
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

G-TRANSFORMER FOR CONDITIONAL AVERAGE
POTENTIAL OUTCOME ESTIMATION OVER TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating potential outcomes for treatments over time based on observational data
is important for personalized decision-making in medicine. Yet, existing neural
methods for this task either (1) do not perform proper adjustments for time-varying
confounders, or (2) have a problematic adjustment strategy. In order to address
both limitations, we introduce the G-transformer (GT). Our GT is a novel, neural
end-to-end model which adjusts for time-varying confounders in order to estimate
conditional average potential outcomes (CAPOs) over time. Specifically, our GT is
the first neural model to perform fully regression-based iterative G-computation
for CAPOs in the time-varying setting. We evaluate the effectiveness of our GT
across various experiments. In sum, this work represents a significant step towards
personalized decision-making from electronic health records.

1 INTRODUCTION

Causal machine learning has recently garnered significant attention with the aim to personalize
treatment decisions in medicine (Feuerriegel et al., 2024). Here, an important task is to estimate
conditional average potential outcomes (CAPOs) from observational data over time (see Fig. 1).
Recently, such data has become prominent in medicine due to the growing prevalence of electronic
health records (EHRs) (Allam et al., 2021; Bica et al., 2021) and wearable devices (Battalio et al.,
2021; Murray et al., 2016).

Several neural methods have been developed for estimating CAPOs over time. However, existing
methods suffer from one of two possible limitations (see Table 1): 1 Methods without proper
adjustments for time-varying confounding (Bica et al., 2020; Melnychuk et al., 2022; Seedat
et al., 2022) exhibit significant bias, as they do not target the correct estimand. Hence, these
methods have irreducible estimation errors irrespective of the amount of available data, which renders
them unsuitable for medical applications. 2 Existing methods that perform proper time-varying
adjustments (Li et al., 2021; Lim et al., 2018) have a problematic adjustment strategy. Here,
the causal adjustments are based on the estimation of either the distributions of all time-varying
covariates, or on inverse propensity weighting at several time steps in the future. While the former is
impracticable when granular patient information is available, the latter suffers from strong overlap
violations in the time-varying setting. To the best of our knowledge, there is no method that can
address both 1 and 2 .

To fill the above research gap, we propose the G-transformer (GT), a novel, neural end-to-end
transformer that overcomes both limitations of existing methods. Our GT builds upon G-computation
(Bang & Robins, 2005; Robins & Hernán, 2009). However, unlike existing neural models that
perform G-computation (Li et al., 2021), our GT is based on an iterative regression scheme and does
not require estimating any probability distribution. As a result, our GT has two clear strengths: it
performs 1 proper adjustments for time-varying confounding, and it is 2 fully regression-based
with low-variance pseudo-outcomes.

Our contributions are three-fold:1 (1) We introduce the first neural end-to-end method for estimating
CAPOs over time with 1 proper adjustments for time-varying confounding, while 2 avoiding

1Code and data are anonymized in https://anonymous.4open.science/r/G_
transformer-130D. Upon acceptance, it will be moved to a public Github repository.

1

https://anonymous.4open.science/r/G_transformer-130D
https://anonymous.4open.science/r/G_transformer-130D

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

CRN TE-CDE CT RMSNs G-Net GT
(Bica et al., 2020) (Seedat et al., 2022) (Melnychuk et al., 2022) (Lim et al., 2018) (Li et al., 2021) (ours)

1 Proper adjustments for time-varying confounding ✗ ✗ ✗ ✓ ✓ ✓

2
Fully regression-based ✓ ✓ ✓ ✓ ✗ ✓

Low-variance pseudo-outcomes — — — ✗ — ✓

Table 1: Overview of key neural methods for estimating CAPOs over time. Methods that perform
proper adjustments for time-varying confounding target the correct causal estimand and, therefore,
have no infinite-data bias. Fully regression-based methods avoid estimating high-dimensional
probability distributions. Further, we show that IPW generates pseudo-outcomes with larger variance
than G-computation (Prop. 3).

a problematic adjustment strategy. (2) To the best of our knowledge, we are the first to leverage
regression-based iterative G-computation for estimating CAPOs over time in a neural end-to-end
training algorithm. (3) We demonstrate the effectiveness of our GT across various experiments. In the
future, we expect our GT to help personalize decision-making from patient trajectories in medicine.

2 RELATED WORK

Observational
outcome

Potential outcomeHistory

Start of intervention

1

00

1

0

1

0

1

1

0

0

1

0

1

Interventional
treatments

Observational
treatments

Start of observation

O
ut

co
m

e

Figure 1: Trajectories with outcomes under obser-
vational vs. interventional treatment sequences.

We discuss methods for estimating CAPOs
in the static setting, survival analysis with
pseudo-outcomes, Q-learning, and other liter-
ature streams in an extended related work in
Supplement A.

Estimating APOs over time: Estimating aver-
age potential outcomes (APOs) over time has a
long-ranging history in classical statistics and
epidemiology (Lok, 2008; Robins, 1986; Ryt-
gaard et al., 2022; van der Laan & Gruber, 2012).
Popular approaches are the G-methods (Robins
& Hernán, 2009), which include marginal struc-
tural models (MSMs) (Robins & Hernán, 2009;
Robins et al., 2000), structural nested models (Robins, 1994; Robins & Hernán, 2009) and the
G-computation (Bang & Robins, 2005; Robins, 1999; Robins & Hernán, 2009), and TMLE (?),
which involves a targeting step for the APO. G-computation has also been incorporated into neu-
ral models such as LSTMs (Frauen et al., 2023a), and TMLE to transformers (Shirakawa et al.,
2024). However, all of these works do not focus estimating CAPOs. In particular, (Shirakawa et al.,
2024) is explicitly biased by sequentially targeting the APO and, thereby, ignores individual patient
characteristics. Further, it require estimation of additional nuisance such as the propensity score.
Finally, it is only evaluated for estimating APOs. As this entire literature stream does not account
for individual-level patient characteristics, it serves a different purpose and is thus not suitable for
personalized decision-making in medicine.

Estimating CAPOs over time: In this work, we focus on the task of estimating the heterogeneous
response to a sequence of treatments through conditional average potential outcomes (CAPOs).2
Hence, we now summarize key neural methods that have been developed for estimating CAPOs
over time (see Table 1). However, these methods fall into two groups with important limitations, as
discussed in the following:

Limitation 1 proper adjustments: A number of neural methods for estimating CAPOs have been
proposed that do not properly adjust for time-varying confounders (Bica et al., 2020; Melnychuk
et al., 2022; Seedat et al., 2022). Therefore, they are biased as they do not target the correct estimand.
Here, key examples are the counterfactual recurrent network (CRN) (Bica et al., 2020), the treatment
effect neural controlled differential equation (TE-CDE) (Seedat et al., 2022) and the causal transformer
(CT) (Melnychuk et al., 2022). These methods try to account for time-varying confounders through
balanced representations. However, balancing was originally designed for reducing finite-sample

2This is frequently known as counterfactual prediction. However, our work follows the potential outcomes
framework (Neyman, 1923; Rubin, 1978), and we thus use the terminology of CAPO estimation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

estimation variance and not for mitigating confounding bias (Shalit et al., 2017). Hence, this is
a heuristic and may even introduce another source of representation-induced confounding bias
(Melnychuk et al., 2024). Unlike these methods, our GT performs proper adjustments for time-
varying confounders.

Limitation 2 adjustment strategy: Existing neural methods with proper causal adjustments require
estimating full probability distributions at several time steps in the future, or inverse propensity
weighting, both of which are problematic adjustment strategies. Prominent examples are the
recurrent marginal structural networks (RMSNs) (Lim et al., 2018) and the G-Net (Li et al., 2021).
Here, the RMSNs leverage MSMs (Robins & Hernán, 2009; Robins et al., 2000) and construct pseudo
outcomes through inverse propensity weighting (IPW).However, IPW constructs pseudo-outcomes
with large variance compared to G-computation as we show in Prop. 3. Further, the G-Net (Li et al.,
2021) uses G-computation (Robins, 1999; Robins & Hernán, 2009) to adjust for confounding (see
Supplement C). For this, G-Net proceeds by estimating the entire distribution of all confounders
at several time-steps in the future. Therefore, may suffer from large estimation variance. Different
to G-Net, our GT makes use of regression-based G-computation. We discuss key differences in
Section 4.4 and Supplement F.

Research gap: None of the above neural methods leverages G-computation (Bang & Robins, 2005;
Robins, 1999) for estimating CAPOs through iterative regressions. Therefore, to the best of our
knowledge, we propose the first neural end-to-end model that 1 properly adjusts for time-varying
confounders through regression-based iterative G-computation. Hence, our GT yields estimates of
CAPOs over time that have 2 are fully regression-based with low-variance pseudo-outcomes.

3 PROBLEM FORMULATION

Setup: We follow previous literature (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melny-
chuk et al., 2022) and consider data that consist of realizations of the following random variables:
(i) outcomes Yt ∈ Rdy , (ii) covariates Xt ∈ Rdx , and (iii) treatments At ∈ {0, 1}da at time
steps t ∈ {0, . . . , T} ⊂ N0, where T is the time window that follows some unknown counting pro-
cess. We are interested in estimating CAPOs for τ steps in the future. For any random variable
Ut ∈ {Yt, Xt, At}, we write Ut:t+τ = (Ut, . . . , Ut+τ) to refer to a specific subsequence of a random
variable. We further write Ūt = U0:t to denote the full trajectory of U including time t. Finally, we
write H̄t

t+δ = (Ȳt+δ, X̄t+δ, Āt−1) for δ ≥ 0, and we let H̄t = H̄t
t denote the collective history of

(i)–(iii).

Estimation task: We are interested in estimating the conditional average potential outcome (CAPO)
for a future, interventional sequence of treatments, given the observed history. For this, we build
upon the potential outcomes framework (Neyman, 1923; Rubin, 1978) for the time-varying setting
(Robins & Hernán, 2009; Robins et al., 2000). Hence, we aim to estimate the potential outcome
Yt+τ [at:t+τ−1] at future time t+τ , τ ∈ N, for an interventional sequence of treatments a = at:t+τ−1,
conditionally on the observed history H̄t = h̄t. That is, our objective is to estimate

E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
. (1)

Identifiability: In order to estimate the causal quantity in Eq. (1) from observational data, we
make the following identifiability assumptions (Robins & Hernán, 2009; Robins et al., 2000) that
are standard in the literature (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk et al.,
2022; Seedat et al., 2022): (1) Consistency: For an observed sequence of treatments Āt = āt, the
observed outcome Yt+1 equals the corresponding potential outcome Yt+1[āt]. (2) Positivity: For
any history H̄t = h̄t that has non-zero probability P(H̄t = h̄t) > 0, there is a positive probability
P(At = at | H̄t = h̄t) > 0 of receiving any treatment At = at, where at ∈ {0, 1}da . (3) Sequential
ignorability: Given a history H̄t = h̄t, the treatment At is independent of the potential outcome
Yt+δ[at:t+δ−1], that is, At ⊥ Yt+δ[at:t+δ−1] | H̄t = h̄t for all at:t+δ−1 ∈ {0, 1}δ×da .

The above assumptions are standard in the literature (Bica et al., 2020; Li et al., 2021; Lim et al.,
2018; Melnychuk et al., 2022; Seedat et al., 2022). In clinical scenarios, (i) consistency is typically
guaranteed as long as data is properly recorded. Positivity can be guaranteed by filtering the data
or by using propensity score clipping. Further, with growing amounts of observational data, this
becomes less of a restriction. Finally, relaxations of (iii) ignorability are typically studies in sensitivity

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

analysis (Frauen et al., 2023b; Oprescu et al., 2023) and partial identification (Duarte et al., 2023),
which is orthogonal to our work. We provide a discussion on the applicability in medical scenarios in
Supplement B.

G-computation: Estimating CAPOs without confounding bias poses a non-trivial challenge in the
time-varying setting. The issue lies in the complexity of handling future time-varying confounders.
In particular, for τ ≥ 2 and 1 ≤ δ ≤ δ′ ≤ τ − 1, future covariates Xt+δ and outcomes Yt+δ may
affect the probability of receiving certain treatments At+δ′ .Importantly, the time-varying confounders
are unobserved during inference time, which is generally known as runtime confounding (Coston
et al., 2020). Therefore, in order to estimate the direct effect of an interventional treatment sequence,
one needs to adjust for the time-varying confounders. That is, it is in general insufficient to only
adjust for the history (Frauen et al., 2024) via

E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
̸= E

[
Yt+τ | H̄t = h̄t, At:t+τ−1 = at:t+τ−1

]
. (2)

As a side note, the problem of time-varying confounding does not arise for one-step ahead predictions
(i.e., τ = 1). Here, under assumptions (i)–(iii), conditioning on the observed history is equivalent to
backdoor-adjustments in the static setting.

One way to adjust for time-varying confounders is IPW (Robins & Hernán, 2009; Robins et al., 2000),
which is leveraged by RMSNs (Lim et al., 2018). However, as we show in Supplement E, IPW is
subject to large variance. Instead, we leverage G-computation (Bang & Robins, 2005; Robins, 1999;
Robins & Hernán, 2009), which provides a rigorous way to account for the time-varying confounders
through proper adjustments. Formally, G-computation identifies the causal quantity in Eq. (1) via

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
(3)

. . .
∣∣H̄t

t+1, At:t+1 = at:t+1

]∣∣H̄t = h̄t, At = at

}
.

A derivation of the G-computation formula for CAPOs is given in Supplement C. However, due to
the nested structure of G-computation, estimating Eq. (3) from data is challenging.

So far, only G-Net (Li et al., 2021) has used G-computation for estimating CAPOs in a neural model.
For this, G-Net makes a Monte Carlo approximation of Eq. (3) through∫

Rdx×τ−1×Rdy×τ−1

E[Yt+τ | H̄t
t+τ−1 = h̄t

t+τ−1, At:t+τ−1 = at:t+τ−1]

×
τ−1∏
δ=1

p(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1) d(xt+1:t+τ−1, yt+1:t+τ−1). (4)

However, Eq. (76) requires estimating the entire distribution of all time-varying confounders at
several time steps in the future, which may lead to large estimation variance. In particular, all
moments of a (τ − 1)× (dx + dy)-dimensional random variable need to be estimated, which leads to
estimation of nuisance. We provide more details in Supplement F.

In contrast, our GT does not rely on high-dimensional integral approximation through Monte
Carlo sampling. Further, our GT does not require estimating any probability distribution. Instead,
it performs regression-based iterative G-computation in an end-to-end transformer architecture.
Thereby, we perform proper adjustments for time-varying confounding through Eq. (3), while
relying only on regressions of via low-variance pseudo-outcomes.

4 G-TRANSFORMER

In the following, we present our G-transformer. Inspired by (Bang & Robins, 2005; Robins, 1999;
Robins & Hernán, 2009) for APOs, we reframe G-computation for CAPOs over time through
recursive conditional expectations. Thereby, we precisely formulate the training objective of our GT
through iterative regressions. Importantly, existing approaches for estimating APOs do not estimate
potential outcomes on an individual level for a given history H̄t = h̄t, because of which they are not

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

sufficient for estimating CAPOs. Therefore, we proceed below by first extending regression-based
iterative G-computation to account for the heterogeneous response to a treatment intervention. We
then detail the architecture of our GT and provide details on the end-to-end training and inference.

4.1 REGRESSION-BASED ITERATIVE G-COMPUTATION FOR CAPOS

Our GT leverages G-computation as in Eq. (3) and, therefore, properly adjusts for time-varying
confounders in Eq. (1). However, we do not attempt to integrate over the estimated distribution of
all time-varying confounders. Instead, one of our main novelties is that our GT performs iterative
regressions in a neural end-to-end architecture. This allows us to estimate Eq. (1) without estimating
high-dimensional probability distributions.

We reframe Eq. (3) equivalently as a recursion of conditional expectations. Thereby, we can formulate
the iterative regression objective of our GT. In particular, our approach resembles an iterative pseudo-
outcome regression. For this, let

gat+δ(h̄
t
t+δ) = E[Ga

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ], (5)

where the pseudo-outcomes are defined as

Ga
t+τ = Yt+τ (6)

and

Ga
t+δ = gat+δ(H̄

t
t+δ) (7)

for δ = 0, . . . , τ − 1. By reformulating the G-computation formula through recursions, the nested
expectations in Eq. (3) are now given by

Ga
t+τ−1 = E[Yτ | H̄t

t−1, At:t+τ−1 = at:t+τ−1], (8)

Ga
t+τ−2 = E

[
E[Yτ | H̄t

t−1, At:t+τ−1 = at:t+τ−1] | H̄t
t−2, At:t+τ−2 = at:t+τ−2

]
, (9)

. . . (10)

Hence, the G-computation formula in Eq. (3) can be rewritten as

gat (h̄t) = E[Yt+τ [at:t+τ−1] | H̄t = h̄t]. (11)

We show in the following proposition that iterative pseudo-outcome regression recovers the CAPOs
and thus performs proper adjustments for time-varying confounding. We summarize the iterative
pseudo-outcome regression for CAPOs in the following proposition.
Proposition 1. The regression-based iterative G-computation yields the CAPO in Eq. (1).

Proof. See Supplement D.1.

To further illustrate our regression-based iterative G-computation, we provide two examples in
Supplement D.3, where we show step-by-step how our approach adjusts for time-varying confounding.

In order to correctly estimate Eq. (2) for a given history H̄t = h̄t and an interventional treatment
sequence a = at:t+τ−1, all subsequent pseudo-outcomes in Eq. (7) are required. However, the
ground-truth realizations of the pseudo-outcomes Ga

t+δ are not available in the data. Instead, only
realizations of Ga

t+τ = Yt+τ in Eq. (6) are observed during the training. Hence, when training our
GT, it alternately generates predictions G̃a

t+δ of the pseudo-outcomes for δ =0, . . . τ − 1, which it
then uses for learning the estimator of Eq. (5).

Therefore, the training of our GT completes two steps in an iterative scheme: First, it runs a
A generation step, where it generates predictions of the pseudo-outcomes Eq. (7). Then, it runs a
B learning step, where it regresses the predictions G̃a

t+δ for Eq. (7) and the observed Ga
t+τ = Yt+τ

in Eq. (6) on the history to update the estimator for Eq. (5). Finally, the updated estimators are
used again in the next A generation step. This procedure resembles an iterative pseudo-outcome
regression. Thereby, our GT is designed to simultaneously A generate predictions and B learn
during the training. Both steps are performed in an end-to-end architecture, ensuring that information
is shared across time and data is used efficiently. We detail the architecture as well as training and
inference of our GT in the following sections.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

=

Multi-input
transformer

G-computation
heads

CAPO
estimate

Learn Learn Learn

Hidden states,
treatment

Data

Learn

Blocked
gradient

Computational
graph

GT variable in
generation step
GT variable in
learning step

GT component in
generation step

GT component in
learning step

Interventional
treatment sequence

Observational
treatment sequence

Other observableShared componentShared variable Inference / training

Same

component
Same

component

Same

component

Same

component

Same

component

Same

component

Same

component

Figure 2: Neural end-to-end architecture and training of our G-transformer.

4.2 MODEL ARCHITECTURE

We first introduce the architecture of our GT. Then, we explain the iterative prediction and learning
scheme inside our GT, which presents one of the main novelties. Finally, we introduce the inference
procedure.

Our GT consists of two key components (see Fig. 2): (i) a multi-input transformer zθ(·), and
(ii) several G-computation heads {gδϕ(·)}

τ−1
δ=0 , where θ, ϕ denote the trainable weights. First, the

multi-input transformer encodes the entire observed history. Then, the G-computation heads take
the encoded history and perform the iterative regressions according to Eq. (5). We provide further
details on the transformer architecture and an illustration in Supplement J. For all t = 1, . . . , T − τ
and δ = 0, . . . , τ − 1, the components are designed as follows:

(i) Multi-input transformer: The backbone of our GT is a multi-input transformer zθ(·), which
consists of three connected encoder-only sub-transformers zkθ (·), k ∈ {1, 2, 3} and is directly inspired
by (Melnychuk et al., 2022). We provide details on the architecture in Supplement J. At time t, the
transformer zθ(·) receives data H̄t = (Ȳt, X̄t, Āt−1) as input and passes them to one corresponding
sub-transformer. In particular, each sub-transformer zkθ (·) is responsible to focus on one particular
Ūk
t ∈ {Ȳt, X̄t, Āt−1} in order to effectively process the different types of inputs. Further, we ensure

that information is shared between the sub-transformers, as we detail below. The output of the
multi-input transformer are hidden states ZA

t , which are then passed to the (ii) G-computation heads.

(ii) G-computation heads: The G-computation heads {gδϕ(·)}
τ−1
δ=0 are the read-out component of our

GT. As input at time t+ δ, the G-computation heads receive the hidden state ZA
t+δ from the above

multi-input-transformer. Recall that we seek to perform the iterative regressions in Eq. (5) and Eq. (2),
respectively. For this, we require estimators of E[Ga

t+δ+1 | H̄t+δ, Āt+δ]. Hence, the G-computation
heads compute

Ê[Ga
t+δ+1 | H̄t+δ, At+δ] = gδϕ(Z

A
t+δ, At+δ), (12)

where

ZA
t+δ = zθ(H̄t+δ) (13)

for δ = 0, . . . , τ − 1. As a result, the G-computation heads and the multi-input transformer together
give the estimators that are required for the regression-based iterative G-computation. In particular,
we thereby ensure that, for δ = 0, the last G-computation head g0ϕ(·) is trained as the estimator for
the CAPO as given in Eq. (2). That is, for a fully trained multi-input transformer and G-computation
heads, our GT estimates the CAPO via

Ê[Yt+τ [at:t+τ−1] | H̄t = h̄t] = g0ϕ(zθ(h̄t), at). (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 ITERATIVE TRAINING AND INFERENCE TIME

We now introduce the iterative training of our GT, which consists of a A generation step and a
B learning step. Then, we show how inference for a given history H̄t = h̄t can be achieved. We

provide pseudocode in Supplement K.

Iterative training: Our GT is designed to estimate the CAPO gat (h̄t) in Eq. (2) for a given history
H̄t = h̄t and an interventional treatment sequence a = at:t+τ−1 via Eq. (14). Therefore, the G-
computation heads in Eq. (12) require the pseudo-outcomes {Ga

t+δ}τδ=1 from Eq. (7) during training.
However, they are only available in the training data for δ = τ . That is, we only observe the factual
outcomes Ga

t+τ = Yτ .

As a remedy, our GT first predicts the remaining pseudo-outcomes {Ga
t+δ}

τ−1
δ=1 in the A generation

step. Then, it can use these generated pseudo-outcomes and the observed Ga
t+τ for learning the

network weights ϕ in the B learning step. In the following, we write {G̃a
t+δ}

τ−1
δ=1 for the generated

pseudo-outcomes and, for notational convenience, we also write G̃a
t+τ = Ga

t+τ .

A Generation step: In this step, our GT generates G̃a
t+δ ≈ gat+δ(H̄

t
t+δ) as substitutes for Eq. (7),

which are the pseudo-outcomes in the iterative regression-based G-computation. Formally, our GT
predicts these via

G̃a
t+δ = gδϕ(Z

a
t+δ, at+δ), (15)

where

Za
t+δ = zθ(H̄

t
t+δ, at:t+δ−1), (16)

for δ = 0, . . . , τ − 1. For this, all operations are detached from the computational graph. Hence, our
GT now has pseudo-outcomes {G̃a

t+δ}τδ=0, which it can use in the following B learning step. Of
note, these generated pseudo-outcomes will be noisy for early training epochs. However, as training
progresses, the G-computation heads perform increasingly more accurate predictions, as we explain
below.

B Learning step: This step is responsible for updating the weights ϕ of the multi-input transformer
zθ(·) and the G-computation heads {gδϕ(·)}

τ−1
δ=0 . For this, our GT learns the estimator for Eq. (5) via

Ê[Ga
t+δ+1 | H̄t

t+δ, At:t+δ] = gδϕ(Z
A
t+δ, At+δ), (17)

where

ZA
t+δ = zθ(H̄t+δ) (18)

for δ = 0, . . . , τ − 1. In particular, the estimator is optimized by backpropagating the squared error
loss L for all δ = 0, . . . , τ − 1 and t = 1, . . . , T − τ via

L =
1

T − τ

T−τ∑
t=1

(
1

τ

τ−1∑
δ=0

(
gδϕ(Z

A
t+δ, At+δ)− G̃a

t+δ+1

)2)
. (19)

Then, after ϕ is updated, we can use the updated estimator in the next A generation step.

Here, it is important that for δ = τ , the pseudo-outcome G̃a
t+τ = Yt+τ is available in the data. By

estimating Yt+τ with gτ−1
ϕ (ZA

t+τ−1, At+τ−1), it is ensured the last G-computation head gτ−1
ϕ (·) is

learned on a ground-truth quantity. Thereby, the weights of gτ−1
ϕ (·) are gradually optimized during

training. Hence, the predicted pseudo-outcome

G̃a
t+τ−1 = gτ−1

ϕ (Za
t+τ−1, at+τ−1) (20)

in the next A generation step become mores accurate. Therefore, the G-computation head gτ−2
ϕ (·) is

learned on a more accurate prediction in the following B learning step, which thus leads to a better
generated pseudo-outcome G̃a

t+τ−2, and so on. As a result, the optimization of the G-computation
heads gradually improves from gτ−1

ϕ (·) up to g0ϕ(·).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Inference at runtime: Finally, we introduce how inference is achieved with our GT. Given a history
H̄t = h̄t and an interventional treatment sequence a = at:t+τ−1, our GT is trained to estimate of
Eq. (1) through Eq. (2). For this, our GT computes the CAPO via

ĝat (h̄t) = Ê[Ga
t+1 | H̄t = h̄t, At = at] = g0ϕ(zθ(h̄t), at). (21)

We summarize this in the following proposition.

Proposition 2. Our GT estimates the G-computation formula as in Eq. (2) and, therefore, performs
proper adjustments for time-varying confounders.

Proof. See Supplement D.2.

4.4 ADVANTAGES OVER EXISTING APPROACHES

In the following, we explain the differences of our GT compared to (i) CT (Melnychuk et al., 2022)
and (ii) G-Net (Li et al., 2021), and (iii) RMSNs (Lim et al., 2018). Importantly, our method has an
entirely different learning algorithm that allows for proper adjustments in an end-to-end approach
through iterative regressions.

Our GT vastly differs from CT (Melnychuk et al., 2022). Recall that CT does not perform proper
adjustments for time-varying confounding. In particular, CT targets E[Yt+τ | Ht = ht, At:t+τ =
at:t+τ], which is not the CAPO (Frauen et al., 2024). Hence, it targets an incorrect estimand, leading
to irreducible bias. Therefore, deploying it to medical scenarios would be irresponsible. In contrast,
our GT leverages iterative regression based on the G-computation to correctly target the CAPO
(Prop. 2). To achieve this, we propose a new generation-learning approach inside our GT.

Our GT is also vastly different from G-Net (Li et al., 2021). In order to estimate a τ -step-ahead
CAPO, G-Net requires (i) a dy-dimensional regression as well as estimating the entire distribution of
a (τ − 1)× (dy + dx)-dimensional confounding variable. That is, it needs to estimate all moments
of a high-dimensional random variable. In contrast, our GT only requires τ regressions of a dy-
dimensional outcome and, hence, only needs to estimate the first moment of a much lower dimensional
random variable. Compared to G-Net, our estimation strategy is unproblematic as it does not fit
unnecessary nuisance. We provide a detailed comparison in Supplement F.

Finally, RMSNs (Lim et al., 2018) also rely on pseudo-outcome regressions. However, their pseudo-
outcomes are constructed via inverse propensity weighting, which leads to pseudo-outcomes with
larger variance than ours:

Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. See Supplement E.

5 EXPERIMENTS

We show the performance of our GT against key neural methods for estimating CAPOs over time
(see Table 1). Further details (e.g., implementation details, hyperparameter tuning, runtime) are given
in Supplement L. We report ablation studies of our GT in Supplement G.1.

5.1 SYNTHETIC DATA

First, we follow common practice in benchmarking for causal inference (Bica et al., 2020; Li et al.,
2021; Lim et al., 2018; Melnychuk et al., 2022) and evaluate the performance of our GT against other
baselines on fully synthetic data. The use of synthetic data is beneficial as it allows us to simulate the
outcomes under a sequence of interventions, which are unknown in real-world datasets. Thereby, we
are able to evaluate the performance of all methods for estimating CAPOs over time. Here, our main
aim is to show that our GT is robust against increasing levels of confounding.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

γ = 10 γ = 11 γ = 12 γ = 13 γ = 14 γ = 15 γ = 16 γ = 17 γ = 18 γ = 19 γ = 20

CRN (Bica et al., 2020) 4.05± 0.55 5.45± 1.68 6.17± 1.27 4.98± 1.49 5.24± 0.33 4.84± 0.95 5.41± 1.20 5.09± 0.77 5.08± 0.87 4.47± 0.84 4.80± 0.70

TE-CDE (Seedat et al., 2022) 4.08± 0.54 4.21± 0.42 4.33± 0.11 4.48± 0.47 4.39± 0.38 4.67± 0.65 4.84± 0.46 4.31± 0.38 4.44± 0.53 4.61± 0.42 4.72± 0.45

CT (Melnychuk et al., 2022) 3.44± 0.73 3.70± 0.77 3.60± 0.62 3.87± 0.68 3.88± 0.75 3.87± 0.65 5.26± 1.67 4.04± 0.74 4.13± 0.90 4.30± 0.72 4.49± 0.94

RMSNs (Lim et al., 2018) 3.34± 0.20 3.41± 0.17 3.61± 0.25 3.76± 0.25 3.92± 0.26 4.22± 0.40 4.30± 0.52 4.48± 0.59 4.60± 0.46 4.47± 0.53 4.62± 0.51

G-Net (Li et al., 2021) 3.51± 0.37 3.71± 0.33 3.80± 0.29 3.89± 0.27 3.91± 0.26 3.94± 0.26 4.05± 0.37 4.09± 0.41 4.22± 0.53 4.21± 0.55 4.24± 0.45

GT (ours) 3.13± 0.22 3.16± 0.14 3.31± 0.20 3.27± 0.14 3.30± 0.11 3.49± 0.30 3.53± 0.26 3.50± 0.26 3.41± 0.29 3.59± 0.21 3.71± 0.27

Rel. improvement 6.4% 7.3% 7.9% 12.9% 15.0% 9.9% 12.9% 13.1% 17.4% 14.8% 12.5%

Table 2: RMSE on synthetic data based on the tumor growth model with τ = 2. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE ± standard deviation over five seeds.

Our main evaluation metric is the root mean squared error (RMSE), which is the appropriate
evaluation metric for estimating CAPOs and is standard in the literature (Bica et al., 2020; Li
et al., 2021; Lim et al., 2018; Melnychuk et al., 2022). Of note, all baselines and our GT are
inherently designed for CAPO estimation. Hence, the best-performing method for estimating CAPOs
is immediately the best at estimating conditional average treatment effects CATEs).

Setting: For this, we use data based on the pharmacokinetic-pharmacodynamic tumor growth model
(Geng et al., 2017), which is a standard dataset for benchmarking causal inference methods in the
time-varying setting (Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk et al., 2022).
Here, the outcome Yt is the volume of a tumor that evolves according to the stochastic process
Yt+1 = (1+ ρ log

(
K
Yt

)
−αcct − (αrdt + βrd

2
t)+ ϵt)Yt, where αc, αr, and βr control the strength

of chemo- and radiotherapy, respectively, and where K corresponds to the carrying capacity, and
where ρ is the growth parameter. The radiation dosage dt and chemotherapy drug concentration ct
are applied with probabilities σ(γ/Dmax(D̄15(Ȳt−1 − D̄max/2), where Dmax is the maximum tumor
volume, D̄15 the average tumor diameter of the last 15 time steps, and γ controls the confounding
strength. We use the same parameterization as in (Melnychuk et al., 2022). For training, validation,
and testing, we sample N = 1000 trajectories of lengths T ≤ 30 each.

We are interested in the performance of our GT for increasing levels of confounding. We thus
increase the confounding from γ = 10 to γ = 20. For each level of confounding, we fix an arbitrary
intervention sequence and simulate the outcomes under this intervention for testing.

Results: Table 2 shows the average RMSE over five different runs for a prediction horizon of τ = 2.
Of note, we emphasize that our comparison is fair (see hyperparameter tuning in Supplement L.1).
We make the following observations:

First, our GT outperforms all baselines by a significant margin. Importantly, as our GT performs
proper adjustments for time-varying confounding, it is robust against increasing γ. In particular,
our GT achieves a performance improvement over the best-performing baseline of up to 17.4%.
Further, our GT is highly stable, as can be seen by low standard deviation in the estimates, especially
compared to the baselines. In sum, our GT performs best in estimating the CAPOs, especially under
increasing confounding strength.

Second, the 1 baselines that do not perform proper adjustments (i.e., CRN (Bica et al., 2020), TE-
CDE (Seedat et al., 2022), and CT (Melnychuk et al., 2022)) exhibit large variations in performance
and are thus highly unstable. This is expected, as they do not target the correct causal estimand and,
accordingly, suffer from the increasing confounding.

Third, the baselines with 2 problematic adjustment strategies (i.e., RMSNs (Lim et al., 2018) and
G-Net (Li et al., 2021)) are slightly more stable than the no-adjustment baselines. This can be
attributed to that the tumor growth model has no time-varying covariates Xt and to that we are only
focusing on τ = 2-step ahead predictions, both of which reduce the variance. However, the RMSNs
and G-Net are still significantly worse than the estimates provided by our GT.

5.2 SEMI-SYNTHETIC DATA

Next, we study how our GT performs when (i) the covariate space is high-dimensional and when
(ii) the prediction windows τ become larger. For this, we use semi-synthetic data, which, similar
to the fully-synthetic dataset allows us to access the ground-truth outcomes under an interventional
sequence of treatments for benchmarking.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

N = 1000 N = 2000 N = 3000

τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

CRN (Bica et al., 2020) 0.42± 0.11 0.58± 0.21 0.74± 0.31 0.84± 0.42 0.95± 0.51 0.39± 0.12 0.50± 0.14 0.58± 0.15 0.64± 0.16 0.70± 0.17 0.37± 0.10 0.46± 0.11 0.56± 0.13 0.65± 0.16 0.75± 0.24

TE-CDE (Seedat et al., 2022) 0.76± 0.09 0.91± 0.15 1.07± 0.22 1.15± 0.25 1.24± 0.28 0.76± 0.16 0.87± 0.17 0.98± 0.17 1.06± 0.18 1.14± 0.19 0.71± 0.09 0.78± 0.09 0.88± 0.11 0.94± 0.12 1.02± 0.13

CT (Melnychuk et al., 2022) 0.33± 0.14 0.44± 0.18 0.53± 0.21 0.57± 0.19 0.60± 0.19 0.31± 0.11 0.41± 0.13 0.49± 0.15 0.55± 0.15 0.60± 0.15 0.32± 0.10 0.40± 0.11 0.49± 0.12 0.55± 0.13 0.61± 0.15

RMSNs (Lim et al., 2018) 0.57± 0.16 0.73± 0.20 0.87± 0.22 0.94± 0.20 1.02± 0.20 0.62± 0.25 0.73± 0.21 0.85± 0.25 0.96± 0.26 1.05± 0.28 0.66± 0.27 0.76± 0.24 0.86± 0.23 0.93± 0.21 1.00± 0.20

G-Net (Li et al., 2021) 0.56± 0.14 0.73± 0.17 0.86± 0.18 0.95± 0.20 1.03± 0.21 0.55± 0.12 0.73± 0.14 0.87± 0.18 1.00± 0.22 1.12± 0.26 0.54± 0.11 0.72± 0.16 0.88± 0.21 1.00± 0.26 1.11± 0.32

GT (ours) 0.30± 0.07 0.36± 0.11 0.44± 0.13 0.47± 0.12 0.54± 0.13 0.27± 0.07 0.32± 0.09 0.38± 0.10 0.42± 0.08 0.45± 0.10 0.24± 0.07 0.31± 0.08 0.36± 0.09 0.42± 0.10 0.48± 0.10

Rel. improvement 9.5% 19.7% 16.3% 16.7% 10.8% 15.3% 22.5% 22.5% 22.6% 25.0% 26.7% 24.0% 25.2% 24.6% 21.6%

Table 3: RMSE on semi-synthetic data based on the MIMIC-III extract. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE ± standard deviation over five seeds.

Setting: We build upon the MIMIC-extract (Wang et al., 2020), which is based on the MIMIC-III
dataset (Johnson et al., 2016). Here, we use dx = 25 different vital signs as time-varying covariates
and as well as gender, ethnicity, and age as static covariates. Then, we simulate observational
outcomes for training and validation, and interventional outcomes for testing, respectively. Our
data-generating process is taken from (Melnychuk et al., 2022), which we refer to for more details. In
summary, the data generation consists of three steps: (1) dy = 2 untreated outcomes Ỹ j

t , j = 1, 2, are
simulated according to Ỹ j

t = αj
sB-spline(t) + αj

gg
j(t) + αj

ff
j
Y (Xt) + ϵt, where αj

s, αj
g and αj

f are
weight parameters, B-spline(t) is sampled from a mixture of three different cubic splines, and f j

Y (·)
is a random Fourier features approximation of a Gaussian process. (2) A total of da = 3 synthetic
treatments Al

t, l = 1, 2, 3, are applied with probability σ(γl
Y Y

A,l
t−1 + γl

Xf l
Y (Xt) + bl) where γl

Y and
γl
X are fixed parameters that control the confounding strength for treatment Al, Y A,l

t is an averaged
subset of the previous l treated outcomes, bl is a bias term, and f l

Y (·) is a random function that
is sampled from an RFF (random Fourier features) approximation of a Gaussian process. (3) The
treatments are applied to the untreated outcomes via

Y j
t = Ỹ j

t +

t∑
i=t−ωl

minl=1,...,da
1{Al

i=1}p
l
iβ

l,j

(ωl − i)2
, (22)

where ωl is the effect window for treatment Al and βl,j controls the maximum effect of treatment Al.

We run different experiments for training, testing, and validation sizes of N = 1000, N = 2000,
and N = 3000, respectively, and set the time window to 30 ≤ T ≤ 50. As the covariate space is
high-dimensional, we thereby study how robust our GT is with respect to estimation variance.

Results: Table 3 shows the average RMSE over five different runs. Again, we emphasize that our
comparison is fair (see hyperparameter tuning in Supplement L). We make three observations:

First, our GT consistently outperforms all baselines by a large margin. The performance of GT
is robust across all sample sizes N .Further, it is stable across different prediction windows τ . We
observe that our GT has a better performance compared to the strongest baseline of up to 26.7%.
Further, the results show the clear benefits of our GT in high-dimensional covariate settings and for
longer prediction windows τ .In addition, our GT is highly stable, as its estimates exhibit the lowest
standard deviation among all baselines. In sum, our GT consistently outperforms all the baselines.

Second, 1 baselines that do not perform proper adjustments (i.e., CRN (Bica et al., 2020), CT
(Melnychuk et al., 2022)) tend to perform better than baselines with problematic adjustment strategies
(i.e., RMSNs (Lim et al., 2018), G-Net (Li et al., 2021)). The reason is that the former baselines
are (i) regression-based (ii) do not require IPW pseudo-outcomes. Hence, they can better handle the
high-dimensional covariate space. They are, however, biased as they do not adjust for time-varying
confounders and thus still perform significantly worse than our GT.

Third, baselines with 2 problematic adjustment strategies (i.e., RMSNs (Lim et al., 2018), G-Net
(Li et al., 2021)) struggle with the high-dimensional covariate space and larger prediction windows τ .
This can be expected, as RMSNs suffer from overlap violations and thus produce unstable inverse
propensity weights. Similarly, G-Net suffers from the curse of dimensionality, as it requires estimating
a (dx + dy)× (τ − 1)-dimensional distribution.

Conclusion: In this paper, we propose the GT, a novel end-to-end method that adjusts for time-
varying confounding, while avoiding problematic adjustment strategies for estimating of CAPOs. For
this, we propose a regression-based learning algorithm that sets our GT apart from existing baselines.
Therefore, we expect our GT to be an important step toward personalized medicine.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
using multi-task Gaussian processes. In NeurIPS, 2017.

Ahmed Allam, Stefan Feuerriegel, Michael Rebhan, and Michael Krauthammer. Analyzing patient
trajectories with artificial intelligence. Journal of Medical Internet Research, 23(12):e29812, 2021.

Per Kragh Andersen and Maja Pohar Perme. Pseudo-observations in survival analysis. Statistical
Method in Medical Research, 19(1):71–99, 2010.

Per Kragh Andersen, Elisavet Syriopoulou, and Erik T Parner. Causal inference in survival analysis
using pseudo-observations. Statistics in Medicine, 36(17):2669–2681, 2017.

Ellen M. Apperloo, Jose L. Gorriz, Maria Jose Soler, Secundino Cigarrán Guldris, Josep M. Cruzado,
Maria Jesús Puchades, Marina López-Martínez, Femke Waanders, Gozewijn D. Laverman, An-
nemarie van der Aart-van der Beek, Klaas Hoogenberg, André P. van Beek, Jacobien Verhave,
Sofia B. Ahmed, Roland E. Schmieder, Christoph Wanner, David Z. I. Cherney, Niels Jongs, and
Hiddo J. L. Heerspink. Semaglutide in patients with overweight or obesity and chronic kidney
disease without diabetes: a randomized double-blind placebo-controlled clinical trial. Nature
Medicine, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint,
1607.06450, 2016.

Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal inference
models. Biometrics, 61(4):962–973, 2005.

Samuel L. Battalio, David E. Conroy, Walter Dempsey, Peng Liao, Marianne Menictas, Susan Murphy,
Inbal Nahum-Shani, Tianchen Qian, Santosh Kumar, and Bonnie Spring. Sense2Stop: A micro-
randomized trial using wearable sensors to optimize a just-in-time-adaptive stress management
intervention for smoking relapse prevention. Contemporary Clinical Trials, 109:106534, 2021.

Ioana Bica, Ahmed M. Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. In ICLR, 2020.

Ioana Bica, Ahmed M. Alaa, Craig Lambert, and Mihaela van der Schaar. From real-world patient
data to individualized treatment effects using machine learning: Current and future methods to
address underlying challenges. Clinical Pharmacology and Therapeutics, 109(1):87–100, 2021.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline-reinforcement learning via autoregressive Q-functions. In
CoRL, 2023.

Amanda Coston, Edward H. Kennedy, and Alexandra Chouldechova. Counterfactual predictions
under runtime confounding. In NeurIPS, 2020.

Guilherme Duarte, Noam Finkelstein, Dean Knox, Jonathan Mummolo, and Ilya Shpitser. An
automated approach to causal inference in discrete settings. Journal of the American Statistical
Association, 119:1778–1793, 2023.

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia
Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, and Mihaela van der Schaar. Causal machine
learning for predicting treatment outcomes. Nature Medicine, 30:958–968, 2024.

Dennis Frauen, Tobias Hatt, Valentyn Melnychuk, and Stefan Feuerriegel. Estimating average causal
effects from patient trajectories. In AAAI, 2023a.

Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. Sharp Bounds for Generalized Causal
Sensitivity Analysis. In NeurIPS, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dennis Frauen, Konstantin Hess, and Stefan Feuerriegel. Model-agnostic meta-learners for estimating
heterogeneous treatment effects over time. arXiv preprint, 2024.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hidnsight information matching. In ICLR, 2022.

Changran Geng, Harald Paganetti, and Clemens Grassberger. Prediction of treatment response
for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-
mathematical model. Scientific Reports, 7(1):13542, 2017.

Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bayesian neural
controlled differential equations for treatment effect estimation. In ICLR, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Yuongsoo Jang, Jongmin Lee, and Kee-Eung Kim. Gpt-critic: Offline reinforcement learning for
end-to-end task-oriented dialogue systems. In ICLR, 2022.

Fredrik D. Johansson, Uri Shalit, and David Sonntag. Learning representations for counterfactual
inference. In ICML, 2016.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. MIMIC-III,
a freely accessible critical care database. Scientific Data, 3(1):160035, 2016.

Nathan Kallus and Masatoshi Uehara. Intrinsically efficient, stable, and bounded off-policy evaluation
for reinforcement learning. In NeurIPS, 2019.

Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for efficient off-policy evalua-
tion in markov decision processes. Journal of Machine Learning Research, 21:1–63, 2020.

Nathan Kallus and Masatoshi Uehara. Efficiently breaking the curse of horizon in off-policy evaluation
with double reinforcement learning. Operations Research, 70(6):3282–3302, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. In NeurIPS, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. In NeurIPS, 2019.

Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M. Sow, Piyush
Madan, Jun Li, Mohamed Ghalwash, Zach Shahn, and Li-wei Lehman. G-Net: A recurrent network
approach to G-computation for counterfactual prediction under a dynamic treatment regime. In
ML4H, 2021.

Bryan Lim, Ahmed M. Alaa, and Mihaela van der Schaar. Forecasting treatment responses over time
using recurrent marginal structural networks. In NeurIPS, 2018.

Roderick Little and Donald Rubin. Causal effects in clinical and epidemiological studies via potential
outcomes: Concepts and analytical approaches. Annual Review of Public Health, 21:121–45, 02
2000.

Judith J. Lok. Statistical modeling of causal effects in continuous time. Annals of Statistics, 36(3),
2008.

Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
effect inference with deep latent-variable models. In NeurIPS, 2017.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
counterfactual outcomes. In ICML, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Normalizing flows for interventional
density estimation. In ICML, 2023.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bounds on representation-induced
confounding bias for treatment effect estimation. In ICLR, 2024.

Krikamol Muandet, Montonobu Kanagawa, Sorawit Saengkyongam, and Sanparith Marukatat. Coun-
terfactual mean embeddings. Journal of Machine Learning Research, 22:1–71, 2021.

Susan A. Murphy. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society:
Series B, 65(2):331–355, 2003.

Elizabeth Murray, Eric B. Hekler, Gerhard Andersson, Linda M. Collins, Aiden Doherty, Chris Hollis,
Daniel E. Rivera, Robert West, and Jeremy C. Wyatt. Evaluating Digital Health Interventions: Key
Questions and Approaches. American Journal of Preventive Medicine, 51(5):843–851, 2016.

Jerzy Neyman. On the application of probability theory to agricultural experiments. Annals of
Agricultural Sciences, 10:1–51, 1923.

Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit.
B-Learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In
ICML, 2023.

Yilmazcan Özyurt, Mathias Kraus, Tobias Hatt, and Stefan Feuerriegel. AttDMM: An attentive deep
Markov model for risk scoring in intensive care units. In KDD. 2021.

Alexander Pashevich, Schmid, Cordelia, and Chen Sun. Episodic transformer for vision-and-language
navigation. In IEEE/CVF, 2021.

James M. Robins. A new approach to causal inference in mortality studies with a sustained exposure
period: Application to control of the healthy worker survivor effect. Mathematical Modelling, 7:
1393–1512, 1986.

James M. Robins. Correcting for non-compliance in randomized trials using structural nested mean
models. Communications in Statistics - Theory and Methods, 23(8):2379–2412, 1994.

James M. Robins. Robust estimation in sequentially ignorable missing data and causal inference
models. Proceedings of the American Statistical Association on Bayesian Statistical Science, pp.
6–10, 1999.

James M. Robins and Miguel A. Hernán. Estimation of the causal effects of time-varying exposures.
Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press, Boca Raton, 2009.
ISBN 9781584886587.

James M. Robins, Miguel A. Hernán, and Babette Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

Donald B. Rubin. Bayesian inference for causal effects: The role of randomization. Annals of
Statistics, 6(1):34–58, 1978.

Helene C. Rytgaard, Thomas A. Gerds, and Mark J. van der Laan. Continuous-time targeted minimum
loss-based estimation of intervention-specific mean outcomes. The Annals of Statistics, 2022.

Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. In NeurIPS,
2017.

Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der Schaar. Continuous-
time modeling of counterfactual outcomes using neural controlled differential equations. In ICML,
2022.

Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: General-
ization bounds and algorithms. In ICML, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2018.

Yi Shirakawa, Toru; Li, Yulun Wu, Sky Qiu, Yuxuan Li, Mingduo Zhao, Hiroyasu Iso, and Mark
van der Laan. Longitudinal targeted minimum loss-based estimation with temporal-difference
heterogeneous transformer. In ICML, 2024.

Hossein Soleimani, Adarsh Subbaswamy, and Suchi Saria. Treatment-response models for counter-
factual reasoning with continuous-time, continuous-valued interventions. In UAI, 2017.

Chien-Lin Su, Robert W Platt, and Jean-François Plante. Causal inference for recurrent event data
using pseudo-observations. Biostatistics, 23(1):189–206, 2022.

Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in rein-
forcement learning. arXiv preprint, 2212.06355, 2022.

Mark J. van der Laan and Susan Gruber. Targeted minimum loss based estimation of causal effects of
multiple time point interventions. The International Journal of Biostatistics, 8(1), 2012.

Toon Vanderschueren, Alicia Curth, Wouter Verbeke, and Mihaela van der Schaar. Accounting for
informative sampling when learning to forecast treatment outcomes over time. In ICML, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Shirly Wang, Matthew B.A. McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C. Hughes,
and Tristan Naumann. MIMIC-extract: A data extraction, preprocessing, and representation
pipeline for MIMIC-III. In CHIL, 2020.

Yanbo Xu, Yanxun Xu, and Suchi Saria. A non-parametric bayesian approach for estimating
treatment-response curves from sparse time series. In ML4H, 2016.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: Estimation of individualized
treatment effects using generative adversarial nets. In ICLR, 2018.

Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Learning overlapping representations for the
estimation of individualized treatment effects. In AISTATS, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Estimating CAPOs in the static setting: Extensive work on estimating potential outcomes focuses
on the static setting (e.g., Alaa & van der Schaar, 2017; Frauen et al., 2023b; Johansson et al., 2016;
Louizos et al., 2017; Melnychuk et al., 2023; Yoon et al., 2018; Zhang et al., 2020)). However,
observational data such as electronic health records (EHRs) in clinical settings are typically measured
over time (Allam et al., 2021; Bica et al., 2021). Additionally, treatments are rarely applied all at
once but rather sequentially over time (Apperloo et al., 2024). Therefore, the underlying assumption
of these methods prohibitive and does not properly reflect medical reality. Hence, static methods
are not tailored to accurately estimate potential outcomes when (i) time series data is observed and
(ii) multiple treatments in the future are of interest.

Additional literature on estimating CAPOs over time: There are some non-parametric methods for
this task (Schulam & Saria, 2017; Soleimani et al., 2017; Xu et al., 2016), yet these suffer from
poor scalability and have limited flexibility regarding the outcome distribution, the dimension of
the outcomes, and static covariate data; because of that, we do not explore non-parametric methods
further but focus on neural methods instead.3

Survival analysis: Some works in survival analysis (Andersen & Perme, 2010; Andersen et al.,
2017; Su et al., 2022) employ pseudo-outcomes, which is similar to our approach. However, these
works are different in that they are aimed at survival outcomes and not CAPOs for sequences of
treatments. Further, they do not consider neural networks as estimators. Additionally, (Andersen
et al., 2017) only considers a single, static treatment, and (Andersen & Perme, 2010) only uses
linear estimators. Finally, (Su et al., 2022) focuses on average causal effects and is therefore not
applicable to personalized medicine.

G-computation and Q-learning: Q-learning (Murphy, 2003; Kallus & Uehara, 2019) from the
reinforcement learning literature (Furuta et al., 2022; Jang et al., 2022; Kumar et al., 2019; Pashevich
et al., 2021) is closely related to G-computation, although both have a different purpose. They are
similar in that they share a common goal of understanding the effect of treatments/actions, but operate
in complementary domains: G-computation is grounded in causal inference for evaluating potential
outcomes, whereas Q-learning is rooted in reinforcement learning to derive policies that maximize
long-term rewards. We show more details on the two in the following:

G-computation can be written as the iterative update
gat+δ(h̄

t
t+δ) = E[Ga

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ], (23)

In our setting, we aim to estimate E
[
Yt+τ [at:t+τ−1] | H̄t = h̄t

]
.

However, we could also consider the expected cumulative rewards E
[
Ȳt+τ [at:t+τ−1] | H̄t = h̄t

]
,

where we define Ȳt+τ [at:t+τ−1] =
∑t+τ

ℓ=1 γ
ℓYt+ℓ[at:t+ℓ−1] and where γ < 1 is a so-called discount

factor that weighs the importance of immediate and future rewards. One can show that the G-
computation update becomes

gat+δ(h̄
t
t+δ) = E[Yt+δ + γGa

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = at:t+δ]. (24)
If we only care about the optimal treatment sequence a∗ (i.e., the one that maximizes the cumulative
reward), we can write

ga
∗

t+δ(h̄
t
t+δ) = E[Yt+δ + γ max

a∗
t+δ+1

Ga∗

t+δ+1 | H̄t
t+δ = h̄t

t+δ, At:t+δ = a∗t:t+δ]. (25)

Eq. (25) is known as Q-learning in the literature on dynamic treatment regimes (Murphy, 2003;
Kallus & Uehara, 2019) and can be used to compute an optimal dynamic policy.

In reinforcement learning, one often makes additional Markov and stationarity assumptions such
that the history h̄t

t+δ simplifies to a single state st+δ and the function ga
∗
t (st) is not dependent on

time. These assumptions allow us to consider infinite time-horizons and break the so-called curse of
horizon (Kallus & Uehara, 2022; Uehara et al., 2022). Then, Q-learning simplifies to

ga
∗
t (st) = E[Yt + γmax

a∗
t+1

Ga∗
| St = st, At = a∗t], (26)

3Other works are orthogonal to ours. For example, (Hess et al., 2024; Vanderschueren et al., 2023) are
approaches for informative sampling and uncertainty quantification, respectively. However, they do not focus on
the causal structure in the data, and are therefore not primarily designed for our task of interest.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

which is often called fitted Q-iteration in the RL literature (Kallus & Uehara, 2020; Uehara et al.,
2022). In contrast, our work does not make these assumptions.

State-of-the-art neural instantiations such as (Chebotar et al., 2023) are different to our work in
that they (i) serve the purpose of learning long-term rewards, and (ii) rely on restrictive Markov
assumptions. In contrast, our GT is designed to estimate CAPOs for sequences of treatments,
conditionally on the entire individual patient history.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B DISCUSSION ON ESTIMATING OUTCOMES FOR SEQUENCES OF
TREATMENTS IN MEDICAL SCENARIOS

In this study, we present a novel neural network, the G-transformer, for estimating conditional average
potential outcomes (CAPOs) from observational data such as electronic health records (EHRs). Our
GT addresses a crucial question in personalized medicine: “What would the outcome be for patient X
if they were administered treatments A, B, and C sequentially over the next 5 days, given their unique
clinical history?” Unlike many existing methods that focus on static or single-point interventions
(Alaa & van der Schaar, 2017; Johansson et al., 2016; Zhang et al., 2020), our method is specifically
designed to handle the sequential nature of treatments in medical practice – a feature that is both
realistic and necessary, as treatments are rarely applied all at once but rather sequentially over time
(Apperloo et al., 2024). With the growing availability of large-scale observational data from EHRs
(Allam et al., 2021; Feuerriegel et al., 2024; Bica et al., 2021) and wearable devices (Battalio et al.,
2021), there is an increasing need for robust methods that estimate the effect of multiple treatments,
given the individual patient history.

Our framework builds on three key assumptions: (i) consistency, (ii) positivity, and (iii) sequential
ignorability (see Section 3). These assumptions are the standard assumptions for estimating CAPOs
over time (Bica et al., 2020; Li et al., 2021; Melnychuk et al., 2022; Seedat et al., 2022). Notably,
compared to other methods that rely on even stricter assumptions, such as additional Markov or
independence assumptions (Özyurt et al., 2021), our assumptions are less restrictive. Furthermore,
these assumptions are the dynamic analogues of the standard causal inference assumptions in static
settings (Alaa & van der Schaar, 2017; Muandet et al., 2021; Johansson et al., 2016). Importantly,
methods for the static setting implicitly impose unrealistic assumption that treatments occur only once
and that covariates and outcomes remain static over time. Such limitations can introduce significant
bias in sequential decision-making contexts. In contrast, our approach models the time-varying nature
of clinical interventions and patient evolution, making it less restrictive and far more aligned with
real-world medical scenarios.

Further, we argue that these assumptions are both plausible and practical in medical applications.
First, consistency is generally satisfied as long as EHR data is accurately and systematically recorded.
Second, positivity can be ensured through thoughtful data pre-processing, such as filtering obser-
vations or applying propensity clipping. Additionally, as the scale of observational datasets grows,
this assumption becomes less restrictive. Third, the sequential ignorability assumption is a standard
assumption in epidemiology (Little & Rubin, 2000), and studies in digital health interventions may
satisfy this assumption by design. Furthermore, advances in sensitivity analysis (Frauen et al., 2023b;
Oprescu et al., 2023) and partial identification frameworks (Duarte et al., 2023) offer complementary
pathways to relax this assumption. That is, these literature streams are orthogonal to our work. In
practice, our GT thus integrates into established workflows that include point estimation, uncertainty
quantification, and sensitivity analysis.

From a practical perspective, our GT addresses key challenges in estimating CAPOs for sequences of
treatments. Specifically, our GT provides a neural end-to-end solution that adjusts for time-varying
confounding. On top, it neither relies on large-variance pseudo-outcomes (Prop. 3) nor on estimating
high-dimensional probability distributions. Therefore, we are convinced that our GT is an important
step towards reliable personalized medicine.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C DERIVATION OF G-COMPUTATION FOR CAPOS

Future treatment

Unobserved during
inference

Direct effect of
interest

Criticial confounding
effect

History

Figure 3: During inference, future time-varying confounders are unobserved (here: (Xt+1, Yt+1)). In
order to estimate CAPOs for an interventional treatment sequence without time-varying confounding
bias, proper causal adjustments such as G-computation are required.

In the following, we provide a derivation of the G-computation formula (Bang & Robins, 2005;
Robins, 1999; Robins & Hernán, 2009) for CAPOs over time. Recall that G-computation for CAPOs
is given by

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
(27)

. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
.

The following derivation follows the steps in (Frauen et al., 2023a) and extends them to CAPOs:

E[Yt+τ [at:t+τ−1] | H̄t = h̄t]

=E[Yt+τ [at:t+τ−1] | H̄t = h̄t, At = at] (28)

=E[E{Yt+τ [at:t+τ−1] | H̄t
t+1, At = at} (29)

| H̄t = h̄t, At = at]

=E[E{Yt+τ [at:t+τ−1] | H̄t
t+1, At:t+1 = at:t+1} (30)

| H̄t = h̄t, At = at]

=E[E{E[Yt+τ [at:t+τ−1] | H̄t
t+2, At:t+1 = at:t+1] (31)

| H̄t
t+1, At:t+1 = at:t+1}

| H̄t = h̄t, At = at]

=E[E{E[Yt+τ [at:t+τ−1] | H̄t
t+2, At:t+2 = at:t+2] (32)

| H̄t
t+1, At:t+1 = at:t+1}

| H̄t = h̄t, At = at]

= . . .

=E[. . .E{E[Yt+τ [at:t+τ−1] | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] (33)

| H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2}

| . . .
| H̄t = h̄t, At = at]

=E[. . .E{E[Yt+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] (34)

| H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2}

| . . .
| H̄t = h̄t, At = at],

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where Eq. (28) follows from the positivity and sequential ignorability assumptions, Eq. (29) holds due
to the law of total probability, Eq. (30) again follows from the positivity and sequential ignorability
assumptions, Eq. (31) is the tower rule, Eq. (32) is again due to the positivity and sequential
ignorability assumptions, Eq. (33) follows by iteratively repeating the previous steps, and Eq. (34)
follows from the consistency assumption.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D REGRESSION-BASED ITERATIVE G-COMPUTATION

D.1 UNBIASED ESTIMAND

Proposition 1. Our regression-based iterative G-computation yields the CAPO in Eq. (1).

Proof. For the proof, we only need to apply the definition of the pseudo-outcomes Ga
t+δ:

E[Yt+τ [at:t+τ−1] | H̄t = h̄t] (35)

=E
{
E
[
. . .E

{
E[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(36)

=E
{
E
[
. . .E

{
E[Ga

t+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(37)

=E
{
E
[
. . .E

{
gat+τ−1(H̄

t
t+τ−1) | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(38)

=E
{
E
[
. . .E

{
Ga

t+τ−1 | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(39)

=E
{
E
[
. . . gat+τ−2(H̄

t
t+τ−2) . . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(40)

= . . . (41)

=E
{
Ga

t+1

∣∣∣∣H̄t = h̄t, At = at

}
(42)

=gat (h̄t), (43)

where Eq. (36) holds due the G-computation formula (see Supplement C).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 TARGET OF OUR GT

Proposition 2. Our GT estimates G-computation formula as in and, therefore, performs proper
adjustments for time-varying confounders.

Proof. For the proof, we perform the steps as in Supplement D.1:

Ê[Yt+τ [at:t+τ−1] | H̄t = h̄t] (44)

=Ê
{
Ê
[
. . . Ê

{
Ê[Yt+τ | H̄t

t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(45)

=Ê
{
Ê
[
. . . Ê

{
Ê[G̃a

t+τ | H̄t
t+τ−1, At:t+τ−1 = at:t+τ−1] | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(46)

=Ê
{
Ê
[
. . . Ê

{
gτ−1
ϕ (at+τ−1, zθ(H̄t+τ−1, at:t+τ−2)) | H̄t

t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(47)

=Ê
{
Ê
[
. . . Ê

{
G̃a

t+τ−1 | H̄t
t+τ−2, At:t+τ−2 = at:t+τ−2

}
. . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(48)

=Ê
{
Ê
[
. . . gτ−2

ϕ (at+τ−2, zθ(H̄t+τ−2, at:t+τ−3)) . . .

∣∣∣∣H̄t
t+1, At:t+1 = at:t+1

]∣∣∣∣H̄t = h̄t, At = at

}
(49)

= . . . (50)

=Ê
{
G̃a

t+1

∣∣∣∣H̄t = h̄t, At = at

}
(51)

=g0ϕ(at, zθ(h̄t)). (52)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D.3 EXAMPLES

To illustrate how regression-based iterative G-computation works, we apply the procedure to two
examples. First, we show the trivial case for (τ = 1)-step-ahead predictions and, then, for (τ =
2)-step-ahead predictions. Recall that the following only holds under our standard assumptions
(i) consistency, (ii) positivity, and (iii) sequential ignorability.

(τ = 1)-step-ahead prediction:

This is the trivial case, as there is no time-varying confounding. Instead, all confounders are observed
in the history. Therefore, we can simply condition on the observed history and resemble the backdoor-
adjustment from the static setting. Importantly, this is not the focus of our work, but we show it for
illustrative purposes:

E
[
Yt+1[at] | H̄t = h̄t

]
(53)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
Yt+1[at] | H̄t = h̄t, At = at

]
(54)

=︸︷︷︸
Ass. (i)

E
[
Yt+1 | H̄t = h̄t, At = at

]
(55)

=︸︷︷︸
Def. Ga

t+1

E
[
Ga

t+1 | H̄t = h̄t, At = at
]

(56)

=︸︷︷︸
Def. ga

t

gat (h̄t). (57)

(τ = 2)-step-ahead prediction:

(τ = 2)-step-ahead predictions already incorporate all the difficulties that are present for multi-step
ahead predictions. Here, we need to account for future time-varying confounders such as (Xt+1, Yt+1)
as in Figure 3:

E
[
Yt+2[at:t+1] | H̄t = h̄t

]
(58)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
Yt+2[at:t+1] | H̄t = h̄t, At = at

]
(59)

=︸︷︷︸
Law of total prob.

E
[
E
[
Yt+2[at:t+1] | H̄t

t+1, At = at
]
| H̄t = h̄t, At = at

]
(60)

=︸︷︷︸
Ass. (ii)+(iii)

E
[
E
[
Yt+2[at:t+1] | H̄t

t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(61)

=︸︷︷︸
Ass. (i)

E
[
E
[
Yt+2 | H̄t

t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(62)

=︸︷︷︸
Def. Ga

t+2

E
[
E
[
Ga

t+2 | H̄t
t+1, At:t+1 = at:t+1

]
| H̄t = h̄t, At = at

]
(63)

=︸︷︷︸
Def. ga

t+1

E
[
gat+1(H̄

t
t+1) | H̄t = h̄t, At = at

]
(64)

=︸︷︷︸
Def. Ga

t+1

= E
[
Ga

t+1 | H̄t = h̄t, At = at
]

(65)

=︸︷︷︸
Def. ga

t

gat (h̄t). (66)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E VARIANCE OF INVERSE PROPENSITY WEIGHTING

In this section, we compare two possible approaches to adjust for time-varying confounders: G-
computation and inverse propensity weighting (IPW) (Robins & Hernán, 2009; Robins et al., 2000),
which is leveraged by RMSNs (Lim et al., 2018).

For a fair comparison of G-computation and IPW, we compare the variance of the ground-truth
pseudo-outcomes that each method relies on – that is, the Ga

t+δ of our GT and the inverse propensity
weighted outcomes of RMSNs. Importantly, a larger variance of the pseudo-outcomes will directly
translate into a larger variance of the respective estimator. We find that IPW leads to a larger variance,
which is why we prefer G-computation in our GT.
Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. To simplify notation, we consider the variance of the pseudo-outcomes in the static setting.
The analog directly translates into the time-varying setting.

Let Y be the outcome, X the covariates, and A the treatment. Without loss of generality, we consider
the potential outcome for A = 1.

For G-computation, the variance of the pseudo-outcome g1(X) is given by

Var[g1(X)] = Var[E[Y | X,A = 1]] (67)

= E
[
E[Y | X,A = 1]2

]
− E

[
E[Y | X,A = 1]

]2
(68)

= E
[
E[Y | X,A = 1]2

]
− E

[
Y [1]

]2
. (69)

For IPW, the variance of the pseudo-outcome is

Var
[Y A

π(X)

]
= E

[(Y A

π(X)

)2]
− E

[Y A

π(X)

]2
(70)

= E
[
E
[Y 2A

π2(X)
| X
]]

− E
[
Y [1]

]2
(71)

= E
[
E
[Y 2π(X)

π2(X)
| X,A = 1

]]
− E

[
Y [1]

]2
(72)

= E
[1

π(X)︸ ︷︷ ︸
≥1

E[Y 2 | X,A = 1]
]
− E

[
Y [1]

]2
, (73)

and, with
E[Y | X,A = 1]2 + Var[Y | X,A = 1]︸ ︷︷ ︸

≥0

= E[Y 2 | X,A = 1], (74)

we have that

Var
[Y A

π(X)

]
≥ Var[g1(X)]. (75)

Therefore, we conclude that G-computation leads to a lower variance than IPW and, hence, our GT
has a lower variance than RMSNs.

Remarks:

• The inverse propensity weight is what really drives the difference in variance between
the approaches. Note that, in the time-varying setting, IPW relies on products of inverse
propensities, which can lead to even more extreme weights for multi-step ahead predictions.

• IPW is particularly problematic when there are overlap violations in the data. However, as
the input history H̄t in the time-varying setting is very high-dimensional (i.e., t× (dx + dy)-
dimensional), overlap violations are even more problematic. This is another advantage for
our method.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F COMPARISON TO G-NET

In this section, we compare our iterative regression-based approach to G-computation to the version
that is employed by G-Net (Li et al., 2021).

G-Net makes a Monte Carlo approximation of Eq. (3) through∫
Rdx×τ−1×Rdy×τ−1

E[Yt+τ | H̄t
t+τ−1 = h̄t

t+τ−1, At:t+τ−1 = at:t+τ−1]

×
τ−1∏
δ=1

p(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1) d(xt+1:t+τ−1, yt+1:t+τ−1). (76)

For this, G-Net requires estimating the full distribution

τ−1∏
δ=1

dp(xt+δ, yt+δ | h̄t, xt+1:t+δ−1, yt+1:t+δ−1, at:t+δ−1). (77)

That is, for τ -step ahead predictions, G-Net estimates a (τ − 1)× (dx + dy)-dimensional probability
distribution.

We compare the approach of G-Net to to our regression-based G-computation in Table 4.

Estimated moment 1st 2nd 3rd 4th . . . ∞

Dimension G-Net (Li et al., 2021) (τ − 1)× (dx + dy) + dy (τ − 1)× (dx + dy) (τ − 1)× (dx + dy) (τ − 1)× (dx + dy) . . . (τ − 1)× (dx + dy)

GT (ours) τ × dy − − − . . . −

Table 4: We compare the approach to G-computation of G-Net (Li et al., 2021) to our regression-based
version. For this, we compare the dimensions of the estimated moments for each method, respectively.
G-Net requires estimating the full distribution of all time-varying confounders in the future. This
means that all moments of all time-varying confounders at all time steps in the future need to be
estimated. In contrast, our GT only requires estimation of the first moment of the lower-dimensional
target variable, which is a clear advantage.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G ADDITIONAL RESULTS

G.1 ADDITIONAL RESULTS AND ABLATIONS

In the following, we report the performance of two ablations: the (A) G-LSTM and the (B) biased
transformer (BT). For this, we show (C) additional results of our GT, the baselines, and the two
ablations.

(A) G-LSTM: Our first ablation is the G-LSTM. For this, we replaced the transformer backbone
zθ(·) of our GT by an LSTM network. We find that our G-LSTM is highly effective: it outperforms
all baselines from the literature while our proposed G-transformer is still superior. This demonstrates
that our novel method for iterative regression-based G-computation is both effective and general.

(B) BT: Additionally, we implement a biased transformer (BT). Here, we leverage the same trans-
former backbone zθ(·) as in our GT, but we directly train the output heads on the factual data.
Thereby, the BT refrains from performing G-computation. We can thus isolate the contribution of
the iterative G-computation to the overall performance. Our results show that the BT suffers from
significant estimation bias and, therefore, demonstrates that our proper adjustments for time-varying
confounders are required for accurate estimates of CAPOs.

(C) Additional results: We report additional results on both (i) fully synthetic data as in Section 5.1
and on (ii) semi-synthetic data as in Section 5.2.

For (i) fully synthetic data, we report the performance of all methods for lower levels of confounding
in Figure 4 and additional prediction windows up to τ = 6 for fixed level of confounding γ = 10.0
in Figure 5.

For (ii) semi-synthetic data, we report additional prediction windows up to τ = 12 for N = 1000 in
Figure 6.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Confounding strength ()

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e

R
M

SE

GT (ours)
G-LSTM (ours)
BT
CT
CRN
TECDE
RMSN
G-Net

Figure 4: Synthetic data: We decrease the confounding strength (γ = 6, 7, 8, 9) for τ = 2.
Additionally, we report previous results of the baselines with the new ablations: G-LSTM and BT.
Notably, our G-LSTM has competitive performance, while BT suffers from significant bias. Our GT
remains the strongest method. We see a similar picture as for Figure 5 and Figure 6: our methods
perform the best due to our novel, iterative G-computation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

3 4 5 6
Prediction horizon ()

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Av
er

ag
e

R
M

SE

GT (ours)
G-LSTM (ours)
BT
CT
CRN
TECDE
RMSN
G-Net

Figure 5: Synthetic data: We increase the prediction horizon up to τ = 6 for confounding γ = 10.
Our G-LSTM and our GT have the overall best performance on all prediction windows. The results
coincide with our results in Figure 4 and Figure 6; our approach to G-computation leads to the lowest
prediction errors. (Please note that decreasing prediction errors for increasing τ is due to the strong
heteroscedasticity of the outcome variable; smaller τ means that we predict more samples in the test
data for very small t, where variance is the highest.)

2 3 4 5 6 7 8 9 10 11 12
Prediction horizon ()

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

R
M

SE

GT (ours)
G-LSTM (ours)
BT
CT
CRN
TECDE
RMSN
G-Net

Figure 6: Semi-synthetic data: We increase the prediction horizon up to τ = 12 for N = 1000
training samples. We further implement two ablations: our G-LSTM and the biased transformer
(BT). As in Figure 4 and Figure 5, our G-LSTM almost consistently outperforms the baselines, while
the BT has large errors. Our GT remains the best for all prediction windows. This shows that our
novel approach for G-computation leads to accurate predictions, irrespective of the neural backbone.
Further, it shows that proper adjustments are important for CAPO estimation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.2 SENSITIVITY TO NOISE IN PSEUDO-OUTCOMES

Finally, we provide more insights into the quality of the generated pseudo-outcomes G̃a
t+δ in Figure 7.

Here, we added increasing levels of constant bias to the pseudo-outcomes during training. Our results
show that these artificial corruptions indeed lead to a significant decrease in the overall performance
of our GT. We therefore conclude that, without artificial corruption, our generated pseudo-outcomes
are good estimates of the true nested expectations. Further, this shows that correct estimates of the
pseudo-outcomes are indeed necessary for high-quality unbiased estimates. Of note, the quality of
the predicted pseudo-outcomes is also directly validated by the strong empirical performance in
Section 5.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Artificial noise on first pseudo-outcome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

in
cr

ea
se

 in
 R

M
SE

Figure 7: During training, we add artificial levels of noise to the pseudo-outcomes of our GT
(prediction window τ = 2, confounding strength γ = 10 on synthetic data). We see that performance
quickly deteriorates. This is expected, as it implies that the pseudo-outcomes generated by our GT
are meaningful and important for accurate, unbiased predictions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H EXPERIMENTS ON REAL-WORLD DATA

In this section, we empirically demonstrate that our method performs well for predicting patient
outcomes on factual data. Importantly, predicting factual outcomes is not what our GT is primarily
designed for. In particular, any standard regression model suffices for this task, and no additional
adjustments are required to account for time-varying confounding. Instead, our GT is trained to
estimate CAPOs, which is a counterfactual quantity in the time-varying setting.

We use the MIMIC-III dataset (Johnson et al., 2016; Wang et al., 2020), which gives measurements
from intensive care units aggregated at hourly levels. Here, we predict the effect of vasopressors
and mechanical ventilation on diastolic blood pressure. Our setup closely follows (Melnychuk et al.,
2022), and we additionally vary our sample size for training. The results are reported in Figure 8.
We find that our GT performs best even for real-world prediction tasks although this task does not
require adjustments. This demonstrates that our method is directly applicable to predict real-world
patient outcomes. Further, it shows that the way we adjust does not deteriorate performance when
there is nothing to adjust and, thus, is highly effective.

2 3 4 5 6
Prediction horizon ()

9

10

11

12

13

14

15

Av
er

ag
e

R
M

SE

CT
CRN
TECDE
RMSN
G-Net
GT (ours)

(a) N = 1000 observations

2 3 4 5 6
Prediction horizon ()

9

10

11

12

13

14

15

Av
er

ag
e

R
M

SE

CT
CRN
TECDE
RMSN
G-Net
GT (ours)

(b) N = 2000 observations

2 3 4 5 6
Prediction horizon ()

9

10

11

12

13

14

15

Av
er

ag
e

R
M

SE

CT
CRN
TECDE
RMSN
G-Net
GT (ours)

(c) N = 3000 observations

Figure 8: Performance for real-world data. We evaluate our GT and the baselines on real-world
data. We use the MIMIC-III dataset (Johnson et al., 2016) and report the RMSE for predicting the
effect of vasopressors and mechanical ventilation on diastolic blood pressure. Our GT performs best
along with CT (Melnychuk et al., 2022), followed by CRN (Bica et al., 2020). This is expected, as
evaluation on factual data does not require adjustments for time-varying confounding. Importantly,
we can see that our iterative regression approach leads to very accurate prediction results even on
factual data. This further underlines that our GT is directly applicable to medical datasets.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

I COEFFICIENT OF VARIATION

In the following, we additionally report the coefficient of variation of our main study in Section 5.
Lower values in the coefficient of variation indicate more stable predictions. Table 5 shows the results.
Clearly, our GT is superior to the baselines and has significantly more robust estimates of the CAPO.

γ = 10 γ = 11 γ = 12 γ = 13 γ = 14 γ = 15 γ = 16 γ = 17 γ = 18 γ = 19 γ = 20

CRN (Bica et al., 2020) 0.14 0.31 0.21 0.30 0.06 0.20 0.22 0.15 0.17 0.19 0.15

TE-CDE (Seedat et al., 2022) 0.13 0.10 0.03 0.10 0.09 0.14 0.10 0.09 0.12 0.09 0.10

CT (Melnychuk et al., 2022) 0.21 0.21 0.17 0.18 0.19 0.17 0.32 0.18 0.22 0.17 0.21

RMSNs (Lim et al., 2018) 0.06 0.05 0.07 0.07 0.07 0.09 0.12 0.13 0.10 0.12 0.11

G-Net (Li et al., 2021) 0.11 0.09 0.08 0.07 0.07 0.07 0.09 0.10 0.13 0.13 0.11

GT (ours) 0.07 0.04 0.06 0.04 0.03 0.09 0.07 0.07 0.09 0.06 0.07

Table 5: Coefficient of variation on synthetic data based on the tumor growth model with τ = 2.
Lower values indicate more stable predictions. Our GT clearly outperforms the baselines.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

J ARCHITECTURE OF G-TRANSFORMER

In the following, we provide details on the architecture of our GT.

Multi-input transformer: The multi-input transformer as the backbone of our GT is motivated by
(Melnychuk et al., 2022), which develops an architecture that is tailored for the types of data that
are typically available in medical scenarios: (i) outcomes Ȳt ∈ Rdy×t, covariates X̄t ∈ Rdx×t, and
treatments Āt ∈ {0, 1}da×t. In particular, their proposed transformer model consists of three separate
sub-transformers, where each sub-transformer performs multi-headed self-attention mechanisms on
one particular data input. Further, these sub-transformers are connected with each other through
in-between cross-attention mechanisms, ensuring that information is exchanged. Therefore, we build
on this idea as the backbone of our GT, as we detail below.

Our multi-input transformer zθ(·) consists of three sub-transformer models zkθ (·), k = 1, 2, 3, where
zkθ (·) focuses on one data input Ūk

t ∈ {Ȳt, X̄t, Āt−1}, k ∈ {1, 2, 3}, respectively.

(1) Input transformations: First, the data Ūk
t ∈ Rdk×t is linearly transformed through

Zk,0
t = (Ūk

t)
⊤W k,0 + bk,0 ∈ Rt×dh (78)

where W k,0 ∈ Rdk×dh and bk,0 ∈ Rdh are the weight matrix and the bias, respectively, and dh is the
number of transformer units.

(2) Transformer blocks: Next, we stack j = 1, . . . , J transformer blocks, where each transformer
block j receives the outputs Zk,j−1

t of the previous transformer block j − 1. For this, we combine
(i) multi-headed self- and cross-attentions, and (ii) feed-forward networks.

(i) Multi-headed self- and cross-attentions: The output of block j for sub-transformer k is given by
the multi-headed cross-attention

Zk,j
t = Q̃k,j

t +
∑
l ̸=k

MHA(Q̃k,j
t , K̃l,j

t , Ṽ l,j
t), (79)

where Q̃k,j
t = K̃k,j

t = Ṽ k,j
t are the outputs of the multi-headed self-attentions

Q̃k,j
t = Zk,j−1

t + MHA(Qk,j
t ,Kk,j

t , V k,j
t). (80)

Here, MHA(·) denotes the multi-headed attention mechanism as in (Vaswani et al., 2017) given by

MHA(q, k, v) = (Attention(q1, k1, v1), . . . ,Attention(qM , kM , vM)), (81)

where

Attention(qm, km, vm) = softmax

(
qm(km)⊤√

dqkv

)
vm (82)

is the attention mechanism for m = 1, . . . ,M attention heads. The queries, keys, and values
qm, km, vm ∈ Rt×dqkv have dimension dqkv, which is equal to the hidden size dh divided by the
number of attention heads M , that is, dqkv = dh/M . For this, we compute the queries, keys, and
values for the cross-attentions as

Q̃k,m,j
t = Q̃k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (83)

K̃k,m,j
t = K̃k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (84)

Ṽ k,m,j
t = Ṽ k,j

t W̃ k,m,j + b̃k,m,j ∈ Rt×dqkv , (85)

and for the self-attentions as

Qk,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv , (86)

Kk,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv , (87)

V k,m,j
t = Zk,j−1

t W k,m,j + bk,m,j ∈ Rt×dqkv . (88)

where W̃ k,m,j ,W k,m,j ∈ Rdh×dqkv and b̃k,m,j , b̃k,m,j ∈ Rdqkv are the trainable weights and
biases for sub-transformers k = 1, 2, 3, transformer blocks j = 1, . . . , J , and attention heads

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

m = 1, . . . ,M . Of note, each self- and cross attention uses relative positional encodings (Shaw et al.,
2018) to preserve the order of the input sequence as in (Melnychuk et al., 2022).

(ii) Feed-forward networks: After the multi-headed cross-attention mechanism, our GT applies
a feed-forward neural network on each Zk,j

t , respectively. Further, we apply dropout and layer
normalizations (Ba et al., 2016) as in (Melnychuk et al., 2022; Vaswani et al., 2017). That is, our
GT transforms the output Zk,j

t for transformer block j of sub-transformer k through a sequence of
transformations

FFk,j(Zk,j
t) = LayerNorm ◦ Dropout ◦ Linear ◦ Dropout ◦ ReLU ◦ Linear(Zk,j

t). (89)

(3) Output transformation: Finally, after transformer block J , we apply a final transformation with
dropout and average the outputs as

ZA
t = ELU ◦ Linear ◦ Dropout(

1

3

3∑
k=1

Zk,J
t), (90)

such that ZA
t ∈ Rdz

G-computation heads: The G-computation heads {gδϕ(·)}
τ−1
δ=0 receive the corresponding hidden state

ZA
t+δ and the current treatment At+δ and transform it with another feed-forward network through

gδϕ(Z
A
t+δ, At+δ) = Linear ◦ ELU ◦ Linear(ZA

t+δ, At+δ). (91)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

K ALGORITHMS FOR ITERATIVE TRAINING AND INFERENCE TIME

In Algorithm 1, we summarize the iterative training procedure of our GT and how inference is
achieved.

Algorithm 1: Training and inference with GT.
Training:

Input : Data H̄T−1, AT−1, YT , treatment sequence a ∈ {0, 1}da×τ , learning rate η
Output : Trained GT networks zθ, {gδϕ}

τ−1
δ=0

for t = 1, . . . , T − τ do
// Initialize
at:t+τ−1 a

G̃a
t+τ Yt+τ

// A Generation step
for δ = 1, . . . , τ − 1 do

Za
t+δ zθ(H̄

t
t+δ, at:t+δ−1)

G̃a
t+δ gδϕ(Z

a
t+δ, at+δ)

end
// B Learning step
for δ = 0, . . . , τ − 1 do

ZA
t+δ zθ(H̄t+δ)

Lδ
t

(
gδϕ(Z

A
t+δ, At+δ)− G̃a

t+δ+1

)2
end

end
// Compute gradient and update GT parameters ϕ

ϕ ϕ− η∇ϕ

(
1

T−τ

∑T−τ
t=1

(
1
τ

∑τ−1
δ=0 Lδ

t

))
Inference:
Input : Data H̄t = h̄t, treatment sequence a ∈ {0, 1}da×τ

Output : g̃at = Ê[Ga
t+1 | H̄t = h̄t, at]

// Initialize
at:t+τ−1 a
// A Generation step
ĝat g0ϕ(zθ(H̄t), at)

Legend: Operations with “ " are attached to the computational graph, while operations with “ "
are detached from the computational graph.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

L IMPLEMENTATION DETAILS

In Supplements L.1 and L.2, we report details on the hyperparameter tuning. Here, we ensure that
the total number of weights is comparable for each method and choose the grids accordingly. All
methods are tuned on the validation datasets. As the validation sets only consist of observational data
instead of interventional data, we tune all methods for τ = 1-step ahead predictions as in (Melnychuk
et al., 2022). All methods were optimized with Adam (Kingma & Ba, 2015). Further, we perform a
random grid search as in (Melnychuk et al., 2022).

On average, training our GT on fully synthetic data took 13.7 minutes. Further, training on semi-
synthetic data with N = 1000/2000/3000 samples took 1.1/2.1/3.0 hours. This is comparable to
the baselines. All methods were trained on 1× NVIDIA A100-PCIE-40GB. Overall, running our
experiments took approximately 7 days (including hyperparameter tuning).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

L.1 HYPERPARAMETER TUNING: SYNTHETIC DATA

Method Component Hyperparameter Tuning range

CRN (Bica et al., 2020)

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFC) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

TE-CDE (Seedat et al., 2022)

Encoder

Neural CDE (Kidger et al., 2020) hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Neural CDE hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Neural CDE hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

CT (Melnychuk et al., 2022) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention heads (nh) 1
Transformer units (dh) 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 15
Number of epochs (ne) 50

RMSNs (Lim et al., 2018)

Propensity
treatment
network

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Propensity
history
network

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1dyxa, 2dyxa, 4dyxa, 8dyxa, 16dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 50

G-Net (Li et al., 2021) (end-to-end)

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM output size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

GT (ours) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention heads (nh) 1
Transformer units (dh) 1dyxa, 2dyxa, 3dyxa, 4dyxa
Hidden representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 15
Number of epochs (ne) 50

Table 6: Hyperparameter tuning for all methods on fully synthetic tumor growth data. Here,
dyxa = dy + dx + da is the overall input size. Further, dz denotes the hidden representation size of
our GT, the balanced representation size of CRN (Bica et al., 2020), TE-CDE (Seedat et al., 2022)
and CT (Melnychuk et al., 2022), and the LSTM (Hochreiter & Schmidhuber, 1997) output size of
G-Net (Li et al., 2021). The hyperparameter grid follows (Melnychuk et al., 2022). Importantly, the
tuning ranges for the different methods are comparable. Hence, the comparison of the methods in
Section 5 is fair.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

L.2 HYPERPARAMETER TUNING: SEMI-SYNTHETIC DATA

Method Component Hyperparameter Tuning range

CRN (Bica et al., 2020)

Encoder

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa,
FF hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

Decoder

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
FC hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

TE-CDE (Seedat et al., 2022)

Encoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

CT (Melnychuk et al., 2022) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 32, 64
Attention heads (nh) 2,3
Transformer units (dh) 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 30
Number of epochs (ne) 100

RMSNs (Lim et al., 2018)

Propensity
treatment
network

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100

Propensity
history
network

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1dyxa, 2dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 100

G-Net (Li et al., 2021) (end-to-end)

LSTM layers (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa
LSTM output size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 100

GT (ours) (end-to-end)

Transformer blocks (J) 1
Learning rate (η) 0.001, 0.0001
Minibatch size 32, 64
Attention heads (nh) 2,3
Transformer units (dh) 1dyxa, 2dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 30
Number of epochs (ne) 100

Table 7: Hyperparameter tuning for all methods on semi-synthetic data. Here, dyxa = dy + dx + da
is the overall input size. Further, dz denotes the hidden representation size of our GT, the balanced
representation size of CRN (Bica et al., 2020), TE-CDE (Seedat et al., 2022) and CT (Melnychuk
et al., 2022), and the LSTM (Hochreiter & Schmidhuber, 1997) output size of G-Net (Li et al., 2021).
The hyperparameter grid follows (Melnychuk et al., 2022). Importantly, the tuning ranges for the
different methods are comparable. Hence, the comparison of the methods in Section 5 is fair.

35

	Introduction
	Related Work
	Problem Formulation
	G-transformer
	Regression-based iterative G-computation for CAPOs
	Model architecture
	Iterative training and inference time
	Advantages over existing approaches

	Experiments
	Synthetic data
	Semi-synthetic data

	Extended Related Work
	Discussion on Estimating Outcomes for Sequences of Treatments in Medical Scenarios
	Derivation of G-computation for CAPOs
	Regression-based iterative G-computation
	Unbiased estimand
	Target of our GT
	Examples

	Variance of inverse propensity weighting
	Comparison to G-Net
	Additional results
	Additional results and ablations
	Sensitivity to noise in pseudo-outcomes

	Experiments on Real-World Data
	Coefficient of Variation
	Architecture of G-transformer
	Algorithms for iterative training and inference time
	Implementation details
	Hyperparameter tuning: Synthetic data
	Hyperparameter tuning: Semi-synthetic data

