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a b s t r a c t 

Accurate vertebrae recognition is crucial in spinal disease localization and successive treatment planning. 

Although vertebrae detection has been studied for years, reliably recognizing vertebrae from arbitrary 

spine MRI images remains a challenge. The similar appearance of different vertebrae and the pathological 

deformations of the same vertebrae makes it difficult for classification in images with different fields of 

view (FOV). In this paper, we propose a Category-consistent Self-calibration Recognition System (Can-See) 

to accurately classify the labels and precisely predict the bounding boxes of all vertebrae with improved 

discriminative capabilities for vertebrae categories and self-awareness of false positive detections. Can-See 

is designed as a two-step detection framework: (1) A hierarchical proposal network (HPN) to perceive the 

existence of the vertebrae. HPN leverages the correspondence between hierarchical features and multi- 

scale anchors to detect objects. This correspondence tackles the image scale/resolution challenge. (2) A 

Category-consistent Self-calibration Recognition (CSRN) Network to classify each vertebra and refine their 

bounding boxes. CSRN leverages the dictionary learning principle to preserve the most representative 

features; it imposes a novel category-consistent constraint to force vertebrae with the same label to have 

similar features. CSRN then innovatively formulates message passing into the deep learning framework, 

which leverages the label compatibility principle to self-calibrate the wrong pre-recognitions. Can-See is 

trained and evaluated on a capacious and challenging dataset of 450 MRI scans. The results show that 

Can-See achieves high performance (testing accuracy reaches 0.955) and outperforms other state-of-the- 

art methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Automatic vertebrae recognition ( i.e. , label classification and 

ounding box localization) from magnetic resonance imaging (MRI) 

elps measure the spine’s appearance, shape, and geometry, which 

elps detect local and global abnormalities for the diagnosis of 

erniation and spinal scoliosis. Automatic vertebrae recognition is 

hus an essential tool for spine disease diagnosis, medical and sur- 

ical treatment planning, as well as postoperative response assess- 

ent ( Liao et al., 2018 ). Performing automatic vertebrae recogni- 

ion accurately and reproducibly for each vertebra is crucial be- 

ause incorrect recognition may cause mis-diagnosis and wrong- 

ite surgery (surgery on the wrong vertebrae), which is one of the 
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ve surgical Never Events in clinical practice ( Stahel and Mauf- 

rey, 2014 ) 

However, as shown in Fig. 1 , automatic vertebrae recogni- 

ion in an arbitrary spine image is challenging because (1) The 

eld of view (FOV) varies unpredictably in the input images, e.g., 

ig. 1 (a) ~ (c) have different FOVs. It is not guaranteed that some 

pecifically-shaped vertebrae (such as the sacrum) exist in the in- 

ut image, so it is impossible to use these vertebrae to classify the 

ther ones Liao et al. (2018) . (2) The input MRI images are often 

btained by different MRI settings (such as echo time, repetition 

ime or RF pulses), while the training dataset of a certain setting 

s often limited. This means that the image characteristics (shape, 

ppearance, texture, resolution, scales, and image intensity distri- 

ution) vary widely in the dataset ( Yang et al., 2017 ), e.g., Fig. 1 (b)

as relatively low resolution. These varieties of the training data 

mpose difficulty on learning representative features to classify the 

ertebrae. (3) The appearances of different vertebrae are similar 

ue to their repetitive nature ( Fig. 1 (d)); while the pathological 

https://doi.org/10.1016/j.media.2020.101826
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
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Fig. 1. Challenges of automatic vertebrae recognition in arbitrary spine images (classifying the labels and tight bounding boxes ( i.e. the white box for L3 in Fig. 1 (a)) of 

each vertebrae). Fig. 1 (a ~ c) show the challenges caused by different fields of view (FOV) and image characteristics (resolution, intensity, acquisition settings, and scales). 

Fig. 1 (d ~ e) show that the repetitive nature, pathological variation, and/or image artifacts make the problem more challenging. Fig. 1 (f ~ i) show the ground truth of the 

vertebrae recognition results and typical wrong recognitions. 

Fig. 2. Overview of Can-see, which is a two-stage network containing: (1) Hierarchical proposal network (HPN) for coarsely localizing regions containing vertebrae (class- 

agnostic proposals) of different scales and resolutions. (2) Category-consistent self-calibration recognition network (CSRN) for recognizing the class label and bounding box 

of each vertebra. Category-consistent dictionary learning is integrated into the recognition network for improved discriminative capability; message passing is embedded for 

automatically calibrating the wrong recognitions caused by different FOV and appearance. 
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ariation and/or image artifacts alters the appearance of the ver- 

ebrae in an unknown manner ( Fig. 1 (e)) ( Lootus et al., 2014; Chen

t al., 2015 ). The unpredictable FOV of the input MRI image adds 

o the problem because it is difficult to classify the vertebrae (e.g., 

istinguish MRI images containing L5 ~ T11 from those containing 

4 ~ T10) due to their similarity in appearance and the pathologi- 

al variations. 

We propose a category-consistent self-calibration recognition 

etwork (Can-See) to recognize vertebrae from arbitrary spine MRI 

mages. As shown in Fig. 2 , Can-see is composed of two care- 

ully designed networks: a Hierarchical proposal network (HPN) 
2 
nd a Category-consistent Self-calibration Recognition Network 

CSRN). These modules are proposed to enhance the robustness to 

cale/resolution, vertebrae discriminative capabilities, and the self- 

wareness of false positive detections: 

• HPN coarsely locates regions containing vertebrae (called pro- 

posals) by matching multi-scale anchors to discriminative hier- 

archical features. It leverages the principle that an object can be 

detected by a box that is close enough to and has similar shape 

with it. HPN is designed to generate anchors to cover all pos- 

sible scales of the vertebrae in the arbitrary input image, and 

then estimate the probability of each anchor containing a ver- 
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tebrae by extracting features for each of them. This design can 

effectively deal with the multi-scale/resolution challenge. 
• CSRN contains a deliberated probability calibration module, 

which is designed to leverage the principle of message passing 

to calibrate the predicted class probabilities of the wrong recog- 

nitions. CSRN also contains a novel category-consistent module. 

This module fuses the dictionary learning principle into a deep 

learning network by a label-consistent k-sparse encoder, which 

promotes vertebrae of the same category to have similar sparse 

codes. These strategies can successfully solve the appearance 

and FOV challenge. 

.1. Related methodology review 

.1.1. Instance detection based on CNNs 

Recent instance detection methods are impressive and have 

chieved great success in many applications, however, they cannot 

e directly applied to vertebrae detection. This is because they may 

ot be capable of distinguishing vertebrae of similar appearance, 

specially from an image of unknown FOV. Recent instance detec- 

ions methods are mainly divided into two categories: two-step de- 

ection (such as Faster RCNN ( Ren et al., 2015 )) and one-step de-

ection (such as YOLO ( Redmon et al., 2016 ) and SSD ( Liu et al.,

016 )). As reviewed in our previous work ( Zhao et al., 2019b ), the

ain difference between two-step detection and one-step detec- 

ion is whether to use regional proposals to coarsely locate the 

bjects. While methods of both categories have shown good re- 

ults in several applications ( Ren et al., 2015; He et al., 2017; Ben-

ri et al., 2017; Li et al., 2017 ), two-step detection generally has 

 higher detection accuracy than one-step detection ( Zhao et al., 

018 ). Recently, two-step detection has been extended to 3D ob- 

ect detection based on point cloud ( Zhou and Tuzel, 2018 ). 

In the medical image analysis domain, although the postures of 

he objects do not change much, a great challenge is the repet- 

tive nature (similar appearances) of different objects and unpre- 

ictable deformations of the same objects. To make it more chal- 

enging, clinical diagnosis and surgery require a perfect detection 

ccuracy of discriminating similar-appearing vertebrae. Thus, even 

he more accurate the two-step detection method is chosen, wrong 

ecognitions can still happen in some images (lower part of Fig. 1 ). 

More specifically, there are typically three kinds of wrong 

ases for vertebrae recognition task: missing detection (false neg- 

tive, ( Fig. 1 (g))), false positive ( Fig. 1 (h)), and wrong classifica-

ion ( Fig. 1 (i)). Unfortunately, wrong recognition for even one sin- 

le vertebra is not tolerable because it may result in mis-diagnosis 

nd wrong-site surgery. Fine-tuning the hyper-parameters of exist- 

ng Faster RCNN can adjust the number of detected objects in each 

mage, however, this strategy is not robust enough to deal with the 

mage characteristic variance of MRI images. Thus, improvements 

re needed before this strategy can be used for vertebrae recogni- 

ion tasks. 

.1.2. Existing work on vertebrae recognition 

Existing works on vertebrae recognition use ideas different from 

he above-mentioned instance detection workflow. Some of these 

orks use classical machine learning methods, while others lever- 

ge deep networks. While nontrivial progress has been achieved 

ecently, simultaneously recognizing the labels and bounding boxes 

f all vertebrae from arbitrary spine images remains a problem. 

Classical machine learning methods can accurately recognize 

ertebrae, however, since they are based on handcrafted feature 

xtraction methods, they may not be generalized to vertebrae 

f more diverse visual characteristics, i.e., they may not be able 

o handle more complicated pathological cases. For these algo- 

ithms, Lootus ( Lootus et al., 2014 ) presents an accurate and ef- 

cient method that combines a classical deformable part model 
3 
etector with dynamic programming, but it needs the sacrum to 

e present. Glocker ( Glocker et al., 2012 ) uses regression forests 

nd probabilistic graphic models, but it suffers from narrow FOV 

 Yang et al., 2017 ). They then( Glocker et al., 2013 ) solved this prob-

em by replacing the regression forest with a randomized classifi- 

ation forest to detect the vertebra centroids via pixel-wise dense 

robabilistic labels training, but it still requires hand-crafted fea- 

ures ( Chen et al., 2015 ), which might not be robust enough for 

rbitrary input images. Other methods, such as snakes, level-set, 

ynamic programming and state-space approaches ( Zhao et al., 

017; Gao et al., 2017 ), have also proved to be effective in detec- 

ion/segmentation tasks of human organs such as carotid intima- 

edia borders and optic disc. These universal methods can be 

odified to perform vertebrae detection ( Kamalakannan et al., 

010 ) since they are trained to be aware of objects with some cer- 

ain appearance. However, they still need some parameters to be 

mpirically set, which may again require manual adjustments of 

hese parameters to handle more complicated pathological cases. 

With the development of deep learning, convolutional neural 

etworks (CNNs) are more and more frequently used for detec- 

ion/segmentation tasks ( Zhao et al., 2019b; 2019a ). Most of these 

orks formulate vertebrae recognition as a centroid point detec- 

ion task. ( Chen et al., 2015 ) uses CNNs jointly trained with a shape

egression model to extract more robust features for vertebrae de- 

ection and achieves superior detection performance than tradi- 

ional methods. Yang ( Yang et al., 2017 ) uses deeply supervised 

NN enhanced by message passing to accurately predict pixel-wise 

robability maps of each vertebrae centroid; Liao ( Liao et al., 2018 ) 

ses a fully convolutional neural network (FCN) and recurrent neu- 

al network (RNN) to localize the centroid of each vertebra. How- 

ver, directly recognizing the labels and bounding boxes of the ver- 

ebrae (rather than the probability map of centroid points) may 

e more meaningful. Clinically, this reveals relative sizes and po- 

itions of vertebrae to perceive pathological deformations; techni- 

ally, this strategy mitigates the problem of false positives because 

hey provide information about the sizes and overlapping of differ- 

nt recognitions ( Yang et al., 2017; Glocker et al., 2013 ). 

.1.3. Label relationship exploitation 

Exploiting the relationships of different recognitions helps im- 

rove recognition accuracy; however, this strategy has not been 

ully studied in instance recognition tasks. Since wrong recogni- 

ion for even one single vertebra is not clinically tolerable, it is 

rucial to promote recognition performance using the relationships 

f different recognitions. Previously, this strategy has been used in 

mage semantic segmentation ( Arnab et al., 2016 ), which uses con- 

itional random fields to leverage the high-order potentials (e.g., 

he label consistency over super-pixels, which is a kind of label re- 

ationship) to correct mistakes in the semantic segmentation work. 

hen, ( Luc et al., 2016 ) uses the recently popular Generative Adver- 

arial Network (GAN) ( Goodfellow et al., 2014 ) to implicitly lever- 

ge more kinds of high-order potentials by assessing the joint con- 

guration of many label variables. We ( Zhao et al., 2019b ) also at-

empt to use GAN in an instance detection framework; although 

ANs have achieved relatively acceptable results in this work, it 

riggers the thought that is it worthy to use the complicated GAN 

etwork (which is relatively unstable to train ( Radford et al., 2015 )) 

o trade for the added kinds of implicit high-order potentials? 

Compared with semantic segmentation, the advantage of in- 

tance detection frameworks is that they can yield recognition re- 

ults i.e., the class probability vectors (CPVs) for the classification 

ask and the bounding box coordinates for the regression task. 

essage passing ( Yedidia et al., 2003 ) has the potential to lever- 

ge the relationship of the recognition results in a more effective 

ay than adversarial networks. This potential is demonstrated by 

 Yang et al., 2017 ), who uses the message passing algorithm to 
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uccessfully handle the problem of missing response in the task 

f predicting pixel-wise probability map (the probability of each 

ixel to be the centroid of a specific vertebra) for vertebrae cen- 

roids. However, correcting the wrong recognitions not only in- 

olves compensating the missing detections but also correcting the 

ecognitions that have wrong labels and deleting the false positive 

ecognitions. The potential of message passing should be further 

xploited to tackle these tasks. 

The concept of message passing is originally used for exactly in- 

erring the marginal probabilities of each node in a tree-structured 

robabilistic graphic model. In instance recognition work, the 

odes refer to the sorted recognitions, the marginal probabilities 

efers to the CPVs, the graphic model refers to the collection of 

ll CPVs and their relationships (label compatibility) in the input 

RI image, and the messages are the scores that one specific node 

aking different labels according to its neighbors. During the mes- 

age passing, the CPV of each recognized vertebrae receives mes- 

ages from its neighboring recognitions and absorbs them for self- 

alibration. However, message passing requires the majority of the 

odes in the graphic model to have correct CPVs. Fortunately, this 

emand can be met by arranging the recognition results of the 

eep CNN-based instance detection framework into a sequential 

eries. Thus, embedding the message passing scheme into the in- 

tance detection framework perfectly complements each other. 

.1.4. Label consistency and sparse coding 

Sparse feature representations help to promote the perfor- 

ance in deep networks ( Liu et al., 2018 ), however, it has not

chieved state-of-the-art performance in the medical imaging do- 

ain. Sparse codes can to some extent be achieved by the 

requently-used rectified linear units (ReLUs), however, sparsity 

an not be guaranteed in ReLU. Dictionary learning plays an indis- 

ensable role in sparse codes because it guarantees sparsity with 

mproved discriminative capability ( Makhzani and Frey, 2013 ). As 

xpressed by Eq. (1) , dictionary learning optimizes both the dic- 

ionary D and the sparse codes X to minimize the reconstruction 

rror: 

 D , X > = arg min 

D , X 
‖ Y − DX ‖ 

2 
2 s.t. ∀ i, ‖ 

x i ‖ 0 ≤ T (1)

here Y ∈ R n × N are a batch of N input signals (each signal is n-

imensional), D = [ d 1 . . . d M 

] ∈ R n ×M is the trainable dictionary ma- 

rix (each row d i is an atom of the dictionary), X = [ x 1 . . . x N ] ∈ 

 

M×N is the sparse code of the input signals Y (each row x j is the

parse code of one signal). In each training step, the dictionary D 

nd the sparse code x i for each sample are alternately updated. 

lassification loss can also be added to Eq. (1) for classification 

asks. The learned x i enhances the sparsity, which is beneficial to 

he reconstruction and classification problem ( Makhzani and Frey, 

013; Jiang et al., 2013 ). 

However, limited attempts of dictionary learning have been car- 

ied out in instance detection frameworks based on CNNs. This 

s probably because most dictionary methods adopt the above- 

entioned iterative training procedure that trains the dictionary 

ff-line, which makes it difficult to be trained together with the 

NNs in the instance detection framework. Moreover, the L0 norm 

oss in the constraint conditions does not have a derivative, which 

lso makes it inappropriate to be trained with the CNNs via back- 

ropagation. Recently, ( Liu et al., 2018 ) proposes a method that in- 

egrates dictionary learning with CNNs by a recurrent unit that it- 

ratively updates the sparse codes, however, this method requires 

he optimal sparse codes as the ground truth, which is often un- 

vailable in instance detection frameworks. ( Yang et al., 2017 ) uses 

 pre-generated dictionary to reconstruct the vertebrae coordinates 

f the maximum descending subsequence in the predicted coordi- 

ates. This strategy, although achieves high performance for cor- 
4 
ecting the centroid coordinates, does not make full use of the ad- 

antages of the dictionary learning for improved discriminative ca- 

ability. ( Jiang et al., 2013 ) innovatively introduces the concept of 

ictionary label, which associates label information with each dic- 

ionary atom and uses the KSVD method ( Aharon et al., 2006 ) to

olve the minimization problem with L0 norm loss. This method 

romotes the discriminative capability and achieves good perfor- 

ance in both reconstruction and classification tasks. 

Inspired by previous works, we conjecture that integrating the 

abel-consistent dictionary with the instance detection framework 

romotes feature points with the same class labels to have similar 

parse codes, which results in higher recognition accuracy. As dis- 

ussed above, the KSVD method is used for solving the L0 norm 

inimization problem, and can not be directly integrated into 

he instance detection framework. Actually, besides KSVD, many 

ffective methods have been developed to solve the dictionary 

earning problem these years, such as the ISTA (iterative shrink- 

ge/thresholding algorithm) algorithm ( Chambolle et al., 1998 ), the 

MP (orthogonal matching pursuit) algorithm ( Pati et al., 1993 ), 

he LASSO (least absolute shrinkage and selection operator) algo- 

ithm ( Tibshirani, 1996 ), and the DSR (deep sparse code) algorithm 

 Sharma et al., 2017 ). However, all these works solve the prob- 

em as a two-step work, i.e., they alternately optimize D and X , 

hich imposes difficulty on integrating them into CNN networks. 

hus, it is crucial to develop a variant of the label consistency in 

 Jiang et al., 2013 ) that can be embedded into the instance detec- 

ion framework. 

.2. Contributions 

• We propose an accurate clinical tool to simultaneously recog- 

nize vertebrae labels and bounding boxes from arbitrary input 

MRI images of different FOV, resolution, intensity, acquisition 

settings, and scales. This reveals the shapes and relative posi- 

tions of different vertebrae for further clinical diagnosis. 
• For the first time, we develop a method to integrate the con- 

cept of label-consistent dictionary learning to the instance de- 

tection framework. This strategy enables end-to-end training of 

the dictionary and promotes vertebrae of the same labels to 

have similar sparse codes, which improves the discriminative 

ability of the recognition framework. 
• For the first time, we formulate message passing into a deep 

learning object recognition network for class probability vectors 

(CPVs) calibration and provide a simple and effective method 

to guarantee the inputs to the message passing is valid. This 

strategy leverages the relationships of the pre-recognized ob- 

jects for automatically correcting the wrong pre-recognitions 

with the help of the right ones. It enhances the performance 

in case where the inputs possess different FOVs and similar ap- 

pearances. This also benefits other object recognition problems 

where the coordinates of the target objects have some certain 

internal spatial relationships. 

In this work, we advance our preliminary attempt on verte- 

rae detection in MICCAI 2019 ( Zhao et al., 2019c ) in the follow- 

ng aspects: (1) We propose a label-consistent dictionary learning 

odule and integrate it into a deep learning-based instance de- 

ection network, which effectively mitigates the intractable wrong 

ecognitions and paves the way for the succeeding message pass- 

ng. (2) We propose a simple and effective interface to convert the 

re-recognition results to a series of nodes in a tree-structured 

robabilistic graphic model that is needed by the message pass- 

ng scheme. (3) We carry out in-depth descriptions and discussions 

n the mechanism of message passing. These discussions provide a 

ore profound understanding of how the label compatibility ma- 

rix is trained and how it is used in the testing phase when com- 
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ined with the CNN-based framework. (4) A more comprehensive 

eview of vertebrae detection, instance detection, message passing, 

nd dictionary learning is conducted to provide a panorama of ex- 

sting work. 

. Methodology 

Our Can-See ( Fig. 2 ) is a tightly integrated deep recognition 

ramework composed of two cascading stages: 

1. The hierarchical proposal network (HPN, Section 2.1, Fig. 3 ) 

takes the original input MRI slice as input; and yields regional 

proposals (multi-scale rectangle boxes that coarsely cover the 

vertebrae) and features corresponding to the proposals as out- 

put. It tackles the multi-scale/resolution challenges by three 

cascading modules: 

a) The anchor generator generates multi-scale anchors at dif- 

ferent regular locations to cover vertebrae of all possible 

sizes and shapes. 

b) The feature extraction module extracts hierarchical discrimi- 

native image features corresponding to all anchors of differ- 

ent positions, sizes, and shapes. 

c) The sibling detection module processes these features to 

predict which anchors contain vertebrae and the coarse lo- 

cations of the vertebrae (called proposals). 

2. The category-consistent self-calibration recognition network 

(CSRN, Section 2.2, Fig. 4 ) takes the proposals and their features 

as input; and yields final recognitions (represented by predicted 

classes labels and bounding boxes). It tackles the FOV and/or 

vertebrae appearance challenge by two deliberately designed 

modules: 

a) The category consistent pre-recognition module calculates 

sparse codes for each proposal by a embedded k-sparse auto 

encoder, meanwhile, it imposes a constraint to promote pro- 

posals of the same class to have similar sparse codes. These 

sparse codes are leveraged to yield pre-recognitions (CPVs 

and bounding box coordinates). 

b) The probability calibration module corrects errors in its in- 

put pre-recognitions (caused by FOV variety and/or patho- 

logical deformation) by converting them into nodes in a 

graphical model, and forcing label compatibility among dif- 

ferent vertebrae via message passing. 

.1. Hierarchical proposal network (HPN) 

.1.1. The multi-scale anchor generator 

The anchor generator ( Fig. 3 (a)) equidistantly samples grid 

oints from the original input image; and then places boxes of 

ifferent size and aspect ratio (namely, anchors) centered on the 

rid points. The key rules of generating the anchors are that the 

izes and aspect ratios of the boxes should approximate all possi- 

le sizes and aspect ratios of vertebrae in the input images; and 

he sampling distance of the grid points (i.e., the distance between 

wo neighboring anchors) should be decided to ensure that the an- 

hors are dense enough to cover all vertebrae. Based on the global 

 priori knowledge (typical anatomic morphologies of the vertebrae 

n our dataset), the sizes of the anchors are chosen to be 16, 32 and

4 pixels; the aspect ratios are chosen to be 1:1, 1:1.5, and 1:2; and

he sampling distance is chosen to be 8, 16, and 32 pixels. After 

hese parameters are selected, they are not changed when tackling 

nput MRI slices of different scales, i.e., we no longer need the in- 

ividual a priori knowledge about the anatomic morphologies (size 

nd aspect ratios) of vertebrae in the specific input image. Our an- 

hor generation strategy guarantees that there is one anchor close 

nd similar enough to it, i.e., vertebrae of all scales/aspect ratios at 
5 
ll possible locations can be detected by a similar-shaped anchor 

n its vicinity. 

It should be noted that the anchor generator can be applied to 

ore general cases where the global a priori knowledge is more 

gnostic. In our work, generating anchors of more parameter com- 

inations will not significantly increase recognition performance. 

owever, this may help in cases where we have no global a priori 

nowledge about the objects’ sizes and shapes. For example, if the 

nput image is of 512 × 512, the anchor sizes can be chosen as 1, 

, 4, 8, 16, ... 512 (from the possible smallest object to the largest, 

ampling by exponential intervals), the sampling distances 2, 4, 8, 

6, Ǫ 128 (half the anchor sizes), and the aspect ratios 1:1, 1:2, 

:1, 1:5, 5:1, 1:10, 10:1 (covering objects of different shapes from 

early square to very long-thin strips). This could still acquire high 

ecognition performance, although the computational costs will be 

igher. 

.1.2. The hierarchical feature extraction module 

The feature extraction module ( Fig. 3 (b)) adopts a Resnet-like 

etwork (which is fundamentally the same as the Resnet ex- 

ept for some minor modifications) with a top-down pathway. 

t takes the original image as input and extracts pyramid fea- 

ure maps (P1 ~ P3). The detailed network structure is shown in 

ig. 3 (b), where “Resnet_conv2_x” means the “conv2_x” layer in 

able 1 of the original Resnet paper ( He et al., 2016 ). The HPN

round truths, i.e., the first-stage ground truth proposal labels ( p ∗
i 1 

n Eq. (8) in Section 2.3 ) and ground truth bounding box correc- 

ions ( t ∗
i 2 

in Eq. (8) in Section 2.3 ), are used to generate super-

ision signals. These signals are back-propagated from the sibling 

etworks ( Section 2.1.3 ) to train and update the Resnet-like net- 

ork. 

The reason for using pyramid feature maps is to explicitly com- 

ine high- and low-level features for classifying anchors of dif- 

erent sizes. Simply using the output features of Resnet (C3 in 

ig. 3 (b)) for classification may not be able to detect small objects 

ecause C3 has relatively low resolution ( Lin et al., 2017 ). In order

o process anchors of different sizes with appropriate features, we 

eed C3 as well as the intermediate features C1 ~ C2 to a top-down 

ayer as shown in the right half in Fig. 3 (b). In the top-down layer,

he features P2 ~ P3 are up-sampled and merged with their lower 

evel features using lateral connections. The resulting pyramid fea- 

ure maps (P1 ~ P3) are of different resolutions, while all of them 

re semantically strong. Then, anchors are processed with features 

tting their sizes (i.e., larger anchors are processed by “smaller”

eatures of higher level) to judge whether they contain vertebrae 

nd regress the first-stage bounding box corrections. This strategy 

s able to deal with vertebrae of different scales. 

In our Resnet-like network, the sizes of intermediate features 

C1 ~ C3) are carefully designed based on the input size and the 

onfiguration of the anchors. This design is implemented by ad- 

usting the strides of the convolutional layers and the numbers of 

ooling layers. The principle of this design is, the size of a cer- 

ain intermediate feature tensor (one of C1 ~ C3) should be corre- 

ponding with the number of anchors of a certain scale. For clarity, 

e first leave the aspect ratios out of consideration, which means 

hat there is only one anchor of a certain scale and at a certain 

osition. Under this circumstance, take anchors of size 16 × 16 

s an example, the sample distance is set to be 8 in our work. 

hus, there are 64 × 64 (512/8 × 512/8) anchors of this size 

n an input image of size 512 × 512. Then, we determine that 

 certain pyramid feature tensor (one of P1 ~ P3) should be of 

ize “batch size × 64 × 64 × channel numbers”. This determi- 

ation comes from the fact that we feed the pyramid feature ten- 

or into a 3 × 3 convolutional layer (the gray block in Fig. 3 (c),

hose output size is set to be ”same” with input size) to calcu- 

ate the weighted sums of the feature vectors in the tensor. These 



S. Zhao, X. Wu, B. Chen et al. Medical Image Analysis 67 (2021) 101826 

Fig. 3. The hierarchical proposal network (HPN). The anchor generator ( Fig. 3 (a)) places anchors of different scales/aspect ratios at different locations. The feature extraction 

module ( Fig. 3 (b)) extracts discriminative features that are robust to resolution change. The sibling detection module ( Fig. 3 (c)) simultaneously predicts the objectness scores 

and bounding box corrections ( BBC 1 ) of each anchor, and then the anchors are refined to multi-scale proposals by BBC 1 s. The configuration of anchor scales, feature scales 

and anchor intervals are elaborately designed to approach the multi-scale challenge. 
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eighted sums are fed into 1 × 1 convolutional layers for ob- 

aining the objectness scores and BBC 1 s of each anchor one by one 

the orange and blue blocks in Fig. 3 (c)); and the number of the

eight sums is the same with the tensor size. This means that 

he tensor size needs to be equal to the number of anchors, i.e., 

his tensor should contain 6 4 × 6 4 feature vectors to handle the 

 4 × 6 4 anchors. Similarly, for anchors of size 32 × 32, we de- 

ermine another pyramid feature tensor (another one of P1 ~ P3) 

hould be of size “batch size × 32 × 32 × channel numbers”; 

or anchors of size 6 4 × 6 4, we determine the last tensor should 

e of size “batch size × 16 × 16 × channel numbers”. Consid- 

ring that the sizes of P2 are half of that of P1, and the sizes of

3 are half of that of P2, we decide P1 ~ P3 (and also C1 ~ C3) to

e respectively of size “batch size × 64 × 64 × channel num- 

ers”, “batch size × 32 × 32 × channel numbers”, and “batch 

ize × 16 × 16 × channel numbers ǥ, as shown in Fig. 3 (b). 

If we consider the issue of aspect ratios, there would be multi- 

le anchors of a certain scale and at a certain position. For exam- 

le, there are 3 aspect ratios in our work, so there are 3 anchors 

f a certain scale and at a certain position. However, since the re- 

eptive fields of the feature vectors are large enough to cover all 

 anchors, we can use the same feature vector to classify them, 

hich can be implemented by simply changing the output chan- 

els of the convolutional layers in the sibling network. 
6 
Based on the above discussions, we modify the original Resnet 

etwork by keeping only the wanted intermediate feature sizes in 

ur “Resnet-like” network. We design our “conv1” to include one 

onvolutional layer of stride 2 (i.e., the “Resnet_conv1” as in the 

riginal Resnet paper ( He et al., 2016 )) and two pooling layers (the 

 × 3 max pooling layer with stride 2 in Resnet_conv_2 and the 

own sampling with stride 2 by Resnet_conv_3), which results in 

n output size of “batch size × 6 4 × 6 4 × channel number” (i.e., 

he desired size of C1/P1). Then, “conv2” and “conv3” are respec- 

ively designed to contain one pooling layer, which results in out- 

ut sizes of “batch size × 32 × 32 × channel number” and “batch 

ize × 16 × 16 × channel number” (the desired size of C2/P2 and 

3/P3). This can easily be implemented by disabling the interme- 

iate output of conv2_x in the original Resnet, and denoting the 

ntermediate outputs conv3_x conv5_x as C1 ~ C3 (the left half of 

ig. 3 (b)). The lateral connections for enhancing hierarchical fea- 

ures in the bottom-up pathway and the top-down pathway are 

dopted as in ( Lin et al., 2017 ) to obtain P3 ~ P1 (the right half of

ig. 3 (b)). This design preserves the inherent advantages of Resnet, 

hile retaining fewer anchor sizes and intermediate features ac- 

ording to our work may be beneficial to save computation. The 

hortcut connections can prevent degradation problem and high- 

ight the slight changes of the network parameters ( Yang et al., 

018 ), and thereby distinguish the subtle appearance discrepancy 
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f different vertebrae by changes of the parameters. Moreover, the 

esnet features are proved to be robust to the resolution change of 

he input images. 

We clarify that the feature pyramid network has been pro- 

osed in ( Lin et al., 2017 ), and the modifications to Resnet does

ot change its nature, so they are NOT considered as our contribu- 

ion. However, the above discussion is beneficial to future readers 

o have a better understanding of the concepts, principles, and us- 

ge of the object recognition workflow. The original faster RCNN 

apers ( He et al., 2016; Lin et al., 2017 ) do not discuss how to

hoose the sizes of anchors and features, nor do they discuss the 

nternal relationships between the two sizes. In our paper, we clar- 

fy this workflow so that even readers who have no knowledge of 

aster RCNN can have better understanding without the need for 

xtracting fragmented knowledge from the original literature. 

.1.3. The sibling detection module 

The sibling detection module ( Fig. 3 (c)) sends the ablated fea- 

ures P1 ~ P3 into a 3 × 3 convolutional layer and two sibling 

 × 1 convolutional layers to predict objectness scores (probabil- 

ties of containing vertebra) and first-stage bounding box correc- 

ions ( BBC 1 ) of different anchors. Then, as inspired by Faster RCNN 

 Ren et al., 2015 ), the BBC 1 s are applied to the anchors to obtain

oarse detection boxes (called proposals as in ( Ren et al., 2015 )).

roposals with high objectness scores are locations where verte- 

rae probably exist. 

As in our previous work ( Zhao et al., 2019a ), non-maximum 

uppression (NMS) and hard negative mining (HNM) are used to 

reserve negative proposals with high objectness scores (which are 

ifficult to recognize from positive ones). For each image, a total 

f N proposals are preserved and fed into the succeeding network; 

mong the N proposals, the negative proposals are 4 times (this ra- 

io is empirically determined) more than the positive ones. This re- 

oves the “obvious” negative proposals and retains the hard ones 

hat are difficult to recognize from positive ones. Using these hard 

egatives to train the succeeding CSRN helps reduce redundancy 

nd improve its discriminability. 

Summarization for Section 2.1 . The motivation of our HPN is to 

oarsely locate regions containing vertebrae (class-agnostic propos- 

ls) of different scales and resolutions. We adopt three tightly in- 

egrated modules in HPN. These modules generate multi-scale an- 

hors and extract hierarchical features to predict the existence of 

ertebrae in each anchor. The correspondence of the anchor scale 

nd the feature scale are leveraged to tackle the scale/resolution 

hallenge and locate vertebrae from an arbitrary input image. All 

eight and bias variables in HPN are trainable. 

.2. Category-consistent self-calibration recognition network (CSRN) 

.2.1. The category-consistent pre-recognition module 

The overall workflow. As shown in Fig. 4 (a), the category- 

onsistent pre-recognition module simultaneously yields prelimi- 

ary classification results (CPVs) and bounding box regression re- 

ults by a multi-task dictionary-embedded deep network. 

This module takes the proposals and the shared hierarchi- 

al features P3 ~ P1 as its input. Similar to our previous work 

 Zhao et al., 2019b ), the category-consistent pre-recognition mod- 

le also adopts ROI-pooling ( Ren et al., 2015 ) to choose one feature

rom the shared P3 ~ P1 according to the feature level calculated 

y the size of each proposal: 

 = � k 0 + log 2 ( 
√ 

wh /h 0 ) � (2) 

here w and h are the width and height of the proposal. The pa-

ameters in this equation are the same as in ( Zhao et al., 2019b ),

xcept that we change k to be 3, which result in the 6 4 × 6 4
0 

7 
ertebrae corresponding to P 3 , 32 × 32 vertebrae correspond- 

ng to P 2 , and 16 × 16 vertebrae corresponding to P 1 . The levels

or the very few proposals larger than 6 4 × 6 4 (or smaller than 

6 × 16) are cut off to 3 (or 1). After feature map selection, the 

hosen features are cropped by the corresponding proposals, then 

ach cropped feature is resized to 7 × 7 using bilinear interpola- 

ion ( Fig. 4 (a2)) for better bounding box coordinate accuracy. Next, 

he cropped and resized features are fed into 2 cascading convo- 

utional layers (the first one has a kernel size of 7 × 7, and the 

econd 1 × 1); the output channels of the second convolutional 

ayer is 1024. Then, the dimensionalities with size 1 are squeezed 

o that the feature corresponding to each proposal is a vector of 

ize 1024 ( Fig. 4 (a3)). 

The feature vectors are then fed into two siblings branches 

o pre-recognize class-aware labels and bounding boxes: (1) A 

abel-consistent dictionary learning layer that classifies each pro- 

osal by calculating its class probability vector (CPV, Fig. 4 (a4)). 

 CPV is a vector whose elements are the probabilities of the 

re-recognized vertebrae having different labels; the predicted la- 

el is the index of CPVs maximum, and the recognition confi- 

ence score is the maximum value. A category-consistent con- 

traint is used to promote proposals with the same label to have 

imilar sparse codes. (2) A simple fully connected layer to regress 

he second-stage bounding box corrections ( BBC 2 ) for all classes 

or each proposal. After the classification, the BBC 2 correspond- 

ng to the predicted label is chosen and applied to the propos- 

ls to obtain the pre-recognition bounding boxes. Since the simple 

ully connected layer can achieve high performance for the regres- 

ion task (as demonstrated in our preliminary work ( Zhao et al., 

019c )), we do not use dictionary learning layer for this 

ranch. 

The dictionary learning layer integrated with CNNs. The dic- 

ionary learning layer takes the above-mentioned feature vectors 

 Fig. 4 (a3), denoted as Y for the entire batch of images) as input. It

utputs sparse codes X for succeeding classification/bounding box 

egression tasks. Y contains N b vectors ( N b = b × N, where b means

he batch size, N means the number of preserved proposals after 

PN in one image). For each input feature vector y i , its sparse code 

 i encodes the most representative features for further tasks (such 

s classification). As mentioned in the introduction section, typi- 

al methods for obtaining sparse codes X is to alternatively solve 

q. (1) , where D is the trainable dictionary matrix. However, the 

lternative training strategy of D and X makes it difficult to embed 

ictionary learning into deep recognition networks. 

We design a dictionary learning layer that uses the k sparse 

uto-encoder strategy as the basic skeleton, which can be embed- 

ed into the CNN-based instance recognition framework for end- 

o-end training. Hereinafter, we will first detail how it is imple- 

ented, then demonstrate its rationality by analyzing its similari- 

ies and differences between classical solutions such as KSVD, and 

astly, summarize its advantages. 

The implementation of k sparse auto-encoder is simple: for 

ach sample y i (a row in Y , a 1 × 1024 vector), its sparse codes

 i is constructed by multiplying a tied weight matrix W (which 

s the transpose matrix of the dictionary D as in ( Makhzani and 

rey, 2013 )) with the input and then preserving the k largest units. 

he indices of these preserved units are collected and denoted as 

he support set S . All other units are set to 0 to get x i . Then, the

ictionary D is multiplied to x i to reconstruct y i . Mean absolute er- 

or ( 
∑ 

i ‖ y i − Dx i ‖ 2 2 ) are used as the reconstruction loss. The sparse

odes x i is used for the succeeding classification task, namely, the 

ost representative features are selected for classification. The k 

parse auto-encoder method updates the dictionary D by Stochas- 

ic Gradient Descent (SGD) during back-propagation; it then up- 

ates the sparse codes X (as well as the support set S) in the feed-

orward phase. 
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Fig. 4. The Category-consistent Self-calibration recognition network (CSRN). The category-consistent pre-recognition module ( Fig. 4 (a)) classifies the proposals into class- 

aware labels and refines proposals to bounding boxes. This module takes advantage of category-consistent dictionary learning for more discriminative features and yields 

pre-recognitions. The probability calibration module ( Fig. 4 (b)) filters out “easy” wrong recognitions and uses message passing to correct “hard” wrong detections. The 

mechanism of message passing is shown in Fig. 4 (b2), where the CPV of one pre-recognition ( b 5 in this figure) receives messages from its neighbors ( b 4 and b 6 ) via the �

matrix. The messages contain CPVs of all other pre-recognitions and helps adjust the b 5 to reach label compatibility. This self-calibration process corrects the recognition 

errors caused by appearance deformation in arbitrary FOVs. 
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This design, although simple, can serve as an effective substi- 

ute to classical alternatively-trained dictionary learning for finding 

ut the most representative features for each y i , while being able 

o be trained end-to-end with the deep recognition network. The 

ationality of integrating the k sparse auto-encoder into the CNN 

etwork is demonstrated by a detailed comparison with KSVD. 

We first briefly describe the KSVD training procedure for clar- 

ty. In KSVD, D and X are updated alternately in two stages (sparse 

oding stage and dictionary updating stage). (1) In the sparse cod- 

ng stage, D is assumed to be fixed, and each sparse code x i 
re solved by minimizing the reconstruction loss ‖ y i − Dx i ‖ 2 2 with 

he sparsity constraint ‖ x i ‖ 0 ≤ k using some pursuit methods 

 Sulam et al., 2018 ) such as OMP ( Pati et al., 1993 ). (2) In the

ictionary updating stage, the dictionary is updated row by row 

y solving the singular value decomposition (SVD) of the error 

 j, S = 

∑ 

j y j, S − D \ j x j, S , where x i, S means every sample relevant 

o the j th row of D , i.e., its i th element is not 0; D \ i is acquired

y setting the i th row of D to zero. After decomposing E i, S into

 i, S = U�V , the first row of U is used to update d i (the i th row of

 ), the first column of V multiplied by �(0, 0) is used to update

 S . SVD is performed for k times to update all k atoms (rows) of D

 Aharon et al., 2006 ). After all columns of D are updated, the pro-

edure comes back to the sparse coding stage of the next iteration. 

Although the update of D and X are not the same in the two 

ethods, they are still similar in essence. Firstly, in the sparse cod- 

ng stage, as mentioned in ( Papyan et al., 2017 ), the forward pass of

NN is equivalent to the layered thresholding algorithm, which is 

sed to approximate the sparse codes. In other words, although we 
8 
o not use the pursuit methods to obtain the exact sparse codes, 

he estimated ones are close to them. Actually, we have also tried 

o replace the forward feed process with the OMP algorithm to ob- 

ain the sparse codes, the results are no better than directly us- 

ng matrix multiplication, giving strong evidence that the forward 

ass can yield proper sparse codes ( Makhzani and Frey, 2015 ). Sec- 

ndly, in the dictionary training stage of the k sparse auto-encoder, 

he update of D using SGD is an effective substitution of the SVD 

ethod: 

∂ ‖ 

y i − Dx i ‖ 

2 
2 

∂D 

T 
= 2(y i − Dx i ) 

∂ ‖ 

y i − Dx i ‖ 

∂D 

T 

= 

{
2(y i − Dx i ) 

∂ ‖ −Dx i ‖ 
∂D T 

rows of D ∈ S i 
0 otherwise 

= 

{
−2(y i − Dx i ) x 

T 
i 

rows of D ∈ S i 
0 otherwise 

(3) 

he derivative in Eq. (3) actually updates the dictionary twice 

n one back-propagation procedure. The first update on the de- 

oder weights (the back-propagation from the output reconstruc- 

ion layer to the hidden sparse coding layer) serves as an substi- 

ution of the SVD. Since the derivative can reach the preceding 

ayers by propagating through the support set S, it can be inte- 

rated with CNNs during training. The second update (the back- 

ropagation from the hidden sparse codes to the input) optimizes 

he encoder for a better sparse code X in the next feed forward 

hase. Although one step of SGD is not able to provide the opti- 

al dictionary, the training method of D is less critical in creating 
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Fig. 5. The mechanism of the label-consistent strategy helping to prompt feature discriminative ability. The Q matrix promotes the features of samples having the same 

labels to be similar by forcing them into the solution set of a system of linear equations. Note that each grid means M 
N c 

columns of the A and Q matrix. 
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 suitable dictionary ( Coates and Ng, 2011 ). After several epochs of 

raining, the SGD method is also able to achieve high performance. 

The advantage of our design to embed k sparse auto-encoder 

nto deep recognition network is that: (1) We use a forward pass in 

he deep network for obtaining X instead of performing L0 normal- 

zation optimization (which do not have a derivative). This helps 

he dictionary learning layer to be integrated into the CNN-based 

nstance recognition network (the dictionary D is trained with the 

NNs in an end-to-end manner). (2) The alternative solution of 

 and D is avoided. Actually, X is not considered as a trainable 

eight but a hidden unit in the integrated convolutional networks. 

3) Label-consistent constraints (detailed in the next part) can be 

asily imposed on the sparse codes obtained by k sparse auto- 

ncoder for improved discriminative ability. (4) The sparse codes X 

an be easily leveraged for the classification task as in ( Jiang et al.,

013 ) by a linear classifier (i.e., a fully connected layer that yields 

he pre-recognized CPVs). The reconstruction task and the classi- 

cation task can be jointly trained in a unified objective function 

detailed in Section 2.3 ). 

Label-consistent strategy for improved discriminative capa- 

ility. Inspired by ( Jiang et al., 2013 ), we impose a label-consistent 

onstraint to the sparse codes X Eq. (3) on top of the above- 

entioned k sparse auto-encoder. This constraint forces samples 

ith the same labels to have similar sparse codes, which helps to 

mprove the discriminative capability for recognizing different ver- 

ebrae: 

 cc = 

N ∑ 

i =1 

K ∑ 

j=1 

(Q − AX ) i, j Q i, j (4) 

here A is the transition matrix, Q is the ground truth discrimina- 

ive label matrix, which is the key component for label consistency 

the subscript i, j means the element of the i th column and j th row

f matrix Q − AX or Q ). 

The Q matrix improves label consistency by comprehensively 

oncerning the labels of samples and dictionary atoms. Q is a ma- 

rix of M × N ; each row q i ( M × 1 vector, i ∈ [0 , N − 1] ) is defined

s the discriminative label of each input sample y i ; each column 

 

T 
j 

(1 × N vector, j ∈ [0 , M − 1] ) corresponds to an atom of the dic-

ionary. In order to obtain Q , we first define the labels of dictionary 

toms by uniformly assigning labels to all of them. If the dictionary 

as M rows and there are N c labels, we assign the 0 th ∼ ( M 

N c 
− 1) th 

ictionary atoms to have label 0, ( M 

N c 
) th ∼ ( 2 M 

N c 
− 1) th dictionary 

toms to have label 1, ... etc . With this in mind, we set the val-

es of the label-consistent matrix Q row by row. For each row q i ,

f the sample it represents has the same label with the dictionary 

abels, these positions in q are set to be 1, and the other positions
i 

9 
n q i are set to be 0. For example, as shown in Fig. 5 , the 0 th sam-

le corresponds to the 0 th row of Q , and the ( 2 M 

N c 
) th ∼ ( 3 M 

N c 
− 1) th 

olumns of q 0 are assigned dictionary label 2, so if the 0 th sample 

ave label 2, the ( 2 M 

N c 
) th ∼ ( 3 M 

N c 
− 1) th columns in q 0 are set to 1

the black block in the 0 th row of Fig. 5 ) and the others are set to

 (the other white blocks in the row). 

The mechanism that Q helps to prompt the discriminative abil- 

ty of the dictionary is that, different elements in q 

T 
j 

(a column 

n Q ) are approximated by multiplying the same column in A with 

ifferent rows in X , i.e., the sparse codes of samples with the same 

abels are constrained onto the solution set of A k x = 1 ( A k is a sub-

atrix of A containing some of its columns, indicating positions 

here the dictionary label is the same with the sample label). 

or example, as shown in Fig. 5 , suppose the 0 th and 1 st sample

oth have label 2, then the elements of the ( 2 M 

N c 
) th ∼ ( 3 M 

N c 
− 1) th 

olumns in q 0 and q 1 are all set to 1 (black blocks in the 0 th and

 st row of Q in Fig. 5 ). Since these elements are obtained by the

ultiplication of the ( 2 M 

N c 
) th ∼ ( 3 M 

N c 
− 1) th columns of A (denoted as 

 2 ) and the 0 th and 1 st rows of X (denoted as x 0 and x 1 respec-

ively), x 0 and x 1 would be encouraged onto the same solution set 

 2 x = 1 ; and their similarity is thus increased. The resulting sparse 

odes can be easily transformed to the same (or very close) CPVs 

y the succeeding fully connected layer. In this way, the sparse 

odes are trained to be most discriminative in the sparse feature 

pace. 

The label-consistent strategy is easy to be trained with the in- 

tance detection CNN framework. Thanks to the k sparse auto- 

ncoder, an analytical link between the sparse code and the dictio- 

ary is established, so we do not need to solve for ∂x S 
∂D S 

using the 

omplicated derivative with matrix inverse as in ( Jiang et al., 2013 ). 

he discriminative sparse code error Eq. (4) can be minimized to- 

ether with the classification loss and the reconstruction loss using 

he SGD algorithm. In this way, the label-consistent strategy is in- 

egrated into the pre-recognition network, which prompts samples 

f the same class to have similar sparse codes and boosts the clas- 

ification performance. 

Summarization. The motivation of this subsection is to pre- 

ecognize vertebrae (classify each vertebra and regress its bound- 

ng box) from the proposals and features, and to guarantee that 

ost pre-recognitions are correct by improved discriminate ability 

f similarly-appearing vertebrae in different FOV’s. We develop a 

eep network with an embedded dictionary learning layer based 

n k sparse auto-encoders for this task, which enables end-to-end 

raining with the CNN networks. We then further implement a 

abel-consistent constraint to improve the discriminate ability. The 

NN weights and biases, the dictionary matrix D , and the transi- 

ion matrix A are the trainable variables in this subsection. 
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Fig. 6. Supplementary examples showing the wrongly pre-recognized cases. The appearances of the wrongly pre-recognized vertebrae are not significantly different with 

the correctly pre-recognized ones, however, their CPVs may be wrongly calculated because of the repetitive nature of vertebrae. This is the essence of wrong recognitions. 
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.2.2. The probability calibration module 

The overall workflow. As shown in Fig. 4 (b), our probability 

alibration module effectively yields more accurate classified ver- 

ebrae and more precise bounding boxes than the pre-recognized 

nes through message passing. 

The probability calibration module takes the pre-recognitions 

the outputs of the category-consistent pre-recognition module) 

s input. These pre-recognitions are correct for the vast majority 

f the vertebrae, however, wrong pre-recognitions still happens in 

ome images. We first analyze the reasons that lead to wrong pre- 

ecognitions. As shown in Fig. 1 (f ~ i), these wrong recognitions are 

ainly divided into three categories: missing detection (false nega- 

ive), false positive, and wrong classification. Although these wrong 

ecognitions seem different from each other, they are the same 

n essence: the class probability vectors (detailed in Section 2.2.1 ) 

re wrongly predicted. For example, the false negative in Fig. 1 (f) 

s caused by wrongly predicting the probability of label 0 (back- 

round) to be larger than label 7 (T12), i.e., the 7 th element in 

he CPV is wrongly predicted to be smaller than the 0 th element. 

lso, the false positive in Fig. 1 (g) is caused by wrongly predict- 

ng the probability of label 2 (L5) to be larger than label 0 (back- 

round); the wrong classification in Fig. 1 (h) is caused by wrongly 

redicting the probability of label 4 (L2) to be larger than label 5 

L1). The appearances of the wrongly pre-recognized vertebrae are 

ot significantly different from the correctly pre-recognized ones 

as shown in Fig. 1 (f) ~ (i) and also in the supplementary cases 

ig. 6 ). The repetitive nature of vertebrae confuses different verte- 

rae, while the pre-recognition module independently predicts the 

abels of different vertebrae without leveraging the label relation- 

hip between neighboring vertebrae (e.g., it can not be aware that 

redicting two neighboring vertebrae to be the same label is ob- 

iously wrong). The repetitive nature and the independent recog- 

ition strategy may cause some vertebrae may be wrongly pre- 

ecognized (i.e., their CPVs are wrongly calculated). 

With this in mind, we design our message passing self- 

alibration module to efficiently correct the wrong recognitions. 

irstly, an adaptive threshold interface is designed to remove the 

elatively easier false positives at wrong positions (as shown in 

ig. 1 (g)) by identifying their x coordinates. This procedure pre- 

erves only the pre-recognitions at approximately the correct posi- 

ions and constructs an appropriate sequence of “coordinate-label 

indicated by CPVs)” pairs for the succeeding message passing al- 

orithm. The sequence is sorted using the y coordinates of the 

re-recognitions and used as the input to the message passing 

odule. Then, the message passing module is designed to care- 

ully calibrate the CPVs of the missing recognitions and wrong 

ecognitions at approximately the correct locations (as shown in 

ig. 1 (f) and (h)). This procedure leverages the label compatibil- 

ty between neighboring vertebrae; it uses the CPVs of the correct 

re-recognitions to calibrate the wrong ones. Since BBC 2 s are pre- 
10 
icted for each class in the pre-recognition module, the bounding 

oxes can be automatically refined by choosing the BBC 2 of the 

orrect class. In other words, the BBC 2 s are automatically refined 

y choosing the correct class label. In this way, our probability cal- 

bration module yields both calibrated CPVs and bounding boxes 

ith much higher accuracy. 

The adaptive threshold interface. The adaptive threshold in- 

erface aims to remove the “easy” false positives and sorts the re- 

aining vertebrae to construct a sequence. The x and y coordinates 

f the correct vertebrae have some internal rules, i.e., if the y co- 

rdinates are sorted form small to large, the x coordinates should 

orm a smooth curve; this curve can be either monotonic or not, 

ut it should not contain distinct outliers even if the patient has 

pinal diseases that can lead to vertebrae displacement in the x di- 

ection. Thus, we can simply use the thought of removing outliers 

o remove these false positives with wrong x coordinates. 

An adaptive threshold is intended for finding obvious outliers 

rom the input pre-recognitions, while being insensitive to the 

athological displacement of vertebrae. To find this threshold, we 

dopt the Savitzky-Golay filter ( Savitzky and Golay, 1964 ) that fits 

ach point in a curve using the weighted average of M neighbor- 

ng points. This procedure does not contain any trainable variables; 

t processes the pre-recognitions to effectively extract the smooth 

 coordinates curve. Then, during training, the deviation between 

he x coordinates before and after SG smoothing is calculated, and 

he largest deviation is set as the x coordinate deviation threshold. 

ince the x coordinates of the bounding boxes are trained to be 

ery close to the ground truth, the threshold represents the max- 

mum degree of outlying that could be caused by the pathologi- 

al displacements. During testing, the same smoothing procedure 

s implemented to the pre-recognitions; if the deviation of a pre- 

ecognition before and after the smoothing operation is larger than 

he threshold, this pre-recognition is regarded as an outlier (false 

ositive) and deleted. 

It should be noted that more information (such as the y coordi- 

ates of neighboring pre-recognitions and the recognition scores) 

an also be used to remove false positives. This may lead to more 

omplicated machine learning methods. In our work, simply us- 

ng the x coordinates deviation threshold is enough for identifying 

hese “easy” false positives. 

Message passing module for CPV calibration. The message 

assing module takes the above-mentioned sorted sequences of 

re-recognized CPVs as input. The sequence of an image is re- 

arded as a chain structured graphic model; which is evolved 

y message passing for self-calibration of the “hard” wrong pre- 

ecognitions. During this evolvement, messages are passed be- 

ween neighboring nodes (recognitions) to calibrate the CPVs and 

ptimize the overall label probability distribution by a label com- 

atibility matrix �. The � matrix is a trainable parameter of shape 

 c × N c , N c is the number of classes, an arbitrary element �( a, 
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 ) means the compatibility score of two consecutive nodes having 

abels a and b respectively. Eq. (5) theoretically reveals how mes- 

ages are calculated, and how it affects the CPV of a specific verte- 

ra via the � matrix. Next, we first detail the physical meaning of 

q. (5) in our vertebrae recognition task; and then show how it is 

ntegrated into the CNN based network; and lastly demonstrate its 

ole during training and testing: 

ˆ 
 i = 

1 

Z 
b i �

∏ 

j∈ v (i ) 

m ji , where m ji = 

∑ 

label j ∈L 
b j � � �

∏ 

k ∈ v ( j) \ i 
m kj (5) 

here: 

• ˆ b i is the belief of the i th pre-recognition, which encodes its CPV 

and is updated by the element wise product of its initial value 

( b i ) and the message it receives from all its neighbors { j } ( m ji ).

The initial state b i is calculated by multiplying a feature ma- 

trix � to the pre-recognized CPVs. The notation 

∏ 

j ∈ v ( i ) means 

multiplying all the messages sent to node i by its neighboring 

nodes. Z is a normalization constant to force the CPVs’ sum to 

1. 
• m ji is the message from the j th to the i th pre-recognition, 

which is a combination of the beliefs and the label compati- 

bility matrix � by element wise product ( �) of: (i) the belief 

of the j th pre-recognition ( b j ), (ii) each row of �, and (iii) the

message that flow into the j th pre-recognition from its neigh- 

bors except the i th ( m kj ). 
• The notation 

∑ 

label j ∈L means summing over all label possibil- 

ities of node j , which means that all possible pathways from 

different labels of node j to node i are considered when cal- 

culating the message it sends to node i ; thus, the message is 

comprehensive and is able to reflect the possibility of node i 

having all labels. 

In order to train message passing together with the CNN-based 

etworks, we perform the following deductions and modifications 

o formulate Eq. (5) into matrix addition and multiplication. These 

ake it possible to train message passing together with the CNN- 

ased networks: 

(1) Node vicinity based on pre-recognitions 

Since the pre-recognition network and the adaptive threshold 

nterface provides pre-recognitions at approximate correct posi- 

ions, the structure of the graphic model can be simplified. In the 

orted pre-recognition sequences, the i th one only neighbors the 

 − 1 th and i + 1 th ( i.e. , the belief ˆ b i in Eq. (5) is simplified to 1 
Z b i �

 i −1 , i � m i + 1 , i ), and the messages it receives ( m i −1 , i / m i + 1 , i ) are 

nly dependent on the i − 2 / i + 2 th pre-recognition ( e.g. , m i −1 , i =
 

label i −1 ∈L b i −1 � � � m i −2 , i −1 ). Thus, by substituting the expres- 

ion of message m in turn, the beliefs of all pre-recognized ver- 

ebrae are combined by the � matrix and absorbed into ˆ b i . 

(2) Construction of messages for formulating Eq. (5) into CNNs 

We implement Eq. (5) in the logarithm domain to change 

he multiplication operation to the addition operation, which 

elps prevent arithmetic overflow. The product operation in 

q. (5) thus becomes addition, and the summing operation be- 

omes logsumexp. Considering the above-mentioned node vicinity, 

q. (5) evolves into Eq. (6) : 

ˆ b i = exp(−Z + b i + m i −1 , i + m i + 1 , i ) 

Z = log 
∑ 

label i ∈L 
exp( b i + m i −1 , i + m i + 1 , i ) 

 i −1 , i = log 
∑ 

label i −1 ∈L 
exp 

(
b i −1 � � � m 

T 
i −2 , i −1 

)

 i + 1 , i = log 
∑ 

label i +1 ∈L 
exp 

(
b i + 1 � � � m 

T 
i + 2 , i + 1 

)
(6) 
11 
here ˆ b i and the messages m are all modified into the logarithm 

omain. The normalization factor Z means summing up all label 

ossibilities of node i, which forms the softmax operation in cal- 

ulating ˆ b i . The summation of b i −1 � � � m 

T 
i −2 , i −1 

is performed by 

uplicating the vectors into matrices. b i −1 ( N c × 1 vector) is dupli- 

ated by row and m 

T 
i −2 , i −1 

(1 × N c vector) is duplicated by column 

nto N c × N c matrices to sum up with �. In this way, an arbitrary 

lement in this summation (e.g., the one at the a th column and b th

ow) means the score of “the i − 1 th node having label a ” plus the

abel compatibility score of “the i -1th node having label a while 

he i th node having label b ”, and the message that the i − 1 th

ode receives. This is a comprehensive score concerning the class 

robabilities of nodes i -1 and i as well as their label compatibil- 

ty. Thus, the logexpsum operation over all elements in a column 

eans considering all possible labels of the i − 1 th node and con- 

tructs the forward message from the i − 1 th to the i th node. The

ackward messages are similarly constructed by the fourth equa- 

ion in (5) . This makes it possible to construct bi-directional mes- 

ages using matrix operations of the b i and �. 

(3) Enhancing � matrix by joint compatibility scores 

Although directly using Eq. (6) enables the training of the �
nd � matrix, we slightly modify the calculation of final CPV 

ˆ C 

nto Eq. (7) to enhance the function of the � matrix. 

ˆ 
 i = 

∑ 

label i +1 ∈L 
exp 

[
−Z + ( b i + b i + 1 ) � � � ( m i −1 , i + m i + 2 , i + 1 ) 

T 
]

(7) 

here ( b i + b i + 1 ) � � � ( m i −1 , i + m i + 2 , i + 1 ) T means first perform- 

ng b i + b i + 1 and m i −1 , i + m i + 2 , i + 1 separately as vectors, and then 

uplicating the two summations by row/columns to N c × N c ma- 

rices, and lastly adding up the three matrices. The summation 

f m i −1 , i and m i + 2 , i + 1 considers all possible values of the earlier 

odes (the 0th to i − 1 th of the forward message, and the N − 1 th

o i + 2 th for the backward). Then, we take into consideration the 

ompatibility of the i th and i + 1 th node by adding the � matrix,

 i and b i + 1 . This results in a joint score of the i th and the i + 1 th

ode. Lastly, the “marginal” probability (calibrated CPV) of the i th 

ode can be calculated by summing up the labels over the i + 1 th

ode. 

Till now, we have converted the message passing procedure 

nto matrix addition and logsumexp operations; and the whole 

rocedure is summarized in Algorithm 1 . After the final CPVs 

re calculated, the message passing loss is calculated by loss mp = ∑ N 
i =1 

∑ N c 
j=1 

y i ln ̂

 c i (j) , where y i is the one-hot ground truth label 

f the i th vertebrae. The message passing loss is minimized to- 

ether with the losses in the pre-recognition network to train �
nd � (the two trainable variables in the message passing mod- 

le). 

During training, the � matrix is trained by forcing the cali- 

rated CPVs to approach the ground truth class. During testing, 

he � matrix is leveraged to calculate and calibrate the CPVs 

f each vertebra using its neighboring vertebrae. The � matrix 

an be trained correctly only when the pre-recognitions are cor- 

ect; similarly, the CPVs can be calibrated appropriately only when 

ost of the pre-recognitions are correct and the � matrix is 

roperly trained. Fortunately, these can be both guaranteed by 

he pre-recognition network: (1) When the training of the pre- 

ecognition network (and also the HPN) reaches stability, the train- 

ng label accuracy is very high (near 100%), which provides reli- 

ble CPVs to train the � matrix. There are no false positives or 

rong predictions to perturb the training of � matrix. (2) When 

sing the trained � matrix for testing, thanks to our HPN and 

abel-consistent pre-recognize network, the majority of our pre- 

ecognitions have acceptable CPV’s with correct labels and high 

ecognition scores. Also, filtering out the “easy” false positives (the 

ellow box in Fig. 4 (a2)) at wrong positions helps construct a cor- 
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Algorithm 1: message passing. 

Require: P re − recognition CP V s : C , f eature matrix : 

�, label compatibilit y mat rix : �
Ensure: C alibrat ed C P V s : ˆ C 

1. Calculate the initial belief score matrix: B ← 

mat rix _ mult iply (C , �) 

2.Calculate bi-directional message ( m i −1 ,i and m i +1 ,i in 6): 

/* b i means the i th column of B , subscript dup means duplication 

of vectors into matrices*/ 

cumulative ← 0 

for i = N − 2 ∼ 0 

Calculate each message: 

m i +1 ,i ← log 
∑ 

rows exp(b i,dup � � � cumulative 
T 
dup ) 

Update cumulative message: 

cumulative + = m i +1 ,i 

endfor 

cumulative ← 0 

for i = 1 ∼ N − 1 

Calculate each message: 

m i −1 ,i ← log 
∑ 

columns exp(b i,dup � � � cumulative 
T 
dup ) 

Update cumulative message: 

cumulative + = m i −1 ,i 

endfor 

3.Calibrate the CPV of each node ( ̂  c i in 7) using the bi-directional 

messages: 

for i = 0 ∼ N − 1 

Calculate joint score of two nodes: 

T i ← ( b i + b i + 1 ) dup � � � ( m i −1 , i + m i + 2 , i + 1 ) T dup 

Calculate normalization factor: 

Z i = log 
∑ 

all exp(T i ) 

Calculate calibrated CPV: 

C (i, :) = 

∑ 

rows exp(T i − Z i ) 

return C 
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ect input sequence to the message passing. Thus, the adjustments 

f the CPVs are in the correct direction; the undesired CPVs are 

alibrated using Eq. (5) ( Fig. 4 (b2)) and their maxima are promoted 

o appear at the correct indices. 

Summarization. The motivation of this subsection is the self- 

wareness and self-calibration of the wrongly pre-recognized ver- 

ebrae. We first purpose an interface for finding “easy” wrong 

ecognitions and converting pre-recognitions to CPV sequence, and 

hen develop a message passing module to correct more difficult 

rong pre-recognitions using the compatibility of neighboring la- 

els. The matrices � and � are the trainable variables in this sub- 

ection. 

Summarization for Section 2.2 (CSRN). This section contains 

he main contributions of our paper, which leverages the regional 

roposals (output of Section 2.1 ) for accurately recognizing dif- 

erent vertebrae. It proposes two cascading modules: category- 

onsistent pre-recognition module ( subsection 2.2.1 ) and a prob- 

bility calibration module ( subsection 2.2.2 ). The pre-recognition 

odule encodes a dictionary learning layer, which is based on a 

 sparse auto-encoder with label-consistent constraints, into an 

nd-to-end deep recognition network. These designs achieve pre- 

ecognitions that are correct for the vast majority of the verte- 

rae. The calibration module includes a cascading adaptive thresh- 

ld interface and a message passing module. The easy wrong pre- 

ecognitions are first tackled by the adaptive threshold interface, 

nd then the hard ones are corrected by passing messages among 

he CPV sequences of an image. The pre-recognition module and 

alibration module mutually benefit each other and achieves high 

ertebrae recognition accuracy. 
12 
.3. Objective function and training strategy 

The objective function of the detection framework includes 

hree parts: the HPN loss L HPN , the category-consistent pre- 

ecognition loss L Pre , and the message passing loss L mp . These 

osses respectively correspond to the three terms in Eq. (8) . 

L = L HPN + L Pre + L mp 

 HPN = 

λ1 

N 1 

N 1 ∑ 

i 1 =1 

L cls (p i 1 , p 
∗
i 1 
) + 

λ2 

N 2 

N 2 ∑ 

i 2 =1 

L loc (t i 2 , t 
∗
i 2 
) 

L Pre = 

λ3 

N 3 

N 3 ∑ 

i 3 =1 

L cls (q i 3 , q 
∗
i 3 
) + 

λ4 

N 4 

N 4 ∑ 

i 4 =1 

L loc (u 

q ∗
i 4 

i 4 
, u 

∗
i 4 
) 

+ 

λ5 

N 3 

N 3 ∑ 

i 5 =1 

L rec (Y i 3 ,rec , Y 

∗
i 3 
) + 

λ6 

N 3 

N 3 ∑ 

i 6 =1 

L cc (Q i 3 , Q 

∗
i 3 
) 

L mp = 

λ3 

N 3 

N 3 ∑ 

i 3 =1 

L cls (q i 3 ,mp , q 
∗
i 3 
) (8) 

 HPN is the same as the RPN loss in our previous work in 

 Zhao et al., 2019b ). p ∗
i 1 

is the corresponding ground truth label for 

ach anchor on whether it contains a vertebra; t ∗
i 2 

is the ground 

ruth bounding box correction value for transforming each anchor 

o its corresponding ground truth bounding box. As mentioned in 

ur previous work ( Zhao et al., 2019b ), p ∗
i 1 

and t ∗
i 2 

can be derived

rom the manually labelled ground truth for the recognition task 

i.e., q ∗
i 3 

and u 

∗
i 4 

). These details will be shown in the codes which

ill be released in the near future. 

L Pre consists of four terms: the classification loss L cls , the recon- 

truction loss L rec , the category-consistent loss L cc , and the bound- 

ng box loss L loc . L cls is the cross-entropy loss between the pre- 

ecognized CPVs and the ground truth label. This is a multi-class 

lassification task that aims at classifying the positive proposals 

nto N c vertebrae labels (different vertebrae have different labels), 

hile classifying all negative proposals into the background label. 

 loc is the smooth L1 loss (( Lin et al., 2017 )) of the predicted box

nd the ground truth box for the positive recognitions. The recon- 

truction loss L rec and the category-consistent loss L cc also uses 

mooth L1 loss, where Y 

∗ and Q 

∗ are respectively the input fea- 

ures and the discriminative labels, Y i 3 , rec and Q i 3 
are the recon- 

tructions and the calculated discriminative labels. N3 is the total 

umber of selected positive and negative proposals, which are the 

ame with the classification task in L Pre and detailed in ( Zhao et al.,

019b ). 

The message passing loss L mp is similar to L cls , except that the 

redictions are acquired after the message passing procedure. 

The weights ( λ1 ~ λ7 ) in Eq. (8) are selected based on the 

revious experience of the detection task of our previous work 

 Zhao et al., 2019b ) as well as the original label-consistent KSVD 

aper ( Jiang et al., 2013 ). Except for the reconstruction loss λ5 , 

hich is set to be 0.1, all other weights are set to be 1. λ5 and λ6 

re set to be linearly decaying as a function of epoch. The recon- 

truction loss has a smaller weight because this task is relatively 

nimportant than the other tasks. Also, as reported in ( Makhzani 

nd Frey, 2013; Coates and Ng, 2011 ), the optimal sparse codes for 

lassification do not exactly match those for reconstruction. More- 

ver, as the training proceeds, the classification loss and regression 

oss becomes gradually smaller than the reconstruction loss and 

ategory-consistent loss after several epochs. In order to maintain 

he dominance of the main losses, we set λ5 and λ6 to be linearly 

ecaying following ( Lee et al., 2015 ). 

All losses can be minimized through training our integrated 

etwork Can-See. However, since the message passing algorithm 

equires the majority of its inputs are correct, we first train the 
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Table 1 

Summarization for the modules in the methodology part. 

Module names Inputs Outputs Trainable variables motivations innovations 

Anchor generator 

(2.1.1) 

Input MRI scan Anchors of different 

sizes and aspect ratios 

None Cover vertebrae of all possible 

sizes and shapes throughout 

the input MRI scan 

None 

Feature extraction 

module (2.1.2) 

Input MRI scan Hierarchical features 

corresponding to all 

anchors 

CNN weights and 

biases 

Extract hierarchical features 

for processing anchors of 

different sizes and shapes 

(tackle the scale/resolution 

challenge) 

None 

Sibling detection 

module (2.1.3) 

Anchors and features 

(obtained in 2.1.1 and 

2.1.2) 

Proposals CNN weights and 

biases 

Find out anchors containing 

vertebrae and predict the 

coarse locations of vertebrae 

None 

Category consistent 

pre-recognition 

module (2.2.1) 

Proposals and 

hierarchical features 

(obtained in 2.1.2 and 

2.1.3) 

Pre-recognitions 

(classified CPV’s and 

bounding boxes) 

CNN weights and 

biases; dictionary 

matrix D ; transition 

matrix A 

Pre-recognize vertebrae with 

improved discriminate ability 

of similarly-appearing 

vertebrae in different FOV’s 

Embedded dictionary 

learning layer with 

label-consistent 

constraints 

Probability calibration 

module (2.2.2) 

Pre-recognitions 

(obtained in 2.2.1) 

Final calibrated 

recognitions (classified 

CPV’s and bounding 

boxes) 

feature matrix �; label 

compatibility matrix �

Calibrate the wrong 

pre-recognitions with 

self-exploitation of label 

relationships for further 

tackling the FOV/appearance 

challenge 

Embedded message 

passing probability 

calibration 
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PN and pre-recognition network for 20,0 0 0 steps ( ~ 111 epochs) 

o stabilize the training and make the training outputs reliable pre- 

ecognition results. Then, the grading network is trained together 

ith the detection task and adversarial module for another 10,0 0 0 

teps ( ~ 55 epochs). 

.4. Summarization for the methodology part 

We summarize the names, inputs, outputs, trainable variables, 

otivations, and innovations of all modules used in our work by 

he Table 1 . In all, we recognize vertebrae from the input MRI im- 

ges by firstly extracting regional proposals and hierarchical fea- 

ures by HPN, and then pre-recognize each proposal using the la- 

el consistent k sparse auto-encoder dictionary learning layer in 

he label-consistent pre-recognition module of CSRN; lastly, the 

PVs of the wrong pre-recognitions are calibrated in the calibra- 

ion module in CSRN. The total loss function is minimized in an 

nd-to-end manner for vertebrae recognition. 

. Data and experiments 

.1. Data and implementation 

Can-See has been intensively evaluated using a challenging 

ataset including 450 MRI images acquired from different medical 

enters. The images are of different image characteristics (such as 

ertebrae appearance, image resolution, intensity distribution), ac- 

uisition settings (which result in T1, T2, PD, CUBE, TSE, and STIR 

mages) and FOV (containing S ~ T12, S ~ T11, S ~ T10, L5 ~ T11, 

5 ~ T10, L4 ~ T10, each FOV has ~ 75 images). Besides, the 

ertebrae in the images also have different appearances because 

f pathological deformation. 2D slices (not necessarily the mid- 

agittal slices) of each 3D MRI scan are automatically extracted 

the 3D MRI scan is a 3D volume tensor, extracting a 2D matrix 

rom the 3D tensor using operations such as “sliced = volume[:, 

, t]” gives the t th sagittal 2D slice of the 3D scan) and resized to

12 × 512 (which is used as the input in Fig. 2 ) without manual

ropping. The detection ground truth is labeled on each MRI image 

sing our lab tool according to the clinical criterion. 

Can-See is implemented in Python 3.6 on Tensorflow 1.9.0 and 

rained using a momentum optimizer with exponential learning 

ate decay. The batch size is 2, the initial learning rate is 1e-3, the 

ecay factor is 0.96 per 10 epochs, and the learning momentum is 
13 
.9. The training is implemented on an NVIDIA GTX1080 GPU. We 

se the standard five-fold cross-validation for evaluation. The num- 

er of images of each FOV is kept approximately the same in the 

raining/testing dataset in each fold. The five results from the folds 

re averaged to produce a single result of the different criteria. 

.2. Evaluation criteria 

Extensive experiments are conducted to validate the effective- 

ess of our Can-See qualitatively and quantitatively. 

.2.1. Qualitative performance evaluation 

In order to visually demonstrate the accuracy and robustness 

o image characteristics of Can-See, we choose images of differ- 

nt FOV, MRI acquisition settings, vertebrae appearance, vertebrae 

umbers, image resolution, and intensity distribution. The chosen 

mages are from different folds in our five-fold cross-validation to 

erify the reproducibility of our FAR network when the training 

nd testing data vary. The detection box and the ground truth box 

f the critical vertebrae are both demonstrated to prove the excel- 

ent vertebrae detection performance. 

.2.2. Quantitative performance evaluation 

Four metrics are used to evaluate the detection performance: 

(1) Image recognition accuracy. This is defined by the percent- 

ge of images with all its vertebrae correctly detected, i.e., the ratio 
correctly recognized images 

all images 
. This is a rather strict metric because an im- 

ge is considered as correctly recognized only if all vertebrae in the 

mage are correctly recognized, any single false positive, false neg- 

tive or wrong classification would cause the image to be regarded 

s wrongly recognized. 

(2) Identification rate (IDR). This measures the accuracy of 

he individual vertebra classification, i.e., the percentage of ver- 

ebrae that have been correctly detected. This criterion has been 

idely used for evaluating methods that detect the centroid points 

 Glocker et al., 2012; Chen et al., 2015; Yang et al., 2017 ). A verte-

ra is regarded as correctly recognized only if the predicted label is 

he same with that of the closest ground truth centroid’s label, and 

hat the localization error is less than 20mm ( Glocker et al., 2012 ).

lthough our work aims at finding out the bounding box of the 

ertebrae, we also calculate the centroid point coordinates using 

redicted boxes to compare our method with the state-of-the-art. 

(3) mAP 75 , which is a comprehensive metric that considers the 

recision, recall as well as the IoU (Intersection-over-union) with 
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he ground truth boxes of an object recognition network. This met- 

ic is used in many state-of-the-art object detection networks such 

s Faster RCNN ( Ren et al., 2015 ), Mask RCNN ( He et al., 2017 ), and

OLO ( Redmon et al., 2016 ) for the evaluation of their performance. 

etailed descriptions of this metric have been provided in section 

.3.3 of our previous work ( Zhao et al., 2019b ). 

(4) mIoU, which is the average IoU of the detection and ground 

ruth bounding boxes of all vertebrae in all images. 

.3. Intra- and linter-comparison experiments 

.3.1. Ablation experiments for intra-comparison 

Ablation experiments following the same five-fold cross- 

alidation protocol are carried out to respectively prove the neces- 

ity of the dictionary learning layer and the self-calibration mod- 

le. First, the dictionary learning layer is removed (annotated as 

without dictionary”) as a comparison experiment to demonstrate 

he importance of the label-consistent discriminative features. Sec- 

nd, the self-calibration module is removed (annotated as “with- 

ut self-calibration”) to prove the strengths of the message pass- 

ng algorithm to leverage the label compatibility. Third, both the 

ictionary learning layer and the self-calibration module are re- 

oved (annotated as “baseline”) for proving the abilities of the 

etection framework, and also the necessity of integrating the pro- 

osed modules. 

.3.2. Inter-comparison experiments 

Inter-comparison experiments concerning four other state-of- 

he-art methods are carried out to demonstrate the strengths of 

an-See. The four methods are originally proposed in ( Liao et al., 

018; Yang et al., 2017; Ren et al., 2015; Zhao et al., 2019b ) with

ecessary modifications. For example, the method in ( Zhao et al., 

019b ) is originally designed for vertebrae recognition and spondy- 

olisthesis grading using a recognition network with GAN. We 

odify it by deleting the grading branch and using the same fea- 

ure extraction network with the present work (which helps to 

ompare the performance of GAN and message passing in correct- 

ng wrong recognitions). Also, since some of these methods only 

etect the centroid points of each vertebra, they can not be eval- 

ated by the mAP 75 and mIoU metrics. We also calculate the cen- 

roid point location error of our method to compare it with these 

ethods. Since only ( Ren et al., 2015 ) has published their code, we

ake our best effort to re-implement ( Yang et al., 2017 ) and a 2D

ersion of ( Liao et al., 2018 ) and adjust their hyper-parameters for 

etter performance. All these four methods are trained with the 

ame batch size and training steps, and they are performed with 

he same five-fold cross-validation protocol. 

. Results and discussion 

.1. Comprehensive analysis 

.1.1. Qualitative evaluation results of can-See 

Fig. 7 demonstrates that Can-See achieves high vertebrae clas- 

ification accuracy and bounding box localization precision. Typ- 

cal qualitative results are shown in Fig. 7 , which are of differ- 

nt FOV, acquisition settings, vertebrae appearance, vertebrae num- 

ers, and image resolution from different folds in our five-fold 

ross-validation. For example, Fig. 7 (a) is a T1 sequence contain- 

ng S ~ T12, Fig. 7 (b) is a low-resolution STIR (Short-TI Inversion 

ecovery) sequence containing S ~ T10, Fig. 7 (c) is a T1-FSE (Fast 

pin Echo) sequence containing L5 ~ T11 with L1 pathologically de- 

ormed, Fig. 7 (d) is a T1-TSE(Turbo spin echo) sequence contain- 

ng L4 ~ T10, which is difficult to distinguish with images contain- 

ng L5 ~ T11. Despite all these challenges, Can-See achieves high 

erformance; the detected boxes (dashed) have correct labels and 
14 
igh overlaps with their ground truth boxes (solid). This means 

hat Can-See is robust to changes in image characteristics and able 

o achieve high and reproducible performance when the training 

nd testing data varies. 

.1.2. Quantitative evaluation results of can-See 

Fig. 8 demonstrates the high performance of Can-See evaluated 

y all four metrics. 

(1) The black bars mean image recognition accuracy. The first 

black bar is the average image recognition accuracy for 

all tested images, and the following black bars are those 

for individual FOVs. It is seen that the first bar reaches 

0.955 ± 0.024, which means that all the vertebrae are 

correctly recognized in 95.5% of the input images with- 

out any false positive/negatives. For individual FOVs, im- 

age recognition accuracies are respectively 0.981 ± 0.017, 

0.967 ± 0.028, 0.960 ± 0.039, 0.970 ± 0.030, 0.967 ± 0.022, 

and 0.889 ± 0.086 for FOVs S ~ T10, S ~ T11, S ~ T12, 

L5 ~ T10, L5 ~ T11, and L4 ~ T10. Even for the most diffi- 

cult FOV (L4 ~ T10, which tends to be confused with FOV 

L5 ~ T11 without message passing), the image recognition 

accuracy is still as high as 0.889. This high accuracy can 

be attributed to the fact that discriminative features in the 

pre-recognition module help distinguish different FOVs, and 

the message passing module effectively calibrates the wrong 

pre-recognitions. 

(2) The red bars mean the identification rate (IDR) for indi- 

vidual vertebra. Similar to the black bars, the first red bar 

means the IDR of all images, while the rest mean those 

for individual FOVs. The mean IDR reaches 0.974 ± 0.022 

and shows a high classification performance for individual 

vertebra. For different FOVs, the IDRs are generally larger 

than 0.95. For the most difficult FOV L4 ~ T10, the IDR is 

still high, which demonstrates the robustness of Can-See to 

FOV changes. The standard deviations over different folds 

are small, which again shows the robustness to changes in 

the training and testing data. The IDRs are slightly higher 

than the corresponding image recognition accuracies, which 

means that IDR is a relatively easier metric for recognition 

accuracy. 

(3) The blue bars mean the mAP 75 averaged among different 

tested images. The first blue bar shows an average mAP 75 

of 0.972 ± 0.019, which comprehensively shows excellent 

recognition accuracy and precise vertebrae bounding boxes 

locations. Vertebrae of different classes are detected and cor- 

rectly classified in almost all images. For different FOVs, the 

mAP 75 s are generally larger than 0.94, which shows that 

vertebrae are correctly classified regardless of FOVs, even if 

evaluated under a relatively high IoU threshold (IoU ≥ 0.75), 

i.e., the recognized vertebrae’s bounding boxes overlap well 

with the ground truth boxes with the correct label. 

(4) The pink bars mean the average mIoU reaches 

0.928 ± 0.006, i.e., the recognized bounding boxes have 

high overlaps with the ground truths. Similar to the above 

metrics, the mIoUs are high for different FOVs, which again 

shows that the performance of Can-See is robust to FOV 

changes. 

The ability of our Can-See tackling this challenge may be 

ttributed to the mutual beneficial effect between the pre- 

ecognition module and the probability calibration module. On one 

and, the pre-recognition module shows strong ability to capture 

epresentative features (such as vertebrae appearance and orienta- 

ions) for classifying vertebrae with distinguishable characteristics. 

urthermore, the label consistent dictionary learning strategy can 

mprove this classification performance by forcing vertebrae of the 
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Fig. 7. Can-See achieves high vertebrae detection performance on a challenging dataset of different FOV, image characteristics and acquisition settings. The dotted boxes are 

the detection boxes with confidence scores, and the solid boxes are ground truth boxes. 

Fig. 8. Four evaluation metrics indicate that Can-See can accurately classify and localize vertebrae in images of different FOVs, image characteristics, and vertebrae ap- 

pearances. Fig. 8 (a) ~ (d) means the evaluation results of the four metrics for Can-See, Hi-scene( Zhao et al., 2019c )(ablation experiment without dictionary learning layer), 

ablation experiment without message passing, and the baseline method (ablation experiment without either module). The black, red, blue and pink bars respectively mean 

the image recognition accuracy, IDR, mAP 75 , and mIoU for different FOVs. By comparing fig. 8 (a) with (c) (and (b) with (d)), it can be seen that the message passing signifi- 

cantly enhances the performance of all metrics. By comparing fig. 8 (c) with (d), it is seen that the dictionary learning layer does not improve the image recognition accuracy 

without message passing, but it improves the IDR; it also helps reduce wrong recognitions with high recognition scores which are intractable for the message passing to 

self-calibrate. In this way, the dictionary helps enhance the overall performance when the message passing is present (as shown by a comparison between Fig. 8 (a) with 

(b)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ame label in different images to have closer features, while verte- 

rae of different labels in the same images to have farther features. 

n the other hand, our probability calibration module effectively 

xploits the label relationship between the different vertebrae for 

mproved recognition performance. It leverages the classification 

esults of the distinguishable vertebrae to help classify those who 

o not have distinguishable characteristics by exploiting the label 

elationships using message passing. 

For example, the top vertebrae may be T11 in one image, and 

10 in another; the appearances of T11 and T10 may be similar, 

.e., these two vertebrae do not have distinguishable characteris- 

ics. However, some other vertebrae (such as L1, L5, and S) in the 

mage may have better distinguishable characteristics, e.g., S has 

 particular appearance, L1 is at the transition regions of differ- 

nt vertebral sections, and the centerline orientation of L5 begins 

o show greater deviation with its upper vertebrae (as shown in 

ig. 6 a, the centerline orientation of L5 leans left compared with 

hose of other vertebrae). These distinguishable vertebrae can be 
15 
ecognized with high confidence (i.e., their recognition scores are 

igh as mentioned in Section 2.2 ). These high recognition scores 

re leveraged to recognize T10 and T11 by the message passing 

odule, e.g., if the third (or fourth) vertebrae shows strong evi- 

ence of being L1, then the top vertebrae could probably be T11 

or T10). 

The high recognition performance of our Can-See is beneficial 

or clinical diagnosis of different spinal diseases such as diskitis, 

isk narrowing, and compression fracture. For example, Can-See 

utomatically presents that L1 vertebra in Fig. 7 (c) and T11 verte- 

ra in Fig. 7 (d) has abnormal aspect ratios, which means that these 

ertebrae may be suffering from “vertebra plana”, which means 

attened vertebra and may be caused by compression fractures. In 

erms of treatment planning, our Can-See indicates that back brac- 

ng can be applied to this patient to provide external support for 

imiting the motion of fractured vertebrae. A short period of bed 

est could be applied for pain management, however, prolonged in- 

ctivity should be avoided because it may raise the risk for future 
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Table 2 

Ablation experiments demonstrating the effect of category-consistent strategy and the probability calibration module. The message passing 

algorithm in the probability calibration module helps enhance the performance by calibrating the wrong CPVs, while the category-consistent 

strategy in the pre-recognition module helps mitigate the intractable wrong recognitions and pave way for the message passing. 

Method Loc-Err (pixel) image accuracy IDR mAP 75 mIoU 

Can-See 4.872 ± 2.846 0.955 ± 0.094 0.974 ± 0.022 0.972 ± 0.019 0.928 ± 0.052 

Without probability calibration module 5.972 ± 4.076 0.831 ± 0.112 0.920 ± 0.050 0.875 ± 0.076 0.906 ± 0.085 

Without dictionary learning layer (Hi-scene) 5.199 ± 3.063 0.933 ± 0.124 0.963 ± 0.036 0.964 ± 0.025 0.919 ± 0.036 

Baseline method 6.136 ± 4.108 0.844 ± 0.168 0.912 ± 0.068 0.866 ± 0.085 0.874 ± 0.155 
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ompression fractures. If the patient feels that the chronic pain 

ersists, surgical procedures such as vertebroplasty, kyphoplasty 

nd spinal fusion surgery may be needed. In all, although the vari- 

bility of image characteristics in arbitrary MRI images leads to un- 

sual difficulties, Can-see can acquire accurate recognition results. 

.2. Comparative experiments 

.2.1. Intra-comparison experiments 

As shown in Table 2 , the category-consistent strategy in the 

re-recognition module and the probability calibration module 

oth contribute to superior performance of recognition accuracy. 

s a reference, our Can-See on average achieves 0.955 ± 0.024 im- 

ge recognition accuracy and 0.974 ± 0.022 testing IDR (first row 

n Table 2 ). 

(1) After only preserving the convolutional neural networks in 

HPN and CSRN (both the category-consistent strategy and 

the probability calibration module are removed) as the base- 

line method, the testing image recognition accuracy de- 

creases to 0.844 ± 0.168 and testing IDR decreases to 

0.912 ± 0.068 (fourth row in Table 2 ). This not only demon- 

strates the effectiveness of our designed category-consistent 

pre-recognition module and probability calibration module 

but also proves that the baseline recognition network is ca- 

pable of extracting correct features and distinguishing sub- 

tle feature discrepancies of different vertebrae with similar 

appearances. This discrimination ability helps the majority 

of the recognized vertebrae to be correct, which lays the 

foundation for using the category consistency and probabil- 

ity calibration strategies for further improvements. 

(2) If the probability calibration module is removed, only the 

category-consistent dictionary learning layer is functioning 

compared with the baseline method. In this case, the test- 

ing image recognition accuracy is 0.831 ± 0.112 and testing 

IDR is 0.920 ± 0.050 (second row in Table 2 ). It is inter- 

esting that although the dictionary learning layer helps im- 

prove the overall performance in Can-See, this improvement 

is not significant without the probability calibration mod- 

ule. Neither image recognition accuracy nor IDR shows sig- 

nificant improvements compared with the baseline method 

(in some cases there are even declines) when the category- 

consistent dictionary learning layer is used alone. Interest- 

ingly, the mechanism that dictionary learning layer bene- 

fits Can-See lies in the fact that it reduces the number 

of intractable wrong cases (for example, an image where 

six out of seven vertebrae are wrongly predicted, which is 

hard to calibrate). The number of wrong recognitions with 

high recognition scores is decreased. Although the dictio- 

nary learning layer results in somewhat more missing de- 

tections, they are mostly because their recognition scores 

do not reach some threshold (i.e., 0.8 in our experiments). 

This can be easily calibrated by the message passing algo- 

rithm, namely, the dictionary learning layer helps improve 
16 
the overall performance by paving the way for the succes- 

sive probability calibration module. 

(3) If the category-consistent dictionary learning layer is re- 

moved, only the message passing algorithm is functioning 

compared with the baseline method (which is the case in 

our preliminarily work Hi-scene ( Zhao et al., 2019c )). In this 

case, the testing image recognition accuracy is 0.933 ± 0.124 

and testing IDR is 0.963 ± 0.036 (third row in Table 2 ). On 

one hand, it is shown that the message passing algorithm 

significantly increases the image recognition accuracy. There 

are adequate convolutional layers in the baseline method, 

which are capable of capturing most of the vertebrae in the 

image; however, there might be a few wrong recognitions 

in each image because of the similarity of different verte- 

brae, which results in a relatively high IDR but low image 

recognition accuracy. The message passing algorithm can ef- 

fectively calibrate the CPVs of the wrong pre-recognitions 

using those of the right ones, which results in a significant 

rise of the image recognition accuracy. On the other hand, 

comparing with Can-See, it is also demonstrated that the 

category-consistent strategy in the pre-recognition module 

plays a role in the recognition performance enhancement. 

It helps the features of vertebrae with the same labels to 

be closer to each other by constraining them into the so- 

lution set of the same liner inhomogeneous equation sys- 

tems. Without message passing, the benefits of the dictio- 

nary learning layer seem not significant; however, the co- 

operation with message passing makes it a feasible way for 

increased recognition accuracy. 

Conclusively, Can-See achieves higher image recognition ac- 

uracy and IDR than its ablated versions. The combination of 

he category-consistent strategy and probability calibration module 

ontributes to accurate vertebrae recognition from arbitrary MRI 

mages. 

.2.2. Inter-comparison experiments 

As mentioned in Section 3.3.2 , four powerful methods are used 

o perform vertebrae recognition. The results in Table 3 show that: 

1) Our Can-See outperforms the state-of-the-art methods on the 

ame datasets in terms of all four metrics used. Comparing with 

he state-of-the-art classification networks, Can-See shows signifi- 

ant advantages by an average of ~ 9% image recognition accuracy. 

2) The message passing method is more beneficial than GAN in 

ertebrae recognition. (3) HPN and CSRN in Can-See reinforce the 

utual benefit between each other for better recognition perfor- 

ance. 

The second column in Table 3 reveals the results of a method 

sing fully connected network (FCN) and LSTM. As mentioned in 

he ( Liao et al., 2018 ), long-range contextual information, which 

oncerns the sequential order of the vertebrae similar to our mes- 

age passing method, is considered using the LSTM. LSTM and 

essage passing both leverages the label relationship of different 

ertebrae. The advantage of our work is that the pre-recognition 

odule and the adaptive threshold method effectively eliminates 
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Table 3 

Comparison with the state-of-the-art. The comparison shows Can-See reinforces the mutual benefit between 

HPN and CSRN; it achieves high vertebrae recognition performance and outperforms the other methods (FCN- 

LSTM Liao et al. (2018) , DI2IN Yang et al. (2017) , Faster-RCNN Ren et al. (2015) , and FAR Zhao et al. (2019b) ). 

Method Loc-Err (pixel) image accuracy IDR mAP 75 mIoU 

Can-See 4.872 ± 2.846 0.955 ± 0.024 0.974 ± 0.022 0.972 ± 0.019 0.928 ± 0.052 

FCN-LSTM 7.923 ± 4.788 0.727 ± 0.231 0.816 ± 0.188 – –

DI2IN 6.891 ± 5.056 0.835 ± 0.183 0.904 ± 0.179 – –

Faster-RCNN 7.124 ± 3.259 0.831 ± 0.106 0.884 ± 0.098 0.829 ± 0.130 0.844 ± 0.162 

FAR 6.387 ± 3.643 0.878 ± 0.135 0.931 ± 0.108 0.938 ± 0.156 0.910 ± 0.177 
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C  
he false positives, which forms reliable input for the succeeding 

abel calibration procedures (LSTM or message passing). Otherwise, 

he unreliable inputs would harm the performance of label calibra- 

ion when they are fed into it. 

The third column in Table 3 reveals the results of a method 

sing a U-net-like network and message passing. According to 

 Yang et al., 2017 ), the U-net like network is used to finding the

entroid points of each vertebra; and then message passing is 

everaged for response enhancement (i.e., correcting false nega- 

ives). Although this work and our work both use message passing, 

ur work achieves a better performance because our HPN and pre- 

ecognition network in SRN successfully handles images of arbi- 

rary scales/characteristics/FOVs. The pre-recognized vertebrae are 

ore precise and contains fewer false positives compared with 

he predicted pixel-wise probability maps for vertebrae centroid, 

hich gives play to the message passing algorithm to pass the cor- 

ect probabilities for better CPV calibration performance. In other 

ords, the HPN and the CSRN in Can-See reinforce the mutual 

enefit between each other. 

The fourth column in Table 3 is the recognition results of 

aster-RCNN, which is similar to the baseline method in the 

blation experiments. This method, after fine-tuning the hyper- 

arameters, may have similar results with the baseline method. 

he IDR is relatively high; however, since this method does not 

everage the relationship of different recognitions, there might still 

e a few wrong recognitions in some images, which affects the 

verall image recognition accuracy especially for the difficult FOVs 

uch as L4 ~ T10 and L5 ~ T10. 

The comparison between the first and last column in 

able 3 shows the advantage of message passing to GAN 

 Goodfellow et al., 2014 ). GAN is a popular novel algorithm for 

nhancing label compatibility by implicitly leveraging the internal 

igher-order potentials of the vertebrae coordinates. The discrimi- 

ator of GAN uses the label relationships of neighboring recogni- 

ions to distinguish ground truth recognitions from predicted ones 

btained from the generator, i.e., the recognition network. This 

trategy should prompt the generator to yield more reliable recog- 

itions, however, to our surprise, we found that although we have 

ried different training configurations (e.g., when to start training 

he discriminator, the learning rate configuration, the number of 

ayers in the discriminator), the recognition results by GAN is far 

ess satisfactory compared with those using message passing. This 

ay be due to the mechanism of GANs. GANs uses convolutional 

ayers to extract image features and judge whether its input is 

round truth or those generated by the generator. This strategy 

elps to generate images with the same distribution of input data 

input images), however, it mimics the overall distribution of the 

nput image to generate diversified images. Whereas, in the cur- 

ent task, the outputs of the generator are the coordinates (instead 

f the pixel intensities), which do not need diversified results with 

he same overall distribution (instead, it requires individual coor- 

inates to be accurate). Moreover, GAN implicitly learns the dis- 

ributions of the coordinates without an explicit definition, which 

ay raise a problem that GAN may not be able to automatically 
17 
earn the most needed distribution knowledge for correctly reveal- 

ng the relationships to monitor the generator. On the contrary, it 

ay learn some redundant information, which does not benefit the 

ecognition performance. Also, it is demonstrated by many pieces 

f literature that GAN is difficult to train and may suffer from con- 

ergence problems ( Hjelm et al., 2017; Gulrajani et al., 2017; Zhang 

t al., 2018 ). Thus, GAN might not be suitable for the current recog- 

ition task; although it may help improve the recognition perfor- 

ance to some extent, it is sub-optimal for this task. As a compar- 

son, our message passing can leverage the label relationships of 

eighboring vertebrae, which directly calibrates the CPVs and re- 

ults in a better performance with a lower computational cost. 

. Conclusion 

In this paper, we develop a Category-Consistent Self-calibration 

etection Framework (Can-See) to recognize vertebrae in arbitrary 

pine MRI images. It consists of two novel networks: (1) A hierar- 

hical proposal network for perceiving the existence of vertebrae 

f arbitrary scale/aspect ratio; and (2) A category-consistent self- 

alibration recognition network for pre-recognizing the label and 

ounding box of each vertebra and automatically correcting wrong 

re-recognitions caused by FOV variety and pathological deforma- 

ions. Its performance and effectiveness are demonstrated by ex- 

ensive experiments. Codes will be released in the near future after 

leaning up some details, and readers are welcome to ask for the 

odes in advance. 
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