablations: the (A) G-LSTM and the (B) biased
transformer (BT). For this, we show (C) additional results of our GT, the baselines, and the two
ablations.

(A) G-LSTM: Our first ablation is the G-LSTM. For this, we replaced the transformer backbone
zθ(·) of our GT by an LSTM network. We find that our G-LSTM is highly effective: it outperforms
all baselines from the literature while our proposed G-transformer is still superior. This demonstrates
that our novel method for iterative regression-based G-computation is both effective and general.

(B) BT: Additionally, we implement a biased transformer (BT). Here, we leverage the same trans-
former backbone zθ(·) as in our GT, but we directly train the output heads on the factual data.
Thereby, the BT refrains from performing G-computation. We can thus isolate the contribution of
the iterative G-computation to the overall performance. Our results show that the BT suffers from
significant estimation bias and, therefore, demonstrates that our proper adjustments for time-varying
confounders are required for accurate estimates of CAPOs.

(C) Additional results: We report additional results on both (i) fully synthetic data as in Section 5.1
and on (ii) semi-synthetic data as in Section 5.2.

For (i) fully synthetic data, we report the performance of all methods for lower levels of confounding
in Figure 4 and additional prediction windows up to τ = 6 for fixed level of confounding γ = 10.0
in Figure 5.

For (ii) semi-synthetic data, we report additional prediction windows up to τ = 12 for N = 1000 in
Figure 6.
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Figure 4: Synthetic data: We decrease the confounding strength (γ = 6, 7, 8, 9) for τ = 2.
Additionally, we report previous results of the baselines with the new ablations: G-LSTM and BT.
Notably, our G-LSTM has competitive performance, while BT suffers from significant bias. Our GT
remains the strongest method. We see a similar picture as for Figure 5 and Figure 6: our methods
perform the best due to our novel, iterative G-computation.
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Figure 5: Synthetic data: We increase the prediction horizon up to τ = 6 for confounding γ = 10.
Our G-LSTM and our GT have the overall best performance on all prediction windows. The results
coincide with our results in Figure 4 and Figure 6; our approach to G-computation leads to the lowest
prediction errors. (Please note that decreasing prediction errors for increasing τ is due to the strong
heteroscedasticity of the outcome variable; smaller τ means that we predict more samples in the test
data for very small t, where variance is the highest.)
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Figure 6: Semi-synthetic data: We increase the prediction horizon up to τ = 12 for N = 1000
training samples. We further implement two ablations: our G-LSTM and the biased transformer
(BT). As in Figure 4 and Figure 5, our G-LSTM almost consistently outperforms the baselines, while
the BT has large errors. Our GT remains the best for all prediction windows. This shows that our
novel approach for G-computation leads to accurate predictions, irrespective of the neural backbone.
Further, it shows that proper adjustments are important for CAPO estimation.
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G.2 SENSITIVITY TO NOISE IN PSEUDO-OUTCOMES

Finally, we provide more insights into the quality of the generated pseudo-outcomes G̃a
t+δ in Figure 7.

Here, we added increasing levels of constant bias to the pseudo-outcomes during training. Our results
show that these artificial corruptions indeed lead to a significant decrease in the overall performance
of our GT. We therefore conclude that, without artificial corruption, our generated pseudo-outcomes
are good estimates of the true nested expectations. Further, this shows that correct estimates of the
pseudo-outcomes are indeed necessary for high-quality unbiased estimates. Of note, the quality of
the predicted pseudo-outcomes is also directly validated by the strong empirical performance in
Section 5.
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Figure 7: During training, we add artificial levels of noise to the pseudo-outcomes of our GT
(prediction window τ = 2, confounding strength γ = 10 on synthetic data). We see that performance
quickly deteriorates. This is expected, as it implies that the pseudo-outcomes generated by our GT
are meaningful and important for accurate, unbiased predictions.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H EXPERIMENTS ON REAL-WORLD DATA

In this section, we empirically demonstrate that our method performs well for predicting patient
outcomes on factual data. Importantly, predicting factual outcomes is not what our GT is primarily
designed for. In particular, any standard regression model suffices for this task, and no additional
adjustments are required to account for time-varying confounding. Instead, our GT is trained to
estimate CAPOs, which is a counterfactual quantity in the time-varying setting.

We use the MIMIC-III dataset (Johnson et al., 2016; Wang et al., 2020), which gives measurements
from intensive care units aggregated at hourly levels. Here, we predict the effect of vasopressors
and mechanical ventilation on diastolic blood pressure. Our setup closely follows (Melnychuk et al.,
2022), and we additionally vary our sample size for training. The results are reported in Figure 8.
We find that our GT performs best even for real-world prediction tasks although this task does not
require adjustments. This demonstrates that our method is directly applicable to predict real-world
patient outcomes. Further, it shows that the way we adjust does not deteriorate performance when
there is nothing to adjust and, thus, is highly effective.
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(a) N = 1000 observations
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(b) N = 2000 observations
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(c) N = 3000 observations

Figure 8: Performance for real-world data. We evaluate our GT and the baselines on real-world
data. We use the MIMIC-III dataset (Johnson et al., 2016) and report the RMSE for predicting the
effect of vasopressors and mechanical ventilation on diastolic blood pressure. Our GT performs best
along with CT (Melnychuk et al., 2022), followed by CRN (Bica et al., 2020). This is expected, as
evaluation on factual data does not require adjustments for time-varying confounding. Importantly,
we can see that our iterative regression approach leads to very accurate prediction results even on
factual data. This further underlines that our GT is directly applicable to medical datasets.
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I COEFFICIENT OF VARIATION

In the following, we additionally report the coefficient of variation of our main study in Section 5.
Lower values in the coefficient of variation indicate more stable predictions. Table 5 shows the results.
Clearly, our GT is superior to the baselines and has significantly more robust estimates of the CAPO.

γ = 10 γ = 11 γ = 12 γ = 13 γ = 14 γ = 15 γ = 16 γ = 17 γ = 18 γ = 19 γ = 20

CRN (Bica et al., 2020) 0.14 0.31 0.21 0.30 0.06 0.20 0.22 0.15 0.17 0.19 0.15

TE-CDE (Seedat et al., 2022) 0.13 0.10 0.03 0.10 0.09 0.14 0.10 0.09 0.12 0.09 0.10

CT (Melnychuk et al., 2022) 0.21 0.21 0.17 0.18 0.19 0.17 0.32 0.18 0.22 0.17 0.21

RMSNs (Lim et al., 2018) 0.06 0.05 0.07 0.07 0.07 0.09 0.12 0.13 0.10 0.12 0.11

G-Net (Li et al., 2021) 0.11 0.09 0.08 0.07 0.07 0.07 0.09 0.10 0.13 0.13 0.11

GT (ours) 0.07 0.04 0.06 0.04 0.03 0.09 0.07 0.07 0.09 0.06 0.07

Table 5: Coefficient of variation on synthetic data based on the tumor growth model with τ = 2.
Lower values indicate more stable predictions. Our GT clearly outperforms the baselines.
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J ARCHITECTURE OF G-TRANSFORMER

In the following, we provide details on the architecture of our GT.

Multi-input transformer: The multi-input transformer as the backbone of our GT is motivated by
(Melnychuk et al., 2022), which develops an architecture that is tailored for the types of data that
are typically available in medical scenarios: (i) outcomes Ȳt ∈ Rdy×t, covariates X̄t ∈ Rdx×t, and
treatments Āt ∈ {0, 1}da×t. In particular, their proposed transformer model consists of three separate
sub-transformers, where each sub-transformer performs multi-headed self-attention mechanisms on
one particular data input. Further, these sub-transformers are connected with each other through
in-between cross-attention mechanisms, ensuring that information is exchanged. Therefore, we build
on this idea as the backbone of our GT, as we detail below.

Our multi-input transformer zθ(·) consists of three sub-transformer models zkθ (·), k = 1, 2, 3, where
zkθ (·) focuses on one data input Ūk

t ∈ {Ȳt, X̄t, Āt−1}, k ∈ {1, 2, 3}, respectively.

(1) Input transformations: First, the data Ūk
t ∈ Rdk×t is linearly transformed through

Zk,0
t = (Ūk

t )
⊤W k,0 + bk,0 ∈ Rt×dh (78)

where W k,0 ∈ Rdk×dh and bk,0 ∈ Rdh are the weight matrix and the bias, respectively, and dh is the
number of transformer units.

(2) Transformer blocks: Next, we stack j = 1, . . . , J transformer blocks, where each transformer
block j receives the outputs Zk,j−1

t of the previous transformer block j − 1. For this, we combine
(i) multi-headed self- and cross-attentions, and (ii) feed-forward networks.

(i) Multi-headed self- and cross-attentions: The output of block j for sub-transformer k is given by
the multi-headed cross-attention

Zk,j
t = Q̃k,j

t +
∑
l ̸=k

MHA(Q̃k,j
t , K̃l,j

t , Ṽ l,j
t ), (79)

where Q̃k,j
t = K̃k,j

t = Ṽ k,j
t are the outputs of the multi-headed self-attentions

Q̃k,j
t = Zk,j−1

t + MHA(Qk,j
t ,Kk,j

t , V k,j
t ). (80)

Here, MHA(·) denotes the multi-headed attention mechanism as in (Vaswani et al., 2017) given by

MHA(q, k, v) = (Attention(q1, k1, v1), . . . ,Attention(qM , kM , vM )), (81)

where

Attention(qm, km, vm) = softmax

(
qm(km)⊤√

dqkv

)
vm (82)

is the attention mechanism for m = 1, . . . ,M attention heads. The queries, keys, and values
qm, km, vm ∈ Rt×dqkv have dimension dqkv, which is equal to the hidden size dh divided by the
number of attention heads M , that is, dqkv = dh/M . For this, we compute the queries, keys, and
values for the cross-attentions as

Q̃k,m,j
t = Q̃k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (83)

K̃k,m,j
t = K̃k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (84)

Ṽ k,m,j
t = Ṽ k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (85)

and for the self-attentions as

Qk,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv , (86)

Kk,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv , (87)

V k,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv . (88)

where W̃ k,m,j ,W k,m,j ∈ Rdh×dqkv and b̃k,m,j , b̃k,m,j ∈ Rdqkv are the trainable weights and
biases for sub-transformers k = 1, 2, 3, transformer blocks j = 1, . . . , J , and attention heads
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m = 1, . . . ,M . Of note, each self- and cross attention uses relative positional encodings (Shaw et al.,
2018) to preserve the order of the input sequence as in (Melnychuk et al., 2022).

(ii) Feed-forward networks: After the multi-headed cross-attention mechanism, our GT applies
a feed-forward neural network on each Zk,j

t , respectively. Further, we apply dropout and layer
normalizations (Ba et al., 2016) as in (Melnychuk et al., 2022; Vaswani et al., 2017). That is, our
GT transforms the output Zk,j

t for transformer block j of sub-transformer k through a sequence of
transformations

FFk,j(Zk,j
t ) = LayerNorm ◦ Dropout ◦ Linear ◦ Dropout ◦ ReLU ◦ Linear(Zk,j

t ). (89)

(3) Output transformation: Finally, after transformer block J , we apply a final transformation with
dropout and average the outputs as

ZA
t = ELU ◦ Linear ◦ Dropout(

1

3

3∑
k=1

Zk,J
t ), (90)

such that ZA
t ∈ Rdz

G-computation heads: The G-computation heads {gδϕ(·)}
τ−1
δ=0 receive the corresponding hidden state

ZA
t+δ and the current treatment At+δ and transform it with another feed-forward network through

gδϕ(Z
A
t+δ, At+δ) = Linear ◦ ELU ◦ Linear(ZA

t+δ, At+δ). (91)
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K ALGORITHMS FOR ITERATIVE TRAINING AND INFERENCE TIME

In Algorithm 1, we summarize the iterative training procedure of our GT and how inference is
achieved.

Algorithm 1: Training and inference with GT.
Training:

Input : Data H̄T−1, AT−1, YT , treatment sequence a ∈ {0, 1}da×τ , learning rate η
Output : Trained GT networks zθ, {gδϕ}

τ−1
δ=0

for t = 1, . . . , T − τ do
// Initialize
at:t+τ−1 a

G̃a
t+τ Yt+τ

// A Generation step
for δ = 1, . . . , τ − 1 do

Za
t+δ zθ(H̄

t
t+δ, at:t+δ−1)

G̃a
t+δ gδϕ(Z

a
t+δ, at+δ)

end
// B Learning step
for δ = 0, . . . , τ − 1 do

ZA
t+δ zθ(H̄t+δ)

Lδ
t

(
gδϕ(Z

A
t+δ, At+δ)− G̃a

t+δ+1

)2
end

end
// Compute gradient and update GT parameters ϕ

ϕ ϕ− η∇ϕ

(
1

T−τ

∑T−τ
t=1

(
1
τ

∑τ−1
δ=0 Lδ

t

))
Inference:
Input : Data H̄t = h̄t, treatment sequence a ∈ {0, 1}da×τ

Output : g̃at = Ê[Ga
t+1 | H̄t = h̄t, at]

// Initialize
at:t+τ−1 a
// A Generation step
ĝat g0ϕ(zθ(H̄t), at)

Legend: Operations with “ " are attached to the computational graph, while operations with “ "
are detached from the computational graph.
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L IMPLEMENTATION DETAILS

In Supplements L.1 and L.2, we report details on the hyperparameter tuning. Here, we ensure that
the total number of weights is comparable for each method and choose the grids accordingly. All
methods are tuned on the validation datasets. As the validation sets only consist of observational data
instead of interventional data, we tune all methods for τ = 1-step ahead predictions as in (Melnychuk
et al., 2022). All methods were optimized with Adam (Kingma & Ba, 2015). Further, we perform a
random grid search as in (Melnychuk et al., 2022).

On average, training our GT on fully synthetic data took 13.7 minutes. Further, training on semi-
synthetic data with N = 1000/2000/3000 samples took 1.1/2.1/3.0 hours. This is comparable to
the baselines. All methods were trained on 1× NVIDIA A100-PCIE-40GB. Overall, running our
experiments took approximately 7 days (including hyperparameter tuning).
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L.1 HYPERPARAMETER TUNING: SYNTHETIC DATA

Method Component Hyperparameter Tuning range

CRN (Bica et al., 2020)

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFC) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

TE-CDE (Seedat et al., 2022)

Encoder

Neural CDE (Kidger et al., 2020) hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Neural CDE hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Neural CDE hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

CT (Melnychuk et al., 2022) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention heads (nh) 1
Transformer units (dh) 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 15
Number of epochs (ne) 50

RMSNs (Lim et al., 2018)

Propensity
treatment
network

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Propensity
history
network

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1dyxa, 2dyxa, 4dyxa, 8dyxa, 16dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 50

G-Net (Li et al., 2021) (end-to-end)

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM output size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

GT (ours) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention heads (nh) 1
Transformer units (dh) 1dyxa, 2dyxa, 3dyxa, 4dyxa
Hidden representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 15
Number of epochs (ne) 50

Table 6: Hyperparameter tuning for all methods on fully synthetic tumor growth data. Here,
dyxa = dy + dx + da is the overall input size. Further, dz denotes the hidden representation size of
our GT, the balanced representation size of CRN (Bica et al., 2020), TE-CDE (Seedat et al., 2022)
and CT (Melnychuk et al., 2022), and the LSTM (Hochreiter & Schmidhuber, 1997) output size of
G-Net (Li et al., 2021). The hyperparameter grid follows (Melnychuk et al., 2022). Importantly, the
tuning ranges for the different methods are comparable. Hence, the comparison of the methods in
Section 5 is fair.
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L.2 HYPERPARAMETER TUNING: SEMI-SYNTHETIC DATA

Method Component Hyperparameter Tuning range

CRN (Bica et al., 2020)

Encoder

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa,
FF hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

Decoder

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
FC hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

TE-CDE (Seedat et al., 2022)

Encoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

CT (Melnychuk et al., 2022) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 32, 64
Attention heads (nh) 2,3
Transformer units (dh) 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 30
Number of epochs (ne) 100

RMSNs (Lim et al., 2018)

Propensity
treatment
network

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100

Propensity
history
network

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1dyxa, 2dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 100

G-Net (Li et al., 2021) (end-to-end)

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM output size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

GT (ours) (end-to-end)

Transformer blocks (J) 1
Learning rate (η) 0.001, 0.0001
Minibatch size 32, 64
Attention heads (nh) 2,3
Transformer units (dh) 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 30
Number of epochs (ne) 100

Table 7: Hyperparameter tuning for all methods on semi-synthetic data. Here, dyxa = dy + dx + da
is the overall input size. Further, dz denotes the hidden representation size of our GT, the balanced
representation size of CRN (Bica et al., 2020), TE-CDE (Seedat et al., 2022) and CT (Melnychuk
et al., 2022), and the LSTM (Hochreiter & Schmidhuber, 1997) output size of G-Net (Li et al., 2021).
The hyperparameter grid follows (Melnychuk et al., 2022). Importantly, the tuning ranges for the
different methods are comparable. Hence, the comparison of the methods in Section 5 is fair.
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