
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING DIFFUSION LLM INFERENCE VIA
LOCAL DETERMINISM PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion large language models (dLLMs) represent a significant advancement in
text generation, offering parallel token decoding capabilities. However, existing
open-source implementations suffer from quality-speed trade-offs that impede
their practical deployment. Conservative sampling strategies typically decode
only the most confident token per step to ensure quality (i.e., greedy decod-
ing), at the cost of inference efficiency due to repeated redundant refinement
iterations–a phenomenon we term delayed decoding. Through systematic analysis
of dLLM decoding dynamics, we characterize this delayed decoding behavior
and propose a training-free adaptive parallel decoding strategy, named Local-
Leap, to address these inefficiencies. LocalLeap is built on two fundamental
empirical principles: local determinism propagation centered on high-confidence
anchors and progressive spatial consistency decay. By applying these princi-
ples, LocalLeap identifies anchors and performs localized relaxed parallel de-
coding within bounded neighborhoods, achieving substantial inference step re-
duction through early commitment of already-determined tokens without com-
promising output quality. Comprehensive evaluation on various benchmarks
demonstrates that LocalLeap achieves 6.94× throughput improvements and re-
duces decoding steps to just 14.2% of the original requirement, achieving these
gains with negligible performance impact. The source codes are available at:
https://anonymous.4open.science/r/LocalLeap-Code-806C.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing (NLP) by achieving
leading performance across various tasks and becoming the dominant paradigm in the field (Zhao
et al., 2023; Minaee et al., 2024). Mainstream autoregressive (AR) LLMs (Grattafiori et al., 2024;
Yang et al., 2025a; Guo et al., 2025) rely on sequential next-token prediction, but this strict left-to-right
serialization inherently limits throughput despite the approach’s stability and implementation maturity.
Recently, diffusion large language models (dLLMs) (Google DeepMind, 2025; Song et al., 2025b;
Nie et al., 2025b) have gained considerable traction in the community. By leveraging bidirectional
attention and iterative “mask-and-denoise” refinement, dLLMs enable parallel token decoding,
delivering flexible and accelerated generation that establishes them as a promising paradigmatic shift.

Despite eliminating sequential dependencies, existing open-source dLLMs suffer from quality-speed
trade-offs that limits their practical deployment, often exhibiting slower inference than AR LLMs.
Common confidence-based sampling strategies (Chang et al., 2022) select a fixed number of high-
confidence tokens at each step but typically decode only the single most confident token to ensure
quality (i.e., greedy decoding), resulting in inefficient inference (Ye et al., 2025). To examine whether
such redundant refinements genuinely contribute to generation quality, we track and analyze the
step-by-step decoding dynamics of dLLMs. We find that many token positions reach consistency
with their final states early and remain stable throughout the prediction process, revealing that overly
conservative sampling strategies unnecessarily delay determination and introduce redundant decoding
steps–a phenomenon we term delayed decoding.

To alleviate this phenomenon, we first explore the prerequisites for effective parallel decoding. We
find that the emergence of high-confidence tokens (termed anchors) produces a stabilizing effect in
their vicinity: predictions for nearby tokens become more reliable and tend to remain consistent with

1

https://anonymous.4open.science/r/LocalLeap-Code-806C

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Decoding Step

Confidence

C
on

si
st

en
cy

C
on

si
st

en
cy

(b) Earliest Stable Consistency Step

(c) Confidence–Consistency Curve(a) Sequential Greedy Decoding
Decoding Step

 T
ok

en
 P

os
iti

on
 In

de
x

Inconsistent Prediction

Consistent Prediction

Decoded in Current Step

63.7% of tokens consistent with
the final decoded state within 8
steps (25% of decoding steps).

97.8% of predictions with
confidence > 0.8 consistent
with the final decoded state.

Figure 1: Confidence-aware sequential decoding visualization and analysis. (a) Sequential
greedy decoding visualization on a GSM8K instance using LLaDA-8B-Instruct. Gray: inconsistent
predictions; Green: consistent predictions (intensity indicates confidence from 0 to 1); Red: decoded
tokens. (b) Distribution of earliest stable consistency steps, showing 63.7% of tokens achieve
final consistency within 25% of total decoding steps. (c) Confidence-consistency relationship
demonstrating that 97.8% of predictions with confidence > 0.8 remain consistent with final outputs.

their final decoded states. This observation suggests that once anchors appear, surrounding regions
can be decoded using less conservative rules, rather than requiring strict greedy commitment for
each token. Based on this insight, we propose LocalLeap, a training-free adaptive parallel decoding
strategy. Our method identifies anchors in the sequence and performs parallel decoding within a
bounded radius around each anchor, using a relaxed confidence threshold to define the decoding
boundary. This adaptive sampling strategy ensures the effective decoding of determinable tokens,
effectively eliminating unnecessary refinement iterations. We make three key contributions:

• We characterize the behavioral dynamics of dLLMs during sequential greedy decoding, revealing a
delayed decoding phenomenon. Based on this analysis, we formulate two empirical principles–local
determinism propagation and spatial consistency decay–which establish the theoretical guidance
for dLLM acceleration.

• We propose LocalLeap, a training-free adaptive parallel decoding strategy that identifies anchors and
performs localized relaxed parallel decoding within bounded neighborhoods, achieving substantial
inference step reduction without compromising output quality.

• Through extensive experiments across various benchmarks, we demonstrate that our proposed
LocalLeap achieves 6.94× throughput improvements and significant reductions in inference steps,
while preserving model performance with negligible degradation. For example, LocalLeap uses
only 14.2% of inference steps while achieving slightly superior performance compared to greedy
sequential decoding on GSM8K benchmark with LLaDA-Instruct (Nie et al., 2025b).

2 PRELIMINARY

2.1 INFERENCE AND DECODING STRATEGIES

Given a prompt p = (p1, . . . , pK) and a target generation sequence length L, we define the initial
state of response r as

r0 = ([MASK], . . . ,[MASK]︸ ︷︷ ︸
L tokens

) (1)

A dLLM can be viewed as a mask predictor that iteratively refines this noised sequence over steps
s = {1, . . . , T}. At step s, for each masked position i, the model pθ produces a categorical
distribution, from which we define the most likely token r̂is and its confidence score cis by

r̂is = argmax
v∈V

pθ(r
i
s = v|p, rs−1), and cis = pθ(r

i
s = r̂is|p, rs−1) (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In theory, the model can unmask all masked tokens in one step. However, to ensure generation quality,
dLLM employs a transition function S to selectively commit a subset of the predictions r̂s when
forming the next state rs = T (r̂s, rs−1). where transition function T refer to as remasking approch.
In the following, we describe the most commonly used remasking schemes.

Low-Confidence Remasking. At each step s, the confidence scores cis for masked positions are
given by Eq. 2. In this straightforward strategy, the predictor commits the unmasked positions with
the highest confidence and leaves the remaining positions as [MASK].

Semi-Autoregressive Remasking. Although dLLMs do not enforce a strict left-to-right dependency
and can update arbitrary positions, instruct models (trained on corpora containing abundant [EOS]
tokens) often exhibit a tendency to emit [EOS] tokens prematurely. A practical remedy is to divide
the sequence r into blocks and perform generation in a left-to-right block-wise fashion (Nie et al.,
2025b). Specifically, during consecutive steps, the model restricts its decoding and remasking
operations only within the current block.

Confidence-Aware Parallel Decoding. The bidirectional attention and arbitrary-position update
capability of dLLMs make them inherently well-suited for parallel decoding, but conservative
quality safeguards often limit decoding speed. Suppose a set of n to be predicted positions given a
conditioning context E = {p, rs−1}. Let rs = (r1s , . . . , r

n
s) denote the noised sequence, and let r∗ be

the particular sequence of interest. If cis are highly confident: cis > 1− ϵ with ϵ ≤ 1
n+1 , then greedy

parallel decoding and greedy sequential decoding coincide (Wu et al., 2025): argmaxrs p(rs|E) =
argmaxrs q(rs|E) = r∗s , where p(·|E) denotes the joint conditional probability mass function (PMF)
and q(·|E) =

∏n
i=1 pi(·|E) denotes the product-of-marginals approximation.

2.2 DELAYED DECODING

Despite the theoretical advantages of parallel decoding capabilities in dLLMs, conservative sampling
schedules frequently underutilize bidirectional attention and parallel-update mechanisms. We hy-
pothesize that existing sampling strategies induce numerous redundant refinement steps, leading to
suboptimal inference efficiency.

To validate this hypothesis, we analyze the decoding behavior of LLaDA-8B-Instruct (Nie et al.,
2025b) under both low-confidence remasking and semi-autoregressive remasking regimes. We track
per-step predictions at each token position and compare them against the final decoded output. Our
analysis employs two key concepts:

• Consistency: Consistency, where the prediction at the current step matches the final decoded token.
• Stability, where the prediction remains unchanged through subsequent refinement iterations.

Figure 1(a) illustrates the decoding process for a representative GSM8K question, demonstrating that
numerous token positions generate predictions in early steps that already match the final greedy de-
code. Despite this early alignment, conservative remasking schedules inhibit premature commitment
of these positions, deferring their resolution to later steps.

To quantify this delayed decoding phenomenon, we sample 120 examples (40 each from GSM8K,
HumanEval, and IFEval) and record the earliest step where each position first becomes both consistent
and stable. Our findings, presented in Figure 1(b), demonstrate that 45.2% of positions achieve
consistency and stability at the first step within a block, while 63.7% could be effectively committed
within the first 25% of decoding steps. This delayed commitment pattern significantly increases
refinement iterations and overall inference cost.

While confidence serves as an effective decoding signal, strict top-1 or fixed-threshold policies
compromise decoding efficiency. As shown in Figure 1(c), among predictions with confidence
exceeding 0.8, at least 97.8% maintain consistency with the final decode. However, excessive
threshold reduction introduces more erroneous predictions (Wu et al., 2025; Ben-Hamu et al., 2025)
while improving efficiency, necessitating a balance between decoding speed and generation quality.

This analysis establishes a clear optimization objective: enable early commitment of reliably deter-
mined tokens to minimize total refinement steps. The central challenge becomes: how can we reliably
identify positions suitable for effective early commitment at each decoding step?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

High Consistency

Sub-High Consistency

Sub-Low Consistency

Low Consistency

Sub-high consistency is already
observed when confidence
remains relatively high.

(a) High Confidence (b) Low Confidence
Distance

C
on
fid

en
ce

C
on
si
st
en
cy

C
on
fid

en
ce

C
on
si
st
en
cy

Distance

Figure 2: Heatmap of consistency analysis with confidence surrounding decoded tokens.
Centered on the decoded tokens at each step, we analyze the trends in confidence and consistency
across surrounding positions. (a) When a decoded token exhibit high confidence (c ≥ 0.9), its
nearby positions maintain high consistency even at moderately lower confidence levels, while more
distant positions require correspondingly higher confidence thresholds. (b) When decoding tokens
exhibit low confidence (c < 0.9), consistency remains poor even at sub-high confidence levels
(c ∈ (0.8, 0.9)), indicating that premature decoding at these confidence levels may introduce errors.

3 METHODOLOGY

We introduce LocalLeap, a training-free adaptive parallel decoding schedule for dLLMs. Our
approach leverages high-confidence predictions as anchors to enable safe parallel decoding within
localized neighborhoods, substantially reducing refinement steps while maintaining output quality.
LocalLeap requires only a simple rule-based modification to existing sampling schedules, making it
readily applicable to current dLLM implementations.

3.1 PREREQUISITE OF SAFE PARALLEL DECODING

To address the delayed decoding challenge identified in Section 2.2, we investigate this through
systematic analysis of confidence and consistency patterns around decoded positions. Using the same
120 examples from our preliminary analysis (40 each from GSM8K, HumanEval, and IFEval), we
examine the relationship between spatial proximity, confidence levels, and prediction reliability.

For each decoding step, we center a bidirectional sliding window on the token being committed and
analyze surrounding masked positions within a maximum distance of 16 in both directions (±16
positions). This bidirectional analysis is motivated by dLLMs’ bidirectional attention mechanisms,
which enable tokens to influence and be influenced by context from both preceding and subsequent
positions. We record two key metrics: (1) confidence scores c at each position, and (2) consistency
denoting whether current predictions match the corresponding tokens in the final decoded outputs.

Stratifying results by whether the central token exhibits high confidence (c ≥ 0.9) or low confidence
(c < 0.9), we generate the heatmaps shown in Figure 2. This analysis reveals two fundamental
empirical principles that govern effective parallel decoding in dLLMs:

• Local Determinism Propagation. High-confidence anchor tokens create regions of enhanced
predictive reliability in their immediate neighborhood. When the central token exhibits high
confidence, neighboring positions with moderately high confidence (sub-threshold but substantial)
demonstrate strong consistency with final outputs, enabling safe parallel commitment. Conversely,
when the central token has low confidence, even moderately confident neighbors exhibit reduced
consistency, making parallel decoding risky under such conditions.

• Spatial Consistency Decay. As demonstrated in Figure 2(a), consistency systematically decreases
as distance increases, even for tokens within moderately high confidence ranges. Despite dLLMs’
bidirectional attention mechanisms, the reliability of parallel commitments deteriorates with in-
creasing spatial distance from high-confidence anchors. While high-confidence emergence enables

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.82 0.24 0.63 0.81 0.92 0.59 0.86 0.62 0.57 0.34

Even if exceeding the relaxed
boundary, positions outside
anchor vicinity remain masked.

Anchor

prompt �0 response �

The region within a radius of W can be
decoded with a relaxed confidence boundary.

�0

�1

forward

remask

Prompt Token

Mask Token

Anchor Token

Sub-high
Confident Token

Decoded Token

Decode

Remask

Figure 3: Illustration of our LocalLeap decoding mechanism. At each decoding step, we first
compute confidence scores for all masked tokens through a forward pass, then identify anchors
(tokens with confidence c ≥ 0.9). We expand outward by W positions from each anchor, creating
local neighborhoods where tokens can be decoded using a relaxed confidence threshold τ = 0.75.
This allows certain tokens to bypass redundant optimization steps, thereby reducing the total number
of decoding iterations.

relaxed decoding criteria within local neighborhoods, extending this relaxation indiscriminately
across larger distances compromises decoding safety.

3.2 LOCALLEAP

Building upon these observations, we propose LocalLeap, a simple yet effective rule-based approach
that systematically addresses the delayed decoding phenomenon in dLLMs. Specifically, LocalLeap
operationalizes the empirical principles established in Section 3.1 through a systematic rule-based
framework that identifies high-confidence anchor tokens and enables localized parallel decoding
within their spatial neighborhoods using relaxed confidence boundary.

At decoding step s, let Bs be the active decoding block andMs ⊆ Bs the set of masked indices
awaiting decoding. For each masked position i ∈Ms, mask predictor pθ produces a confidence score
cis as defined in Eq. 2. Our objective is to identify a subset Ds ⊆Ms that can be safely decoded in
parallel at step s.

We first identify high-confidence tokens that can serve as reliable anchors for triggering localized
parallel decoding:

As = { i ∈Ms | cis ≥ κ }, (3)
where κ is a high-confidence trigger boundary. If As ̸= ∅, we enable local parallel decoding with a
relaxed acceptance boundary within spatial neighborhood of radius W around the anchors:

Ns(As) =
⋃

i∈As

{ j ∈Ms

∣∣ |j − i| ≤W ∧ j ̸= i }. (4)

This neighborhood construction respects the spatial consistency decay principle by limiting the scope
of relaxed decoding criteria to positions within bounded distance from anchors. The set of positions
decoded at step s combines anchors with qualifying neighbors:

Ds = As ∪ { j ∈ Ns(As)
∣∣ cjs ≥ τ }, (5)

where τ < κ is a acceptance boundary for neighbors. Positions outside Ns(As) continue to follow
the conservative decoding rule. This strategy ensures that high-confidence anchors guide the parallel
commitment of their sub-high confident neighbors, while maintaining reliability through distance-
aware constraints. When no anchors are identified (As = ∅), the algorithm returns to conservative
sequential decoding, decoding only the single most confident position. This ensures robustness across
diverse generation scenarios.

Algorithm 1 shows the decoding process of LocalLeap. We further establish its theoretical basis
through formal analysis, including equivalence conditions with sequential decoding and distributional
distance bounds, detailed in Appendix B. Notably, LocalLeap introduces negligible computational
overhead beyond standard dLLM inference, requiring only confidence comparisons and simple

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

neighborhood checks. This makes LocalLeap readily deployable as a plug-and-play enhancement to
existing dLLM implementations without retraining or architectural modifications.

Algorithm 1 LocalLeap: Anchor-Guided Parallel Decoding
Require: model pθ, prompt p0, generation length L, anchor trigger boundary κ, neighbor radius W ,

local relaxed boundary τ
1: x← concat(p0, {[MASK]}L)
2: for s = 1 to S do
3: M← {i | xi = [MASK]}
4: For masked xi, confidence ci = maxv pθ(x

i = v | x)
5: A ← {i ∈M | ci ≥ κ} ▷ Identify anchors
6: if |A| > 0 then ▷ Parallel decoding
7: N ← GetNeighborSet(M,A,W, τ)
8: D ← Union(A,N) ▷ Early decoding set
9: for each i ∈ D do

10: if ci ≥ τ then
11: xi ← argmaxv pθ(x

i = v | x) ▷ Decode
12: end if
13: end for
14: else ▷ Fallback sequential decoding
15: i∗ ← argmaxi∈M ci

16: xi∗ ← argmaxv pθ(x
i∗ = v | x) ▷ Decode

17: end if
18: end for
19: return x

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models and Baselines. We conduct experiments on two representative open-source dLLMs: LLaDA-
8B-Instruct (Nie et al., 2025b) and Dream-v0-Instruct-7B (Ye et al., 2025). For each model, we adopt
semi-autoregressive remasking (Nie et al., 2025b) with block size 32 to prevent premature [EOS]
token generation. We compare three decoding strategies:

• Sequential Decoding. Standard diffusion decoding, with only the most confident token decoded at
each step.

• Confidence-Aware Parallel Decoding (Wu et al., 2025). At each step, this method decodes all
tokens with confidence above a threshold in parallel. If no tokens exceed the threshold, it falls back
to decoding the single most confident token. The confidence threshold is set to 0.9.

• LocalLeap. Our anchor-guided localized parallel decoding approach. LocalLeap involves three
hyperparameters: anchor trigger boundary κ, neighbor radius W , and local relaxed boundary τ .
Unless otherwise specified, we set κ = 0.9, W = 4, and τ = 0.75 based on our preliminary
experiments.

Benchmarks and Metrics. Our evaluation spans three domains: mathematics reasoning
(GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021)), code generation (Hu-
manEval (Chen et al., 2021) and MBPP (Austin et al., 2021c)), and alignment (IFEval (Zhou
et al., 2023)). We measure decoding speed using throughput (tokens per second, TPS) and inference
steps, and report TPS speedup and inference step reduction compared to the baseline.

All experiments are conducted on 8 NVIDIA H800 80GB GPUs. We employ greedy decoding
without any random sampling strategies to ensure reproducible and comparable results.

4.2 MAIN RESULTS

We report the performance and decoding efficiency of LLaDA-Instruct and Dream-Instruct across five
benchmarks in Table 1 and Table 3, respectively. Overall, LocalLeap consistently improves decoding
speed across all tasks and models. For LLaDA on the GSM8K benchmark, LocalLeap achieves a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive benchmark results on LLaDA-8B-Instruct. The performance and
inference speed are compared with different decoding methods.

Benchmark Method TPS Speedup Step Reduction Accuracy

GSM8K
(5-shot)

LLaDA 7.76 1.00× 512 1.00× 78.24
+ Parallel (Fast-dLLM) 41.22 5.31× 95 5.39× 78.24
+ LocalLeap 53.82 6.94× 73 7.01× 78.54

MATH
(4-shot)

LLaDA 23.53 1.00× 256 1.00× 33.22
+ Parallel (Fast-dLLM) 60.52 2.57× 97 2.64× 32.98
+ LocalLeap 76.95 3.27× 76 3.37× 32.86

HumanEval
(0-shot)

LLaDA 33.81 1.00× 256 1.00× 40.24
+ Parallel (Fast-dLLM) 103.48 3.06× 77 3.32× 40.85
+ LocalLeap 121.66 3.60× 61 4.20× 40.24

MBPP
(3-shot)

LLaDA 15.64 1.00× 256 1.00× 29.40
+ Parallel (Fast-dLLM) 56.19 3.59× 70 3.66× 29.60
+ LocalLeap 71.37 4.56× 58 4.41× 30.60

IFEval
(0-shot)

LLaDA 18.77 1.00× 512 1.00× 71.46
+ Parallel (Fast-dLLM) 44.97 2.40× 206 2.49× 71.10
+ LocalLeap 50.00 2.66× 185 2.77× 71.34

6.94× throughput improvement, representing an additional 1.63× speedup over confidence-aware
parallel decoding from Fast-dLLM (Wu et al., 2025). Simultaneously, the inference steps are reduced
by 7.01×, meaning that inference can be completed using only 14.2% of the original refinement steps.
Notably, LocalLeap maintains acceptable accuracy fluctuations, with most cases showing less than
one percentage point difference from the native method, and even providing superior performance
in certain scenarios. For instance, on MBPP, LocalLeap delivers a 4.56× inference acceleration
and 4.41× step reduction for LLaDA, while achieving a 1.2% performance improvement (30.6% vs.
29.4%). Similarly, for Dream, it provides a 4.28× inference acceleration and 4.41× step reduction,
accompanied by a 1.2% performance improvement (55.2% vs. 54.0%).

These empirical results validate the effectiveness and reliability of LocalLeap, providing strong
support for our hypothesis: the emergence of high-confidence anchors is often accompanied by high
certainty in neighboring token clusters. Synchronously decoding anchor neighborhoods with relaxed
confidence thresholds effectively reduces redundant refinement steps with negligible performance
impact, thereby accelerating the decoding process. Furthermore, the consistent improvements across
different model architectures (LLaDA and Dream) and task domains (mathematical reasoning, code
generation, and instruction following) demonstrate that LocalLeap is a scalable and practical rule-
based framework for plug-and-play dLLM inference acceleration.

Table 2: Results of LLaDA-8B-Instruct on long se-
quence (1024 Tokens).

Benchmark Method TPS Step Acc.
GSM8K
(5-shot)

LLaDA 2.66 1.00× 1024 1.00× 77.26
+ LocalLeap 31.79 11.95× 85 12.05× 78.17

HumanEval
(0-shot)

LLaDA 9.86 1.00× 1024 1.00× 45.12
+ LocalLeap 63.46 6.44× 152 6.74× 43.29

IFEval
(0-shot)

LLaDA 7.93 1.00× 1024 1.00× 69.66
+ LocalLeap 36.93 4.66× 215 4.76× 69.54

Scalability. To examine the scalability of
our method, we conduct experiments on
longer generation sequences (length 1024).
When the generation length is set to 1024,
LocalLeap remains effective. Specifically,
on GSM8K, LocalLeap achieves 11.95×
throughput improvement and 12.05× fewer
inference steps, with slightly better perfor-
mance. On HumanEval and IFEval, it de-
livers consistent gains in throughput and
step reduction, with performance fluctuations within 2 points.

4.3 ABLATIONS AND ANALYSIS

Our LocalLeap involves three core hyperparameters: anchor trigger boundary κ, neighbor radius
W , and local relaxed boundary τ . To explore optimal settings that achieve better quality-speed
trade-offs, we conduct univariate analysis for each parameter, as shown in Figure 4. We analyze
how these parameters affect inference performance and throughput. Our objective is to maximize

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comprehensive benchmark results on Dream-7B-Instruct. The performance and infer-
ence speed are compared with different decoding methods.

Benchmark Method TPS Speedup Step Reduction Accuracy

GSM8K
(5-shot)

Dream 4.48 1.00× 512 1.00× 73.54
+ Parallel (Fast-dLLM) 28.27 6.31× 81 6.32× 74.75
+ LocalLeap 31.01 6.92× 73 7.01× 72.02

MATH
(4-shot)

Dream 27.91 1.00× 256 1.00× 42.98
+ Parallel (Fast-dLLM) 57.88 2.07× 119 2.15× 43.48
+ LocalLeap 65.32 2.34× 103 2.49× 43.20

HumanEval
(0-shot)

Dream 29.89 1.00× 256 1.00× 55.49
+ Parallel (Fast-dLLM) 67.02 2.24× 97 2.64× 59.76
+ LocalLeap 73.18 2.45× 85 3.01× 57.93

MBPP
(3-shot)

Dream 13.55 1.00× 256 1.00× 54.00
+ Parallel (Fast-dLLM) 56.30 4.15× 69 3.71× 55.60
+ LocalLeap 58.03 4.28× 58 4.41× 55.20

IFEval
(0-shot)

Dream 18.44 1.00× 512 1.00× 48.68
+ Parallel (Fast-dLLM) 50.21 2.72× 178 2.88× 49.76
+ LocalLeap 52.79 2.86× 165 3.10× 49.88

inference speed while maintaining negligible performance impact. Specifically, we experiment using
LLaDA-Instruct on HumanEval with maximum generation length of 256, block size of 32, and default
hyperparameter settings {κ = 0.9,W = 4, τ = 0.75}, varying only one parameter per experiment.

Anchor Trigger Boundary. The emergence of anchor tokens with c > κ determines when to trigger
LocalLeap decoding. Higher κ implies stricter parallel triggering conditions; in the extreme case
when κ = 1, it approximates sequential decoding. When κ = 0.95, we achieve 3.5× throughput
improvement; when κ = 0.9, throughput further increases to 4.1× without performance degradation.
However, as κ further decreasing, performance drops significantly while throughput gains become
marginal. This indicates that anchors require sufficiently high confidence (e.g., κ ≥ 0.9). As analyzed
in Figure 2, treating lower-confidence tokens as anchors is unsafe, potentially decoding inconsistent
tokens and degrading performance.

Neighbor Radius. Due to dLLMs’ spatial consistency decay, anchor influence is spatially bounded.
We quantify the quality-speed trade-off across different neighbor radiuses to determine the upper
bound for safe decoding. When W ∈ [1, 4], performance remains on par with or exceeds the baseline.
When W > 4, performance degrades noticeably. In extreme W = 32, the method degenerates to
block-wide parallel decoding with boundary τ , and the significant performance drop reflects the
necessity of parallel decoding locality. Moreover, throughput improvements plateau when W ≥ 4.
Overall, W = 4 achieves optimal quality-speed balance.

Local Relaxed Boundary. While dLLMs exhibit local determinism propagation, this does not
imply all predictions in anchors’ limited neighborhoods have converged. As shown in Figure 2(a),
even in nearest regions, low-confidence positions maintain low consistency. Therefore, adopting a
relaxed boundary is necessary. We investigate the most permissive conditions. When τ ∈ [0.65, 0.9],
throughput improves significantly, indicating that anchor neighborhoods typically contain moderately
high-confidence tokens. However, when τ < 0.75, performance drops substantially, suggesting that
0.75 is the most relaxed yet safe decoding threshold. Additionally, different models exhibit varying
confidence-consistency distributions (different sensitivity to τ). For Dream-Instruct, 0.75 remains
unsafe, so we slightly increase τ to 0.8.

5 RELATED WORK

Diffusion Large Language Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021), as a generative paradigm, have become the state-of-the-art approach for generating
images (Nichol et al., 2022; Rombach et al., 2022) and videos (Ho et al., 2022; Blattmann et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.95 0.9 0.85 0.8 0.75
30

33

36

39

42

30

60

90

120

150

180

Anchor Trigger Boundary κ

H
um

an
Ev

al
 A

cc
ur

ac
y

Th
ro

ug
hp

ut
 (t

ok
en

/se
co

nd
)

Chosen

1 2 4 8 16 32
30

33

36

39

42

30

60

90

120

150

180

Neighbor Radius W

H
um

an
Ev

al
 A

cc
ur

ac
y

Th
ro

ug
hp

ut
 (t

ok
en

/se
co

nd
)

Chosen

0.9 0.85 0.8 0.75 0.7 0.65 0.6
30

33

36

39

42

30

60

90

120

150

180

Local Relaxed Boundary τ

H
um

an
Ev

al
 A

cc
ur

ac
y

Th
ro

ug
hp

ut
 (t

ok
en

/se
co

nd
)

Chosen

Figure 4: Ablation study on hyperparameters: anchor trigger boundary κ, neighbor radius W and
local relaxed boundary τ for LLaDA-Instruct on HumanEval. The default setting is {κ = 0.9,W =
4, τ = 0.75}, and we perform univariate analysis for each variable. The blue line indicates accuracy,
while the orange line indicates throughput. Each dashed line represents baseline performance for
metrics of the same color.

2023). Recently, the emergence of discrete diffusion models (Austin et al., 2021a; Gong et al.,
2025) has reshaped the landscape of text generation. Recent commercial models, such as Gemini
Diffusion (Google DeepMind, 2025), Seed Diffusion (Song et al., 2025b) and Mercury (Labs et al.,
2025), achieve remarkable inference speeds ranging from over 1,000 to more than 2,000 tokens per
second. Recent open-source implementations, notably LLaDA (Nie et al., 2025b) and Dream (Ye
et al., 2025), demonstrate promising results that match the performance of AR LLMs. Building upon
these foundations, MMaDA (Yang et al., 2025b), LLaDA-V (You et al., 2025), and LaViDa (Li et al.,
2025b) explore unified multimodal dLLM frameworks.

Acceleration Methods for dLLMs. Open-source dLLMs typically demonstrate limited inference
efficiency, primarily due to computationally intensive iterative denoising and overly conservative
sampling strategies (Chang et al., 2022). This limitation has prompted significant research efforts
toward dLLM inference acceleration. Current acceleration methods can be classified two main
categories. The first category utilizes KV caching mechanisms to mitigate edundant computations and
memory consumption. For example, dLLM-Cache (Liu et al., 2025) combines long-interval prompt
caching with partial response updates guided by feature similarity. dKV-Cache (Ma et al., 2025)
proposes a delayed and conditioned caching strategy. Fast-dLLM (Wu et al., 2025) introduces a block-
wise bidirectional KV cache mechanism. Sparse-dLLM (Song et al., 2025a) investigates dynamic
cache eviction with sparse attention. The second category investigates optimized sampling strategies
to reduce denoising iterations. For example, Fast-dLLM (Wu et al., 2025) and EB-Sampler (Ben-
Hamu et al., 2025) perform dynamic parallel decoding based on confidence and entropy boundary
conditions, respectively. However, overly strict threshold conditions force even correct tokens to
meet unnecessary stringent requirements, thereby reducing overall efficiency. Recently, Prophet (Li
et al., 2025a) discovers that dLLMs can terminate the entire decoding process early after sufficient
iterations, reducing decoding steps at the sequence level. Unlike existing approaches, our work
addresses token-level redundant optimization that occurs at specific positions during sequential
inference, resulting in improved throughput and faster inference speeds.

6 CONCLUSION

In this work, we address the fundamental quality-speed trade-off limiting the practical deployment of
dLLMs through systematic analysis of their decoding dynamics. Our investigation reveals delayed
decoding phenomena, where conservative sampling strategies prevent early commitment of already-
determined tokens, leading to substantial inference inefficiency. By establishing two key empirical
principles of local determinism propagation around high-confidence anchors and spatial consistency
decay, we develop LocalLeap, a training-free adaptive parallel decoding strategy that enables safe
early decoding within anchor neighborhoods. Comprehensive evaluation across mathematical reason-
ing, code generation, and instruction-following benchmarks demonstrates that LocalLeap achieves up
to 6.94× throughput improvements and reduces inference steps to as low as 14.2% of the original
requirements, both with negligible performance impact. These results establish LocalLeap as an
effective solution to the dLLM efficiency bottleneck, providing a practical framework for accelerated
diffusion-based text generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research focuses on algorithmic contributions to accelerate diffusion large language model
(dLLM) inference. We have not collected any human subjects, private information, or sensitive
data. All datasets used in our experiments are publicly available benchmarks (GSM8K, MATH,
HumanEval, MBPP, and IFEval), and we strictly follow their usage licenses. The proposed method is
training-free, rule-based, and does not require additional data collection or fine-tuning. This method
does not pose foreseeable risks of misuse or societal harm beyond those already inherent to LLM.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Detailed experimental setups and
hyperparameter configurations are provided in Section 4 and Appendix C. Notably, we employ greedy
decoding for all baselines and our proposed method, without any random sampling or temperature
settings, ensuring that model performance is deterministic and reproducible. To further support the
validity of our approach, we include theoretical assumptions and complete proofs in Appendix B. To
facilitate reproducibility, we provide an anonymous code repository along with scripts for training
and evaluation.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems (NeurIPS), 2021a.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems (NeurIPS), 2021b.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021c.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857, 2025.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of chemical physics, 115(4):1716–1733, 2001.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. In International Conference on Learning Representations (ICLR), 2025.

Google DeepMind. Gemini diffusion. https://deepmind.google/models/gemini-
diffusion, 2025. Accessed: 2025-09-10.

10

https://deepmind.google/models/gemini-diffusion
https://deepmind.google/models/gemini-diffusion

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language models
based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025a.

Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
model for multimodal understanding. arXiv preprint arXiv:2505.16839, 2025b.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
arXiv preprint arXiv:2506.06295, 2025.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and
editing with text-guided diffusion models. In International Conference on Machine Learning
(ICML), 2022.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. In International Conference on Learning
Representations (ICLR), 2025a.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning
(ICML), 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv preprint
arXiv:2508.02558, 2025a.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025b.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MORE PRELIMINARY

A.1 FUNDAMENTALS OF DIFFUSION LARGE LANGUAGE MODELS

Forward Masking Process. Given a clean sample x0 of length N , diffusion large language models
(dLLM) forward process progressively replaces tokens with a special token [MASK] as a function
of time t ∼ U(0, 1) (Nie et al., 2025a). At time t = 0, the data point x0 is fully observed with no
masks, while at t = 1, all tokens are guaranteed to be masked. For a given t ∈ (0, 1), the sequence
xt is partially masked: each token xi

t is masked with probability t and remains with probability 1− t.
The transition probability for the noised sequence xt is

qt|0(xt | x0) =

N∏
i=1

qt|0(x
i
t | xi

0), where qt|0(x
i
t | xi

0) =

{
1− t, xi

t = xi
0,

t, xi
t = [MASK].

Here, M denotes the special mask token [MASK].

Reverse Unmasking Process. The forward process is reversible: the corresponding reverse process
iteratively unmasks tokens, progressively evolving from t = 1 back to t = 0 (Austin et al., 2021b).
Specifically, while masked positions either retain their masked state with some probability or undergo
decoding to concrete tokens based on the model’s predictive distribution. However, directly reversing
Eq. A.1 is inefficient in practice, since it generally unmasks just one token per. A common remedy is
the τ -leaping approximation (Gillespie, 2001), which allows transitions from time t to an earlier s
(0 ≤ s < t ≤ 1) that simultaneously unmask multiple tokens.

qs|t =

N∏
i=1

qs|t(x
i
s | xt), where qs|t(x

i
s | xt) =


1, xi

t ̸= M, xi
s = xi

t,
s
t , xi

t = M, xi
s = M,

t−s
t q0|t(x

i
s | xt), xi

t = M, xi
s ̸= M,

where q0|t(· | xt) is a categorical distribution over vocabulary V that predicts a non-[MASK] token
at a masked position given the visible context xt.

B THEORETICAL ANALYSIS

We establish theoretical guarantees for our LocalLeap parallel decoding scheme.

B.1 DEFINITION

Let D = {i1, . . . , in} denote the set of masked positions to be decoded. For each j ∈ N , and for
some small ϵ > 0, define

p∗j = pj(Xij = x∗
ij | E) > 1− ϵ,

be the model-assigned probability of the candidate token x∗
ij

under context E . We partition N into
disjoint clusters C1, . . . , CK . Each cluster C contains exactly one anchor position a ∈ A with high
confidence p∗a ≥ κ, and its local neighborhood N = {j ∈ D | |j − a| ≤ W ∧ j ̸= a}, where each
j ∈ N satisfies p∗j ≥ τ . We denote the number of neighbors in N by m = |N | ≥ 1. We assume
thresholds satisfy 1/2 < τ < κ < 1. Define per-token error parameters

ϵa < 1− κ, ϵn < 1− τ, ϵmax = max(ϵa, ϵn) < 1− τ,

and the aggregate error budget in the cluster

S =
∑
j∈C

p(Xij ̸= x∗
ij | E) = ϵa +mϵn < (1− κ) +m(1− τ).

B.2 EQUIVALENCE FOR SEQUENTIAL DECODING

x∗ is the maximizer uniquely of q(x). Define the product-of-marginals probability mass function
(PMF):

q(z | E) =
n∏

j=1

pj(Xij = zj | E).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Maximizing q(z | E) factorizes into maximizing each marginal pj(Xij = zj | E) independently.
Since p∗j ≥ τ > 1/2, each x∗

ij
is the unique maximizer of its marginal distribution. Hence,

argmax
z

q(z | E) = (x∗
i1 , . . . , x

∗
in) = x∗.

Condition for x∗ to maximize p(x). For a cluster C with 1 +m elements, the joint probability of
the configuration x∗ can be lower bounded by Bonferroni’s inequality:

p(x∗ | E) = p
(⋂

j∈C
{Xij = x∗

ij}
∣∣∣E)

≥ 1−
∑
j∈C

p(Xij ̸= x∗
ij | E)

> 1−
(
(1− κ) +m(1− τ)

)
.

For any alternative sequence y = (y1, . . . , yn) ̸= x∗, there exists at least one coordinate k ∈ C with
yk ̸= x∗

ij
. For such k,

p(Xij = yj | E) ≤ p(Xij ̸= x∗
ij | E) ≤ ϵmax = 1− τ.

Thus,
p(y | E) ≤ 1− τ.

To guarantee x∗ is strictly more probable than any alternative, it suffices that

1−
(
(1− κ) +m(1− τ)

)
> 1− τ,

which simplifies to the cluster-level certification condition:

(1− κ) +m(1− τ) < τ.

When each cluster C satisfies the above inequality, x∗ is the unique maximizer of p(x) restricted to C.
Since clusters are disjoint, the global maximizer under p(x) is the concatenation of all cluster-level
maximizers:

argmax
z

p(z | E) = argmax
z

q(z | E) = x∗.

Neighbor Capacity Bound. For a cluster C containing one anchor and m neighbors, the certification
condition

(1− κ) +m(1− τ) < τ

is equivalent to an explicit upper bound on the number of neighbors:

m <
τ − (1− κ)

1− τ
=

κ

1− τ
− 1.

Hence, the maximal admissible number of neighbors per anchor is

mmax =

⌊
κ

1− τ
− 1

⌋
.

This bound guarantees that parallel commitments within each cluster are consistent with the sequential
greedy decoding.

B.3 Lp DISTANCE IS BOUNDED

For discrete distributions p and q, we define the Lp distance as:

∥p− q∥pp = |p(x∗ | E)− q(x∗ | E)|p +
∑
z ̸=x∗

|p(z | E)− q(z | E)|p.

Let Aj = {Xij = x∗
ij
} for j ∈ C. By definition, we have:

p∗ = p(x∗ | E) = p
(⋂

j∈C
Aj}

)
, q∗ = q(x∗ | E) =

∏
j∈C

p(Aj).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Bounds for p∗. We first establish upper and lower bounds for p∗. By Boole’s inequality:

p∗ = p
(⋂

j∈C
Aj}

)
= 1− p

(⋃
j∈C

Ac
j

)
≥ 1−

∑
j∈C

p(Ac
j) ≥ 1−

∑
j∈C

ϵj = 1− S.

where S = ϵa +mϵn is the aggregate error budget from the previous section.

For the upper bound, we have:

p∗ = P
(⋂

j

Aj

)
≤ min

j∈C
P (Aj) = 1− ϵmax.

Therefore,
1− S ≤ p∗ ≤ 1− ϵmax.

Bounds for q∗. For the product-of-marginals distribution, by Weierstrass’s product inequality:

q∗ =
∏
j∈C

p(Aj) =
∏
j∈C

(1− ϵj) ≥ 1−
n∑

j=1

ϵj = 1− S.

The upper bound follows directly:

q∗ =
∏
j∈C

p(Aj) =
∏
j∈C

(1− ϵj) ≤ min
j

(1− ϵj) = 1− ϵmax.

Therefore,
1− S ≤ q∗ ≤ 1− ϵmax.

Bounding |p∗ − q∗|. Since both p∗ and q∗ lie in the interval [1− S, 1− ϵmax], we obtain:

|p∗ − q∗| ≤ (1− ϵmax)− (1−
n∑

j=1

ϵj) =

n∑
j=1

ϵj − ϵmax = S − ϵmax

≤ (1− κ) + (m− 1)(1− τ)

Bounds for alternative sequences. For any z ̸= x∗, we have:
p(z | E) ≤ ϵmax, q(z | E) ≤ ϵmax.

Thus,
sup
z ̸=x∗

|p(z | E)− q(z | E)| ≤ ϵmax.

On the other side,∑
z ̸=x∗

|p(z | E)− q(z | E)| =
∑
z ̸=x∗

(
p(z | E) + q(z | E)

)
= (1− p∗) + (1− q∗)

≤
(
1− (1− S)

)
+

(
1− (1− S)

)
= 2S

Using the supremum bound: for any sequence {ai} with |ai| ≤ M and p ≥ 1, we have |ai|p ≤
Mp−1|ai|. So,∑

z ̸=x∗

|p(z | E)− q(z | E)|p ≤
(
sup
z ̸=x∗

|p(z | E)− q(z | E)|
)p−1 ∑

z ̸=x∗

|p(z | E)− q(z | E)|

≤ ϵp−1
max · 2S

Final Lp distance bound. Combining the above results:

∥p− q∥pp = |p(x∗ | E)− q(x∗ | E)|p +
∑
z ̸=x∗

|p(z | E)− q(z | E)|p

≤ (S − ϵmax)
p + (ϵp−1

max · 2S)p

Total variation distance. For the special case p = 1, the L1 distance is:
∥p− q∥1 ≤ (S − ϵmax) + 2S = 3S − ϵmax

< 3(1− κ) + (3m− 1)(1− τ)

Therefore, the total variation distance is bounded by:

TV(p, q) =
1

2
∥p− q∥1 <

1

2

(
3(1− κ) + (3m− 1)(1− τ)

)
15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 KL DIVERGENCE IS BOUNDED

The total correlation between the joint distribution p and the product-of-marginals q is defined as the
KL divergence, which can be expressed as the difference between the sum of marginal entropies and
the joint entropy:

TC(p, q) = DKL(p∥q) =
∑
j∈C

H(Xij | E)−H(X | E)

By the entropy chain rule:

H(X | E) =
m+1∑
k=1

H
(
Xik | Xi1 , . . . , Xik−1

, E
)
.

Substituting the chain rule decomposition:

TC =

m+1∑
k=1

H(Xik | E)−H(X | E)

=

m+1∑
k=1

[
H(Xik | E)−H

(
Xik | Xi1 , . . . , Xik−1

, E
)]

=

m+1∑
k=2

I
(
Xik ;Xi1 , . . . , Xik−1

∣∣E),
where I(X;Y | E) denotes conditional mutual information, and we use the convention that I(Xi1 ; ∅ |
E) = 0.

For all k ≥ 2, conditional mutual information is bounded by marginal entropy:

I
(
Xik ;X<k | E

)
= H(Xik | E)−H(Xik | X<k, E) ≤ H(Xik | E),

Thus,

TC ≤
m+1∑
k=2

H(Xik | E).

For any position k ∈ C with top-1 probability p∗k = pk(Xik | E) and error rate ϵk = p(Xik ̸= x∗
ik
|

E) ≤ 1− p∗k, the conditional entropy is bounded by:

H(Xik | E) ≤ Hb(ϵk) + ϵk ln(|V| − 1),

where Hb(ϵ) = −ϵ ln ϵ− (1− ϵ) ln(1− ϵ) is the binary entropy function, and |V| is the vocabulary
size.

The entropy is maximized when the remaining probability mass ϵk is distributed uniformly over the
|V| − 1 non-optimal tokens.

Let the anchor have error rate ϵa < 1− κ and each of the m neighbors have error rate ϵn < 1− τ .
Then,

TC ≤ H
(
Xanchor | E

)
+

∑
neighbor j

H
(
Xj | E

)
≤

[
Hb(ϵa) + ϵa ln(|V| − 1)

]
+m ·

[
Hb(ϵn) + ϵn ln(|V| − 1)

]
<

[
Hb(1− κ) + (1− κ) ln(|V| − 1)

]
+m ·

[
Hb(1− τ) + (1− τ) ln(|V| − 1)

]
.

B.5 PRACTICAL RELAXATION

The conditions and bounds established above are worst-case, hence sufficient but not necessary. In
practice, several benign effects allow us to relax the certification condition and yield tighter realized
bounds, without invalidating the theoretical guarantees.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The preceding conditions and bounds are worst-case, i.e., sufficient but not necessary. In practice,
several benign effects allow us to relax them without violating consistency. First, anchor confidence
typically exceeds the trigger κ, and neighbor confidences often lie well above the acceptance floor τ .
Equivalently, the realized error rates satisfy ϵa ≪ 1− κ and ϵn ≪ 1− τ . Substituting these realized
rates into the cluster certificates (e.g., (1−κ)+m(1−τ) < τ) tightens both the equivalence condition
and the distributional bounds (Lp and KL), yielding strictly smaller margins on the left-hand sides
and thus strictly smaller risk budgets. Second, the effective neighborhood size at a decoding step is
usually much smaller than the geometric radius would suggest: some positions within radius W may
have been decoded already, and only a subset of masked positions will meet the acceptance rule in
that step. Hence the operative meffective is typically meffective ≪ 2W , and one need not tune W by
directly inverting the worst-case capacity mmax = ⌊κ/(1− τ)− 1⌋. In practice, a slightly larger W
can be safe because the certificates apply to meffective rather than the geometric upper bound.

A second cluster of effects comes from local structure and iteration. Empirically, Local Determinism
Propagation implies nearby positions exhibit boosted reliability once an anchor is committed. This
can be modeled as an effective confidence uplift p̂∗j = p∗j + ∆ for neighbors in the local window,
equivalently ϵ̂n = ϵn −∆, which again tightens the same certificates without changing their logical
form. Moreover, clusters induced by different anchors often overlap; in the overlap region the
redundant, mutually reinforcing evidence reduces the realized error further, effectively shrinking
ϵmax in those cells. Finally, iterative refinement in dLLMs provides context amplification and
self-correction: once some tokens are committed, they constrain subsequent predictions and can
repair occasional sub-threshold decisions in later steps. Taken together, these effects explain why
conservative, worst-case guarantees suffice for soundness, while practical deployments can safely
adopt more permissive commitments.

C EXPERIMENT DETAILS

Table 4 provides the detailed configuration for each benchmark, including generation length and block
length. The benchmarks include GSM8K (5-shot), MATH (4-shot), HumanEval (0-shot), MBPP
(3-shot), and IFEval (0-shot).

Table 4: Configuration of Benchmarks, including generation length and block length.

Benchmark Gen Len Block Len
GSM8K 512 32
MATH 256 32
HumanEval 256 32
MBPP 256 32
IFEval 512 32

Through the theoretical analysis in Appendix B, we derive strict equivalence conditions between
LocalLeap and sequential greedy decoding, along with upper bounds on the number of decoded
tokens per step. However, as mentioned in Appendix B.5, practical applications often allow more
relaxed conditions due to different distributional characteristics across models and datasets. In our
experiments, we adopt slightly different hyperparameter settings for LLaDA-Instruct and Dream-
Instruct, as shown in Table 5.

Table 5: Configuration of hyperparameter, including anchor trigger boundary κ, neighbor radius
W , and local relaxed boundary τ .

Model κ W τ

LLaDA-8B-Instruct 0.9 4 0.75
Dream-7B-Instruct 0.9 4 0.80

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D CASE STUDY

Here we present the case study of LocalLeap. Specifically, we compare responses, answer accuracy,
and inference steps with and without LocalLeap. Overall, LocalLeap significantly reduces inference
steps while maintaining answer accuracy, thereby accelerating the decoding process. In some cases,
the responses produced by LocalLeap are identical to those obtained with sequential greedy decoding
but are generated with substantially fewer steps. In other cases, minor differences from greedy
decoding appear, yet the final answers remain correct. Interestingly, we also observe instances where
LocalLeap corrects errors made by the original inference and produces the right answer instead.

Case: GSM8K (5-shot), Geneation Length 256, Block Length 32

Question:
Solo has to read 4 pages from his Science textbook, 20 pages from his Social Studies textbook, 7 pages
from his History textbook and 8 pages from his Geography textbook. Solo read 15 pages on Monday. If
he has 4 more days to complete all his reading, how many pages does he need to read, on average, in
one day?

Ground-truth answer:
6

LLaDA-8B-Instruct (Inference Step: 256, Latency: 13.74s)

First, let’s calculate the total number of pages Solo needs to read from all his textbooks:

- Science textbook: 4 pages
- Social Studies textbook: 20 pages
- History textbook: 7 pages
- Geography textbook: 8 pages

Total pages = 4 + 20 + 7 + 8 = 39 pages

Next, we subtract the number of pages he has already read:

- Pages read on Monday: 15 pages

Remaining pages = Total pages - Pages read on Monday
Remaining pages = 39 - 15 = 24 pages

Solo has 4 more days to complete his reading. To find the average number of pages he needs to read per
day, we divide the remaining pages by the number of days:

Average pages per day = Remaining pages / Number of days
Average pages per day = 24 pages / 4 days

Average pages per day = 24 / 4 = 6 pages per day

Therefore, Solo needs to read an average of 6 pages per day to complete all his reading in the next 4 days.

Final answer: 6 pages per day

LLaDA-8B-Instruct + LocalLeap (Inference Step: 76, Latency: 4.04s)

First, let’s calculate the total number of pages Solo needs to read from all his textbooks:

- Science textbook: 4 pages
- Social Studies textbook: 20 pages
- History textbook: 7 pages
- Geography textbook: 8 pages

Total pages = 4 + 20 + 7 + 8 = 39 pages

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Next, we subtract the number of pages he has already read:

- Pages read on Monday: 15 pages

Remaining pages = Total pages - Pages read on Monday
Remaining pages = 39 - 15 = 24 pages

Solo has 4 more days to complete his reading. To find the average number of pages he needs to read per
day, we divide the remaining pages by the number of days:

Average pages per day = Remaining pages / Number of days
Average pages per day = 24 pages / 4 days

Average pages per day = 24 / 4 = 6 pages per day

Therefore, Solo needs to read an average of 6 pages per day to complete all his reading in the next 4 days.

Final answer: 6 pages per day

Case: MATH (4-shot), Geneation Length 256, Block Length 32

Question:
The graph of y = ax2 + bx+ c passes through points (0, 5), (1, 10), and (2, 19). Find a+ b+ c.

Ground-truth answer:
10

LLaDA-8B-Instruct (Inference Step: 256, Latency: 10.05s)

We can use the given points to set up a system of equations.

For the point (0, 5), we have c = 5.

For the point (1, 10), we have a(1)2 + b(1) + 5 = 10, which simplifies to a+ b+ 5 = 10.

For the point (2, 19), we have a(2)2 + b(2) + 5 = 19, which simplifies to 4a+ 2b+ 5 = 19.

We can solve this system of equations to find the values of a, b, and c.

From the second equation, we have a+ b = 5.

From the third equation, we have 4a+ 2b = 14.

Subtracting the second equation from the third equation, we get 3a = 9, so a = 3.

Substituting a = 3 into the second equation, we get 3 + b = 5, so b = 2.
Therefore, a+ b+ c = 3 + 2 + 5 = 10 .
The answer is: 10

LLaDA-8B-Instruct + LocalLeap (Inference Step: 74, Latency: 3.00s)

We can use the given points to set up a system of equations.

For the point (0, 5), we have c = 5.

For the point (1, 10), we have a+ b+ c = 10.

For the point (2, 19), we have 4a+ 2b+ c = 19.

Substituting c = 5 into the other two equations, we get:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

a+ b+ 5 = 10 ⇒ a+ b = 5

4a+ 2b+ 5 = 19 ⇒ 4a+ 2b = 14

We can solve this system of equations by subtracting the first equation from the second:

(4a+ 2b)− (a+ b) = 14− 5 ⇒ 3a = 9 ⇒ a = 3

Substituting a = 3 into the first equation, we get:

3 + b = 5 ⇒ b = 2

Therefore, a+ b+ c = 3 + 2 + 5 = 10 .

Final Answer: The final answer is 10. I hope it is correct.

Case: GSM8K (5-shot), Geneation Length 256, Block Length 32

Question:
A three-toed sloth moves very slowly, and only eats when he is up in his tree. For a meal of berries, it
takes the sloth 4 hours to make the trip down the tree, pick up berries, and climb back up into his tree.
Assuming he picks the same number of berries on each trip, what is the least number of berries he can
pick up per trip down to the ground if he wants to collect 24 berries in 8 hours?

Ground-truth answer:
12

Dream-7B-Instruct (Inference Step: 256, Latency: 12.77s)

The sloth takes 4 hours to make the trip down the tree, pick up berries, and climb back up
into his tree, so in 8 hours he can make 8/4=«8/4=2»2 trips.
If he wants to collect 24 berries in 8 hours, he needs to pick up 24/2=«24/2=12»12 berries per trip.
12

Dream-7B-Instruct + LocalLeap (Inference Step: 65, Latency: 3.31s)

The sloth takes 4 hours to make the trip down the tree, pick up berries, and climb back up
into his tree, so in 8 hours he can make 8/4=«8/4=2»2 trips.
If he wants to collect 24 berries in 8 hours, he needs to pick up 24/2=«24/2=12»12 berries per trip.
So the least number of berries he can pick up per trip down to the ground is 12.
12

Case: MATH (4-shot), Geneation Length 256, Block Length 32

Question:
P (x) is a polynomial such that when P (x) is divided by x − 13 the remainder is 19, and when
P (x) is divided by x + 17 the remainder is −11. What is the remainder when P (x) is divided by
(x− 13)(x+ 17)?

Ground-truth answer:
x+ 6

Dream-7B-Instruct (Inference Step: 256, Latency: 8.81s)

By the Remainder Theorem, we know that P (13) = 19 and P (−17) = −11. P (x) can be
written in the form P (x) = Q(x)(x− 13)(x+ 17) +R(x), where Q(x) is a polynomial and R(x) is
a linear polynomial of the form ax+ b. Since P (13) = 19 and P (−17) = −11, we have R(13) = 19
and R(−17) = −11. Solving these equations, we find that a = 1 and b = 0. Therefore, the remainder
when P (x) is divided by (x− 13)(x+ 17) is x.
Final Answer: The final answer is x. I hope it is correct.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Problem:
Let P (x) be a polynomial such that P (1) = 10, P (2) = 17, and P (3) = 26. Find P (4).

Solution: We can write P (x) in the form P (x) = ax

Dream-7B-Instruct + LocalLeap (Inference Step: 97, Latency: 3.44s)

By the Remainder Theorem, we know that P (13) = 19 and P (−17) = −11. Let R(x) be
the remainder when P (x) is divided by (x − 13)(x + 17). Then R(x) is a linear polynomial of the
form R(x) = ax+ b. We have

R(13) = 19, R(−17) = −11.

Substituting R(x) = ax+ b into these equations, we get

13a+ b = 19, −17a+ b = −11.

Solving this system of equations, we find a = 1 and b = 6. Therefore, the remainder when P (x) is
divided by (x− 13)(x+ 17) is R(x) = x+ 6.
Final Answer: The final answer is x+ 6. I hope it is correct.

E THE USE OF LARGE LANGUAGE MODELS

This section describes our use of LLMs for writing. Specifically, we employed LLMs to polish
portions of our manuscript and to help check grammar.

21

	Introduction
	Preliminary
	Inference and Decoding Strategies
	Delayed Decoding

	Methodology
	Prerequisite of Safe Parallel Decoding
	LocalLeap

	Experiments
	Experiment setup
	Main Results
	Ablations and Analysis

	Related Work
	Conclusion
	More Preliminary
	Fundamentals of Diffusion Large Language Models

	Theoretical Analysis
	Definition
	Equivalence for Sequential Decoding
	Lp distance is bounded
	KL divergence is bounded
	Practical Relaxation

	Experiment Details
	Case Study
	The Use of Large Language Models

