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ABSTRACT

Estimating potential outcomes for treatments over time based on observational data
is important for personalized decision-making in medicine. Yet, existing neural
methods for this task either (1) do not perform proper adjustments for time-varying
confounders, or (2) have a problematic adjustment strategy. In order to address
both limitations, we introduce the G-transformer (GT). Our GT is a novel, neural
end-to-end model which adjusts for time-varying confounders in order to estimate
conditional average potential outcomes (CAPOs) over time. Specifically, our GT is
the first neural model to perform fully regression-based iterative G-computation
for CAPOs in the time-varying setting. We evaluate the effectiveness of our GT
across various experiments. In sum, this work represents a significant step towards
personalized decision-making from electronic health records.

1 INTRODUCTION

Causal machine learning has recently garnered significant attention with the aim to personalize
treatment decisions in medicine (Feuerriegel et al., 2024). Here, an important task is to estimate
conditional average potential outcomes (CAPOs) from observational data over time (see Fig. E])
Recently, such data has become prominent in medicine due to the growing prevalence of electronic
health records (EHRs) (Allam et al., 2021} |Bica et al.| 2021) and wearable devices (Battalio et al.,
2021; Murray et al., 2016).

Several neural methods have been developed for estimating CAPOs over time. However, existing
methods suffer from one of two possible limitations (see Table : 1) Methods without proper
adjustments for time-varying confounding (Bica et al., [2020; Melnychuk et al., 2022} [Seedat;
et al., 2022) exhibit significant bias, as they do not target the correct estimand. Hence, these
methods have irreducible estimation errors irrespective of the amount of available data, which renders
them unsuitable for medical applications. (2) Existing methods that perform proper time-varying
adjustments (Li et al., 2021; [Lim et al., [2018)) have a problematic adjustment strategy. Here,
the causal adjustments are based on the estimation of either the distributions of all time-varying
covariates, or on inverse propensity weighting at several time steps in the future. While the former is
impracticable when granular patient information is available, the latter suffers from strong overlap
violations in the time-varying setting. To the best of our knowledge, there is no method that can
address both (1) and (2).

To fill the above research gap, we propose the G-transformer (GT), a novel, neural end-to-end
transformer that overcomes both limitations of existing methods. Our GT builds upon G-computation
(Bang & Robins, [2005; Robins & Hernan, [2009). However, unlike existing neural models that
perform G-computation (Li et al.,2021])), our GT is based on an iterative regression scheme and does
not require estimating any probability distribution. As a result, our GT has two clear strengths: it
performs (1) proper adjustments for time-varying confounding, and it is (2) fully regression-based
with low-variance pseudo-outcomes.

Our contributions are three—foldﬂ (1) We introduce the first neural end-to-end method for estimating
CAPOs over time with (1) proper adjustments for time-varying confounding, while (2) avoiding

!Code and data are anonymized in https://anonymous.4open.science/r/G_
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CRN TE-CDE CT RMSNs G-Net GT
(Bica et al.|2020) (Seedat et al.}2022) (Melnychuk et al.|2022} (Lim et al.|2018) (Li et al.|2021} | (ours)
1) Proper adjustments for time-varying confounding X X X v v ‘ v
Fully regression-based v v v v X v
Low-variance pseudo-outcomes —_ —_ _ X —_ 4

Table 1: Overview of key neural methods for estimating CAPOs over time. Methods that perform
proper adjustments for time-varying confounding target the correct causal estimand and, therefore,
have no infinite-data bias. Fully regression-based methods avoid estimating high-dimensional
probability distributions. Further, we show that IPW generates pseudo-outcomes with larger variance
than G-computation (Prop. EI)

a problematic adjustment strategy. (2) To the best of our knowledge, we are the first to leverage
regression-based iterative G-computation for estimating CAPOs over time in a neural end-to-end
training algorithm. (3) We demonstrate the effectiveness of our GT across various experiments. In the
future, we expect our GT to help personalize decision-making from patient trajectories in medicine.

2 RELATED WORK

We discuss methods for estimating CAPOs

in the static setting, survival analysis with QObzeratoral

pseudo-outcomes, Q-learning, and other liter- et

ature streams in an extended related work in ®

Supplement [A] i o/ ) .

Estimating APOs over time: Estimating aver- / vistory N ‘ ool outcome
age potential outcomes (APOs) over time has a Ht Yooy
long-ranging history in classical statistics and [ AP
epidemiology (Lok, 2008; [Robins, [1986f Ryt} seterosenaion St oftrverton

gaard et al.,2022;|van der Laan & Gruber,2012).
Popular approaches are the G-methods (Robins
& Hernanl 2009)), which include marginal struc-
tural models (MSMs) (Robins & Hernan, 2009;
Robins et al.| 2000), structural nested models (Robins, |[1994; [Robins & Hernanl [2009) and the
G-computation (Bang & Robins, |2005; Robins}, [1999; Robins & Hernan, [2009), and TMLE (?),
which involves a targeting step for the APO. G-computation has also been incorporated into neu-
ral models such as LSTMs (Frauen et al.| 2023al), and TMLE to transformers (Shirakawa et al.}
2024)). However, all of these works do not focus estimating CAPOs. In particular, (Shirakawa et al.|
2024) is explicitly biased by sequentially targeting the APO and, thereby, ignores individual patient
characteristics. Further, it require estimation of additional nuisance such as the propensity score.
Finally, it is only evaluated for estimating APOs. As this entire literature stream does not account
for individual-level patient characteristics, it serves a different purpose and is thus not suitable for
personalized decision-making in medicine.

Figure 1: Trajectories with outcomes under obser-
vational vs. interventional treatment sequences.

Estimating CAPOs over time: In this work, we focus on the task of estimating the heterogeneous
response to a sequence of treatments through conditional average potential outcomes (CAPOS)E|
Hence, we now summarize key neural methods that have been developed for estimating CAPOs
over time (see Table[T). However, these methods fall into two groups with important limitations, as
discussed in the following:

Limitation (1) proper adjustments: A number of neural methods for estimating CAPOs have been
proposed that do not properly adjust for time-varying confounders (Bica et al.| 2020; [Melnychuk
et al., 2022} Seedat et al.,[2022). Therefore, they are biased as they do not target the correct estimand.
Here, key examples are the counterfactual recurrent network (CRN) (Bica et al., 2020), the treatment
effect neural controlled differential equation (TE-CDE) (Seedat et al.,[2022)) and the causal transformer
(CT) (Melnychuk et al.| [2022). These methods try to account for time-varying confounders through
balanced representations. However, balancing was originally designed for reducing finite-sample

2This is frequently known as counterfactual prediction. However, our work follows the potential outcomes
framework (Neyman, {1923} Rubin, |1978)), and we thus use the terminology of CAPO estimation.
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estimation variance and not for mitigating confounding bias (Shalit et al., 2017). Hence, this is
a heuristic and may even introduce another source of representation-induced confounding bias
(Melnychuk et al.} 2024). Unlike these methods, our GT performs proper adjustments for time-
varying confounders.

Limitation (2) adjustment strategy: Existing neural methods with proper causal adjustments require
estimating full probability distributions at several time steps in the future, or inverse propensity
weighting, both of which are problematic adjustment strategies. Prominent examples are the
recurrent marginal structural networks (RMSNs) (Lim et al.,[2018)) and the G-Net (Li et al.,|[2021)).
Here, the RMSNs leverage MSMs (Robins & Hernan, 2009; |Robins et al.,[2000) and construct pseudo
outcomes through inverse propensity weighting (IPW).However, IPW constructs pseudo-outcomes
with large variance compared to G-computation as we show in Prop. [3] Further, the G-Net (Li et al,
2021)) uses G-computation (Robins, [1999; Robins & Hernan, [2009) to adjust for confounding (see
Supplement [C)). For this, G-Net proceeds by estimating the entire distribution of all confounders
at several time-steps in the future. Therefore, may suffer from large estimation variance. Different
to G-Net, our GT makes use of regression-based G-computation. We discuss key differences in
Section[4.4)and Supplement[F]

Research gap: None of the above neural methods leverages G-computation (Bang & Robins) 2005}
Robins|, [1999)) for estimating CAPOs through iterative regressions. Therefore, to the best of our
knowledge, we propose the first neural end-to-end model that (1) properly adjusts for time-varying
confounders through regression-based iterative G-computation. Hence, our GT yields estimates of
CAPOs over time that have (2) are fully regression-based with low-variance pseudo-outcomes.

3 PROBLEM FORMULATION

Setup: We follow previous literature (Bica et al., [2020; [Li et al., 2021} [Lim et al., 2018; Melny-
chuk et al.,[2022)) and consider data that consist of realizations of the following random variables:
(i) outcomes Y; € R9, (ii) covariates X; € R%, and (iii) treatments A4; € {0,1}% at time
steps t € {0,...,T} C Ny, where T is the time window that follows some unknown counting pro-
cess. We are interested in estimating CAPOs for 7 steps in the future. For any random variable
U, € {Y;, Xy, Ai}, we write Upyyr = (U, . .., Uy, ) to refer to a specific subsequence of a random
variable. We further write U; = Uy, to denote the full trajectory of U including time ¢. Finally, we
write Htt+5 = (Yits, Xits, Ar—1) for 6 > 0, and we let H; = H} denote the collective history of
(1)—(iii).

Estimation task: We are interested in estimating the conditional average potential outcome (CAPO)
for a future, interventional sequence of treatments, given the observed history. For this, we build
upon the potential outcomes framework (Neyman), 1923} Rubinl |1978) for the time-varying setting
(Robins & Hernanl [2009; Robins et al., 2000). Hence, we aim to estimate the potential outcome
Yiqr|as14-—1] at future time t+7, 7 € N, for an interventional sequence of treatments @ = @441,
conditionally on the observed history H; = h;. That is, our objective is to estimate

E I:)/t-‘rT[at:t-‘rT—l] | Ht = Bt} . (D

Identifiability: In order to estimate the causal quantity in Eq. (I) from observational data, we
make the following identifiability assumptions (Robins & Hernénl, 2009; |[Robins et al., [2000) that
are standard in the literature (Bica et al., [2020; L1 et al.| 2021} Lim et al., [2018; Melnychuk et al.}
2022;|Seedat et al., 2022)): (1) Consistency: For an observed sequence of treatments A; = a, the
observed outcome Y; 17 equals the corresponding potential outcome Y;1[a;]. (2) Positivity: For
any history H, = h, that has non-zero probability P(H; = h;) > 0, there is a positive probability
P(A¢ = ay | Hy = hy) > 0 of receiving any treatment A; = a;, where a; € {0, 1}4a. (3) Sequential
ignorability: Given a history H,; = hy, the treatment A, is independent of the potential outcome
K+5[at:t+5_1], that iS, At 1 K+5[at;t+5_1] | Ht = ht for all QAt:t4+5—1 € {O, 1}6Xd“.

The above assumptions are standard in the literature (Bica et al.| 2020; |Li et al., [2021}; Lim et al.|
2018; Melnychuk et al., 2022} |Seedat et al.| [2022). In clinical scenarios, (i) consistency is typically
guaranteed as long as data is properly recorded. Positivity can be guaranteed by filtering the data
or by using propensity score clipping. Further, with growing amounts of observational data, this
becomes less of a restriction. Finally, relaxations of (iii) ignorability are typically studies in sensitivity
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analysis (Frauen et al.| 2023bj |(Oprescu et al.,[2023)) and partial identification (Duarte et al., [2023),
which is orthogonal to our work. We provide a discussion on the applicability in medical scenarios in

Supplement

G-computation: Estimating CAPOs without confounding bias poses a non-trivial challenge in the
time-varying setting. The issue lies in the complexity of handling future time-varying confounders.
In particular, for 7 > 2 and 1 < § < ¢’ < 7 — 1, future covariates X;, s and outcomes Y;, s may
affect the probability of receiving certain treatments A; s5-.Importantly, the time-varying confounders
are unobserved during inference time, which is generally known as runtime confounding (Coston
et al.,[2020). Therefore, in order to estimate the direct effect of an interventional treatment sequence,
one needs to adjust for the time-varying confounders. That is, it is in general insufficient to only
adjust for the history (Frauen et al., 2024) via

E [Yiirlatssr—a] | Ho = he] #E [Yigr | Hy = by, Ay yr 1 = Gropgro1] - 2

As a side note, the problem of time-varying confounding does not arise for one-step ahead predictions
(i.e., 7 = 1). Here, under assumptions (i)—(iii), conditioning on the observed history is equivalent to
backdoor-adjustments in the static setting.

One way to adjust for time-varying confounders is [IPW (Robins & Hernan| 2009; |[Robins et al., 2000},
which is leveraged by RMSNs (Lim et al., 2018)). However, as we show in Supplement@, IPW is
subject to large variance. Instead, we leverage G-computation (Bang & Robins| 2005} Robins} [1999;
Robins & Hernan| [2009), which provides a rigorous way to account for the time-varying confounders
through proper adjustments. Formally, G-computation identifies the causal quantity in Eq. (I) via

E[Yt+r[at:t+r—1] | Ht = ﬁt]

:E{E{ ~]E{]E[Yt+r | Her-,—fl»At:tJr'rfl = at:t+7—71] | H§+7—727At:t+7-72 = at:t+‘rf2} 3

- _ _
|Ht+1;At:t+1 = Qt:t+1 |Ht =hy, Ay = at}~

A derivation of the G-computation formula for CAPOs is given in Supplement|[C| However, due to
the nested structure of G-computation, estimating Eq. (3) from data is challenging.

So far, only G-Net (Li et al.| [2021) has used G-computation for estimating CAPOs in a neural model.
For this, G-Net makes a Monte Carlo approximation of Eq. (3] through

it 7t
/ E[YHT | Ht+771 = ht+7—717At:t+7—71 = at:t+771]
Rde X7T—1 XRdU XT—1
T—1
X Hp(l't-&-éayt—&-é | Pty T 1t 46—15 Yot 1t+6—15 Gty 6—1) ATegti0r—15 Yor1tbr—1)- (4)

6=1
However, Eq. requires estimating the entire distribution of all time-varying confounders at
several time steps in the future, which may lead to large estimation variance. In particular, all
moments of a (T — 1) X (d, + d,)-dimensional random variable need to be estimated, which leads to
estimation of nuisance. We provide more details in Supplement[F]

In contrast, our GT does not rely on high-dimensional integral approximation through Monte
Carlo sampling. Further, our GT does not require estimating any probability distribution. Instead,
it performs regression-based iterative G-computation in an end-to-end transformer architecture.
Thereby, we perform proper adjustments for time-varying confounding through Eq. (3), while
relying only on regressions of via low-variance pseudo-outcomes.

4 G-TRANSFORMER

In the following, we present our G-transformer. Inspired by (Bang & Robins|, |2005; Robins| [1999;
Robins & Hernanl 2009) for APOs, we reframe G-computation for CAPOs over time through
recursive conditional expectations. Thereby, we precisely formulate the training objective of our GT
through iterative regressions. Importantly, existing approaches for estimating APOs do not estimate
potential outcomes on an individual level for a given history H; = h;, because of which they are not
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sufficient for estimating CAPOs. Therefore, we proceed below by first extending regression-based
iterative G-computation to account for the heterogeneous response to a treatment intervention. We
then detail the architecture of our GT and provide details on the end-to-end training and inference.

4.1 REGRESSION-BASED ITERATIVE G-COMPUTATION FOR CAPOS

Our GT leverages G-computation as in Eq. and, therefore, properly adjusts for time-varying
confounders in Eq. (I). However, we do not attempt to integrate over the estimated distribution of
all time-varying confounders. Instead, one of our main novelties is that our GT performs iterative
regressions in a neural end-to-end architecture. This allows us to estimate Eq. (I]) without estimating
high-dimensional probability distributions.

We reframe Eq. (B) equivalently as a recursion of conditional expectations. Thereby, we can formulate
the iterative regression objective of our GT. In particular, our approach resembles an iterative pseudo-
outcome regression. For this, let

9tvs(hiys) = E[Gi s | Hivs = hiys, Avivs = anrs), o)
where the pseudo-outcomes are defined as
?Jr—,— = }/t+7' (6)
and
Giys = givs(Hiys) (N
for6 =0,...,7 — 1. By reformulating the G-computation formula through recursions, the nested
expectations in Eq. (3] are now given by
?+7-—1 =E[Y; | E’tt—laAt:t+T—1 = Qp:t4r—1), (®)
trr_o = E[E[YT | H{ 1, Appr—1 = Qpagr—1) | Hi_g, Atitir—2 = Qrgr—2|, 9
(10)

Hence, the G-computation formula in Eq. (3) can be rewritten as
g?(ﬁt) = E[Yiyr[att4r1] | H; = ﬁt]~ (11)

We show in the following proposition that iterative pseudo-outcome regression recovers the CAPOs
and thus performs proper adjustments for time-varying confounding. We summarize the iterative
pseudo-outcome regression for CAPOs in the following proposition.

Proposition 1. The regression-based iterative G-computation yields the CAPO in Eq. ().
Proof. See Supplement[D.1] O

To further illustrate our regression-based iterative G-computation, we provide two examples in
Supplement[D.3] where we show step-by-step how our approach adjusts for time-varying confounding.

In order to correctly estimate Eq. (Z) for a given history H; = h; and an interventional treatment
sequence a = a;.4-—1, all subsequent pseudo-outcomes in Eq. are required. However, the
ground-truth realizations of the pseudo-outcomes Gi¢, 5 are not available in the data. Instead, only
realizations of G¢, . = Y;4- in Eq. (6) are observed during the training. Hence, when training our

GT, it alternately generates predictions Gf of the pseudo-outcomes for § =0, ...7 — 1, which it
then uses for learning the estimator of Eq. @)

Therefore, the training of our GT completes two steps in an iterative scheme: First, it runs a
A) generation step, where it generates predictions of the pseudo-outcomes Eq. (7). Then, it runs a

learning step, where it regresses the predictions G s for Eq. (7) and the observed G§, , = Yi 4,
in Eq. (6) on the history to update the estimator for Eq. (3). Finally, the updated estimators are
used again in the next (A) generation step. This procedure resembles an iterative pseudo-outcome
regression. Thereby, our GT is designed to simultaneously (A) generate predictions and (B) learn
during the training. Both steps are performed in an end-to-end architecture, ensuring that information
is shared across time and data is used efficiently. We detail the architecture as well as training and
inference of our GT in the following sections.
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Figure 2: Neural end-to-end architecture and training of our G-transformer.

4.2 MODEL ARCHITECTURE

We first introduce the architecture of our GT. Then, we explain the iterative prediction and learning
scheme inside our GT, which presents one of the main novelties. Finally, we introduce the inference
procedure.

Our GT consists of two key components (see Fig. : (i) a multi-input transformer zy(-), and
(ii) several G-computation heads {gg() 5> Where 6, ¢ denote the trainable weights. First, the
multi-input transformer encodes the entire observed history. Then, the G-computation heads take
the encoded history and perform the iterative regressions according to Eq. (3). We provide further
details on the transformer architecture and an illustration in Supplement[]] Forallt =1,...,7 —

and § = 0,...,7 — 1, the components are designed as follows:

(i) Multi-input transformer: The backbone of our GT is a multi-input transformer zy(-), which

consists of three connected encoder-only sub-transformers 25 (+), k € {1, 2, 3} and is directly inspired
by (Melnychuk et al.| 2022)). We provide details on the architecture in Supplement[J} At time ¢, the
transformer zy () receives data H; = (Y3, X, A;—1) as input and passes them to one corresponding
sub-transformer. In particular, each sub-transformer zg (+) is responsible to focus on one particular
Uk € {Y;, X;, A;_1} in order to effectively process the different types of inputs. Further, we ensure
that information is shared between the sub-transformers, as we detail below. The output of the
multi-input transformer are hidden states ZtA, which are then passed to the (ii) G-computation heads.

(ii) G-computation heads: The G-computation heads { gg(-)}g;é are the read-out component of our

GT. As input at time ¢ + ¢, the G-computation heads receive the hidden state Zﬁ s from the above
multi-input-transformer. Recall that we seek to perform the iterative regressions in Eq. (3) and Eq. (),
respectively. For this, we require estimators of E[G{, 5 | | Hiys, Atys]. Hence, the G-computation
heads compute

ElG 51 | Hevss Avss] = 93245 Aves), (12)

where
Z{y 5 = 29(Hiys) (13)
foré =0,...,7 — 1. As aresult, the G-computation heads and the multi-input transformer together

give the estimators that are required for the regression-based iterative G-computation. In particular,
we thereby ensure that, for § = 0, the last G-computation head gg(-) is trained as the estimator for
the CAPO as given in Eq. (2). That is, for a fully trained multi-input transformer and G-computation
heads, our GT estimates the CAPO via

]E[Yt-s-r[at:t-s-r—l] | H, = Bt} = gg(ze(fzt),at). (14)
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4.3 ITERATIVE TRAINING AND INFERENCE TIME

We now introduce the iterative training of our GT, which consists of a (A) generation step and a
learning step. Then, we show how inference for a given history H; = h; can be achieved. We
provide pseudocode in Supplement [K]

Iterative training: Our GT is designed to estimate the CAPO g (ht) in Eq. @) for a given history
H; = h; and an interventional treatment sequence a = a;.+-—1 via Eq. (I4). Therefore, the G-
computation heads in Eq. require the pseudo-outcomes {G, s}5_, from Eq. (7) during training.
However, they are only available in the training data for § = 7. That is, we only observe the factual
outcomes G¢, , = Y.

As aremedy, our GT first predicts the remaining pseudo-outcomes {G'y, 5};;11 in the (A) generation
step. Then, it can use these generated pseudo-outcomes and the observed G¢, . for learning the

network weights ¢ in the () learning step. In the following, we write {G¢, ;}7_ for the generated
pseudo-outcomes and, for notational convenience, we also write G¢, , = G¢, .

a _

A) Generation step: In this step, our GT generates G s ~ gi s(HY, 5) as substitutes for Eq. (7),
which are the pseudo-outcomes in the iterative regression-based G-computation. Formally, our GT
predicts these via

Givs = 90(Zs:a1vs), (15)

where
Zivs = 29(H1€+57at:t+6—1), (16)
for =0,...,7 — 1. For this, all operations are detached from the computational graph. Hence, our

GT now has pseudo-outcomes {é? 5 }5—0> Which it can use in the following (8) learning step. Of
note, these generated pseudo-outcomes will be noisy for early training epochs. However, as training
progresses, the G-computation heads perform increasingly more accurate predictions, as we explain
below.

Learning step: This step is responsible for updating the weights ¢ of the multi-input transformer
z¢(+) and the G-computation heads { gg()}g;é. For this, our GT learns the estimator for Eq. (5) via

E[GYysin | Hivs, Avivs] = 95(Z81 5, Arvs), (17)

where
Ziéhs = Zg(.Ht+§) (18)
for6 =0,...,7 — 1. In particular, the estimator is optimized by backpropagating the squared error

loss Lforalld =0,...,7—landt=1,...,T — 7 via

T—71 7—1 ) )
L= TiT Z (71' Z (gg(Z;}Fé’AtJré) - G?+5+1) ) . (19)

t=1 6=0

Then, after ¢ is updated, we can use the updated estimator in the next (A) generation step.

Here, it is important that for § = 7, the pseudo-outcome Gf ' » = Yyy . is available in the data. By

estimating Y; . with g;_l (ZA,_1, Arrr—1), itis ensured the last G-computation head g;_l (+)is
T—1

learned on a ground-truth quantity. Thereby, the weights of g (+) are gradually optimized during
training. Hence, the predicted pseudo-outcome

é?+‘r71 = ggil(Z?JrTfl’ a’tJrT*l) (20)

in the next (A) generation step become mores accurate. Therefore, the G-computation head g;*Q () is
learned on a more accurate prediction in the following (B) learning step, which thus leads to a better
generated pseudo-outcome C;’? " +_o, and so on. As a result, the optimization of the G-computation
heads gradually improves from g;_l(-) up to gg( ).
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Inference at runtime: Finally, we introduce how inference is achieved with our GT. Given a history
H; = h; and an interventional treatment sequence a = a;.4+,—1, our GT is trained to estimate of
Eq. () through Eq. (). For this, our GT computes the CAPO via

¢ (he) =B[Gy, | Hy = hy, Ay = a)] = 99(z0(he), ay). (21)
We summarize this in the following proposition.

Proposition 2. Our GT estimates the G-computation formula as in Eq. ) and, therefore, performs
proper adjustments for time-varying confounders.

Proof. See Supplement[D.2] O

4.4 ADVANTAGES OVER EXISTING APPROACHES

In the following, we explain the differences of our GT compared to (i) CT (Melnychuk et al.| [2022))
and (ii) G-Net 2021)), and (iii) RMSNs 2018). Importantly, our method has an
entirely different learning algorithm that allows for proper adjustments in an end-to-end approach
through iterative regressions.

Our GT vastly differs from CT (Melnychuk et al,[2022). Recall that CT does not perform proper
adjustments for time-varying confounding. In particular, CT targets E[Y;, | H; = hy, Appqr =
g+, which is not the CAPO (Frauen et al.| [2024). Hence, it targets an incorrect estimand, leading
to irreducible bias. Therefore, deploying it to medical scenarios would be irresponsible. In contrast,
our GT leverages iterative regression based on the G-computation to correctly target the CAPO
(Prop. [2). To achieve this, we propose a new generation-learning approach inside our GT.

Our GT is also vastly different from G-Net [2021)). In order to estimate a T-step-ahead
CAPO, G-Net requires (i) a d,-dimensional regression as well as estimating the entire distribution of
a(r —1) x (d, + d)-dimensional confounding variable. That is, it needs to estimate all moments
of a high-dimensional random variable. In contrast, our GT only requires 7 regressions of a d,-
dimensional outcome and, hence, only needs to estimate the first moment of a much lower dimensional
random variable. Compared to G-Net, our estimation strategy is unproblematic as it does not fit
unnecessary nuisance. We provide a detailed comparison in Supplement [F]

Finally, RMSNs (Lim et al.| 2018) also rely on pseudo-outcome regressions. However, their pseudo-
outcomes are constructed via inverse propensity weighting, which leads to pseudo-outcomes with
larger variance than ours:

Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. See Supplement|[E] O

5 EXPERIMENTS

We show the performance of our GT against key neural methods for estimating CAPOs over time
(see Table[T). Further details (e.g., implementation details, hyperparameter tuning, runtime) are given
in Supplement [[] We report ablation studies of our GT in Supplement [G.1}

5.1 SYNTHETIC DATA

First, we follow common practice in benchmarking for causal inference (Bica et al., 2020; [Li et al.,
[2021}; [Lim et all, 2018} Melnychuk et all,[2022)) and evaluate the performance of our GT against other
baselines on fully synthetic data. The use of synthetic data is beneficial as it allows us to simulate the
outcomes under a sequence of interventions, which are unknown in real-world datasets. Thereby, we
are able to evaluate the performance of all methods for estimating CAPOs over time. Here, our main
aim is to show that our GT is robust against increasing levels of confounding.
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=10 y=11 y=12 y=13 =14 y=15 y=16 y=17 y=18 y=19 y=20

CRN (Bica et al.|2020} 4.05+£0.55 54541.68 6.17+1.27 4.98+1.49 52440.33 4844+0.95 541+£1.20 5.09+£0.77 508+0.87 4.47+£0.84 4.80£0.70
TE-CDE (Seedat et al.|[2022} 4.08 +0.54 4.2140.42 4.33+0.11 4484047 4.39+0.38 4.67+0.65 4.84+0.46 4.31+0.38 4.44+0.53 4.61+0.42 4.72+0.45
CT (Melnychuk et al.2022})  3.44 4+ 0.73 3.70 £0.77 3.60 +0.62 3.87 +0.68 3.8840.75 3.87+0.65 526+ 1.67 4.04+0.74 4.13+0.90 4.30+0.72 4.49+0.94
RMSNs (Lim et al.}2018) 3.34+0.20 3.41£0.17 3.61+0.25 3.76£0.25 3.924+0.26 4.22+0.40 4.30+0.52 4.48 £0.59 4.60+0.46 4.47+£0.53 4.62+0.51

G-Net (Li et al. 2021} 3.51+0.37 3.71+£0.33 3.80+0.29 3.89+0.27 3.914+0.26 3.94+£0.26 4.05+0.37 4.09+£0.41 4.224+0.53 4.21 £0.55 4.24+0.45
GT (ours) 3.13+0.22 3.16+0.14 3.31+0.20 3.27+0.14 3.30+0.11 3.49+0.30 3.53+0.26 3.50£0.26 3.41+0.29 3.59+0.21 3.71+0.27
Rel. improvement 6.4% 7.3% 7.9% 12.9% 15.0% 9.9% 12.9% 13.1% 17.4% 14.8% 12.5%

Table 2: RMSE on synthetic data based on the tumor growth model with 7 = 2. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE =+ standard deviation over five seeds.

Our main evaluation metric is the root mean squared error (RMSE), which is the appropriate
evaluation metric for estimating CAPOs and is standard in the literature (Bica et al.| |2020; [Li
et al., [2021; [Lim et al.| 2018 Melnychuk et al.l [2022). Of note, all baselines and our GT are
inherently designed for CAPO estimation. Hence, the best-performing method for estimating CAPOs
is immediately the best at estimating conditional average treatment effects CATEs).

Setting: For this, we use data based on the pharmacokinetic-pharmacodynamic tumor growth model
(Geng et al., |2017), which is a standard dataset for benchmarking causal inference methods in the
time-varying setting (Bica et al., [2020; [Li et al., 2021} [Lim et al., 2018; Melnychuk et al.| [2022]).
Here, the outcome Y; is the volume of a tumor that evolves according to the stochastic process
Yit1 = (1+plog (%) —aecr — (qpdy + B,d?) + €;) Yy, where ., a., and 3, control the strength
of chemo- and radiotherapy, respectively, and where K corresponds to the carrying capacity, and
where p is the growth parameter. The radiation dosage d; and chemotherapy drug concentration c;
are applied with probabilities o (/Dmax(D15(Yi—1 — Dmax/2), where Dp,y is the maximum tumor
volume, D15 the average tumor diameter of the last 15 time steps, and -y controls the confounding
strength. We use the same parameterization as in (Melnychuk et al.,|2022). For training, validation,
and testing, we sample N = 1000 trajectories of lengths 7" < 30 each.

We are interested in the performance of our GT for increasing levels of confounding. We thus
increase the confounding from v = 10 to v = 20. For each level of confounding, we fix an arbitrary
intervention sequence and simulate the outcomes under this intervention for testing.

Results: Table 2| shows the average RMSE over five different runs for a prediction horizon of 7 = 2.
Of note, we emphasize that our comparison is fair (see hyperparameter tuning in Supplement[L.T)).
We make the following observations:

First, our GT outperforms all baselines by a significant margin. Importantly, as our GT performs
proper adjustments for time-varying confounding, it is robust against increasing ~. In particular,
our GT achieves a performance improvement over the best-performing baseline of up to 17.4%.
Further, our GT is highly stable, as can be seen by low standard deviation in the estimates, especially
compared to the baselines. In sum, our GT performs best in estimating the CAPOs, especially under
increasing confounding strength.

Second, the (1) baselines that do not perform proper adjustments (i.e., CRN (Bica et al., [2020), TE-
CDE (Seedat et al.,|2022)), and CT (Melnychuk et al.,|2022))) exhibit large variations in performance
and are thus highly unstable. This is expected, as they do not target the correct causal estimand and,
accordingly, suffer from the increasing confounding.

Third, the baselines with (2) problematic adjustment strategies (i.e., RMSNs (Lim et al., 2018) and
G-Net (Li et al.|, [2021))) are slightly more stable than the no-adjustment baselines. This can be
attributed to that the tumor growth model has no time-varying covariates X, and to that we are only
focusing on 7 = 2-step ahead predictions, both of which reduce the variance. However, the RMSNs
and G-Net are still significantly worse than the estimates provided by our GT.

5.2  SEMI-SYNTHETIC DATA

Next, we study how our GT performs when (i) the covariate space is high-dimensional and when
(ii) the prediction windows T become larger. For this, we use semi-synthetic data, which, similar
to the fully-synthetic dataset allows us to access the ground-truth outcomes under an interventional
sequence of treatments for benchmarking.
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N = 1000 N = 2000 N = 3000

r=2 r=3 =4 r=5 =6 =2 r=3 r=4 r=5 =6 r=2

=3 T=4 7=5 =6

CRN (Bica et al. 12020 0.42+0.11 0.58+0.21 0.74+0.31 0.84+0.42 0.95+0.51 0.39+0.12 0.50+0.14 0.58+0.15 0.64+0.16 0.70+£0.17 0.37+£0.10 046+£0.11 0.56+0.13 0.65+0.16 0.75+0.24
TE-CDE (Seedat et al. 12022] 0.76+0.09 0.914+0.15 1.074+0.22 1.15+0.25 1.2440.28 0.76+0.16 0.87£0.17 0.98£0.17 1.06+£0.18 1.14+£0.19 0.71£0.09 0.78£0.09 0.88+0.11 0.94+0.12 1.02+0.13
CT (Melnychuk et al. 12022 0.33+0.14 0.44+0.18 0.53 +0.21 19 0.60+0.19 031+0.11 0414013 0494015 0.55+0.15 0.60+0.15 0.32+0.10 0.40+0.11 0.49+0.12 0.55+0.13 0.61+0.15
RMSNs (Lim et al. 12018 0574016 0.734+0.20 0.87+0.22 0.94+0.20 1.0240.20 0.62+0.25 0.73+0.21 0.8540.25 0.96+0.26 1.05+0.28 0.66+0.27 0.76£0.24 0.86£0.23 0.93+£0.21 1.00+0.20
G-Net Li etal. 12021] 0.56+0.14 0.73+0.17 0.86+0.18 0.95+0.20 1.0340.21 0.55+0.12 0.73+£0.14 0.87+0.18 1.00+£0.22 1.12+£0.26 054+0.11 0.72:+£0.16 0.88+021 1.00+026 1.11+0.32
GT (ours) 0.30 £0.07 0.36+0.11 0444013 047£0.12 0.54£0.13 0.27+0.07 0.324£0.09 0.38+£0.10 0.42+£0.08 0.45+0.10 0.24+0.07 0.31 £0.08 0.36£0.09 0.42+0.10 0.48+0.10

Rel. improvement 9.5 19.7 16.3% 6.7 10.8 15.3% 22.5¢ 22.5% 22.6¢ 25.0% 26.7¢ 24.0 25.2% 24.6¢ 21.6%

Table 3: RMSE on semi-synthetic data based on the MIMIC-III extract. Our GT consistently
outperforms all baselines. We highlight the relative improvement over the best-performing baseline.
Reported: average RMSE =+ standard deviation over five seeds.

Setting: We build upon the MIMIC-extract (Wang et al.,[2020), which is based on the MIMIC-III
dataset (Johnson et al.,[2016). Here, we use d,, = 25 different vital signs as time-varying covariates
and as well as gender, ethnicity, and age as static covariates. Then, we simulate observational
outcomes for training and validation, and interventional outcomes for testing, respectively. Our
data-generating process is taken from (Melnychuk et al.}|2022), which we refer to for more details. In
summary, the data generation consists of three steps: (1) d,, = 2 untreated outcomes Y;, j = 1, 2, are

simulated according to Y} = aB-spline(t) + ad g’ () + a}f{,(Xt) + €, where aJ, o and af are

weight parameters, B-spline(¢) is sampled from a mixture of three different cubic splines, and fY( )
is a random Fourier features approximation of a Gaussian process. (2) A total of d, = 3 synthetic
treatments A, [ = 1,2, 3, are applied with probability o (1% thll + 94 fL(X¢) + b') where 44 and
7Y are fixed parameters that control the confounding strength for treatment A’, Y,;A’l is an averaged

subset of the previous [ treated outcomes, bt is a bias term, and f)l,() is a random function that
is sampled from an RFF (random Fourier features) approximation of a Gaussian process. (3) The
treatments are applied to the untreated outcomes via

mlnl_ Ldg ]l{Al 1}plﬁ
Yi *Y]Jr Z (wh — )2 ’ (22)

i=t—w!
where w' is the effect window for treatment A’ and 5%7 controls the maximum effect of treatment A’.

We run different experiments for training, testing, and validation sizes of N = 1000, N = 2000,
and N = 3000, respectively, and set the time window to 30 < T' < 50. As the covariate space is
high-dimensional, we thereby study how robust our GT is with respect to estimation variance.

Results: Table [3]shows the average RMSE over five different runs. Again, we emphasize that our
comparison is fair (see hyperparameter tuning in Supplement|[J). We make three observations:

First, our GT consistently outperforms all baselines by a large margin. The performance of GT
is robust across all sample sizes N .Further, it is stable across different prediction windows 7. We
observe that our GT has a better performance compared to the strongest baseline of up to 26.7%.
Further, the results show the clear benefits of our GT in high-dimensional covariate settings and for
longer prediction windows 7.In addition, our GT is highly stable, as its estimates exhibit the lowest
standard deviation among all baselines. In sum, our GT consistently outperforms all the baselines.

Second, (1) baselines that do not perform proper adjustments (i.e., CRN (Bica et al., 2020), CT
(Melnychuk et al.}|2022)) tend to perform better than baselines with problematic adjustment strategies
(i.e., RMSNs (Lim et al.l 2018])), G-Net (Li et al., 2021))). The reason is that the former baselines
are (i) regression-based (ii) do not require IPW pseudo-outcomes. Hence, they can better handle the
high-dimensional covariate space. They are, however, biased as they do not adjust for time-varying
confounders and thus still perform significantly worse than our GT.

Third, baselines with (2) problematic adjustment strategies (i.e., RMSNs (Lim et al.,[2018)), G-Net
(Li et al.l 2021))) struggle with the high-dimensional covariate space and larger prediction windows 7.
This can be expected, as RMSNs suffer from overlap violations and thus produce unstable inverse
propensity weights. Similarly, G-Net suffers from the curse of dimensionality, as it requires estimating
a (dy + dy) x (7 — 1)-dimensional distribution.

Conclusion: In this paper, we propose the GT, a novel end-to-end method that adjusts for time-
varying confounding, while avoiding problematic adjustment strategies for estimating of CAPOs. For
this, we propose a regression-based learning algorithm that sets our GT apart from existing baselines.
Therefore, we expect our GT to be an important step toward personalized medicine.

10
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A EXTENDED RELATED WORK

Estimating CAPOs in the static setting: Extensive work on estimating potential outcomes focuses

on the static setting (e.g.,/Alaa & van der Schaar, [2017; [Frauen et al., 2023} Johansson et al., 2016}
Louizos et al., 2017} Melnychuk et al., 2023}, [Yoon et al., 2018}, Zhang et al., [2020)). However,

observational data such as electronic health records (EHRSs) in clinical settings are typically measured
over time (Allam et al.| 2021}, Bica et al.,2021). Additionally, treatments are rarely applied all at
once but rather sequentially over time (Apperloo et al} [2024). Therefore, the underlying assumption
of these methods prohibitive and does not properly reflect medical reality. Hence, static methods
are not tailored to accurately estimate potential outcomes when (i) time series data is observed and
(i1) multiple treatments in the future are of interest.

Additional literature on estimating CAPOs over time: There are some non-parametric methods for
this task (Schulam & Sarial 2017; [Soleimani et al, 2017} [Xu et al [2016), yet these suffer from
poor scalability and have limited flexibility regarding the outcome distribution, the dimension of
the outcomes, and static covariate data; because of that, we do not explore non-parametric methods
further but focus on neural methods insteadF]

Survival analysis: Some works in survival analysis (Andersen & Permel, 2010} [Andersen et al.}
2017} [Su et al} [2022)) employ pseudo-outcomes, which is similar to our approach. However, these
works are different in that they are aimed at survival outcomes and not CAPOs for sequences of
treatments. Further, they do not consider neural networks as estimators. Additionally, (Andersen|
only considers a single, static treatment, and (Andersen & Perme] [2010) only uses
linear estimators. Finally, focuses on average causal effects and is therefore not
applicable to personalized medicine.

G-computation and Q-learning: Q-learning (Murphyl 2003} [Kallus & Ueharal, [2019) from the

reinforcement learning literature (Furuta et al} Jang et al., [Kumar et al.,2019; [Pashevich|
[2021) is closely related to G-computation, although both have a different purpose. They are
similar in that they share a common goal of understanding the effect of treatments/actions, but operate
in complementary domains: G-computation is grounded in causal inference for evaluating potential
outcomes, whereas Q-learning is rooted in reinforcement learning to derive policies that maximize
long-term rewards. We show more details on the two in the following:

G-computation can be written as the iterative update
7t it 7t
9¢4s(hiys) = ElGY 541 | Hips = hiys, Avess = aness), (23)

In our setting, we aim to estimate E [YHT [at.ter1] | Hy = Bt} .

However, we could also consider the expected cumulative rewards E [Y}JFT [attrr—1] | H, = Et] s

where we define Yy i, [at.11 1] = ZZ; v*Y; ¢[at.t1e—1) and where v < 1 is a so-called discount

factor that weighs the importance of immediate and future rewards. One can show that the G-
computation update becomes

7t it 7t

9ts(hiys) = E[Yiys + 7G| Hizs = hiys Antrs = anitol. (24)
If we only care about the optimal treatment sequence a* (i.e., the one that maximizes the cumulative
reward), we can write

g?—i—é(ﬁ'i-{-&) =E[Yiys + ’yar*nax G?+6+1 | FI;_H; = Ei+6’ Aptrs = af:t+a]~ (25)
t+6+1

Eq. (23) is known as Q-learning in the literature on dynamic treatment regimes (Murphy] 2003
Kallus & Uehara, [2019) and can be used to compute an optimal dynamic policy.

In reinforcement learning, one often makes additional Markov and stationarity assumptions such

that the history Bi 5 simplifies to a single state s;s and the function g% (s¢) is not dependent on
time. These assumptions allow us to consider infinite time-horizons and break the so-called curse of

horizon (Kallus & Uehara, 2022} [Uehara et al,[2022)). Then, Q-learning simplifies to
g% (s1) = E[Yi +ymaxG* | S, = s, A = a], (26)
t4+1

3Other works are orthogonal to ours. For example, (Hess et al.| [2024; [Vanderschueren et al.l [2023) are
approaches for informative sampling and uncertainty quantification, respectively. However, they do not focus on
the causal structure in the data, and are therefore not primarily designed for our task of interest.
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which is often called fitted Q-iteration in the RL literature (Kallus & Ueharal 2020} [Uehara et al.
[2022). In contrast, our work does not make these assumptions.

State-of-the-art neural instantiations such as (Chebotar et all, [2023)) are different to our work in
that they (i) serve the purpose of learning long-term rewards, and (ii) rely on restrictive Markov
assumptions. In contrast, our GT is designed to estimate CAPOs for sequences of treatments,
conditionally on the entire individual patient history.
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B DISCUSSION ON ESTIMATING OUTCOMES FOR SEQUENCES OF
TREATMENTS IN MEDICAL SCENARIOS

In this study, we present a novel neural network, the G-transformer, for estimating conditional average
potential outcomes (CAPOs) from observational data such as electronic health records (EHRs). Our
GT addresses a crucial question in personalized medicine: “What would the outcome be for patient X
if they were administered treatments A, B, and C sequentially over the next 5 days, given their unique
clinical history?” Unlike many existing methods that focus on static or single-point interventions
(Alaa & van der Schaar} [2017; Johansson et al.}, 2016}, [Zhang et al.|[2020), our method is specifically
designed to handle the sequential nature of treatments in medical practice — a feature that is both
realistic and necessary, as treatments are rarely applied all at once but rather sequentially over time
Apperloo et al.,[2024). With the growing availability of large-scale observational data from EHRs
Allam et al.| 2021} [Feuerriegel et al.| 2024} Bica et al.l 2021)) and wearable devices

021)), there is an increasing need for robust methods that estimate the effect of multiple treatments,
given the individual patient history.

Our framework builds on three key assumptions: (i) consistency, (ii) positivity, and (iii) sequential
ignorability (see Section[3). These assumptions are the standard assumptions for estimating CAPOs
over time (Bica et al.} 2020} [Li et al.| 2021} [Melnychuk et al, 2022}, [Seedat et al.,[2022)). Notably,
compared to other methods that rely on even stricter assumptions, such as additional Markov or
independence assumptions (Ozyurt et al., 2021), our assumptions are less restrictive. Furthermore,
these assumptions are the dynamic analogues of the standard causal inference assumptions in static
settings (Alaa & van der Schaar 2017} Muandet et al., 2021} Johansson et al}[2016). Importantly,
methods for the static setting implicitly impose unrealistic assumption that treatments occur only once
and that covariates and outcomes remain static over time. Such limitations can introduce significant
bias in sequential decision-making contexts. In contrast, our approach models the time-varying nature
of clinical interventions and patient evolution, making it less restrictive and far more aligned with
real-world medical scenarios.

Further, we argue that these assumptions are both plausible and practical in medical applications.
First, consistency is generally satisfied as long as EHR data is accurately and systematically recorded.
Second, positivity can be ensured through thoughtful data pre-processing, such as filtering obser-
vations or applying propensity clipping. Additionally, as the scale of observational datasets grows,
this assumption becomes less restrictive. Third, the sequential ignorability assumption is a standard
assumption in epidemiology (Little & Rubinl[2000), and studies in digital health interventions may
satisfy this assumption by design. Furthermore, advances in sensitivity analysis (Frauen et al[2023D}
Oprescu et al.} [2023)) and partial identification frameworks (Duarte et al., [2023)) offer complementary
pathways to relax this assumption. That is, these literature streams are orthogonal to our work. In
practice, our GT thus integrates into established workflows that include point estimation, uncertainty
quantification, and sensitivity analysis.

From a practical perspective, our GT addresses key challenges in estimating CAPOs for sequences of
treatments. Specifically, our GT provides a neural end-to-end solution that adjusts for time-varying
confounding. On top, it neither relies on large-variance pseudo-outcomes (Prop.[3) nor on estimating
high-dimensional probability distributions. Therefore, we are convinced that our GT is an important
step towards reliable personalized medicine.
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C DERIVATION OF G-COMPUTATION FOR CAPOS

History H,

Future treatment

Unobserved during |
inference

Direct effect of
interest

Citicial confounding

Figure 3: During inference, future time-varying confounders are unobserved (here: (X;11,Y:41)). In
order to estimate CAPOs for an interventional treatment sequence without time-varying confounding
bias, proper causal adjustments such as G-computation are required.

In the following, we provide a derivation of the G-computation formula (Bang & Robins| 2005}
Robins, |1999; Robins & Hernan, [2009) for CAPOs over time. Recall that G-computation for CAPOs
is given by

E[}/t—s—r[at:t-‘m——l] \ Ht = }_lt}

:E{E |: s E{E[}/ﬂr‘r | HL?+7-717 At:t«H’fl = at:tJr‘rfl] | Erersza At:t+772 = at:t+7’72} (27)

Hfﬂa At:t+1 = at:t+1:| Ht = Bu A = at}.

The following derivation follows the steps in (Frauen et al.l[2023a) and extends them to CAPOs:
E[Y%Jr'r[at:tnw'fl] | Ht = Bt]

:E[thﬁﬂ'[at:t«%‘rfl] | Ht = Bt, Ay = at] (28)

=E[E{Y;4r[apsr—1] | Hf 1, Ar = ar} (29)
| Hy = hy, Ay = ay]

:E[]E{Yt+7[at:t+7—ﬂ | Hf_,_pAt:t-i-l = at:t+1} (30)
| Hy = hy, Ay = ay]

=E[E{E[Ytr[as:t4r-1] | Htt+27At:t+1 = Qpop41] (€29

\ ngaAt:tJrl = api+1}
\ Ht = BtaAt = at]
=E[E{E[Yiir[art1r1] | Hf 2, Artra = Gri42] (32)
\ ﬁf+1,f4t:t+1 = 41}
\ E’t = Bt;At = at]

=E[...E{E[Yitr[ataqr—1] | H{ {1, Atitrr—1 = Qpitgr—1] (33)
\ —H§+7-723 At:t+7—72 = at:tJrsz}

...
\ FIt = BtuAt = at]
—E[...E{E[Yir | HY o1y Avtir—1 = Gripr_1] (34

ryt
‘ Ht+7—2a At:t+T—2 = at:t+r—2}

...
\ﬁt :BtyAt ZatL

18



Under review as a conference paper at ICLR 2025

where Eq. (28)) follows from the positivity and sequential ignorability assumptions, Eq. (29) holds due
to the law of total probability, Eq. (30) again follows from the positivity and sequential ignorability
assumptions, Eq. (31) is the tower rule, Eq. (32) is again due to the positivity and sequential
ignorability assumptions, Eq. (33) follows by iteratively repeating the previous steps, and Eq. (34)
follows from the consistency assumption.
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D REGRESSION-BASED ITERATIVE G-COMPUTATION

D.1 UNBIASED ESTIMAND

Proposition 1. Our regression-based iterative G-computation yields the CAPO in Eq. (T)).

Proof. For the proof, we only need to apply the definition of the pseudo-outcomes G, 5:
E[}/t-ﬁ—?'[a’t:t-‘rT—l} | Ht = Bt] (35)

_E{]E{ .- E{E[YHT | Hf+f_1714t:t+7-71 = at:t+‘rfl] | Htt_l,-q-_Q,AtZtJrTfQ = at:t+‘rf2}

ce - ‘Htt_ua At:t+1 = at:t+1:| Ht = Bt, A= at} (36)

:E{E EB{E[GY . | Hiy o1y Avtr—1 = Q1) | Hi o, Avtr—2 = Quipr—2}

. H§+1;At:t+1 = Qt:t+1 ’I_{t = BmAt = at} (37)

= {]E s E{g?+7.71(ﬁf+771) | Her'er? AtitJrT*Q = a’tlt+7*2}

. Hf+1,At:t+1 = apis1 | |Hy = he, Ay = at} (38)

:E{]E -~-E{G§+r—1 | Bf+r_2a Appyro = at:t+7-—2}

Lty A = avenn || 7 = i 4, = at} (39)

:E{IE [ G o (H o s) .. ‘Httﬂ, Appp1 = at:t+1:| Hy = hy, Ay = at} (40)
=... (41)
:u«:{ o a8, = B4, = at} 42)

=g (ht), 43)
where Eq. (36) holds due the G-computation formula (see Supplement [C). O
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D.2 TARGET OF OUR GT

Proposition 2. Our GT estimates G-computation formula as in and, therefore, performs proper
adjustments for time-varying confounders.

Proof. For the proof, we perform the steps as in Supplement[D.I}
E[Yt-s-r[at:t-rr—l] | Ht = Bt] (44)

:E{E E{E[}QJ,*T | Herq—fl»At:tJr'r*l = at:t+7—71] | Hersz,At:tJr'er = at:t+772}

: ﬁf-t,-laAt:t—&-l = Qt:t+1 ﬁt = /_%,At = at} (45)
:E{E E{I@[éf+7 ‘ Hf—s-r—la Atityr—1 = at:t+r—1] | Htt+r—2a Appyro = a't:t+‘r—2}
NHY 1, A = ageqr | [Hy = by, Ay = at} (46)

:E{E ~-~E{9;71(at+7717 ZO(HtJr'rfla At 4r—2)) | H§+7727At:t+7'72 = at:t+7—f2}

. Hf+1,At:t+1 = Q¢:t4+1 ‘Ht = Bt,At = at} @7

:E{E ---E{ég-s-r—l | Hf—i-r—QaAt:t-&-T—Q = at:t+7-—2}

. H75t+1714t:t+1 = Qt:t+1 ’Ht = BtaAt = at} (43)

=E{E|.. -gTiz(at+rf2a zo(ﬁtJrT*Q? Qp:t4r—3)) - - - ﬁtt+17 Apt41 = Qg1
¢

Et = Bt;At = Gt}

(49)
- (50)
E{ S [He = by, Ay = at} (51)
=g9(at, zo(ht)). (52)

O
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D.3 EXAMPLES

To illustrate how regression-based iterative G-computation works, we apply the procedure to two
examples. First, we show the trivial case for (7 = 1)-step-ahead predictions and, then, for (7 =
2)-step-ahead predictions. Recall that the following only holds under our standard assumptions
(i) consistency, (ii) positivity, and (iii) sequential ignorability.

(1 = 1)-step-ahead prediction:

This is the trivial case, as there is no time-varying confounding. Instead, all confounders are observed
in the history. Therefore, we can simply condition on the observed history and resemble the backdoor-
adjustment from the static setting. Importantly, this is not the focus of our work, but we show it for
illustrative purposes:

E[YH_l[at] | Ht = Bt} (53)
= Elinla] | H =k A =a] (54)
Ass. (ii)+(iii)
= E[}/t—‘rl ‘ Hf, = }_Lt,At = llt] (55)
Ass. (i)
= E[G?-‘rl | Ht = ht,At = G;t} (56)
Def. G;ﬁrl
— i (h). (57
Def. g¢

(T = 2)-step-ahead prediction:

(T = 2)-step-ahead predictions already incorporate all the difficulties that are present for multi-step
ahead predictions. Here, we need to account for future time-varying confounders such as (X¢41, Y;41)
as in Figure 3}

E[Yiiolatas1] | He = hyl (58)
= E[K&+2[at:t+1] | Hy = Bt, Ay = at] (59

Ass. (iD)+(ii)
= E{E [Y%+2[at:t+1} ‘ I:Itt+1aAt = at] | Hy = BtaAt = at} (60)

Law of total prob
= E{E [Y}+2[at:t+1] ‘ H;LpAt:tJrl = at:t+1] ‘ Et = Bt;At = at} (61)

Ass. (ii)+(iii)
= E{]E [Y;:+2 | Fff+1714t:t+1 = a't:t-i-l} | Ht = BtyAt = a't} (62)

Ass. (i)
= E{]E [G?+2 ‘ Hf+1aAt:t+1 = at:t+1] \ Ht = }_LtaAt = at} (63)

Def. G¢, 5
= E[gg—&-l(Htt+l) | Ht = ﬁtyAt = at] (64)

Def. i
= :]E[ ?-i-l ‘thﬁt,At:at] (65)

Def. G¢ |
=97 (h). (66)

Def. g§
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E VARIANCE OF INVERSE PROPENSITY WEIGHTING

In this section, we compare two possible approaches to adjust for time-varying confounders: G-
computation and inverse propensity weighting (IPW) (Robins & Hernan}, [2009; [Robins et al., 2000,

which is leveraged by RMSNs (Lim et al.l 2018]).

For a fair comparison of G-computation and IPW, we compare the variance of the ground-truth
pseudo-outcomes that each method relies on — that is, the G _5 of our GT and the inverse propensity
weighted outcomes of RMSNs. Importantly, a larger variance of the pseudo-outcomes will directly
translate into a larger variance of the respective estimator. We find that IPW leads to a larger variance,
which is why we prefer G-computation in our GT.

Proposition 3. Pseudo-outcomes constructed via inverse propensity weighting have larger variance
than pseudo-outcomes in our G-transformer.

Proof. To simplify notation, we consider the variance of the pseudo-outcomes in the static setting.
The analog directly translates into the time-varying setting.

Let Y be the outcome, X the covariates, and A the treatment. Without loss of generality, we consider
the potential outcome for A = 1.

For G-computation, the variance of the pseudo-outcome g' (X) is given by

Var[g'(X)] = Var[E[Y | X, A = 1]] (67)
2
:E[E[Y | X, A= 1}2} fE[E[Y | X, A= 1}} (68)
2
- E[E[Y | X, A= 1]2} - E[Ym] . (69)
For IPW, the variance of the pseudo-outcome is
YA (VAN YA 72
Var{ﬂ(X)} =E| <W(X)> } *E[W(X)} (70
T Y2A 2
- E_E[m | X” - E[Ym} (71)
r1Y2m(X) 2
_]E_E[iﬁ(X) | X, A=1]] -E[y(] (72)
_wl L 2 _ 2
=E[ 5y BV X, A= 1]] E{Y[lﬂ , (73)
——
>1
and, with
EY | X,A=1%+ValY | X,A=1]=E[Y? | X,A = 1], (74)
>0
we have that
Var[;;;)} > Var[g! (X)]. (75)
Therefore, we conclude that G-computation leads to a lower variance than IPW and, hence, our GT
has a lower variance than RMSNSs. O

Remarks:

» The inverse propensity weight is what really drives the difference in variance between
the approaches. Note that, in the time-varying setting, IPW relies on products of inverse
propensities, which can lead to even more extreme weights for multi-step ahead predictions.

» IPW is particularly problematic when there are overlap violations in the data. However, as
the input history H in the time-varying setting is very high-dimensional (i.e., t X (dg + d,)-
dimensional), overlap violations are even more problematic. This is another advantage for
our method.
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F COMPARISON TO G-NET

In this section, we compare our iterative regression-based approach to G-computation to the version

that is employed by G-Net (Li et al.|, |[2021).
G-Net makes a Monte Carlo approximation of Eq. (3) through

/ ]E[Yt—‘r'r | Hf+7_1 = B§+7_1,At:t+r—1 = @t:t+7——1]
Rda XT—1 XRdyxT—l
T—1
X Hp(xt+a,yt+5 \ hta$t+1:t+6717yt+1:t+§7l,at:t+671)d($t+1:t+771;yt+1:t+771)- (76)
5=1
For this, G-Net requires estimating the full distribution

T—1

H Ap(Tit6, Yers | Pty Tt 10461, Yt 1461, it 5—1)- )
5=1

That is, for 7-step ahead predictions, G-Net estimates a (7 — 1) x (d, + d,)-dimensional probability
distribution.

We compare the approach of G-Net to to our regression-based G-computation in Table 4]

Estimated moment ‘ Ist 2nd 3rd 4th . 0
Dimension G-Net (Li et aL]ZOle (T=1)x(de+dy)+dy (71—1)x(de+dy) (T—1)X(de+dy) (T—1)X(dz+dy) ... (7—1)% (dz+dy)
GT (ours) T X dy — - — . —

Table 4: We compare the approach to G-computation of G-Net to our regression-based
version. For this, we compare the dimensions of the estimated moments for each method, respectively.
G-Net requires estimating the full distribution of all time-varying confounders in the future. This
means that all moments of all time-varying confounders at all time steps in the future need to be
estimated. In contrast, our GT only requires estimation of the first moment of the lower-dimensional
target variable, which is a clear advantage.
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G ADDITIONAL RESULTS

G.1 ADDITIONAL RESULTS AND ABLATIONS

In the following, we report the performance of two ablations: the (A) G-LSTM and the (B) biased
transformer (BT). For this, we show (C) additional results of our GT, the baselines, and the two
ablations.

(A) G-LSTM: Our first ablation is the G-LSTM. For this, we replaced the transformer backbone
zp(+) of our GT by an LSTM network. We find that our G-LSTM is highly effective: it outperforms
all baselines from the literature while our proposed G-transformer is still superior. This demonstrates
that our novel method for iterative regression-based G-computation is both effective and general.

(B) BT: Additionally, we implement a biased transformer (BT). Here, we leverage the same trans-
former backbone zy(-) as in our GT, but we directly train the output heads on the factual data.
Thereby, the BT refrains from performing G-computation. We can thus isolate the contribution of
the iterative G-computation to the overall performance. Our results show that the BT suffers from
significant estimation bias and, therefore, demonstrates that our proper adjustments for time-varying
confounders are required for accurate estimates of CAPOs.

(C) Additional results: We report additional results on both (i) fully synthetic data as in Section El
and on (ii) semi-synthetic data as in Sectlon@

For (i) fully synthetic data, we report the performance of all methods for lower levels of confounding
in Figure@and additional prediction windows up to 7 = 6 for fixed level of confounding v = 10.0
in Figure

For (ii) semi-synthetic data, we report additional prediction windows up to 7 = 12 for N = 1000 in
Figure[6]

—e— GT (ours)

6.0 G-LSTM (ours)
—e— BT

55 —e— CT .
—eo— CRN '

5.0 -~ —e— TECDE / \ 2 ,
é RMSN \. A
% 4.5 —o— G-Net \ /./I\. ‘./o/ ./:
S 1o ] / L— — S?__gé?/‘::.
© / ./.;O——'Q—'_z
é o %.ko/o/ / o

35 o—9—e T

——eo— — e
5 / [t
3.0 / / "’-/'——

N
)
-

2.0
6 7 8 9 10 M 12 13 14 15 16 17 18 19 20
Confounding strength (y)

Figure 4: Synthetic data: We decrease the confounding strength (y = 6,7,8,9) for 7 = 2.
Additionally, we report previous results of the baselines with the new ablations: G-LSTM and BT.
Notably, our G-LSTM has competitive performance, while BT suffers from significant bias. Our GT
remains the strongest method. We see a similar picture as for Figure 5| and Figure[6} our methods
perform the best due to our novel, iterative G-computation.

25



Under review as a conference paper at ICLR 2025

w
~

Y/
|

—~

303 —
w :
228 -
% GT (ours) — 1
©26 T -
2 —e— G-LSTM (ours) \:
24 ~ —e— BT
—e— CT
2.2 ~—e— CRN
—e— TECDE
2.0 RMSN -
—eo— G-Net (]
1.8
3 4 5 6

Prediction horizon (1)

Figure 5: Synthetic data: We increase the prediction horizon up to 7 = 6 for confounding v = 10.
Our G-LSTM and our GT have the overall best performance on all prediction windows. The results
coincide with our results in Figure d] and Figure[6} our approach to G-computation leads to the lowest
prediction errors. (Please note that decreasing prediction errors for increasing 7 is due to the strong
heteroscedasticity of the outcome variable; smaller 7 means that we predict more samples in the test
data for very small ¢, where variance is the highest.)
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Figure 6: Semi-synthetic data: We increase the prediction horizon up to 7 = 12 for N = 1000
training samples. We further implement two ablations: our G-LSTM and the biased transformer
(BT). As in Figure[d and Figure[5} our G-LSTM almost consistently outperforms the baselines, while
the BT has large errors. Our GT remains the best for all prediction windows. This shows that our
novel approach for G-computation leads to accurate predictions, irrespective of the neural backbone.
Further, it shows that proper adjustments are important for CAPO estimation.
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G.2 SENSITIVITY TO NOISE IN PSEUDO-OUTCOMES

Finally, we provide more insights into the quality of the generated pseudo-outcomes G¢, 5 in Figure
Here, we added increasing levels of constant bias to the pseudo-outcomes during training. Our results
show that these artificial corruptions indeed lead to a significant decrease in the overall performance
of our GT. We therefore conclude that, without artificial corruption, our generated pseudo-outcomes
are good estimates of the true nested expectations. Further, this shows that correct estimates of the
pseudo-outcomes are indeed necessary for high-quality unbiased estimates. Of note, the quality of
the predicted pseudo-outcomes is also directly validated by the strong empirical performance in

Section
+ﬁ—i-'III

0.05 041 0.15 02 025 03 035 04 045 05
Artificial noise on first pseudo-outcome

1.6

1.4

Average increase in RMSE
©c o o o = =
N D o o N

b
o

Figure 7: During training, we add artificial levels of noise to the pseudo-outcomes of our GT
(prediction window 7 = 2, confounding strength v = 10 on synthetic data). We see that performance
quickly deteriorates. This is expected, as it implies that the pseudo-outcomes generated by our GT
are meaningful and important for accurate, unbiased predictions.
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H EXPERIMENTS ON REAL-WORLD DATA

In this section, we empirically demonstrate that our method performs well for predicting patient
outcomes on factual data. Importantly, predicting factual outcomes is not what our GT is primarily
designed for. In particular, any standard regression model suffices for this task, and no additional
adjustments are required to account for time-varying confounding. Instead, our GT is trained to
estimate CAPOs, which is a counterfactual quantity in the time-varying setting.

We use the MIMIC-III dataset (Johnson et al.| 2016} [Wang et al.}, 2020), which gives measurements
from intensive care units aggregated at hourly levels. Here, we predict the effect of vasopressors
and mechanical ventilation on diastolic blood pressure. Our setup closely follows (Melnychuk et al.
[2022), and we additionally vary our sample size for training. The results are reported in Figure [§]
We find that our GT performs best even for real-world prediction tasks although this task does not
require adjustments. This demonstrates that our method is directly applicable to predict real-world

patient outcomes. Further, it shows that the way we adjust does not deteriorate performance when
there is nothing to adjust and, thus, is highly effective.
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Figure 8: Performance for real-world data. We evaluate our GT and the baselines on real-world
data. We use the MIMIC-III dataset (Johnson et al.}[2016) and report the RMSE for predicting the
effect of vasopressors and mechanical ventilation on diastolic blood pressure. Our GT performs best
along with CT (Melnychuk et al}, [2022), followed by CRN [2020). This is expected, as
evaluation on factual data does not require adjustments for time-varying confounding. Importantly,
we can see that our iterative regression approach leads to very accurate prediction results even on
factual data. This further underlines that our GT is directly applicable to medical datasets.
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I COEFFICIENT OF VARIATION

In the following, we additionally report the coefficient of variation of our main study in Section 3]
Lower values in the coefficient of variation indicate more stable predictions. Table[5]shows the results.
Clearly, our GT is superior to the baselines and has significantly more robust estimates of the CAPO.

y=10 y=11 7=12 v=13 v=14 v=15 v=16 =17 v=18 v=19 v=20

0.14 0.31 0.21 0.30 0.06 0.20 0.22 0.15 0.17 0.19 0.15
0.13 0.10 0.03 0.10 0.09 0.14 0.10 0.09 0.12 0.09 0.10
0.21 0.21 0.17 0.18 0.19 0.17 0.32 0.18 0.22 0.17 0.21
0.06 0.05 0.07 0.07 0.07 0.09 0.12 0.13 0.10 0.12 0.11
0.11 0.09 0.08 0.07 0.07  0.07  0.09 0.10 0.13 0.13 0.11

CRN (Bica et al..

TE-CDE (Seedat et al.|[2022]

CT (Melnychuk et al| 2022

RMSNs ||
1

G-Net (Li et al.
GT (ours) 0.07 0.04 0.06 0.04 0.03 0.09 0.07 0.07 0.09 0.06 0.07

Table 5: Coefficient of variation on synthetic data based on the tumor growth model with 7 = 2.
Lower values indicate more stable predictions. Our GT clearly outperforms the baselines.
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J ARCHITECTURE OF G-TRANSFORMER

In the following, we provide details on the architecture of our GT.

Multi-input transformer: The multi-input transformer as the backbone of our GT is motivated by
(Melnychuk et al.| 2022), which develops an architecture that is tailored for the types of data that
are typically available in medical scenarios: (i) outcomes Y, € R%*?t covariates X; € R%** and
treatments A; € {0, 1}9=*? In particular, their proposed transformer model consists of three separate
sub-transformers, where each sub-transformer performs multi-headed self-attention mechanisms on
one particular data input. Further, these sub-transformers are connected with each other through
in-between cross-attention mechanisms, ensuring that information is exchanged. Therefore, we build
on this idea as the backbone of our GT, as we detail below.

Our multi-input transformer 24 (-) consists of three sub-transformer models 25(), k =1,2,3, where
zF(+) focuses on one data input U} € {Y;, Xy, A;_1}, k € {1,2, 3}, respectively.

(1) Input transformations: First, the data U} € R%*? is linearly transformed through

Z0 = (UF) TWHO 4 b0 e R (78)

where WH:0 € R *dn and b*0 € R are the weight matrix and the bias, respectively, and dJ, is the
number of transformer units.

(2) Transformer blocks: Next, we stack j = 1, ..., J transformer blocks, where each transformer

block j receives the outputs Zf J71 of the previous transformer block 7 — 1. For this, we combine
(i) multi-headed self- and cross-attentions, and (ii) feed-forward networks.

(i) Multi-headed self- and cross-attentions: The output of block j for sub-transformer k is given by
the multi-headed cross-attention

7= Q1 + Y MHAQY, Ky Vi), (79)
1k

where Qk J = K ko = Vtk’j are the outputs of the multi-headed self-attentions
0 =z MHA(QP KT V). (80)
Here, MHA(-) denotes the multi-headed attention mechanism as in (Vaswani et al.,2017) given by
MHA(q, k,v) = (Attention(¢*, k*,v"), ..., Attention(¢™ , ™, v™M)), (81)

where
m(1.m\T
Attention(¢™, k™, v"") = softmax (q(d)> o™ (82)
qkv

is the attention mechanism for m = 1,..., M attention heads. The queries, keys, and values
g™, k™, v™ € Rt*9a have dimension dg1v, which is equal to the hidden size dj, divided by the
number of attention heads M, that is, dgx, = dp /M. For this, we compute the queries, keys, and
values for the cross-attentions as

Q"™ = QpIWHh Iy i g REXdare (83)
Kpm™7 = KPIWhma 4 phmed g R dako (84)
Vil = gl gyhme g phmed g RPXdako (85)
and for the self-attentions as
Q™I =z Wk 4R g R ok (86)
K™ =z kemed g phemed ¢ REXdakn (87)
Vil = Ik ke g R dako (88)

where Whmd WWkmi ¢ Rdnxdako and pkmd phmd e Rk are the trainable weights and
biases for sub-transformers £ = 1,2, 3, transformer blocks j = 1,...,J, and attention heads

30



Under review as a conference paper at ICLR 2025

m =1,..., M. Of note, each self- and cross attention uses relative positional encodings (Shaw et al.|
2018)) to preserve the order of the input sequence as in (Melnychuk et al.| [2022).

(ii) Feed-forward networks: After the multi-headed cross-attention mechanism, our GT applies

a feed-forward neural network on each Zf g, respectively. Further, we apply dropout and layer
normalizations (Ba et al.l 2016) as in (Melnychuk et al., [2022; [Vaswani et al., [2017)). That is, our

GT transforms the output Ztk */ for transformer block j of sub-transformer k through a sequence of
transformations

FF*J(Z!7) = LayerNorm o Dropout o Linear o Dropout o ReLU o Linear(Z ). (89)

(3) Output transformation: Finally, after transformer block J, we apply a final transformation with
dropout and average the outputs as

3
1
Z# = ELU o Linear o Dropout(g Z z8, (90)
k=1

such that Z{* € R%:

T—1

G-computation heads: The G-computation heads { gg() 5_o receive the corresponding hidden state
Zﬁ s and the current treatment A, 5 and transform it with another feed-forward network through

95(Z{\s, Av+s) = Linear o ELU o Linear(Z{} 5, A¢s). 91)
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K ALGORITHMS FOR ITERATIVE TRAINING AND INFERENCE TIME

In Algorithm |I} we summarize the iterative training procedure of our GT and how inference is
achieved.

Algorithm 1: Training and inference with GT.

Training:

Input : Data Hyp_1,Ap_1,Yp, treatment sequence a € {0, 1}da”, learning rate 7
Output : Trained GT networks zg, { gg}g;é

fort=1,....,T —7do

// Initialize

Ot:it4r—1 <1 0Q

G?+T€%}Q+T

// (® Generation step

foro=1,...,7—1do

Zf s —zg(Hp, 5, a46-1)

Giys 92(22157 atys)

end

// Learning step
for6=0,...,7—1do

Zﬁm — Ze(Ht+6)
- 2
5? — (93,(2215» Apys) — G?+5+1)

end
end
// Compute gradient and update GT parameters ¢

T—1 T—1
06—V (7 S (F X550 £1))
Inference:
Input : Data H; = hy, treatment sequence a € {0, 1}9a 7
Output: ¢ = E[G¢,, | H; = hy, a]

// Initialize
At:t47—1 <1 Q
// (@ Generation step

9t A 99 (z0(Hy), ar)

Legend: Operations with “—" are attached to the computational graph, while operations with “—"
are detached from the computational graph.
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L IMPLEMENTATION DETAILS

In Supplements and we report details on the hyperparameter tuning. Here, we ensure that
the total number of weights is comparable for each method and choose the grids accordingly. All
methods are tuned on the validation datasets. As the validation sets only consist of observational data
instead of interventional data, we tune all methods for 7 = 1-step ahead predictions as in (Melnychuk
et al.| 2022). All methods were optimized with Adam (Kingma & Bal 2015)). Further, we perform a
random grid search as in (Melnychuk et al., [2022).

On average, training our GT on fully synthetic data took 13.7 minutes. Further, training on semi-
synthetic data with N = 1000,/2000,/3000 samples took 1.1/2.1/3.0 hours. This is comparable to
the baselines. All methods were trained on 1x NVIDIA A100-PCIE-40GB. Overall, running our
experiments took approximately 7 days (including hyperparameter tuning).
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L.1

HYPERPARAMETER TUNING: SYNTHETIC DATA

Method Component | Hyperparameter Tuning range
LSTM layers (.J) 1
Learning rate () 001, 0.001,0.0001
Minibatch size 64,128,256
LSTM hidden units (dj) 0.5dyza, 1dyza, 2dyza; 3dyza, 4dyza
Encoder
Balanced representation size (d-) 05dyza 1dysa. 2y, 3dyza. 4dyra
FC hidden units (nrc) 05d... 1., 2d.. 3d.. 4d.
LSTM dropout rate () 01,02
RN Number of epochs (n..) 50
LSTM layers () 1
Learning rate () 0.01,0.001,0.0001
Minibatch size 256,512, 1024
Decoder LSTM hidden units (d5) Balanced representation size of encoder
Balanced representation size (d-) 05dyza. 1dysa. 2dyca. 3dysa. ddyza
FC hidden units (rp) ., 1d2, 2d., 3d-, 4d.
LSTM dropout rate (p) 0.1,02
Number of epochs (n) 50
Neural CDE [Kidger et al. [2020] hidden layers (/) | 1
Learning rate () 001, 0.001,0.0001
Minibatch size 64,128,256
Neural CDE hidden units (dj,) 0.5dyza, 1dyra, 2dyza, 3dyza, 4dyra
Encoder
Balanced representation size (d-) 05dyz0 1dysa. 2y, 3dyza. 4dyra
Feed-forward hidden units (nrr) 05d.. 1z, 2d.. 3d., 4d.
Neural CDE dropout rate (p) 0.1,02
Number of epochs (n..) 50

Decoder

Neural CDE hidden layers ()
Learning rate ()

Minibatch size

Neural CDE hidden units (dy,)
Balanced representation size (d-)
Feed-forward hidden units (ner)

1
0.01,0.001,0.0001

256, 512,1024

Balanced representation size of encoder
05dyza. 1dyza. 2dyca. 3dyza. ddyza
0.5d-, 1dz. 2d-. 3d.., 4d-

CT [Melnychuk et

(end-to-end)

Neural CDE dropout rate (p) 01,02
Number of epochs (n) 50

‘Transformer blocks (.J) 12

Learning rate () 0.01,0.001,0.0001
Minibatch size 64,128,256

Adtention heads (ny,)
Transformer units (d,)

Balanced representation size (d-)
Feed-forward hidden units (ngr)
Sequential dropout rate (p)

Max positional encoding (Inax)
Number of epochs (n.)

1

1dyza. 2dysa. 3dyea, ddyza
0.5dy2a, 1dyaar 2yzas Sdyea, ddya
0.5d., 1d., 2d., 3d-, 4d.

0.1,02

15

50

RMSNs

LSTM layers ()
Learning rate (1))

1
0.01,0.001, 0.0001

Propensity | Minibatch size 64,128,256
treatment | LSTM hidden units (ds,) 0.5dy0. 1dyzar 2yza. 3dyra, ddyea
network LSTM dropout rate (p) 0.1,02
Max gradient norm 05,10,20
Number of cpochs (n.) 50
LSTM layers (J) 1
Propensity | eaming rate () 0.01,0.001,0.0001
history Minibatch size 64,128,256
network LSTM hidden units (dn) 0.5 20, 1dyear 2year 3dyear dyea
LSTM dropout rate (p) 01,02
Encoder Max gradient norm 05,1.0,20
Number of cpochs (n.) 50
LSTM layers (J) 1
Learning rate (1) 0.01,0.001,0.0001
Minibatch size 256,512, 1024
Decoder LSTM hidden units (ds) 1,20 20, 4y, 8dyza, 16,z

LSTM dropout rate (p)
Max gradient norm
Number of epochs (n.)

0.1,02
0.5, 1.0, 2.0, 4.0
50

(end-to-end)

LSTM layers (.J)
Learning rate (1)
Minibatch size

LSTM hidden units (dy)
LSTM output size (d-)

1

001, 0.001,0.0001

64,128,256

05dyzar 1dyear 2dyeas 3dyaa, ddyea
05dyz0 1dysa. 2y, 3dyza. 4dyra

GT (ours)

(end-to-end)

Feed-forward hidden units (nsr) 05d., 1d., 2d., 3d., 4d.
LSTM dropout rate (p) 0.1,0.2

Number of epochs (n..) 50

Transformer blocks (.J) 12

Learning rate () 001, 0.001,0.0001
Minibatch size 64,128,256

Attention heads (n;,)
“Transformer units (dj,)

Hidden representation size (dz)
Feed-forward hidden units (rr)
Sequential dropout rate (p)

Max positional encoding (nax)
Number of epochs (n)

1

1,0, 2dyzas 3dyza. Adya
05dyz0 1dysa. 2dyca. 3dyza. ddyra
0.5d-, 1d-. 2d-. 3d.., 4d-

0.1,02

15

50

Table 6: Hyperparameter tuning for all methods on fully synthetic tumor growth data. Here,
dyza = dy + dy + d, is the overall input size. Further, d, denotes the hidden representation size of

our GT, the balanced representation size of CRN
, and the LSTM (

and CT (Melnychuk et al.
G-Net (Liet al,

Bica et al.}, 2020), TE-CDE

Seedat et all, [2022)

Hochreiter & Schmidhuber], |1

997) output size of

The hyperparameter grid follows (Melnychuk et al.,[2022). Importantly, the

tuning ranges for the different methods are comparable. Hence, the comparison of the methods in

Section E| is fair.
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L.2 HYPERPARAMETER TUNING: SEMI-SYNTHETIC DATA

Method ‘ Component ‘ Hyperparameter ‘ Tuning range
LSTM layers (.J) 12
Learning rate (1) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Encoder LSTM hidden units (.,1,‘) . 0.5dyzas 1dysa 2dyea
Balanced representation size (d-) | 0.5dyzq, 1dyzar 2dysar
FF hidden units (ngr) 0.5d, 1d:, 2d
LSTM dropout rate (p) 0.1,0.2
Number of epochs (n.) 100
LSTM layers (.J) 12
Learning rate (1) 0.01, 0.001, 0.0001
Minibatch size 256,512, 1024
LSTM hidden units (d),) Balanced representation size of encoder
Decoder L
Balanced representation size (d-) | 0.5dyza, 1dyza, 2dyza
FC hidden units (ngr) 0.5d, 1d-, 2d.
LSTM dropout rate (p) 0.1,0.2
Number of epochs (n.) 100
Neural CDE hidden layers (.J) 1
Learning rate (1) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (d) 0.5dyza, ldyza, 2dyza
Encoder .
Balanced representation size (d.) | 0.5dyza, ldyza; 2dyza
Feed-forward hidden units (nge) | 0.5d., 1d., 2d.
Dropout rate (p) 0.1,0.2
TE-CDE Number of epochs (12.) 100
Neural CDE hidden layers (.J) 1
Learning rate (1) 0.01, 0.001, 0.0001
Minibatch size 256,512, 1024
LSTM hidden units (d5) Balanced representation size of encoder
Decoder

Balanced representation size (d-) | 0.5dyza, 1dysa, 2dya
Feed-forward hidden units (nre) | 0.5d-, 1d=, 2d.

LSTM dropout rate (p) 0.1,0.2
Number of epochs (72.) 100
Transformer blocks (J) 1.2
Learning rate (1) 0.01, 0.001, 0.0001
Minibatch size 32,64
Attention heads (ny,) 23
or (end-tonengy | TTASOTIET Units (dh) 1dyear 2dyea
Balanced representation size (d:) | 0.5dyza, 1dyza, 2dyza
Feed-forward hidden units (ng) | 0.5d=, 1d., 2d.
Sequential dropout rate (p) 0.1,0.2
Max positional encoding (Ina) | 30
Number of epochs (72.) 100
LSTM layers (.J) 12
Learning rate (1)) 0.01,0.001, 0.0001
Propensity | Minibatch size 64, 128, 256
treatment LSTM hidden units (dy,) 0.5dyza, 1dyza, 2dyea
network LSTM dropout rate (p) 0.1,0.2
Max gradient norm 05,10,20
Number of epochs (1.) 100
LSTM layers (.J) 1
Propensity Learning rate (1) 0.01, 0.001, 0.0001
. Minibatch size 64, 128, 256
RMSNs ::[;Lyrk LSTM hidden units (dy) 0.5dyz0, 1dywar 2,z
LSTM dropout rate (p) 0.1,0.2
Encoder Max gradient norm 0.5,1.0,2.0
Number of epochs (12.) 100
LSTM layers (.J) 1
Learning rate (1)) 0.01, 0.001, 0.0001
Minibatch size 256,512, 1024
Decoder LSTM hidden units (d) ldyza, 2dyza; 4dyza
LSTM dropout rate (p) 0.1,0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (72.) 100
LSTM layers (.J) 12
Learning rate (1)) 0.01,0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (d;,) 0.5dyza, 1dysa, 2dyea
(end-to-end) X
LSTM output size (d.) 0.5dyzas 1dysa, 2dyea
Feed-forward hidden units (nrr) | 0.5dz, 1d-, 2d-
LSTM dropout rate (p) 0.1,0.2
Number of epochs (n.) 100
Transformer blocks (.J) 1
Learning rate (1) 0.001, 0.0001
Minibatch size 32,64
Attention heads (ns,) 23
Transformer units (dr,) ldyza, 2dyza

GT (ours) d-to-end
(end-to-end) | . nced representation size (d2) | 0.5dysa. 1dysa: 2dyea

Feed-forward hidden units (nge) | 0.5d-, 1d=, 2d.
Sequential dropout rate (p) 0.1,02

Max positional encoding (lnwx) | 30

Number of epochs (r.) 100

Table 7: Hyperparameter tuning for all methods on semi-synthetic data. Here, dy,q = dy + dg + dq
is the overall input size. Further, d, denotes the hidden representation size of our GT, the balanced
representation size of CRN (Bica et al.},2020), TE-CDE (Seedat et al.,[2022)) and CT
, and the LSTM (Hochreiter & Schmidhuber} [1997) output size of G-Net .
The hyperparameter grid follows (Melnychuk et al.} 2022)). Importantly, the tuning ranges for the
different methods are comparable. Hence, the comparison of the methods in Section@is fair.
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