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Abstract
Low-rank adaptation (LoRA) has recently gained
much interest in fine-tuning foundation models. It
effectively reduces the number of trainable param-
eters by incorporating low-rank matrices A and B
to represent the weight change, i.e., ∆W = BA.
Despite LoRA’s progress, it faces storage chal-
lenges when handling extensive customization
adaptations or larger base models. In this work,
we aim to further compress trainable parameters
by enjoying the powerful expressiveness of the
Fourier transform. Specifically, we introduce
FourierFT, which treats ∆W as a matrix in the
spatial domain and learns only a small fraction of
its spectral coefficients. With the trained spectral
coefficients, we implement the inverse discrete
Fourier transform to recover ∆W . Empirically,
our FourierFT method shows comparable or better
performance with fewer parameters than LoRA
on various tasks, including natural language un-
derstanding, natural language generation, instruc-
tion tuning, and image classification. For exam-
ple, when performing instruction tuning on the
LLaMA2-7B model, FourierFT surpasses LoRA
with only 0.064M trainable parameters, compared
to LoRA’s 33.5M. Our code is released at https:
//github.com/Chaos96/fourierft.

1. Introduction
Large foundation models (LFMs) have demonstrated excep-
tional performance on tasks of multiple domains, including
natural language processing (NLP) (Liu et al., 2019; He
et al., 2020; Radford et al., 2019; Brown et al., 2020; Li
et al., 2022) and computer vision (CV) (Liu et al., 2023a;b;
Singh et al., 2022; Rombach et al., 2022). Owing to their
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Figure 1. Summary of the performance (y-axis) of fine-tuning
methods with different numbers (x-axis) of trainable parameters
on NLP (left) and CV (right) tasks. The left side shows the instruc-
tion tuning task, where the LLaMA2-7B model is fine-tuned with
Alpaca and evaluated by GPT-4. The right side shows the image
classification task, where the Vision Transformer (ViT) is fine-
tuned and tested on the DTD dataset. Black circles (●) represent
the Full Fine-tuning (FF) method. Orange circles (●) represent
LoRA method with r = {32,64,128} (left) and r = {8,16,32}
(right). Blue circles (●) represent our proposed method with
n = {1000,2000} (left) and n = {3000,10000} (right).

impressive capabilities, fine-tuning LFMs for a wide range
of downstream tasks has become prevalent (Wang et al.,
2022; Taori et al., 2023; Qiu et al., 2020). Under the full
fine-tuning paradigm, the new model adapted to each cus-
tomized task typically contains as many parameters as the
original model (Qiu et al., 2020; Raffel et al., 2020; Chen
et al., 2024; Gao et al., 2024). As models grow larger and
customization needs expand, the demand for storing fine-
tuned checkpoints rises, resulting in both costly storage and
memory consumption.

As a popular way to address this issue, LoRA (Hu et al.,
2021) represents the weight change with two low-rank matri-
ces A and B, i.e., W0+∆W =W0+BA. Despite LoRA’s su-
perb performance, its large size of trainable parameters still
brings high IT infrastructure consumption, which affects
both ends of public communities and individual users. For
the former, an intuitive example is that a LoRA adapter (fine-
tuned weights) for a specific style of the stable diffusion
model (Rombach et al., 2022) requires about 40MB of mem-
ory. This necessitates the LFM communities (e.g., Civi-

1

https://github.com/Chaos96/fourierft
https://github.com/Chaos96/fourierft


Parameter-Efficient Fine-Tuning with Discrete Fourier Transform

tai (Civitai, 2024)) to bear high storage and bandwidth costs
to cater to a large user base. For the latter, fewer param-
eters mean direct RAM savings when loading fine-tuned
weights in mobile APPs, enabling sufficient customization
for individual users (Zhou et al., 2022). To this end, we nat-
urally ask the question: How can we aggressively compress
trainable parameters even further for fine-tuning LFMs?

Previous works have demonstrated the powerful expressive-
ness of Fourier basis in data compression, where extremely
sparse spectral information can be used to recover high-
fidelity data (e.g., 1D signal vectors (Zwartjes & Gisolf,
2007; Duarte & Baraniuk, 2013; Rudelson & Vershynin,
2008) and 2D image matrices (Vlaardingerbroek & Boer,
2013; Song et al., 2021; Shi et al., 2014)). More importantly,
when dealing with more general (non-image) matrices that
lack strong spatial semantics and are not frequency-sparse,
Fourier transform can still handle recovery effectively (Chen
& Chi, 2013; Yang & Xie, 2016). Motivated by this, we in-
vestigate the potential for updating the weight change ∆W
with its sparse spectral coefficients for fine-tuning LFMs.

In this paper, we aim to aggressively reduce the number of
trainable parameters for fine-tuning LFMs. To this end, we
propose FourierFT (Fourier Transform for Fine-Tuning),
which treats the weight change ∆W as a matrix in the
spatial domain, and learns its sparse spectral coefficients.
Specifically, we first randomly select n spectral entries that
are shared across all layers. For each layer, FourierFT learns
n spectral coefficients located at these n selected entries and
then directly applies inverse discrete Fourier transform to
compute the updated ∆W . Therefore, fine-tuning a pre-
trained model with Lt layers only requires storing 2n entry
parameters and nLt coefficient parameters for FourierFT.

Empirically, we compare our method with state-of-the-art
LoRA variants and other parameter-efficient fine-tuning
methods on various tasks including (1) natural language
understanding (on the GLUE benchmark), (2) natural lan-
guage generation (on the E2E benchmark), (3) instruction
tuning (with LLaMA-family models), and (4) image classi-
fication (with vision transformers). FourierFT can always
achieve comparable or even better performance than LoRA,
with about 6.0%, 9.4%, 0.2% and 9.2% of LoRA’s train-
able parameters for these 4 tasks, respectively. For example
in Figure 1, on the instruction tuning task, our FourierFT
method outperforms LoRA with only 64K trainable param-
eters. Moreover, it achieves a comparable score to Full
Fine-tuning with only 128K parameters.

2. Related Works
Parameter-Efficient Fine-Tuning. With the rapid expan-
sion of large foundation models (LFM), it has become chal-
lenging and important to efficiently adapt them for specific

tasks. To this end, numerous methods for parameter-efficient
fine-tuning (PEFT) are proposed, demonstrating impressive
capabilities in both efficiency and accuracy. Existing PEFT
methods are broadly partitioned into two categories: non-
weight-based and weight-based methods.

Non-weight-based methods do not optimize pre-trained
LFMs at the weight level. Instead, they achieve fine-tunings
by introducing additional modules or optimizing prompts
and prefixes. Adapter tuning (He et al., 2021; Rebuffi et al.,
2017; Pfeiffer et al., 2020; Houlsby et al., 2019; Rücklé et al.,
2020; Lin et al., 2020) aims to introduce light-weighted neu-
ral modules, called adapters, between pre-trained layers of
the base model. These methods keep the pre-trained weights
frozen and efficiently fine-tune the adapters for customized
tasks. Prompt tuning (Brown et al., 2020; Lester et al., 2021;
Gao et al., 2020; Diao et al., 2022) and prefix tuning (Li
& Liang, 2021) insert additional prompts or prefix tokens
to the layers of the base model. Weight-based methods,
represented by LoRA (Hu et al., 2021), introduce and then
update weight changes that can be merged with the original
weights to avoid inference latency. LoRA’s innovation lies
in the multiplication of low-rank matrices to approximate
weight changes. Building upon this, AdaLoRA (Zhang et al.,
2023) extends the LoRA method by distributing the param-
eter budget across weight matrices with importance scores.
Additionally, Q-LoRA (Dettmers et al., 2023) proposes to
back-propagate gradients upon LoRA through a quantized
pre-trained model with 4-bit NormalFloat.

Here, we focus on weight-based methods and achieve huge
parameter reduction with the powerful expressiveness of
Fourier basis, rather than following the low-rank structure.

Sparse Fourier Transform in Deep Learning. Sparse
Fourier transform (SFT) has flourished in various fields of
deep learning (DL). The SFT technique mainly involves
using sparse spectral coefficients of significant (Xu et al.,
2020; Ehrlich & Davis, 2019; Gueguen et al., 2018; Tang
et al., 2022) or even random (Lin et al., 2014; Rawat et al.,
2019; Herrmann, 2010) spectral entries, for representation
learning. One important application of this technique is
matrix recovery. Patel et al. (2011) designs a gradient-based
compressed sensing method to recover images with their
sparse Fourier information. Shechtman et al. (2014) pro-
poses an efficient phase retrieval method that improves data
recovery using sparse Fourier coefficients. Importantly, pre-
vious works (Chen & Chi, 2013; Yang & Xie, 2016; Gao
et al., 2022) show that even when the original data is not
frequency-sparse, SFT can effectively recover the data with
extremely few parameters. Although previous works lack
studies on the recovery for the weight matrices of DL mod-
els with SFT, the aforementioned methods provide potential
support for this work.

2



Parameter-Efficient Fine-Tuning with Discrete Fourier Transform

Pre-trained
Weights

𝑊 ∈ ℝ!!×!"

𝐵 = 0

𝐴 = 𝒩(0, 𝜎!)

ℎ

𝑥

𝑑#

𝑑$

𝑟
Pre-trained

Weights

𝑊 ∈ ℝ!!×!"

ℎ

𝑥

𝑑#

𝑑$

Random entries
(shared across layers)

ℝ!×#

𝑛

Coefficients

: Frozen
: Trainable

LoRA FourierFT

IDFT
Dense Spectral

Matrix F

Figure 2. Overview of LoRA (left) and our FourierFT (right) method. In LoRA, only low-rank (r) matrices A and B are trained. The
weight change is represented by their multiplication, i.e., ∆W = BA. For each pre-trained weight W , the theoretical number of trainable
parameters in LoRA is r × (d1 + d2). In FourierFT, we first randomly generate the spectral entry matrix R2×n, which is shared across all
layers to reduce parameter storage requirements. The complete spectral matrix is formed by a trainable coefficient vector Rn located
at selected entries and 0s at the remaining entries. We obtain the weight change ∆W by directly performing inverse discrete Fourier
transform (IDFT) on the updated spectral matrix. For all L adapted layers, FourierFT needs to store n × (2 +L) parameters.

3. Method
We present FourierFT (depicted in Figure 2), a parameter-
efficient fine-tuning method based on discrete Fourier trans-
form. FourierFT follows the principle of only learning the
change in the pre-trained weight, as proposed by LoRA (Hu
et al., 2021). However, unlike LoRA, FourierFT does not
adopt the low-rank structure but learns a set of spectral
coefficients of Fourier basis. Specifically, we randomly ini-
tialize the spectral entry matrix, which is frozen and shared
across all layers. We make the spectral coefficients located
at selected entries trainable, which jointly form the spec-
tral matrix. Lastly, we apply the inverse discrete Fourier
transform to the spectral matrix, yielding its spatial-domain
counterpart as the updated weight change.

3.1. Forward Pass

We follow the paradigm of only learning weight changes, as
adopted by LoRA-based methods (Hu et al., 2021; Dettmers
et al., 2023; Zhang et al., 2023). This can avoid inference
latency by merging the pre-trained weight and its change.
Formally, we define each pre-trained weight matrix as W0 ∈

Rd1×d2 , and the weight change for fine-tuning as ∆W ∈

Rd1×d2 . LoRA aims to parameterize ∆W in the form of
low-rank decomposition in the forward pass:

h =W0x +∆Wx =W0x +BAx, (1)

where B ∈ Rd1×r and A ∈ Rr×d2 with the rank r ≪
min(d1, d2) are trainable matrices.

The advantage of FourierFT is that the orthogonal and
expressive Fourier basis enables recovery of informative
weight changes. This promisingly suggests achieving com-

parable performance to LoRA with significantly fewer pa-
rameters. We first randomly initialize the entry matrix
E ∈ R2×n containing discrete 2D spectral entries. Then
we randomly initialize the coefficients c ∈ Rn with a normal
Gaussian distribution. The proposed forward pass is:

F = TODENSE(E, c) (2)

Sp,q =
d1−1
∑
j=0

d2−1
∑
k=0

Fj,ke
i2π( p

d1
j+ q

d2
k) (3)

h =W0x +∆Wx

=W0x + αR(S)x.
(4)

Specifically, TODENSE in Eq. 2 represents to construct the
spectral matrix F ∈ Rd1×d2 , i.e., Fj,k = cl (resp. 0), if
j = E0,l & k = E1,l (resp. else). Eq. 3 computes the spatio
matrix S via the inverse discrete Fourier transform, where i
represents the imaginary unit. Finally, in Eq. 4, we take the
real part of the complex matrix S (denoted as R(S)) and
scale it by α. Kindly note that all layers involve training
various c vectors, while sharing the matrix E and value α.

The pseudocode for FourierFT is shown as Algorithm 1,
adhering to the PyTorch style.

Initialization for the Entry Matrix E. Previous works
lack studies on the importance of the spectral entries in
the weight change. Thus, we fill this gap by introducing
adjustable frequency bias, causing the entries to be more
likely sampled in this area. In addition to randomly sam-
pling entries in the full d1 × d2-sized spectral matrix (i.e.,
no bias), we also implement entry sampling with a bias
towards a favored central frequency, e.g., low, middle, or
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Algorithm 1 PyTorch-style pseudocode for FourierFT.

class FourierFT(nn.Module):
def __init__(
self,
n: int = 100, # number of trainable parameters
alpha: float = 300.0, # scaling
d1: int = 4096, # input dimension
d2: int = 4096, # output dimension
base_layer: nn.Module # pre-trained layer
)

# definitions
self.d1 = d1
self.d2 = d2
self.n = n
self.alpha = alpha
self.base_layer = base_layer
# entry initialization (no frequency bias)
self.E = torch.randperm(d1 * d2)[:n]
self.E = torch.stack([self.E // self.d2,
self.E % self.d2], dim=0)
# spectral coefficient initialization
self.c = nn.Parameter(torch.randn(n), \\

requires_grad=True)

def forward(self, x: torch.Tensor):
# get dense spectral matrix (Eq.2)
F = torch.zeros(self.d1, self.d2)
F[self.E[0, :], self.E[1, :]] = self.c
# compute Delta_W (Eq.3)
Delta_W = torch.fft.ifft2(F).real * self.alpha
# merge (Eq.4)
h = self.base_layer(x)
h += torch.einsum(’ijk,kl->ijl’, x, Delta_W)
return h

high frequencies. Formally, we apply the Gaussian band-
pass filter (Gonzales & Wintz, 1987) to model the sampling
probability for the entry (u, v),0 ≤ u ≤ d1−1,0 ≤ v ≤ d2−1:

p(u, v) = exp
⎛

⎝
−(
D2 − f2

c

DW
)

2
⎞

⎠
, (5)

where D represents the distance from the point (u, v) to
the origin (center of the matrix), fc is the favored central
frequency, andW represents the bandwidth. In Figure 3, we
visualize the sampling probability map of a 768× 768-sized
spectral matrix with different fc andW = 200.

fc = 0 fc = 100 fc = 200 fc = 350 fc = 480

0

0.5

1

Figure 3. Visualization of entry sampling probability at different
favored central frequencies fc.

Kindly note that unless specially stated, FourierFT is set by
default to the entry initialization with no frequency bias.

3.2. Parameter Summary

We summarize the number of trainable parameters for LoRA
and FourierFT in Table 1. LoRA relies on a pair of trainable
matrices A and B for each layer. Let the number of layers
for fine-tuning be Lt. The total number of parameters in

Table 1. Theoretical number of trainable parameters and storage re-
quirements for fine-tuning. For both LoRA and FourierFT methods,
only the query and value layers are tuned within the transformer
architectures. The configurations that are exactly chosen in the
‘Experiments’ Section are highlighted .

Base Models LoRA FourierFT

r
# Trainable
Parameters

Required
Bytes n

# Trainable
Parameters

Required
Bytes

RoBERTa
Base

4 147K 574KB 200 4.8K 18.8KB
8 295K 1.13MB 1000 24K 94KB

RoBERTa
Large

4 393K 1.5MB 200 9.6K 36.5KB
8 786K 3MB 1000 48K 183KB

GPT-2
Medium

4 350K 1.34MB 500 24K 94KB
8 786K 3MB 1000 48K 188KB

GPT-2
Large

4 737K 2.81MB 500 36K 141KB
8 1.47M 5.74MB 1000 72K 282KB

LLaMA-2
7B

16 8.39M 32.8MB 1000 64K 250KB
64 33.5M 131.1MB 2000 128K 500KB

LLaMA-2
13B

16 13.1M 51.2MB 1000 80K 312KB
64 52.4M 204.8MB 2000 160K 625KB

ViT
Base

8 295K 1.13MB 3000 72K 281KB
16 590K 2.25MB 10000 239K 934KB

ViT
Large

8 786K 2.93MB 3000 144K 563KB
16 1.57M 6MB 10000 480K 1.83MB

LoRA is determined by the rank r and the dimension of
weights d = d1 = d2: ∣Θ∣LoRA = 2 × d ×Lt × r. For Fourier,
the total number takes the form: ∣Θ∣FourierFT = n×Lt. As
an intuitive example, the RoBERTa Base model contains
12 transformer blocks with d = 768, resulting in Lt = 24
layers when we only fine-tune the query and value ones.
Therefore, we have ∣Θ∣LoRA = 294,912 for r = 8, and
∣Θ∣FourierFT = 24,000 for n = 1000. In Table 1, we
highlight the configurations where LoRA and our method

achieve matched performance in subsequent experiments.
We note that the advantage of parameter efficiency in Fouri-
erFT becomes more pronounced as the model’s scale (depth
and width) increases (e.g., RoBERTa Base → RoBERTa
Large). This could be because ∣Θ∣LoRA has an explicit lin-
ear relationship with width d, unlike ∣Θ∣FourierFT .

4. Experiments
In this section, we evaluate FourierFT in the domains of nat-
ural language processing (NLP) and computer vision (CV).
For NLP, we implement FourierFT for fine-tuning (1)
RoBERTa (Base & Large) on natural language understand-
ing (GLUE, (Wang et al., 2018)), (2) GPT-2 (Medium &
Large) on natural language generation (E2E, (Novikova
et al., 2017)) and (3) LLaMA-family models (7B & 13B) on
instruction tuning. For CV, we apply FourierFT to fine-tune
the (4) vision transformers (Base & Large) on image classi-
fication. Finally, we conduct ablation studies to analyze the
effect of frequency bias, the parameter scalability, and the
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Table 2. Performance of various fine-tuning methods with RoBERTa Base (RoBbase) and RoBERTa Large (RoBlarge) models on 6
datasets of the GLUE benchmark. We report the Matthew’s correlation coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC)
for STS-B and accuracy (Acc.) for all the remaining tasks. We report the median result of 5 runs, each using different random seeds. The
best results for each dataset are shown in bold. Higher is better for all metrics in 6 datasets.

Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

RoBbase(FF) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
RoBbase(AdptD) 0.9M 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.2
RoBbase(LoRA) 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.2
RoBbase(AdaLoRA) 0.3M 94.5±0.2 88.7±0.5 62.0±0.6 93.1±0.2 81.0±0.6 90.5±0.2 85.0
RoBbase(DyLoRA) 0.3M 94.3±0.5 89.5±0.5 61.1±0.3 92.2±0.5 78.7±0.7 91.1±0.6 84.5
RoBbase(FourierFT) 0.024M 94.2±0.3 90.0±0.8 63.8±1.6 92.2±0.1 79.1±0.5 90.8±0.2 85.0

RoBlarge(FF) 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
RoBlarge(AdptP) 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
RoBlarge(AdptP) 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
RoBlarge(AdptH) 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
RoBlarge(AdptH) 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
RoBlarge(LoRA) 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
RoBlarge(FourierFT) 0.048M 96.0±0.2 90.9±0.3 67.1±1.4 94.4±0.4 87.4±1.6 91.9±0.4 88.0

expressiveness of the Fourier basis.

Baselines. We compare our FourierFT method with pop-
ular parameter-efficient fine-tuning (PEFT) methods. To
ensure a comprehensive and fair comparison, we prioritize
replicating the setups used in previous works and reusing
their reported results. Involved baselines are:
● Full Fine-tuning (FF) - During fine-tuning, the base
model is initialized with pre-trained weights and biases, and
all parameters will undergo gradient updates.
● Bitfit (Zaken et al., 2021) - Only the bias vectors are fine-
tuned while all other parameters are frozen.
● Adapter tuning - This research line was first investigated
by Houlsby et al. (2019), which proposes the AdapterH

method. AdapterH inserts two-layer adapters between the
self-attention and the FNN modules, followed by a sub-
sequent residual connection. We compare it with three
additional variants of it. AdapterL (Lin et al., 2020) is
more parameter-efficient, with adapter layers applied only
after the MLP modules and subsequent to a LayerNorm.
AdapterP (Pfeiffer et al., 2020) implements the adapter lay-
ers after the feed-forward layer. This design was chosen
through a grid search including all settings related to the
adapter’s position, number, ect. AdapterD (Rücklé et al.,
2020) further enhances the parameter efficiency by dropping
adapter layers that are not activated.
● LoRA (Hu et al., 2021) - LoRA is the state-of-the-art
method for PEFT. It parameterizes incremental weight up-
dates using trainable low-rank matrices.

● DyLoRA (Valipour et al., 2022) - This method trains dy-
namic search-free LoRA models for the best rank choice.
● AdaLoRA (Zhang et al., 2023) - This method proposes
the SVD-based fine-tuning and prunes redundant singular
values with the importance-aware rank allocation.

4.1. Natural Language Understanding

Models and Datasets. We evaluate our method on the
GLUE benchmark (General Language Understanding Eval-
uation (Wang et al., 2018)), which consists of a wide range
of natural language understanding (NLU) tasks, includ-
ing single-sentence classification tasks, similarity and para-
phrase tasks and natural language inference tasks. We fine-
tune the pre-trained RoBERTa Base and Large foundation
models (Liu et al., 2019) for evaluation.

Implementation Details. For both models, FourierFT is
allowed to have 1000 out of 7682 (RoBERTa Base) and
10242 (RoBERTa Large) trainable spectral coefficients in
each layer, i.e., n = 1000. We randomly sample the spectral
entries with no frequency bias, which is shared1 across
all 24 (Base) and 48 (Large) layers. For all 6 datasets in
GLUE, we tune the hyperparameters of the learning rates
and the scaling values. We follow the experimental setup
applied in Hu et al. (2021), which involves fine-tuning only
the query and value weights in each transformer block and

1We use the value 2024 as the seed for all layers.
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Table 3. Results from GPT-2 Medium and Large models on the E2E benchmark.
We present the result from the final epoch. For all metrics, higher values indicate
better performance. * indicates that the results are taken from prior works. Best
results are shown in bold.

Model Method
# Trainable
Parameters BLEU NIST METEOR ROUGE-L CIDEr

G
PT

-2
M

ed
iu

m

FT* 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL* 0.37M 66.3 8.41 45.0 69.8 2.40
AdptL* 11.09M 68.9 8.71 46.1 71.3 2.47
AdptH* 11.09M 67.3±.6 8.5±.07 46.0±.2 70.7±.2 2.44±.01
LoRA 0.35M 68.9±.3 8.76±.06 46.6±.1 71.5±.1 2.53±.03
FourierFT 0.048M 69.1±.1 8.82 ±.05 47.0 ±.3 71.8 ±.1 2.51±.02

G
PT

-2
L

ar
ge

FT* 774.03M 68.5 8.78 46.0 69.9 2.45
AdptL* 0.88M 69.1±.1 8.68±.03 46.3±.0 71.4±.2 2.49±.0

AdptL* 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02
LoRA 0.77M 70.1±.3 8.83±.02 46.8±.2 72.0±.3 2.47±.02
FourierFT 0.072M 70.2±.2 8.90±.02 47.0±.2 71.8±.1 2.50 ±.02

Table 4. The average scores on MT-Bench and Vicuna
assessed by GPT-4. † indicates updating the layers
other than lm head. Higher score is better.

Model Method
# Trainable
Parameters MT-Bench Vicuna

LLaMA1-7B
LoRA† 159.9M 5.05±.3 6.85±.4
LoRA 33.5M 4.99±.3 6.81±.3
FourierFT 0.064M 5.09±.6 6.85±.8

LLaMA1-13B
LoRA† 250.3M 5.28±.6 7.02±.3
LoRA 52.4M 5.21±.4 6.97±.4
FourierFT 0.08M 5.23±.3 7.14±.5

LLaMA2-7B
LoRA† 159.9M 5.19±.1 7.38±.3
LoRA 33.5M 5.20±.3 7.35±.6
FourierFT 0.064M 5.18±.3 7.49±.4

LLaMA2-13B
LoRA† 250.3M 5.78±.2 7.89±.5
LoRA 52.4M 5.80±.2 7.89±.6
FourierFT 0.08M 5.82±.3 7.92±.5

fully fine-tuning the classification head. We provide the
hyperparameters in Table 9 in Appendix.

Results. Results are summarized in Table 2. Following Hu
et al. (2021), Zhang et al. (2023) and Valipour et al. (2022),
we specify the number of trainable parameters for the fine-
tuned layers excluding the classification head. We report the
median of 5 random seed results, where the best epoch is se-
lected for each run. In general, FourierFT achieves better or
on-par performance compared with baseline methods with
significantly fewer trainable parameters. Notably, Fouri-
erFT outperforms all baselines including fully fine-tuning
the RoBERTa Base on CoLA and the RoBERTa Large on
RTE. As mentioned in Section 3.2, the parameter count of
LoRA is dependent on both the width and depth of models,
resulting in a larger count growth (LoRA: 0.8M/0.3M ≈ 2.7;
ours: 0.048M/0.024M = 2) compared to FourierFT. Nev-
ertheless, FourierFT still performs comparably to LoRA,
demonstrating the potential scalability of our method when
facing even larger models.

4.2. Natural Language Generation

Models and Datasets. We evaluate the performance of
FourierFT on the E2E natural language generation (NLG)
task (Novikova et al., 2017). We fine-tune the GPT-2 (Rad-
ford et al., 2019) Medium (354M) and Large (774M) models,
which are both decoder-only and have 24 and 36 transformer
blocks, respectively. The E2E benchmark contains roughly
42,000 training, 4,600 validation and 4,600 test samples
from the restaurant domain.

Implementation Details. We report prior results for base-
lines other than LoRA. For both LoRA and our method, we
fine-tune the GPT-2 Medium and Large models with a linear

learning rate scheduler for 5 epochs, where we tune the
batch size and learning rate. We report the average results
over 3 runs, where the last epoch is selected for each run.
We provide the hyperparameters in Table 10 in Appendix.

Results. We show the results in Table 3. We note that
FourierFT can achieve the best performance on most metrics.
More importantly, FourierFT only requires 13.7% and 9.4%
of the parameter counts of LoRA, for the GPT-2 Medium
and Large models respectively.

4.3. Instruction Tuning

Models and Datasets. Instruction tuning, as described in
(Ouyang et al., 2022; Wei et al., 2021; Mishra et al., 2021),
refers to the process of fine-tuning a language model on
a collection of paired prompts and responses. We apply
LoRA and FourierFT to fine-tune the LLaMA (Touvron
et al., 2023a) and LLaMA2 (Touvron et al., 2023b) families.
Specifically, we consider the LLaMA-7B, LLaMA-13B,
LLaMA2-7B and LLaMA2-13B as base models, which
are fine-tuned on the Alpaca dataset (Taori et al., 2023).
Alpaca contains 51K instruction-following demonstrations
generated from text-davinci-003 (GPT-3.5) (Wang
et al., 2022). For evaluation, we use the fine-tuned models
to generate responses for the pre-defined questions, which
are from the MT-Bench (Zheng et al., 2023) and Vicuna
Eval (Chiang et al., 2023). GPT-4 takes these answers as
input and evaluates them with scores within 10.

Implementation Details. For LoRA, we use r = 64 and
apply two configurations: (1) updating all linear layers ex-
cept the language modelling head (lm head); (2) updating
only the WQ and WV matrices. For FourierFT, we only
adopt the latter configuration with n = 1000. To ensure the
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Table 5. Fine-tuning results with ViT Base and Large models on different image classification datasets. We report the accuracy (%) after
10 epochs. Avg. represents the average accuracy of each method on all datasets. The best performance is shown in bold.

Model Method
# Trainable
Parameters OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 Avg.

V
iT

-B
as

e LP - 90.28±0.43 25.76±0.28 96.41±0.02 69.77±0.67 88.72±0.13 17.44±0.43 74.22±0.10 84.28±0.11 68.36
FF 85.8M 93.14±0.40 79.78±1.15 98.92±0.05 77.68±1.21 99.05±0.09 54.84±1.23 96.13±0.13 92.38±0.13 86.49
LoRA 581K 93.19±0.36 45.38±0.41 98.78±0.05 74.95±0.40 98.44±0.15 25.16±0.16 92.70±0.18 92.02±0.12 77.58
FourierFT 72K 93.21±0.26 46.11±0.24 98.58±0.07 75.09±0.37 98.29±0.04 27.51±0.64 91.97±0.31 91.20±0.14 77.75
FourierFT 239K 93.05±0.34 56.36±0.66 98.69±0.08 77.30±0.61 98.78±0.11 32.44±0.99 94.26±0.20 91.45±0.18 80.29

V
iT

-L
ar

ge

LP - 91.11±0.30 37.91±0.27 97.78±0.04 73.33±0.26 92.64±0.08 24.62±0.24 82.02±0.11 84.28±0.11 72.96
FF 303.3M 94.43±0.56 88.90±0.26 99.15±0.05 81.79±1.01 99.04±0.08 68.25±1.63 96.43±0.07 93.58±0.19 90.20
LoRA 1.57M 94.82±0.09 73.25±0.36 99.13±0.03 81.79±0.45 98.63±0.07 42.32±0.98 94.71±0.25 94.87±0.10 84.94
FourierFT 144K 94.46±0.28 69.56±0.30 99.10±0.04 80.83±0.43 98.65±0.09 39.92±0.68 93.86±0.14 93.31±0.09 83.71
FourierFT 480K 94.84±0.05 79.14±0.67 99.08±0.01 81.88±0.50 98.66±0.03 51.28±0.68 95.20±0.07 93.37±0.11 86.68

feasibility of training on a single GPU, we deploy the quan-
tization method in Dettmers et al. (2023) for fine-tuning.
We train with both methods for only one epoch, and report
the average scores of all answers. We provide the hyperpa-
rameter setup in Table 11 in the Appendix.

Results. The results are shown in Table 4. We find that
the expressive power of the 13B model is much stronger
than that of the 7B model, regardless of which fine-tuning
method is used. Moreover, FourierFT closely matches or
slightly exceeds LoRA’s performance with less than 0.2%
of its parameters. We provide practical examples containing
questions, answers and reviews in the Appendix D.

4.4. Image Classification

Models and Datasets. We evaluate our method on the
image classification task. We adopt the Base and Large
versions of the popular CV foundation model, Vision Trans-
former (ViT) (Dosovitskiy et al., 2020). The ViTs are pre-
trained on the ImageNet-21K dataset (Ridnik et al., 2021).
The datasets for fine-tuning include OxfordPets (372), CI-
FAR10 (10), DTD (47), EuroSAT (10) and RESISC45 (45)
with small label spaces, as well as StanfordCars (196),
FGVC (100) and CIFAR100 (100) with large label spaces.
Detailed information is provided in Table 8 in the Appendix.

Implementation Details. We include three baselines for
evaluation: Full Fine-tuning (FF), Linear Probing (LP, fine-
tuning the classification head only), and LoRA. For both
LoRA and our method, only the query and value matrices
of ViT are updated. We use r = 16 for LoRA and n =
{3000,10000} for FourierFT. We tune the learning rates
and weight decay for all methods, and set the maximum
training epoch to 10. We provide the hyperparameters in
Table 12 in Appendix.

2Numbers in parentheses indicate class counts for each dataset.

Results. Table 5 summarizes the results for 8 image classi-
fication datasets with the ViT Base and Large models. Both
LoRA and FourierFT methods significantly outperform the
Linear Probing, demonstrating their effectiveness in the CV
domain. Our method obtains matched performance using
12.4% and 9.2% of LoRA’s parameter count, with ViT Base
and Large models, respectively. Notably, when we increase
the parameter count of FourierFT to 41.1% (ViT Base) and
30.6% (ViT Large) of LoRA’s, it can outperform LoRA by
3.5% and 2.0% respectively. Moreover, our method can
even (slightly) outperform the Full Fine-tuning method on
OxfordPets and DTD with the ViT Large model.

4.5. Study

Effect of Frequency Bias. We examine how the perfor-
mance is affected by the frequency bias, i.e., the central
frequency fc in Eq. 5. We directly apply the optimal hyper-
parameters searched in Table 2 and fine-tune the RoBERTa
Base on the MRPC, STS-B, CoLA and RTE datasets. From
Figure 5, we note that the fine-tuning performance of Fouri-
erFT without any frequency bias can surpass most cases that
are restricted by the central frequency bias. This indicates
the universality of our method. Surprisingly, we find that it
is always possible to obtain results better than “No bias” by
traversing the fc values. Since this traversal is not efficient,
we do not conduct further exploration in this paper. How-
ever, we believe that making fc trainable will be a promising
new direction for improving FourierFT.

Parameter Scalability. We explore the relationship be-
tween the number of trainable parameters and the per-
formance of LoRA and our method. We use the set
of ranks r = {1,2,4,6,8,15} for LoRA and n =

{50,100,200,1000,6144,12288} for FourierFT on 6 tasks
of the GLUE benchmark. For both LoRA and ours, the
learning rate, and scaling hyperparameters are tuned. For
fairness, we ensure that the number of trials for hyperparam-
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Figure 4. Performance on the GLUE benchmark with RoBERTa Base vs. number of trainable parameters (each layer) of LoRA and ours.
For all 6 datasets, we apply the setting of r = {1,2,4,6,8,15} for LoRA and n = {50,100,200,1000,6144,12288}.
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Figure 5. Results on 4 datasets in GLUE with different fc values.

eter search is 30 for both methods. As shown in Figure 4, our
method outperforms LoRA on all 6 datasets. In detail, our
method is significantly better than LoRA with the same pa-
rameter count, i.e., {r = 4, n = 6144}& {r = 8, n = 12288}.
Moreover, we observe that a larger number of parameters
does not always bring performance gains for LoRA. On the
contrary, the increase of n can consistently improve the ac-
curacy of FourierFT. On most tasks, FourierFT with n = 50
can achieve comparable or even better (MRPC, CoLA, RTE)
performance than LoRA with r = 1. In this case, the param-
eter count in LoRA is about 31 × that of ours.

Basis Expressiveness. The inverse discrete Fourier trans-
form (IDFT) in Eq. 3 is equivalent to the matrix multiplica-
tion (Lu et al., 2021): S = BfFB⊺f , where B is the transfor-

mation matrix of IDFT that contains the Fourier basis. To
evaluate its expressivity, we replace the Fourier basis with
random and orthogonal basis, respectively. Specifically, for
F ∈ Rd1×d2 , we initialize random basis B1r ∈ Rd1×d1 and
B2r ∈ Rd2×d2 with the normal Gaussian distribution. Then
Eq. 3 becomes S = B1rFB

2
r . A similar way is used for the

orthogonal basis. We compare FourierFT with the random
basis (R-B) and orthogonal basis (O-B) on the GLUE bench-
mark. Table 6 shows the results. We note that the Fourier
basis used in our method outperforms the random and or-
thogonal basis. In addition, the expressive power of the
orthogonal basis is much stronger than that of the random
basis. The stronger expressive power of the Fourier basis
compared to the general orthogonal basis may be attributed
to its effective capture of the spectral information of ∆W .

Table 6. Results with three types of basis.

Model RTE CoLA

Ours R-B O-B Ours R-B O-B

Base 79.1 72.7(↓8.1%) 75.6(↓4.4%) 63.8 58.7(↓8.0%) 60.0(↓6.0%)
Large 87.4 81.8(↓6.4%) 83.6(↓4.3%) 67.1 64.8(↓3.4%) 66.1(↓1.5%)

5. Conclusion
In this paper, we aim to achieve an extremely low storage
memory for a single fine-tuning of large foundation models.
This will enable the customization of multiple fine-tunings
for different domains, tasks, or user preferences. To achieve
this, we propose a simple yet powerful fine-tuning method
that treats weight changes as spatial-domain matrices and
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only learns the sparse coefficients in the spectral domain.
Compared to the LoRA-style baselines, our approach re-
duces the number of trainable parameters by more than 10×
on a wide range of tasks in the NLP and CV domains.
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Supplementary of “Parameter-Efficient Fine-Tuning
with Discrete Fourier Transform”

A. Details of Datasets
A.1. GLUE Benchmark

The GLUE (Wang et al., 2018) (General Language Understanding Evaluation) benchmark is widely used in the NLP
domain. GLUE consists of a set of 8 NLP datasets: MNLI(inference), SST-2 (sentiment analysis), MRPC (paraphrase
detection), CoLA (linguistic acceptability), QNLI (inference), QQP (question-answering), RTE (inference), and STS-B
(textual similarity). We summarise their statistics in the following table.

Table 7. Task descriptions and dataset statistics of the GLUE benchmark. STS-B belongs to the regression task. All other tasks are single
sentence or sentence pair classification tasks.

Corpus Task # Train # Val # Test # Labels Metrics Domain

Single-Sentence Tasks

CoLA Acceptability 8.55k 1.04k 1.06k 2 Matthews Corr. misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Accuracy Movie reviews

Similarity and Paraphrase Tasks

MRPC Paraphrase 3.67 408 1.73k 2 Accuracy/F1 News
STS-B Sentence similarity 5.75k 1.5k 1.38k 1 Pearson/Spearman Corr. misc.
QQP Paraphrase 364k 40.4k 391k 2 Accuracy/F1 Social QA

Inference Tasks

MNLI NLI 393k 19.65k 19.65k 3 Accuracy misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Accuracy Wikipedia
RTE NLI 2.49k 277 3k 2 Accuracy News & Wikipedia

A.2. E2E Benchmark

The E2E (End-to-End) NLG challenge, proposed by (Novikova et al., 2017), is a dataset for evaluating natural language
(data-to-text) generation models. The E2E dataset contains about 42,000 training samples, 4,600 validation samples and
4,600 test samples from the restaurant domain. E2E involves evaluation on 5 metrics: BLEU, NIST, METEOR, ROUGE-L,
and CIDEr. A more detailed explanation of them is as follows.

• BLEU (Bilingual Evaluation Understudy) is a metric to evaluate the quality of machine-generated text by comparing it
to one or more human-generated reference texts.

• NIST (National Institute of Standards and Technology) is a metric that evaluates the quality of machine-generated text,
similar to BLEU. NIST uses a weighted average of n-gram precisions to calculate the final score, whereas BLEU uses a
geometric average.

• METEOR (Metric for Evaluation of Translation with Explicit ORdering) aligns the words in the machine-generated
text with their corresponding words in the reference text, and then calculates a score based on the harmonic mean of
precision and recall.

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation) measures the longest common sub-sequence (LCS)
between the machine-generated summary and the reference summary. It is particularly useful for evaluating summaries
that contain paraphrases or rephrased sentences, as it considers the LCS rather than exact word overlap.
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• CIDEr (Consensus-based Image Description) measures the similarity between the machine-generated captions and the
human-generated captions by considering both the n-gram overlap and the consensus among human annotators.

A.3. Alpaca

Alpaca is a newly proposed dataset that contains only the training set. Alpaca contains 51k instructions and demonstrations
generated by the text-davinci-003 model. It can be used to fine-tune language models for specific instructions and
improve their ability to follow instructions accurately. A specific example is as follows.

{
"instructions": Transform the following sentence into the passive voice.
"input": I bought a book.
"output": A book was bought by me.

}

The instruction describes the target task which should be performed by the model. The input denotes optional
context or input for the task. The output is the answer to the instruction generated by text-davinci-003.

A.4. MT-bench and Vicuna

MT-bench (Zheng et al., 2023) is a recently proposed benchmark containing a series of open-ended questions. These
questions can evaluate the instruction-following ability of a language foundation model. MT-bench primarily distinguishes
the abilities of many aspects of the models, including writing, roleplay, reasoning, math, coding, extraction, stem, and
humanities. A specific example is as follows.

{
"Q1": The vertices of a triangle are at points (0, 0), (-1, 1), and (3, 3).
What is the area of the triangle?
"Q2(follow-up)": What is the area of the circle circumscribing the triangle?
"Solution": Q1. Area is 3. Q2. 5pi.

}

Vicuna Eval refers to the benchmark for evaluating LLM alignment with human preferences, which is the predecessor
of MT-bench. Vicuna Eval covers the topics of coding, writing, math, counterfactual, fermi, common sense, roleplay,
knowledge, and generic. A specific example is as follows.

{
"question": Implement a binary search algorithm to find a specific element
in a sorted array.
"category": coding.

}

A.5. Image Classification Datasets

The statistics of the selected 8 vision datasets are in Table 8.

Table 8. Details about the vision datasets.
Dataset #Train #Val #Test #Class Rescaled resolution

OxfordPets (Parkhi et al., 2012) 3,312 368 3,669 37

224 × 224

StandfordCars (Krause et al., 2013) 7,329 815 8,041 196
CIFAR10 (Krizhevsky, 2009) 45,000 5,000 10,000 10
DTD (Cimpoi et al., 2014) 4,060 452 1,128 47
EuroSAT (Helber et al., 2019) 16,200 5,400 5,400 10
FGVC (Maji et al., 2013) 3,000 334 3,333 100
RESISC45 (Cheng et al., 2017) 18,900 6,300 6,300 45
CIFAR100 (Krizhevsky, 2009) 45,000 5,000 10,000 100
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B. Hyperparamaters

Table 9. Hyperparameter setup of FourierFT for the GLUE benchmark.

Model Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI

Both

Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
Frequency Bias False
n 1000
seeds {0, 11111, 22222, 33333, 44444}

Base

Epochs 60 90 30 100 40 40
Learning Rate (FourierFT) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (Head) 9E-3 1.1E-2 6E-3 8E-3 6E-3 1E-3
Max Seq. Len 512 512 512 512 512 512
Scaling value 84 110 141 49 140 29
Batch Size 32 32 32 32 32 32

Large

Epochs 30 60 30 80 10 30
Learning Rate (FourierFT) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (Head) 1E-3 5E-3 1E-3 1.1E-2 1E-3 5E-3
Max Seq. Len 512 512 512 256 128 512
Scaling Value 121 90 120 120 99 69
Batch Size 32 32 32 128 32 32

Table 10. Hyperparameter setup of FourierFT on the E2E benchmark.

Hyperparameter Medium Large

Optimizer AdamW
Learning Rate (FourierFT) 2E-2 5E-2
Learning Rate (Head) 2E-4 1E-4
Batch Size 128
Weight Decay 0.01 0.03
n 1000
Scaling value α 300
Epochs 5
Label Smooth 0.1
LR Schedule Linear

Table 11. Hyperparameter setup for instruction-tuning of LoRA and FourierFT.

Hyperparameter LoRA FourierFT

Optimizer AdamW
Warmup Ratio 0.06
Batch Size 4
Accumulation Steps 4
Epochs 1
n 1000 –
Scaling Value α 300.0 16.0
LR Schedule Linear
Learning Rate 3E-2 3E-3
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Table 12. Hyperparameter setup for image classification of FourierFT.
Hyperparameter OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
LR Schedule Linear
n 3000
α 300.0
Learning Rate (FourierFT) 3E-1 3E-1 3E-1 3E-1 2E-1 3E-1 3E-1 2E-1
Learning Rate (Head) 1E-3 1E-3 1E-3 1E-3 8E-4 1E-3 1E-3 7E-4
Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4

C. Additional Experimental Results
C.1. Training Curve

We show the training curves of our method and LoRA to demonstrate that the superior performance of FourierFT is not
due to coincidence. In Figure 6, we set r = 1 for LoRA and n = 1536 for the MRPC task, so that the total number of
trainable parameters is equivalent for both methods. It can be seen that FourierFT consistently outperforms LoRA in terms
of accuracy, F1 score, and training loss throughout the entire training process.
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Figure 6. Training process of LoRA and ours. We show the current accuracy, F1 score and training loss of two methods.
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C.2. Expressive Ability

To intuitively evaluate the expressive power of our method, we design a simple classification task with a synthetic dataset to
simulate a scenario where LoRA encounters performance bottlenecks. Specifically, we specify a 2D center point for each
class of data in the 8 classes, and randomly add Gaussian noise based on that point to obtain the 2D coordinates of the input.
The dataset visualization is shown on the left of Figure 7. We train a single 64∗64 sized hidden layer with LoRA (r = 1) and
FourierFT (n = 128) to fit the synthesized data. In this case, both methods require the same number of trainable parameters.
However, the results of the experiments are vastly different. It can be seen that LoRA never reaches 100% accuracy within
2000 epochs, while FourierFT can quickly achieve it (in about 500 epochs). Under certain parameter constraints, LoRA has
obvious performance bottlenecks, while FourierFT can easily overcome them.
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Figure 7. Left: The dataset distribution. Colors represent the classes. The model input is the 2D coordinate of each point. Right: Training
process of LoRA and ours.
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D. Examples of Instruction Tuning
We provide some practical cases generated by the LLaMA2-7B model that is fine-tuned with LoRA and ours. Each case
includes the question, the answer and the review assigned by GPT-4.

Question: Use an appropriate format to structure a formal letter of recommendation for 
a student applying to a prestigious graduate program in computer science.

🏆 Assistant #A (Vicuna, FourierFT) Assistant #B (Vicuna, LoRA)

Dear Admissions Committee,\nI am writing to wholeheartedly 
recommend [Student Name] for admission to the prestigious 
graduate program in computer science at [University Name]. 
As [Student Name]'s [professor/mentor/supervisor], I have 
had the pleasure of observing and guiding their exceptional 
academic and personal growth over the past [X] 
years.\n[Student Name] is an outstanding individual with a 
deep passion for computer science. They possess a unique 
combination of intellectual curiosity, technical skills, and a 
strong work ethic that sets them apart from their peers. 
Throughout their academic journey, they have consistently 
demonstrated a keen ability to analyze complex problems, 
design innovative solutions, and implement them with 
precision and efficiency.\nOne of [Student Name]'s greatest 
strengths is their exceptional problem-solving skills. They 
have a remarkable ability to break down complex problems 
into manageable parts, identify the key issues, and develop 
creative solutions that are both effective and efficient. This 
skill has been demonstrated through their impressive 
academic record, which includes numerous awards and 
recognition for their outstanding work.\nIn addition to their 
technical skills, [Student Name] is an exceptional team player. 
They have a proven track record of working effectively with 
colleagues and collaborators to achieve common goals. They 
possess excellent communication skills, both written and 
verbal, and are able to articulate complex ideas in a clear 
and concise manner.\n[Student Name] has also 
demonstrated a strong commitment to ethical and 
responsible use of technology. They have shown a keen 
interest in the ethical implications of their work and have 
actively sought out opportunities to engage in discussions 
and debates on these issues.\nIn conclusion, I strongly 
recommend [Student Name] for admission to the graduate 
program in computer science at [University Name]. Their 
exceptional academic record, technical skills, and personal 
qualities make them an ideal candidate for this program. I 
have no doubt that they will make significant contributions to 
the field of computer science and excel in their academic and 
professional pursuits.\nPlease feel free to contact me if you 
require any additional information.\nSincerely,\n[Your 
Name]\n[Your Title]\n[Your Contact Information]

Dear Admissions Committee,\nI am writing to wholeheartedly 
recommend [Student Name] for admission to the prestigious 
graduate program in computer science at [University Name]. 
As [Student Name]'s academic advisor and mentor for the 
past [X] years, I have had the privilege of observing and 
guiding their exceptional academic and personal 
growth.\n[Student Name] is an outstanding student with a 
deep passion for computer science. They have consistently 
demonstrated a mastery of complex concepts and have 
shown a remarkable ability to apply theoretical knowledge to 
real-world problems. Their academic record is impressive, 
with a GPA of [X] and a track record of excellence in courses 
related to computer science.\nOne of [Student Name]'s 
greatest strengths is their ability to work effectively in a team 
environment. They have a proven track record of 
collaborating with peers and mentors to solve complex 
problems, and their ability to communicate complex ideas in 
a clear and concise manner is exceptional.\n[Student Name] 
is also an exceptional leader. They have served as a 
teaching assistant for several courses, where they have 
demonstrated a natural ability to communicate complex 
concepts to students of varying skill levels. Their ability to 
break down complex ideas into manageable components and 
to provide clear, concise explanations has been invaluable to 
their peers.\nIn addition to their academic achievements, 
[Student Name] has also demonstrated a commitment to 
ethical and responsible use of technology. They have actively 
participated in several hackathons and coding competitions, 
where they have demonstrated a deep understanding of the 
ethical implications of their work.\nI strongly believe that 
[Student Name] has the skills, knowledge, and personal 
qualities necessary to excel in a graduate program in 
computer science. They are an exceptional student who is 
dedicated to their craft and has the potential to make 
significant contributions to the field. I highly recommend them 
for admission to your program and have no doubt that they 
will excel in their academic and professional 
pursuits.\nPlease feel free to contact me if you require any 
additional information.\nSincerely,\n[Your Name]\nAcademic 
Advisor and Mentor\n[Your University/Institution]\n[Your 
Contact Information]

GPT-4 Evaluation:
Both Assistant A (Fourier) and Assistant B (LoRA) provided well-structured and well-written formal letters of 
recommendation for a student applying to a prestigious graduate program in computer science. Both letters highlight 
the student's academic achievements, technical skills, teamwork, communication, and ethical considerations. 
However, Assistant A's letter provides more specific details about the student's problem-solving skills and their ability 
to analyze complex problems, design innovative solutions, and implement them with precision and efficiency.
Assistant B's letter focuses more on the student's academic record and leadership abilities. Both letters are strong 
recommendations, but Assistant A's letter offers a more comprehensive view of the student's strengths in computer 
science. Therefore, my final verdict is: [[A]]

Figure 8. Example 1.
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Question: As a space colonist on Mars, describe your daily life and the challenges you 
face living on another planet.

🏆 Assistant #A (Vicuna, FourierFT) Assistant #B (Vicuna, LoRA)

As a space colonist on Mars, my daily life is filled with challenges and 
unique experiences. Living on another planet is not without its difficulties, 
but it is also incredibly rewarding. Here are some aspects of my daily life 
and the challenges I face:\n1. Environmental Conditions: The Martian 
environment is harsh and unforgiving. The planet's atmosphere is thin, 
and the temperature can drop to -125 degrees Celsius at night. The lack 
of oxygen and extreme temperatures make it difficult to move around and 
perform daily tasks.\n2. Limited Resources: As a colony, we have to 
carefully manage our resources, including food, water, and energy. 
Growing crops on Mars is challenging due to the lack of nutrient-rich soil 
and the extreme temperatures. We have to rely on hydroponics and other 
forms of sustainable agriculture to produce food.\n3. Radiation Exposure: 
Mars does not have a strong magnetic field to protect against harmful 
radiation from the sun and deep space. As a result, we have to take 
precautions to minimize our exposure, such as staying in underground 
habitats during solar flares.\n4. Isolation: Being so far away from Earth, 
we face isolation and communication delays. It can take several minutes 
for messages to reach Earth, which can make it difficult to coordinate with 
Earth-based teams and receive support.\n5. Psychological Factors: 
Living in a Martian colony can take a toll on mental health. The isolation, 
lack of privacy, and constant exposure to new and unfamiliar 
environments can lead to stress, anxiety, and depression.\n6. Technical 
Difficulties: As a colony, we rely on complex machinery and technology to 
sustain our lives. Technical difficulties can arise from time to time, such as 
equipment failures or software glitches. These issues can be challenging 
to resolve, especially when we don't have access to Earth-based 
support.\n7. Medical Challenges: Medical care on Mars is limited, and we 
have to be prepared to handle emergencies and illnesses without access 
to advanced medical facilities on Earth. We have to be proactive in 
maintaining our health and taking preventative measures to avoid 
illnesses.\n8. Navigation and Transportation: Moving around on Mars can 
be challenging due to the planet's low gravity and lack of infrastructure. 
We have to rely on bulky spacesuits and specialized vehicles to move 
around, which can be slow and tiring.\n9. Scientific Research: As a colony, 
we have to conduct scientific research to better understand the Martian 
environment and its potential for human habitation. This involves 
collecting data on the planet's geology, atmosphere, and potential 
resources.\n10. Adaptation and Resilience: Living on Mars requires a 
high level of adaptability and resilience. We have to be able to adapt to 
new and challenging situations and find creative solutions to problems 
that arise.\n\nIn summary, life as a space colonist on Mars is challenging, 
but also incredibly rewarding. We face a range of environmental, 
resource, and technical challenges, as well as psychological and medical 
challenges. However, by working together and being proactive, we can 
overcome these challenges and build a thriving colony on the Red Planet.

Hello! I'm here to help you with your question. 
Living on Mars as a space colonist can be a 
unique and challenging experience. Here's a 
possible scenario:\nAs a space colonist on 
Mars, my day starts early, around 6 AM. The 
planet's thin atmosphere means that the sun 
rises and sets quickly, so it's important to make 
the most of the daylight hours. After a quick 
breakfast, I head to the communal living area to 
start my workday.\nOne of the biggest 
challenges I face is the lack of gravity. Mars has 
only about one-third of the gravity of Earth, 
which can make everyday tasks like walking, 
lifting, and bending difficult. I have to be careful 
not to overexert myself, or I might end up 
floating away! To compensate, I have to use 
specialized equipment and training to perform 
tasks that would be simple on Earth.\nAnother 
challenge is the harsh environment. Mars is a 
very cold planet, with temperatures ranging 
from -125°C to 20°C (-200°F to 70°F). The 
atmosphere is also very thin, which means 
there's no protection from harmful radiation from 
the sun and space. To stay safe, I have to wear 
a special suit and follow strict safety protocols 
when venturing outside.\nDespite the 
challenges, life on Mars can be incredibly 
rewarding. The planet's stunning landscapes 
and unique geological features make it a 
fascinating place to explore. I spend my free 
time studying the Martian geography, learning 
about the planet's history, and conducting 
experiments to better understand the Martian 
environment.\nOne of the most interesting 
aspects of living on Mars is the isolation. 
Because of the distance between Mars and 
Earth, communication with loved ones back 
home can be difficult and delayed. It's important 
to be self-sufficient and rely on the support of 
my fellow colonists to get through the tough 
times.\nOverall, life as a space colonist on Mars 
is a unique and challenging experience. While 
it's not always easy, the rewards of exploring a 
new world and contributing to the advancement 
of human knowledge make it all worth it.

GPT-4 Evaluation:
Both Assistant A and Assistant B provided detailed and imaginative descriptions of daily life and challenges faced by a 
space colonist on Mars. Assistant A's answer is more comprehensive, covering a wider range of challenges and 
aspects of life on Mars, such as limited resources, radiation exposure, psychological factors, and medical challenges.
Assistant B's answer is more focused on a day-to-day routine and provides a more personal perspective on the 
experience. While both answers are informative and engaging, Assistant A's response offers a more in-depth and 
well-rounded view of the challenges faced by a space colonist on Mars. Therefore, my final verdict is: [[A]]

Figure 9. Example 2.
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