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Abstract

Traditional neural networks are simple to train but they typically produce overconfident
predictions. In contrast, Bayesian neural networks provide good uncertainty quantification
but optimizing them is time consuming due to the large parameter space. This paper
proposes to combine the advantages of both approaches by performing Variational Inference
in the Final layer Output space (VIFO), because the output space is much smaller than
the parameter space. We use neural networks to learn the mean and the variance of the
probabilistic output. Using the Bayesian formulation we incorporate collapsed variational
inference with VIFO which significantly improves the performance in practice. On the other
hand, like standard, non-Beyesian models, VIFO enjoys simple training and one can use
Rademacher complexity to provide risk bounds for the model. Experiments show that VIFO
provides a good tradeoff in terms of run time and uncertainty quantification, especially for
out of distribution data.

1 Introduction

With the development of training and representation methods for deep learning, models using neural networks
provide excellent predictions. However, such models fall behind in terms of uncertainty quantification and
their predictions are often overconfident (Guo et al., 2017). Bayesian methods provide a methodology for
uncertainty quantification by placing a prior over parameters and computing a posterior given observed
data, but the computation required for such methods is often infeasible. Variational inference (VI) is one of
the most popular approaches for approximating the Bayesian outcome, e.g., (Blundell et al., 2015; Graves,
2011; Wu et al., 2019). By minimizing the KL divergence between the variational distribution and the true
posterior and constructing an evidence lower bound (ELBO), one can find the best approximation to the
intractable posterior. However, when applied to deep learning, VI requires sampling to compute the ELBO,
and it suffers from both high computational cost and large variance in gradient estimation. Wu et al. (2019)
have proposed a deterministic variational inference (DVI) approach to alleviate the latter problem. The idea
relies on the central limit theorem, which implies that with sufficiently many hidden neurons, the distribution
of the output of each layer forms a multivariate Gaussian distribution. Thus we only need to compute the
mean and covariance of the output of each layer. However, DVI still suffers from high computational cost
and complex optimization.

Inspired by DVI, we observe that the only aspect that affects the prediction is the distribution of the output of
the final layer in the neural network. We therefore propose to perform variational inference in the final-layer
output space (rather than parameter space), where the posterior mean and diagonal variance are learned by
a neural network. We call this method VIFO. Like all Bayesian methods, VIFO induces a distribution over
its probabilistic predictions and has the advantage of uncertainty quantification in predictions. At the same
time, VIFO has a single set of parameters and thus enjoys simple optimization as in non-Bayesian methods.

We can motivate VIFO from several theoretical perspectives. First, we derive improved priors (or regu-
larizers) for VIFO motivated by collapsed variational inference (Tomczak et al., 2021) and empirical bayes
(Wu et al., 2019). The new regularizers greatly improve the performance of VIFO. Second, we show that,
for the linear case, with expressive priors VIFO can capture the same predictions as standard variational
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inference. On the other hand, with practical priors and deep networks VIFO exhibits limited expressiveness.
We propose to overcome this limitation by using ensembles that enable fast training and further improve
uncertainty quantification. Third, due to its simplicity, one can derive risk bounds for the model through
Rademacher complexity. VIFO was motivated as an effective simplification of VI and DVI, and the ensem-
bles of VIFO can be seen as a Bayesian extension of Deep Ensembles (Lakshminarayanan et al., 2017). We
discuss the connections to other Bayesian predictors below.

An experimental evaluation compares VIFO with VI and other state of the art approximation methods
and to non-Bayesian neural networks (which we refer to as base models). The results show that (1) VIFO
is much faster than VI and only slightly slower than base models, and (2) ensembles of VIFO achieve
better uncertainty quantification on shifted and out-of-distribution data while preserving the quality of
in-distribution predictions. Overall, VIFO provides a good tradeoff in terms of run time and uncertainty
quantification especially for out-of-distribution data.

2 VIFO

In this section we describe our VIFO method in detail. We start with a description of the base model.
Given a neural network parametrized by weights W and input x, the output layer is z = fW (x) ∈ RK . In
classification, K is the number of classes. The probability of being class i is defined as

p(y = i|z) = softmax(z)i = exp zi∑
j exp zj

. (1)

In regression, z = (m, l) is a 2-dimensional vector and K = 2. We apply a function g on l that maps l to a
positive real number. The probability of the output y is:

p(y|z) = N (y|m, l) = 1√
2πg(l)

exp
(

− (y −m)2

2g(l)

)
. (2)

As in other models, the same methodology can be used for any type of prediction likelihood p(y|z). This
forms the base model. Traditional, non-Bayesian models, minimize − log p(y|z) or a regularized variant.

By fixing the weights W , base models map x to z deterministically, while Bayesian methods seek to map
x to a distribution over z. Variational inference puts a distribution over W and marginalizes out to get a
distribution over z. As shown by Wu et al. (2019), by the central limit theorem, with a sufficiently wide
neural network the marginal distribution of z is Gaussian. VIFO pursues this in a direct manner. It has
two sets of weights, W1 and W2 (with shared components), to model the mean and variance of z. That
is, µq(x) = fW1(x), σq(x) = g(fW2(x)), where g : R → R+ maps the output to positive real numbers
as the variance is positive. Thus, q(z|x) = N (z|µq(x),diag(σ2

q (x))), where µq(x), σ2
q (x) are vectors of the

corresponding dimension. We will call q(z|x) the variational output distribution. Given z, y is generated
from the likelihood p(y|z).
Remark 2.1. VIFO in regression is different from the existing models known as the mean-variance estimator
(Kabir et al., 2018; Khosravi et al., 2011; Kendall & Gal, 2017). Instead, mean-variance estimators are the
base models that VIFO can be applied on. Applying VIFO on these models, we will have four outputs, two
of which are the means of m and l, and the other two are the variances of m and l. The variances of m and l
are from the variational output distribution. Like all Bayesian methods VIFO computes a distribution over
distributions which is lacking in non-Bayesian predictions.

The standard Bayesian approach puts a prior on the weights W . Instead, since VIFO models the distribution
over z, we put a prior over z. We consider two options, a conditional prior p(z|x) and a simpler prior p(z).
Both of these choices yield a valid ELBO using the same steps:

log p(y|x) ≥ Eq(z|x)

[
log p(y, z|x)

q(z|x)

]
= Eq(z|x)[log p(y|z)] − KL(q(z|x)||p(z|x)). (3)

The approach has some similarity to Dirichlet-based models (Sensoy et al., 2018; Charpentier et al., 2020;
Bengs et al., 2022). However, we perform inference on the output layer whereas, as discussed by Bengs et al.
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(a) without auxiliary training (b) with auxiliary training

Figure 1: Predictive distribution of VIFO using an MLP. Blue points are training data generated from a
sinusoidal function, red points are the predicted mean, shaded area indicates the 1 standard deviation. More
details are in Appendix D.1.

(2022), these models implicitly perform variational inference on the prediction. In particular, in that work z
is interpreted as a vector in the simplex and q(z|x) and p(z) are Dirichlet distributions, whereas when using
VIFO for classification z has a Gaussian distribution and p(y|z) is on the simplex. In other words, we model
and regularize different distributions. We discuss related work in more details below.

Eq. (3) is defined for every (x, y). For a dataset D = {(x, y)}, we optimize W1 and W2 such that∑
(x,y)∈D

{
Eq(z|x)[log p(y|z)] − KL(q(z|x)||p(z|x))

}
is maximized. We regard the negation of the first term Eq(z|x)[− log p(y|z)] as the loss term and treat
KL(q(z|x)∥p(z|x)) as a regularizer.

2.1 Auxiliary Training

As in prior work (Sun et al., 2019), to improve the uncertainty quantification we introduce auxiliary input
xaux and include KL(q(z|xaux)∥p(z|xaux)) as an additional regularization term. We include corresponding
coefficients η and ηaux on the regularizers, as is often done in variational approximations (e.g., (Higgins et al.,
2017; Jankowiak et al., 2020; Wenzel et al., 2020; Wei et al., 2021; Wei & Khardon, 2022).). Then, viewed
as a regularized loss minimization, the optimization objective for VIFO becomes:

min
W1,W2

∑
(x,y)∈D

{
Eq(z|x)[− log p(y|z)] + ηKL(q(z|x)∥p(z|x)) + ηaux

∑
xaux

KL(q(z|xaux), ∥p(z|xaux))
}
. (4)

Generally the loss term is intractable, so we use Monte Carlo samples to approximate it. In practice, since
auxiliary data is not available, we uniformly sample x(i)

aux ∼ Unif[x(i)
min − d

2 , x
(i)
max + d

2 ] where d = x
(i)
max − x

(i)
min.

Figure 1 shows an example where a MLP is used to learn a complex function over 1 dimensional input space,
illustrating that such regularization can improve uncertainty quantification in the area where the data is
missing.

2.2 Collapsed VIFO

Bayesian methods are often sensitive to the choice of prior parameters. To overcome this, Wu et al. (2019)
used empirical Bayes (EB) to select the value of the prior parameters, and Tomczak et al. (2021) proposed
collapsed variational inference, which defined a hierarchical model and performed inference on the prior
parameters as well. Empirical Bayes can be regarded as a special case of collapsed variational inference.
We show how this idea is applicable in VIFO. In addition to z, we model the prior mean µp and variance
σ2

p as Bayesian parameters. Now the prior becomes p(z|µp, σ
2
p)p(µp, σ

2
p) and the variational distribution is
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(a) vifo-mean (b) vi-naive (c) vi-mean

Figure 2: Induced predictions by learned prior distribution for different methods. Note that VI has a prior
over weights and VIFO has a prior over z. For each method we sample values from the prior and calculate
predictions y based on the sampled values. We then plot the y values. As we can see, vi-naive induces a
uniform prior that does not capture the data distribution, vi-mean has an increased variance in areas where
data is missing and vifo-mean does so to a larger extent. Details of the setup for this experiment are given
in Appendix D.1.

q(z|x)q(µp, σ
2
p). Then the objective becomes:

log p(y|x) ≥ Eq(z|x)q(µp,σ2
p)

[
log

p(y, z, µp, σ
2
p|x)

q(z|x)q(µp, σ2
p)

]
= Eq(z|x)[log p(y|z)] − Eq(µp,σ2

p)[KL(q(z|x)||p(z|µp, σ
2
p))] − KL(q(µp, σ

2
p)||p(µp, σ

2
p)). (5)

Similar to equation 4, we treat the first term as a loss and the other two terms as a regularizer along with a
coefficient η and aggregate over all data. Since the loss does not contain µp and σ2

p, we can get the optimal
q∗(µp, σ

2
p) by optimizing the regularizer and the choice of η will not affect q∗(µp, σ

2
p). Then we can plug

in the value of q∗ into Eq equation 5. We next show how to compute q∗(µp, σ
2
p) and the final collapsed

variational inference objective. The derivations are similar to the ones by Tomczak et al. (2021) but they
are applied on z not on W . Recall that K is the dimension of z.

Learn mean, fix variance Let p(z|µp) = N (z|µp, γI), p(µp) = N (µp|0, αI). Then q∗(µp|x) is
arg min

q(µp)
Eq(µp)[KL(q(z|x)||p(z|µp))] + KL(q(µp)||p(µp)),

and the optimal q∗(µp|x) can be computed as:

log q∗(µp|x) ∝ − (µq(x) − µp)⊤(µq(x) − µp)
2γ −

µ⊤
p µp

2α ,

and q∗(µp|x) = N (µp| α
α+γµq(x), αγ

α+γ ). Notice that, unlike the prior, q∗(µp) depends on x. If we put q∗ back
in the regularizer of equation 5, the regularizer becomes:

1
2γ

[
1⊤σ2

q (x) + γ

γ + α
µq(x)⊤µq(x)

]
− 1

21⊤ log σ2
q (x) + K

2 log(γ + α) − K

2 . (6)

As in Tomczak et al. (2021), equation 6 puts a factor γ
γ+α < 1 in front of µq(x)⊤µq(x), which weakens the

regularization on µq(x). We refer to this method as “vifo-mean”.

Figure 2, shows the learned prior for vifo-mean and VI for the same example as in Figure 1. We observe
that vifo-mean allows diverse prior distribution and captures the data distribution.

Other Regularizers The same approach can be used for a joint prior p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp) =

N (µp|0, 1
tσ

2
p), p(σ2

p) = IG(σ2
p|α, β), where IG is inverse Gamma, yielding a method we call “vifo-mv”.

Similarly, the hierarchical prior in empirical Bayes models the variance but not the mean p(σ2
p) = IG(σ2

p|α, β),
p(z|σ2

p) = N (z|0, σ2
p) and yields “vifo-eb”. Derivations are given in Appendix B.
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3 Expressiveness of VIFO

VIFO is inspired by DVI and it highly reduces the computational cost. In this section we explore whether
VIFO can produce exactly the same predictive distribution as VI. We show that this is the case for linear
models but that for deep models VIFO is less powerful. We first introduce the setting of linear models. Let
the parameter be θ, then the model is:

y|x, θ ∼ p(y|θ⊤x). (7)

For example, p(y|θ⊤x) = N (y|θ⊤x, 1
β ) where β is a constant for Bayesian linear regression; and p(y =

1|θ⊤x) = 1
1+exp(−θ⊤x) for Bayesian binary classification.

For simplicity, we assume θ ∈ Rd, where d is the dimension of x, and then the output dimension K = 1. The
standard approach specifies the prior of θ to be p(θ) = N (θ|m0, S0), and uses q(θ) = N (θ|m,S). Then the
ELBO objective, with a dataset XN = (x1, x2, . . . , xN ) ∈ Rd×N and YN = (y1, y2, . . . , yN ) ∈ RN , is

N∑
i=1

Eq(θ)[log p(yi|θ⊤xi)] − KL(q(θ)||p(θ))

=
N∑

i=1
Eq(θ)[log p(yi|θ⊤xi)] − 1

2 [tr(S−1
0 S) − log |S−1

0 S|] − 1
2(m−m0)⊤S−1

0 (m−m0) + d

2 . (8)

As the following theorem shows, if we use a conditional correlated prior and a variational posterior that
correlates data points, then in the linear case VIFO can recover the ELBO and VI solution. We defer the
proof and discussion of K > 1 to Appendix A.2.
Theorem 3.1. Let q(z|x) = N (z|w⊤x, x⊤V x) be the variational predictive distribution of VIFO, where
w and V are the parameters to be optimized, and let p(z|XN ) = N (z|m⊤

0 XN , X
⊤
NS0XN ) and q(z|XN ) =

N (z|w⊤XN , X
⊤
NV XN ) be a correlated and data-specific prior and posterior (which means that for different

data x, we have a different prior/posterior over z). Then the VIFO objective is equivalent to the ELBO
objective implying identical predictive distributions.

However, as the next theorem shows, for the non-linear case we cannot produce the variational output
distribution q(z|x) as if it is marginalized over the posterior on W .
Theorem 3.2. Given a neural network fW parametrized by W and a mean-field Gaussian distribution q(W )
over W , there may not exist a set of parameters W̃ such that for all input x we have Eq(W )[fW (x)] = fW̃ (x).

The proof is given in Appendix A.2. The significance of these results is twofold. On the one hand, we see from
Theorem 3.2 and the conditions of Theorem 3.1 that the representation is more limited, i.e., efficiency comes
at some cost. On the other hand, Theorem 3.1 shows the connection of VIFO to VI, which gives a better
perspective on the approximation it provides. Moreover, this facilitates the use of existing improvements in
VI for VIFO such as collaposed VI applied to VIFO.

In practice, a correlated and data-specific prior p(z|x) is complex, and tuning its hyperparameters would
be challenging. Hence, for a practical algorithm we propose to use a simple prior p(z) independent of x.
In addition, to reduce computational complexity, we do not learn a full covariance matrix and focus on the
diagonal approximation. These aspects limit expressive power but enable fast training of VIFO and hence
also ensembles of VIFO.

4 Rademacher Complexity of VIFO

In this section we provide generalization bounds for VIFO through Rademacher Complexity. We need to
make the following assumptions.
Assumption 4.1. log p(y|z) is L0-Lipschitz in z, i.e., | log p(y|z) − log p(y|z′)| ≤ L0∥z − z′∥2.
Assumption 4.2. The link function g is L1-Lipschitz.
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We show in the Appendix A.1 that these assumptions hold for classification and with a smoothed loss for
regression.

Recall that the Rademacher complexity of a set of vectors A ⊆ RN is defined as R(A) =
1
NEσ∼{−1,1}N [supa∈A

∑
i σiai]. The Rademacher complexity of the set of loss values induced by functions

f ∈ F over a dataset S has been used to derive generalization bounds for learning of the class F . We need
the following technical lemma, proved in Appendix A.1, that generalizes well known Lipschitz based bounds
Shalev-Shwartz & Ben-David (2014) to multi-input functions.
Lemma 4.3. Consider an L-Lipschitz function ϕ : R × R → R, i.e. ϕ(a1, b1) − ϕ(a2, b2) ≤ L(|a1 − a2| +
|b1 − b2|). For a, b ∈ RN , let ϕ(a, b) denote the vector (ϕ(a1, b1), . . . , ϕ(aN , bN )). Let ϕ(A × B) denote
{ϕ(a, b) : a ∈ A, b ∈ B}, then

R(ϕ(A×B)) ≤ L(R(A) +R(B)). (9)

Applying the previous lemma sequentially over multiple dimensions we obtain:
Corollary 4.4. Consider an L-Lipschitz function ϕ : Rd → R, i.e., for any x, x′ ∈ Rd, ϕ(x) − ϕ(x′) ≤
L∥x− x′∥1. Let ϕ(Ad) = {ϕ(a1:d,i) : a1,a2, . . . ,ad ∈ A ⊂ RN }, then R(ϕ(Ad)) ≤ LdR(A).

With the assumptions and technical lemma, we derive the main result:
Theorem 4.5. Let H be the set of functions that can be represented with neural networks with parameter
space W, H = {fW (·)|W ∈ W}. VIFO has two components, so the VIFO hypothesis class is H × H
= {(fW1(·), fW2(·)) |W = (W1,W2),W1,W2 ∈ W}. Let l be the loss function for VIFO, l(W, (x, y)) =
EqW (z|x)[− log p(y|z)]. Then the Rademacher complexity of VIFO is bounded as R(l ◦ (H × H) ◦ S) ≤
2(L0 max{1, L1}K) ·R(H ◦ S), where K is the dimension of z and S is training dataset.

Proof. We show that the loss is Lipschitz in fW1(x) and fW2(x). Fix any x, and W,W ′. We denote the mean
and standard deviation of qW (z|x) by µ and s and the same for qW ′(z|x). We use · for Hadamard product.

EqW (z|x)[− log p(y|z)] − EqW ′ (z|x)[− log p(y|z)]
=Eϵ∼N (0,I)[log p(y|µ′ + ϵ · s′) − log p(y|µ+ ϵ · s)]
≤Eϵ∼N (0,I) [L0∥(µ− µ′) + ϵ · (s− s′)∥2] (Lipschitz)

≤L0∥µ− µ′∥2 + L0Eϵ

[√
∥ϵ · (s− s′)∥2

2

]
≤L0∥µ− µ′∥2 + L0

√
Eϵ[∥ϵ · (s− s′)∥2

2] (Jensen’s Ineq)

=L0(∥µ− µ′∥2 + ∥s− s′∥2)
≤L0(∥µ− µ′∥1 + ∥s− s′∥1).

For the 6th line note that Eϵ[∥ϵ·(s−s′)∥2
2] = Eϵ[

∑
i ϵ

2
i (si−s′

i)2] =
∑

i Eϵi∼N (0,1)[ϵ2i (si−si)2] =
∑

i(si−s′
i)2 =

∥s− s′∥2
2. The loss function is Lipschitz in µ, which is exactly fW1(x). Further, s is L1-Lipschitz in the logit

fW2(x), thus, the loss function is (L0 max{1, L1})-Lipschitz in the concatenation of fW1(x) and fW2(x), each
of which is of dimension K. The theorem now follows from Corollary 4.4.

Hence the Rademacher complexity for VIFO is bounded through the Rademacher complexity of deterministic
neural networks. This shows one advantage of VIFO which is more amenable to analysis than standard VI
due to its simplicity. Risk bounds for VI have been recently developed (e.g., (Germain et al., 2016; Sheth
& Khardon, 2017)) but they require different proof techniques. The Rademacher complexity for neural
networks is O

(
BW Bx√

N

)
(Golowich et al., 2018), where BW bounds the norm of the weights and Bx bounds

the input. The Rademacher complexity of VIFO is of the same order.

5 Related Work

VIFO shares some aspects with the model of Kendall & Gal (2017), where both use neural networks to
output the mean and covariance of the last layer. However Kendall & Gal (2017) use the cross entropy
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loss, − logEq(z|x)p(y|z) instead of our loss in Eq. (4), they use dropout for epistemic uncertainty, and their
objective has no explicit regularization. Hence unlike VIFO their formulation does not correspond to a
standard ELBO. Sharma et al. (2023) model the distribution of the last layer by adding random noise as
input and do not give an explicit form of the output distribution. Dirichlet-based methods (Sensoy et al.,
2018; Charpentier et al., 2020; Bengs et al., 2022), discussed above, implicitly perform variational inference
on the prediction layer, where the network output provides parameters of a Dirichlet distribution. Like
VIFO they provide Bayesian predictions in a single pass over the network, but their relation to the standard
variational inference in parameter space is non obvious. On the other hand, VIFO is a single pass method
clearly related to VI in parameter space which enables the benefits of collapsed variational inference. Thus
VIFO can be seen to bridge between Dirichlet methods and VI. Another related line of work (Sun et al.,
2019; Tran et al., 2022) performs variational inference in function space. However, they focus on choosing a
better prior in weight space which is induced from Gaussian Process priors on function space, whereas VIFO
directly induces a simple prior on function space.

VIFO differs from other existing variational inference methods as well. Last-layer variational inference
(Brosse et al., 2020) performs variational inference on the parameters of the last layer, while we perform
variational inference on the output of the last layer. The last layer usually contains more parameters than
the output (which has constant size). Thus, Last-layer VI is much closer to VI and VIFO regularizes and
optimizes in a different space. The local reparametrization trick (Tomczak et al., 2020; Oleksiienko et al.,
2022) performs two forward passes with the mean and variance to sample the output for each layer, while
we only require one pass and sample the output of the last layer for prediction.

Various alternative Bayesian techniques have been proposed. One direction is to get samples from the true
posterior, as in Markov chain Monte Carlo methods Wenzel et al. (2020); Izmailov et al. (2021). Expectation
propagation aims to minimize the reverse KL divergence to the true posterior Teh et al. (2015); Li et al.
(2015). These Bayesian methods, including variational inference, often suffer from high computational
cost and therefore hybrid methods were proposed. Stochastic weight averaging Gaussian Maddox et al.
(2019) forms a Gaussian distribution over parameters from the stochastic gradient descent trajectory in the
base model. Dropout Gal & Ghahramani (2016) randomly sets weights 0 to capture uncertainty in the
model. Deep ensembles Lakshminarayanan et al. (2017) use ensembles of base models learned with random
initialization and shuffling of data points and then average the predictions. These methods implicitly perform
approximate inference. In addition to these methods, there are also non-Bayesian methods to calibrate
overconfident predictions, for example, temperature scaling (Guo et al., 2017) introduces a temperature
parameter to anneal the predictive distribution to avoid high confidence. VIFO strikes a balance between
simplicity and modelling power to enable simple training and Bayesian uncertainty quantification. On the
one hand, VIFO can be seen as a simplification of VI. On the other hand, it can be seen as an extension
of the base model. From this perspective, the use of ensembles of VIFO, which extend the ensembles of
Lakshminarayanan et al. (2017), are highly motivated as a practical algorithm. As shown below, ensembles
of VIFO are indeed very effective in practice.

6 Experiments

In this section, we compare the empirical performance of VIFO with VI and hybrid methods that use the
base model, as well as repulsive ensembles (“repulsive”, (D’Angelo & Fortuin, 2021)), the Dirichlet-based
model (“dir”, (Sensoy et al., 2018)) and dropout (Gal & Ghahramani, 2016). VI candidates include the VI
algorithm (“vi-naive”(Blundell et al., 2015)) with fixed prior parameters, and other variations from collapsed
variational inference (Tomczak et al., 2021) and empirical Bayes (Wu et al., 2019). Non-Bayesian and hybrid
methods include the base model (“sgd”, because it uses stochastic gradient descent as optimizer), stochastic
weight averaging (“swa”, which uses the average of the sgd trajectory on the base model as the final weights)
from Izmailov et al. (2018) and SWA-Gaussian (“swag”, which uses the sgd trajectory to form a Gaussian
distribution over the neural network weight space) from Maddox et al. (2019). We use ensembles of the base
models which are known as deep ensembles (Lakshminarayanan et al., 2017), and the ensembles of SWAG
models, which are the multiSWAG model of Wilson & Izmailov (2020), both of which are considered strong
baselines for uncertainty quantification (Ovadia et al., 2019). Our main goal is to show:
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Table 1: Running time for training 1 epoch with batch size 512, AlexNet

dataset CIFAR10 CIFAR100 SVHN STL10
size 50000 50000 73257 500
VI 8.51 ± 0.41 8.27 ± 0.40 11.56 ± 0.39 1.75 ± 0.41

VIFO 2.18 ± 0.39 2.17 ± 0.43 2.72 ± 0.38 1.16 ± 0.40
base 1.97 ± 0.41 1.99 ± 0.43 2.46 ± 0.40 1.12 ± 0.38

• VIFO is much faster than VI and only slightly slower than base models;

• Ensembles of VIFO preserve the quality of in-distribution predictions;

• Ensembles of VIFO achieve better uncertainty quantification on shifted and out-of-distribution
(OOD) data than all baselines.

For our main experiments, we pick four large datasets, CIFAR10, CIFAR100, SVHN, STL10, together with
two types of neural networks, AlexNet (Krizhevsky et al., 2012) and PreResNet20 (He et al., 2016). The
regularization parameter η is fixed to 0.1 for both VIFO and VI, as this choice yields better performance
compared with the standard choice η = 1. Empirically we observe that using collapsed variational inference
in VI does not improve the performance. This is because Tomczak et al. (2021) used η = 1 to obtain their
results whereas we use η = 0.1 that yields better performance and is a much stronger baseline. In addition,
vifo-mean and vifo-mv perform better than other variants of VIFO. Thus, we only list these variants in our
main paper and provide full results for other variants for VIFO and VI in the appendix. For each method
we run 5 independent runs and report means and standard deviations in results. Complete details for the
setup and hyperparameters are given in Appendix D.2.

6.1 Run Time

Ignoring the data preprocessing time, we compare the run time of training 1 epoch of VI, VIFO and the
base model. In Table 1 we show the mean and standard deviation of 10 runs of these methods. Different
regularizers do not affect run time, so we only show that of vi-naive for VI and vifo-mean for VIFO. As
shown in Table 1, VIFO is much faster than VI and is slightly slower than the base model.

These differences are dominated by sampling and forward passes in the network. The base model only needs
1 forward pass without sampling per batch. VIFO needs 1 forward pass and M samples of size K per batch.
VI needs M samples of the parameter space and M forward passes per batch. The same facts apply for
predictions on test data, where the advantage can be important for real time applications.

6.2 Ensembles of VIFO

Theorem 3.2 points out the limit of expressiveness of VIFO. To overcome this, we use ensembles of VIFO,
which independently train multiple VIFO models and average their predictions. Section 6.1 establishes fast
training of VIFO, allowing us to train each VIFO model simultaneously while still maintaining the running
time advantage of VIFO. Table 2 shows that with ensembles, VIFO achieves much better log loss than when
using a single model. Notice that Table 2 lists the results for VIFO with auxiliary training and the same
phenomenon occurs for VIFO without auxiliary training as well. This indicates that ensembles of VIFO are
much more expressive than a single VIFO. In the following experiments, we use ensembles of VIFO. For a
fair comparison, we use ensembles for all other methods except for VI (which is very time-consuming) and
repulsive ensembles (which are themselves ensembles).

6.3 In-distribution Performance

In this section we use log loss and accuracy to measure the performance for in-distribution data.

Fig. 3 and Fig. E.1 in Appendix compare main methods in terms of log loss. First, we observe that repulsive
ensembles and the Dirichlet method have much worse log loss than all other methods and they tend to give
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Table 2: Test log loss of single VIFO and ensembles of VIFO.

vifo-mean vifo-mv
single ensemble single ensemble

CIFAR10 0.527 ± 0.015 0.345 ± 0.003 0.626 ± 0.010 0.324 ± 0.001
CIFAR100 2.253 ± 0.032 1.688 ± 0.006 2.688 ± 0.029 1.725 ± 0.003

STL10 1.333 ± 0.065 1.055 ± 0.008 1.531 ± 0.019 1.123 ± 0.008
SVHN 0.509 ± 0.029 0.351 ± 0.005 0.520 ± 0.027 0.298 ± 0.009

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure 3: Test log loss of image datasets on PreResNet20. Dashed lines indicate the best version of VIFO.
The error bar is three times of the standard deviation for better visualization and same for other figures.

underconfident predictions. Second, we observe that using auxiliary training slightly increases the log loss
but the increase is negligible. Later we can see that auxiliary training improves the uncertainty quantification
for out-of-distribution data. We observe that VIFO is competitive with all methods in terms of log loss,
with relatively small differences between the top group of methods in each case. Fig. 4 and Fig. E.2 show
accuracy on test data in the same experiments, revealing that in many cases VIFO outperforms VI and
it is competitive with all methods. Finally, there is no clear winner between vifo-mean and vifo-mv; vifo-
mv provides a small advantage overall but might be more sensitive as illustrated by the performance on
CIFAR100 with PreResNet20.

6.4 Uncertainty Quantification

In this section we examine whether VIFO can capture the uncertainty in predictions for shifted and OOD
data. We measure performance using ECE, Entropy and AUC for detecting OOD data. These represent a
comprehensive set of measures from the literature. For datasets, for uncertainty under data shift, STL10
and CIFAR10 can be treated as a shifted dataset for each other, as the figure size of STL10 is different from
CIFAR10, and STL10 shares some classes with CIFAR10 so the labels are meaningful. For uncertainty under
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure 4: Test accuracy of image datasets on PreResNet20. Dashed lines indicate the best version of VIFO.

OOD data, we choose the SVHN dataset as an OOD dataset for CIFAR10 and STL10, as SVHN contains
images of digits and the labels of SVHN are not meaningful in the context of CIFAR10.

Expected Calibration Error (ECE) ECE (Naeini et al., 2015; Ovadia et al., 2019) is often used to
measure the uncertainty quantification under data shift. We separate data into bins of the same size according
to the confidence level, calculate the difference between the accuracy and the averaged confidence in each bin
and then average the absolute differences among all bins. Better calibrated models have lower ECE. ECE
has its faults (for example the trivial classifier has zero ECE) but it is nonetheless informative. We selected
the number of bins to be 20.

Fig. 5 shows the ECE of each method under data shift. As we can see, both vifo-mean and vifo-mv achieve
the best performance compared to all other methods.

Entropy Entropy (Ovadia et al., 2019) of the categorical predictive distribution is used to measure the
uncertainty quantification for out-of-distribution (OOD) data as the labels for OOD data are meaningless.
We want our model to be as uncertain as possible and this implies high entropy and low confidence (the
maximum probability assigned to any class) in the predictive distribution. We summarize the averaged
entropy for the entire dataset in Fig. 6 and Fig. E.3. We can see that both vifo-mean and vifo-mv are better
than all other methods except repulsive ensembles and the Dirichlet method. However, as observed in Fig. 5
and Fig. 3, repulsive ensembles and the Dirichlet method have poor performance in terms of log loss due
to underconfident predictions. Hence they achieve high entropy by sacrificing in distribution performance
whereas VIFO performs well. Further, we observe from Fig. 6 that auxiliary training greatly improve the
performance of VIFO on PreResNet20. Auxiliary training only has a small impact on VIFO with AlexNet
(see Fig. E.3) but VIFO already performs well without auxiliary training in this case.

AUROC We use maximum probability of the categorical predictive distribution as the criterion to separate
in-distribution and OOD data and compute the area under the ROC curve (Malinin & Gales, 2018). AUROC
overcomes the drawbacks of ECE and entropy because a trivial model cannot yield the best performance.

10
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(a) CIFAR10→STL10, AlexNet (b) STL10→CIFAR10, AlexNet

(c) CIFAR10→STL10, PreResNet20 (d) STL10→CIFAR10, PreResNet20

Figure 5: ECE (↓) on AlexNet and PreResNet20 under data shift. Dashed line indicates the best performance
of VIFO. Numerical results are listed in the Appendix.

Detailed comparison plots are in given in Fig. E.4 and Fig. E.5 in the Appendix. We first note that, as
above, auxiliary training improves the performance on PreResNet20 but not significantly on AlexNet. We
found that there is no single method that consistently outperforms all other methods. Instead, for better
visualization, we show the comparison of vifo-mean and vifo-mv with other methods in Fig. 7. We count
the number of experiments that VIFO is better than one other method and get the proportion that VIFO is
better. We observe that overall, vifo-mv is better than all other methods except the Dirichlet method and
that it ranks better than vifo-mean. As discussed above, the success of the Dirichlet method on OOD data is
achieved by sacrificing calibration and in distribution performance. On the other hand, VIFO outperforms all
other baselines for OOD and has strong in distribution performance and hence give better overall predictions.

7 Conclusion

In Bayesian neural networks, the distribution of the last layer directly affects the predictive distribution.
Motivated by this fact, we proposed variational inference on the final-layer output, VIFO, that uses a neural
network to directly learn the mean and variance of the last layer. We showed that VIFO can match the
expressive power of VI in linear cases with a strong prior but that in general it provides a less expressive model.
On the other hand the simplicity of the model enables fast training of ensembles of VIFO and facilitates
convergence analysis through Rademacher bounds. In addition, VIFO can be derived as a non-standard
variational lower bound, which provides an approximation for the last layer. This connection allowed us
to derive better regularizations for VIFO by using collapsed variational inference over a hierarchical prior.
Empirical evaluation highlighted that ensembles of VIFO are competitive with or outperform other methods
in terms of in-distribution loss and out-of-distribution data detection. Hence VIFO gives a new attractive
approach for approximate inference in Bayesian models. The efficiency of VIFO also means faster test time
predictions which can be important when deploying Bayesian models for real-time applications. In future
work it would be interesting to explore the complexity performance tradeoff provided by VIFO, and the
connections to variational inference in functional space that induces more complex priors.
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(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure 6: Entropy (↑) on PreResNet20.

Figure 7: Comparison of VIFO with all other methods in terms of AUROC on OOD data. Y-axis is the
proportion of experiments that VIFO is better than other methods. Exact AUROC values are provided in
the appendix.
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A Proofs

A.1 Proofs in Section 4

Proof of Lemma 4.3. We prove the lemma for L = 1. If this is not the case, we can define ϕ′ = 1
Lϕ, and use

the fact that R(ϕ(A×B)) ≤ LR(ϕ′(A×B)). Let Ci = {(a1+b1, . . . , ai−1+bi−1, ϕ
′(ai, bi), ai+1+bi+1, . . . , aN +

bN ) : a ∈ A, b ∈ B}. It suffices to prove that for any set A,B and all i we have R(Ci) ≤ R(A) + R(B).
Without loss of generality we prove the case for i = 1.

NR(C1) = Eσ

[
sup
c∈C1

σ1ϕ(a1, b1) +
N∑

i=2
σi(ai + bi)

]

= 1
2Eσ2,...,σN

[
sup

a∈A,b∈B

(
ϕ(a1, b1) +

N∑
i=2

σi(ai + bi)
)

+ sup
a′∈A,b′∈B

(
−ϕ(a′

1, b
′
1) +

N∑
i=2

σi(a′
i + b′

i)
)]

= 1
2Eσ2,...,σN

[
sup

a,a′∈A,b,b′∈B

(
ϕ(a1, b1) − ϕ(a′

1, b
′
1) +

N∑
i=2

σi(ai + bi) +
N∑

i=2
σi(a′

i + b′
i)
)]

≤ 1
2Eσ2...σN

[
sup

a,a′∈A,b,b′∈B

(
|a1 − a′

1| + |b1 − b′
1| +

N∑
i=2

σi(ai + bi) +
N∑

i=2
σi(a′

i + b′
i)
)]

= 1
2Eσ2,...,σN

[
sup

a,a′∈A

(
a1 − a′

1 +
N∑

i=2
σiai +

N∑
i=2

σia
′
i

)]

+ 1
2Eσ2,...,σN

[
sup

b,b′∈B

(
b1 − b′

1 +
N∑

i=2
σibi +

N∑
i=2

σib
′
i

)]
= NR(A) +NR(B).

Verifying Assumption 4.1: We next verify that Assumption 4.1 holds for classification and (with a
modified loss) for regression.
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For K-classification, z is K-dimensional and the negative log-likelihood is

− log p(y = k|z) = − log exp(zk)∑K
i=1 exp(zi)

= −zk + log
K∑

i=1
exp(zi)

which is 1-Lipschitz in z.

For regression, z = (m, l) is 2-dimensional, and the negative log-likelihood is:

− log p(y|z) = 1
2(y −m)2 exp(−l) + 1

2 l.

Neither the quadratic function nor exponential function is Lipschitz. But we can replace the unbounded
quadratic function (y−m)2 with a bounded version min{(y−m)2, B2

m}, and replace the exponential function
exp(−l) with min{exp(−l), Bl}, where B > 0, to guarantee the Lipschitzness. Now the negative log-likelihood
is:

− log p(y|z) = 1
2 min{(y −m)2, B2

m} min{exp(−l), Bl} + 1
2 l,

is (BmBl)-Lipschitz in m,
( 1

2 + 1
2B

2
mBl

)
-Lipschitz in l.

Verifying Assumption 4.2: For Assumption 4.2, we can use g(l) = log(1 + exp(l)) which is 1-Lipschitz.
If g(l) = exp(l) is the exponential function, we can use a bounded variant that satisfies the requirement
g(l) = max{exp(x), Bg}.

A.2 Proofs in Section 3

Proof of Theorem 3.1. Assume N > d. Note that with the the correlated prior and posterior the covariance
function is rank deficient so we have to interpret inverses and determinants appropriately. Here we use
pseudo inverse and pseudo determinant. The VIFO objective is:

N∑
i=1

{
Eq(z|xi)[log p(yi|z)]

}
− KL(q(z|XN )||p(z|XN )) (10)

=
N∑

i=1

{
Eq(z|xi)[log p(yi|z)]

}
− 1

2tr((X⊤
NS0XN )−1(X⊤

NV XN )) + N

2

+1
2 log |(X⊤

NS0XN )−1(X⊤
NV XN )| − 1

2(w⊤XN −m⊤
0 XN )(X⊤

NS0XN )−1(w⊤XN −m⊤
0 XN )⊤. (11)

First consider the loss term. Let L be the Cholesky decomposition of V , i.e. V = LL⊤. By reparametrization,
for ϵ ∼ N (0, Id), w⊤xi + x⊤

i Lϵ ∼ N (w⊤xi, x
⊤
i LL

⊤xi) and thus

Eq(z|xi)[log p(yi|z)] = Eϵ∼N (0,Id)[log p(yi|w⊤xi + x⊤
i Lϵ)]

= Eϵ∼N (0,Id)[log p(yi|(w + Lϵ)⊤xi)]
= Eθ∼N (w,LL⊤)[log p(yi|θ⊤xi)], (12)

where the last equality uses reparametrization in a reverse order. By aligning w = m and V = LL⊤ = S, we
recognize that Eq equation 12 is exactly the loss term in Eq equation 8. Thus the low-dimensional posterior
on z yields the same loss term as the high-dimensional posterior over W .

For the regularization, we use the pseudo inverse derivation from Eq (224) of Petersen & Pedersen (2012),
where for A = CD we have A+ = D⊤(DD⊤)−1(C⊤C)−1C⊤ to get

(X⊤
NS0XN )−1 = X⊤

N (XNX
⊤
N )−1S−1

0 (XNX
⊤
N )−1XN

17
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and the same for V . Thus,

(X⊤
NS0XN )−1(X⊤

NV XN ) = X⊤
N (XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1XNX

⊤
NV XN

= X⊤
N (XNX

⊤
N )−1S−1

0 V XN ,

tr|X⊤
N (XNX

⊤
N )−1S−1

0 V XN | = tr|XNX
⊤
N (XNX

⊤
N )−1S−1

0 V |
= tr(S−1

0 V ),

and

(w⊤XN −m⊤
0 XN )(X⊤

NS0XN )−1(w⊤XN −m⊤
0 XN )⊤

=(w −m0)⊤XN (X⊤
N (XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1XN )X⊤

N (w −m0)
=(w −m0)⊤(XNX

⊤
N )(XNX

⊤
N )−1S−1

0 (XNX
⊤
N )−1(XNX

⊤
N )(w −m0)

=(w −m0)⊤S−1
0 (w −m0).

For the The log-determinant term we use the pseudo-determinant (Minka, 2001), which is the product of
non-zero eigenvalues. Let (λi, ui)d

i=1 be the set of eigenvalues and eigenvectors of S−1
0 V , i.e., S−1

0 V ui = λui,
and let X‡

N = X⊤
N (XNX

⊤
N )−1 denote the pseudo inverse of XN , then

(X‡
NS

−1
0 V XN )X‡

Nui = X‡
NS

−1
0 V ui = λX‡

Nui, (13)

thus (λi, X
‡
Nui)d

i=1 is the eigenvalues and eigenvectors of X⊤
N (XNX

⊤
N )−1S−1

0 V XN . Since the rank of this
matrix is at most d, other eigenvalues are 0 and the pseudo determinant is

∏d
i=1 λi, which is exactly the

determinant of S−1
0 V . Then the regularization term in Eq equation 8 can be simplified to:

−KL(q(z|XN )||p(z|XN )) = −1
2tr(S−1

0 V ) + 1
2 log |S−1

0 V | − 1
2(w −m0)⊤S−1

0 (w −m0) + N

2 . (14)

By aligning w = m,V = S, we can seet that equation 14 is exactly the regularizer in equation 8 ignoring
the constant.

Note for the case K > 1: Let θ ∈ Rd×K . For VI, we make a mean field assumption with q(θk) =
N (θk|mk, Sk) and q(θ) =

∏K
k=1 q(θk), where θk is the k-th column of θ. For VIFO, using mean field let

q(zk|x) = N (zk|w⊤
k x, x

⊤Vkx) and q(z|x) =
∏K

k=1 q(zk|x). By aligning wk = mk and V = Sk, we can find
Eq(z|xi)[log p(yi|z1, . . . zK)] = Eq(θ)[log p(yi|(θ⊤

1 xi, . . . , θ
⊤
Kxi))], and

KL(q(θ)||p(θ)) =
∑

k

KL(q(θk), p(θk)) .=
∑

k

KL(q(zk|XN )||p(zk|XN )), (15)

where the second .= means equivalence ignoring a constant difference.

Proof of Theorem 3.2. Consider a neural network with one single hidden layer, denote the weights of the
first layer as u, and the weights of the second layer as w. Thus, the k-th output can be computed as:

z(k) =
I∑

i=1
wk,iψ

(
D∑

d=1
ui,dxd

)
,

where I is the size of the hidden layer, D is the input size and ψ(a) = max(0, a) is the ReLU activation
function. We further simplify the setting by considering the special case where only x1 is non-zero and I = 1.
Then the k-th output becomes:

z(k) = wk,1ψ(u1,1x1).

18
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Consider a distribution q(wk,i) = N (w̄k,i, σ
2
w), q(ui,d) = N (ūi,d, σ

2
u). Then if x1 ≥ 0,

Eq(w)q(u)

[
z(k)

]
= Ew,u [wk,1ψ(u1,1x1)]

= w̄k,1

ū1,1 +
ϕ
(

− ū1,1
σu

)
1 − Φ

(
− ū1,1

σu

)σu

(1 − Φ
(

− ū1,1

σu

))
x1; (16)

if x1 < 0, then

Eq(w)q(u)

[
z(k)

]
= Ew,u [wk,1ψ(u1,1x1)]

= w̄k,1

ū1,1 −
ϕ
(

− ū1,1
σu

)
Φ
(

− ū1,1
σu

)σu

Φ
(

− ū1,1

σu

)
x1, (17)

where ϕ and Φ are the pdf and cdf of standard normal distribution and we directly use the expectation of
the truncated normal distribution. Now consider w̃ and ũ that aim to recover (16) and (17). If ũ1,1 ≥ 0,
it cannot successfully recover (17) because the ReLU activation will have 0 when x1 < 0 so that it cannot
recover (17); if ũ1,1 < 0, for the same reason it cannot recover (16).

B Derivations of Collapsed Variational Inference

As is shown by Tomczak et al. (2021), for priors and approximate posteriors from the exponential family,
we can derive the closed-form solution for the optimal q∗(µp, σ

2
p),

log q∗(µp, σ
2
p|x) ∝ log p(µp, σ

2
p) + Eq(z|x)[log p(z|µp, σ

2
p)], (18)

for optimizing q(µp, σ
2
p) for every single data.

B.1 Learn mean, fix variance

Let p(z|µp) = N (z|µp, γI), p(µp) = N (µp|0, αI). Recall that q(z|x) = N (µq(x),diag(σ2
q (x))). Then

log q∗(µp|x) ∝ log p(µp) + Eq(z|x)[log p(z|µp)]

∝ − 1
2αµ

⊤
p µp − 1

2γ [(µp − µq(x))⊤(µp − µq(x)) + 1⊤σ2
q (x)]

∝ −α+ γ

2αγ

(
µp − α

α+ γ
µq(x)

)⊤(
µp − α

α+ γ
µq(x)

)
.

Then q∗(µp) = N ( α
α+γµq(x), αγ

α+γ I). Pluging q∗ into the regularizer, the new regularizer becomes

1
2γ

[
1⊤σ2

q (x) + γ

γ + α
µq(x)⊤µq(x)

]
− 1

21⊤ log σ2
q (x) + K

2 log(γ + α) − K

2 .

B.2 Learn both mean and variance

Let p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp|σ2

p) = N (µp|0, 1
tσ

2
p), p(σ2

p) = IG(σ2
p|α, β), where IG indicates the inverse

Gamma distribution. Let q(µp) be a diagonal Gaussian and q(σ2
p) be inverse Gamma. Use µp,i and σp,i to

denote the i-th entry of µp and σp respectively, then
log q∗(µp,i, σ

2
p,i)

∝ log p(µp,i, σ
2
p,i) + Eq(z|x)[log p(z|µp, σ

2
p)]

∝ − (α+ 3
2) log σ2

p,i −
2β + tµ2

p,i

2σ2
p,i

− 1
2 log σ2

p,i − 1
2

(µp,i − µq,i(x))2

σ2
p,i

− 1
2
σ2

q,i(x)
σ2

p,i

∝ − (α+ 2) log σ2
p,i − 1

2σ2
p,i

(
2
(
β + t

2(t+ 1)µq,i(x)2 + 1
2σ

2
q,i(x)

)
+ (t+ 1)

(
µp,i − µq,i(x)

t+ 1

)2
)
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follows the normal-inverse-gamma distribution. Thus q∗(µp|x) = N (µp| 1
t+1µq(x), 1

t+1σ
2
p) and q∗(σ2

p|x) =
IG(σ2

p|(α+ 1
2 )1, β + t

2(t+1)µq(x)2 + 1
2σ

2
q (x)). Then the regularizer becomes

(α+ 1
2)1⊤ log

[
β1 + t

2(1 + t)µq(x)2 + 1
2σ

2
q (x)

]
− 1

21⊤ log σ2
q (x). (19)

B.3 Empirical Bayes

Let p(σ2
p) = IG(σ2

p|α, β), p(z|σ2
p) = N (z|0, σ2

pI), and let q(σ2
p) be a delta distribution. Then

KL(q(z|x)||p(z|σ2
p)) − log p(σ2

p)

=1
2

[
K log σ2

p − 1⊤ log σ2
q (x) −K +

1⊤σ2
q (x)
σ2

p

+ µq(x)⊤µq(x)
σ2

p

]
+ (α+ 1) log σ2

p + β

σ2
p

.

By taking the derivatives of the above equation with respect to σ2
p and solving, we obtain the optimal

σ2
p = µq(x)⊤µq(x)+1⊤σ2

q (x)+2β

K+2α+2 . If we plug this back into the KL term, we get the regularizer:

1
2

[
K log

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β

K + 2α+ 2 − 1⊤ log |σ2
q (x)|

]

− K

2 + 1
2

(K + 2α+ 2)(µq(x)⊤µq(x) + 1⊤σ2
q (x))

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β . (20)

However, if we include the negative log-prior term (α + 1) log µq(x)⊤µq(x)+1⊤σ2
q (x)+2β

K+2α+2 +
β K+2α+2

µq(x)⊤µq(x)+1⊤σ2
q (x)+2β

, adding them up we will have

1
2(K + 2α+ 2) log

µq(x)⊤µq(x) + 1⊤σ2
q (x) + 2β

K + 2α+ 2 − 1⊤ log σ2
q (x) + const,

which highly reduces the complexity of the regularizer. This performs less well in practice and therefore we
follow Wu et al. (2019) and use equation 20.

C Optimizing the Variational Distribution for All Data

In the previous section we show the derivation of collapsed variational inference where q∗(µp, σ
2
p) is optimized

for every data point x. In this section we show how to optimize q(µp, σ
2
p) for all data and obtain different

regularizers to the ones mentioned in the above section. These perform less well in practice but we include
them here for completeness. The closed-form solution for q∗(µp, σ

2
p) for all data is

log q∗(µp, σ
2
p) ∝ 1

N

∑
(x,y)∈D

{
log p(µp, σ

2
p) + Eq(z|x)[log p(z|µp, σ

2
p)]
}
. (21)
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C.1 Learn mean, fix variance, optimize for all data

Let p(z|µp) = N (z|µp, γ), p(µp) = N (µp|0, α). Given a dataset D = {(x, y)}, we can get one optimal q∗(µp)
for all data. According to equation 21,

log q∗(µp) ∝ 1
N

∑
(x,y)∈D

{
log p(µp) + Eq(z|x)[log p(z|µp)]

}

∝ − 1
2αµ

⊤
p µp − 1

2γN
∑

(x,y)∈D

((µp − µq(x))⊤(µp − µq(x)) + 1⊤σ2
q (x))

∝ −α+ γ

2αγ

µp − 1
N

∑
(x,y)∈D

µq(x)

⊤µp − 1
N

∑
(x,y)∈D

µq(x)

 .

Then the optimal q∗(µp) = N ( α
α+γ

1
N

∑
x µq(x), αγ

α+γ I). Let µ̄q = 1
N

∑
x µq(x). The regularizer now is:

∑
(x,y)

{
Eq(µp)[KL(q(z|x)||p(z|µp, γ))] + KL(q(µp)||p(µp))

}

=
∑
(x,y)

{
Eq(µp)

[
K log γ − 1⊤ log σ2

q (x) −K + 1
γ

1⊤σ2
q (x) − 1

γ
(µq(x) − µp)⊤(µq(x) − µp)

]}

+ N

2

[
K log α+ γ

γ
−K +K

γ

γ + α
+ α2

(α+ γ)2 µ̄
⊤
q µ̄q

]
=
∑
(x,y)

{
1

2γ (1⊤σ2
q (x) + µq(x)⊤µq(x)) − 1

21⊤ log σ2
q (x)

}
− N

2

(
1
γ

− 1
α+ γ

)
µ̄⊤

q µ̄q + NK

2 log(α+ γ) − NK

2 .

(22)

We refer to this method as “vifo-mean_all”.

C.2 Learn both mean and variance, optimize mean for single data, and variance for all data

Let p(z|µp, σ
2
p) = N (z|µp, σ

2
p), p(µp|σ2

p) = N (µp|0, 1
tσ

2
p), p( 1

σ2
p
) = IG( 1

σ2
p
|α, β). Consider that

log p(µp,i, σ
2
p,i) + Eq(z|x)[log p(z|µp,i, σ

2
p,i)] (23)

= log p(µp,i|σ2
p,i) + log p(σ2

p,i) + Eq(z|x)[log p(z|µp,i, σ
2
p,i)] (24)

∝ − t

2
µ2

p,i

σ2
p,i

− 1
2 log σ2

p,i − (α+ 1) log σ2
p,i − β

σ2
p,i

− 1
2 log σ2

p,i − 1
2σ2

p,i

((µp,i − µq,i(x))2 + σ2
q,i(x)) (25)

= − t

2
µ2

p,i

σ2
p,i

− log σ2
p,i − (α+ 1) log σ2

p,i − β

σ2
p,i

− 1
2σ2

p,i

((µp,i − µq,i(x))2 + σ2
q,i(x)), (26)

= − t+ 1
2σ2

p,i

(
µp,i − 1

t+ 1µq,i(x)
)2

−
tµ2

q,i(x)
2(t+ 1)σ2

p,i

− (α+ 2) log σ2
p,i − β

σ2
p,i

−
σ2

q,i(x)
2σ2

p,i

(27)

Then by extracting the µp part from equation 27, we have

log q∗(µp,i|σ2
p,i, x) ∝ − t+ 1

2σ2
p,i

(
µp,i − 1

t+ 1µq,i(x)
)2

,
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and thus q∗(µp|x, σ2
p) = N (µp| 1

t+1µq(x), 1
t+1σ

2
p). Then we try to marginalize out µp to compute q∗(σ2

p).

log q∗(σ2
p,i) ∝ 1

N

∑
(x,y)∈D

log
∫

exp
(
log p(µp,i, σ

2
p,i) + Eq(z|x)[log p(z|µp,i, σ

2
p,i)]

)
dµp,i

∝ 1
N

∑
x,y∈D

{
1
2 log

∫
exp

(
− t+ 1

2σ2
p,i

(
µp,i − 1

t+ 1µq,i(x)
)2
)
dµp,i

−
tµ2

q,i(x)
2(t+ 1)σ2

p,i

− (α+ 2) log σ2
p,i − β

σ2
p,i

−
σ2

q,i(x)
2σ2

p,i

}

= −(α+ 2) log σ2
p,i − β

σ2
p,i

+ 1
N

∑
(x,y)∈D

(
1
2 log

2πσ2
p,i

t+ 1 −
σ2

q,i(x)
2σ2

p,i

−
tµ2

q,i(x)
2(t+ 1)σ2

p,i

)

= −(α+ 3
2) log σ2

p,i −
β + t

2(t+1)
1
N

∑
µ2

q,i(x) + 1
2N

∑
σ2

q,i(x)
σ2

p,i

,

and q∗(σ2
p) = IG(σ2

p|(α + 1
2 )1, β + t

2(t+1)
1
N

∑
x µq(x)2 + 1

2
1
N

∑
x σ

2
q (x)). Let µ̃q =

√
1
N

∑
x µq(x)2 and

σ̃q =
√

1
N

∑
x σq(x)2, then the regularizer becomes:

(α+ 1
2)N1⊤ log

[
β1 + t

2(1 + t) µ̃
2
q + 1

2 σ̃
2
q

]
−
∑
(x,y)

1
21⊤ log σ2

q (x) (28)

+KN log Γ(α)
Γ(α+ 1

2 )
−NKα log β + NK

2 log t+ 1
t

− NK

2 . (29)

We refer to this method as “vifo-mv_all”.

C.3 Empirical Bayes for all data

If we optimize σ2
p for all data, then we have∑

(x,y)∈D

{
KL(q(z|x)||p(z|σ2

p)) − log p(σ2
p)
}

=
∑

(x,y)∈D

{
1
2

[
K log σ2

p − 1⊤ log σ2
q (x) −K +

1⊤σ2
q (x)
σ2

p

+ µq(x)⊤µq(x)
σ2

p

]
+ (α+ 1) log σ2

p + β

σ2
p

}

and the optimal variance being µ̃⊤
q µ̃q+1⊤σ̃2

p+2β

K+2α+2 where µ̃q =
√

1
N

∑
x µq(x)2 and σ̃q =

√
1
N

∑
x σq(x)2. The

objective is:

NK

2 log
2β + µ̃2

q + σ̃2
q

K + 2α+ 2 − 1
2
∑

x

1⊤ log σq(x)2 − NK

2

+1
2
K + 2α+ 2

2β + µ̃2
q + σ̃2

q

∑
x

(µq(x)⊤µq(x) + 1⊤σ2
q (x)).

This method is called “vifo-eb_all”.

D Experimental Details

D.1 Experiments on Artificial Dataset

To generate Fig. 1 and Fig. 2, we generate 100 training data points y = 2 sin x + 0.1ϵ, ϵ ∼ N (0, 1), where
xtrain ∈ [− 3

4π,−
1
2π] ∪ [ 1

2π,
3
4π] and xtest ∈ [−π, π]. We use a multilayer perceptron neural network with 5
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layers, each layer containing 50 hidden units to fit the data. For VI, we pick the prior standard deviation
to be 0.5 and for vifo-mean, we select γ = 0.3, γ

α+γ = 0.05. For both models, we select the regularization
parameter η = 0.1 and for VIFO we choose ηaux = 1.0. Notice that the prior is defined on z = (m, l), which
is hard to visualize directly. We instead draw multiple z’s from prior, then draw multiple y’s from likelihood
p(y|z) and plot them in Fig. 2.

D.2 Experiments on Large Image Datasets

In this section we elaborate the experimental details, including the choice of hyperparameters, learning rates
and the number of training epochs.

Number of training epochs: We train all methods in 500 epochs.

Learning rate: For all methods other than SGD, SWA and SWAG, we use the Adam optimizer with
learning rate 0.001.

VI and VIFO: We first list the choices of the variance for naive variational methods. The choice of prior
variance significantly affects the performance. For image datasets with complex neural networks, the total
prior variance of VI grows with the number of parameters so we have to pick a small variance and we use
0.05 following the setting of Wilson et al. (2022). Since VIFO samples in the output space which is small,
using 0.05 regularizes too strongly and we therefore set a larger value of 1 for the variance.

For collapsed variational inference, we pick γ = 0.3, αreg = γ
α+γ = 0.05 for learn-mean regularizer (vi-mean,

vifo-mean, vifo-mean-all) and α = 0.5, β = 0.01, δ = t
1+t = 0.1 for learn-mean-variance regularizer (vi-mv,

vifo-mv, vifo-mv_all), which exactly follows Tomczak et al. (2021). We pick α = 4.4798 and β = 10 for
empirical Bayes (vi-eb, vifo-eb, vifo-eb_all). The choice of α in empirical Bayes follows Wu et al. (2019) but
the choice of β is unclear in Wu et al. (2019) so we just perform a simple search from {1, 10, 100} and set
β = 10 that yields the best result.

For both VI and VIFO, the regularization parameter η is fixed 0.1.

Hybrid Methods: The hybrid methods (SGD, SWA and SWAG) are not very stable so we have to tune
learning rates carefully for each dataset. We choose the momentum to be 0.9 for all cases and list all other
information in Table D.1. Notice that it is hard to train the hybrid methods on SVHN using AlexNet, so we
initialize with a pre-trained model that is trained with a larger learning rate 0.1 to find a region with lower
training loss, and then continue to optimize with the parameters listed in Table D.1.

Dropout: For dropout we add a dropout layer following each activation layer in the base model and set
the dropout probability p = 0.1.

Repulsive Ensembles: Repulsive ensembles run multiple copies of the base model with a kernel base
penalty to make sure the models are diverse. We use RBF kernel with lengthscale being the median of the
square of the norm.

Dirichlet: Dirichlet-based models are deterministic and they interpret the output of the last layer as
the parameters of dirichlet distributions, i.e., α(x) = g(fW (x)), where g maps the output to positive real
numbers. Hence we run the Dirichlet models with the setting of the base model. We next explain the setting
of hyperparameters. As discussed by Bengs et al. (2022), the models of Sensoy et al. (2018); Charpentier
et al. (2020) implicitly perform variational inference:

p ∼ Dir(α0), y|p ∼ Cat(p), (30)

and the ELBO becomes

log p(y|x) ≥ Eq(p|x)[log p(y|p)] − KL(q(p|x)||Dir(p|α0)), (31)
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Table D.1: The parameters for running the hybrid algorithms. “lr”-learning rate, “wd”-weight decay,
“swag_lr”-the learning rate after we start collecting models in SWA and SWAG algorithms, “swag_start”-
the epochs when we start to collect models, “epochs”-the number of training epochs.

lr wd swag_lr swag_start epochs
CIFAR10 / CIFAR100 0.05 0.0001 0.01 161 500

SVHN∗ 0.001 0.0001 0.005 161 500
STL10 0.05 0.001 0.01 161 500

where q(p|x) = Dir(p|α(x)). In the experiments, following Sensoy et al. (2018); Bengs et al. (2022), we
use a uniform prior with α0 = [1, . . . , 1]. As in VI and VIFO, we pick the regularization parameter for KL
divergence to be 0.1.

E Additional Plots

(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.1: Test log loss of image datasets on AlexNet. Dashed lines indicate the best version of VIFO. The
error bar is three times of the standard deviation for better visualization and same for other figures.
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.2: Test accuracy of image datasets on AlexNet. Dashed lines indicate the best version of VIFO.

(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.3: Entropy (↑) on AlexNet.
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(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.4: AUROC (↑) on AlexNet.

(a) CIFAR10→SVHN (b) STL10→SVHN

(c) SVHN→CIFAR10 (d) SVHN→STL10

Figure E.5: AUROC (↑) on PreResNet20.
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(a) CIFAR10 (b) CIFAR100

(c) STL10 (d) SVHN

Figure E.6: Learning curves for all datasets on AlexNet. We conducted 5 independent runs and report the
mean and standard deviation (which is very small). The results show that in all cases, VIFO-mean converges
as quickly as, or faster than, VI.

Figure E.7: Test losses vs. size of ensemble. Results are shown for 5 independent runs on CIFAR10 AlexNet.
We can see when the number of ensembles is larger than 5, increasing the number of ensembles does not
improve the performance significantly.
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Table F.1: CIFAR10, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.388 ± 0.005 0.383 ± 0.002 0.382 ± 0.001 0.383 ± 0.002
vifo-mean 0.338 ± 0.002 0.343 ± 0.002 0.344 ± 0.003 0.345 ± 0.004
vifo-mv 0.315 ± 0.002 0.324 ± 0.000 0.315 ± 0.004 0.311 ± 0.002
vifo-eb 0.347 ± 0.003 0.345 ± 0.001 0.345 ± 0.003 0.347 ± 0.002
vi-naive 0.329 ± 0.006
vi-mean 0.350 ± 0.010
vi-mv 0.315 ± 0.013
vi-eb 0.343 ± 0.004
sgd 0.375 ± 0.004
swa 0.363 ± 0.006
swag 0.329 ± 0.002

repulsive 0.785 ± 0.003
dir 0.788 ± 0.002

dropout 0.413 ± 0.013

Table F.2: CIFAR100, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.774 ± 0.008 1.840 ± 0.016 1.784 ± 0.008 1.811 ± 0.012
vifo-mean 1.632 ± 0.003 1.687 ± 0.002 1.682 ± 0.017 1.683 ± 0.021
vifo-mv 1.642 ± 0.011 1.716 ± 0.012 1.971 ± 0.053 2.250 ± 0.105
vifo-eb 1.643 ± 0.008 1.651 ± 0.003 1.643 ± 0.004 1.649 ± 0.006
vi-naive 1.513 ± 0.024
vi-mean 1.642 ± 0.023
vi-mv 1.817 ± 0.022
vi-eb 1.441 ± 0.016
sgd 1.894 ± 0.024
swa 1.768 ± 0.026
swag 1.768 ± 0.022

repulsive 2.540 ± 0.016
dir 3.218 ± 0.008

dropout 2.024 ± 0.022

F Numerical Results
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Table F.3: STL10, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.113 ± 0.006 1.117 ± 0.005 1.112 ± 0.005 1.135 ± 0.008
vifo-mean 1.030 ± 0.004 1.056 ± 0.005 1.066 ± 0.005 1.067 ± 0.011
vifo-mv 1.078 ± 0.005 1.121 ± 0.002 1.112 ± 0.010 1.101 ± 0.008
vifo-eb 1.141 ± 0.007 1.134 ± 0.008 1.127 ± 0.007 1.135 ± 0.002
vi-naive 0.975 ± 0.010
vi-mean 1.021 ± 0.013
vi-mv 1.095 ± 0.018
vi-eb 1.560 ± 0.054
sgd 1.419 ± 0.025
swa 1.139 ± 0.011
swag 1.098 ± 0.005

repulsive 1.388 ± 0.008
dir 1.359 ± 0.003

dropout 2.359 ± 0.045

Table F.4: SVHN, AlexNet, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.253 ± 0.001 0.256 ± 0.001 0.257 ± 0.001 0.251 ± 0.002
vifo-mean 0.211 ± 0.002 0.214 ± 0.002 0.209 ± 0.001 0.208 ± 0.001
vifo-mv 0.165 ± 0.002 0.169 ± 0.001 0.166 ± 0.001 0.170 ± 0.002
vifo-eb 0.211 ± 0.001 0.214 ± 0.002 0.212 ± 0.002 0.214 ± 0.001
vi-naive 0.175 ± 0.002
vi-mean 0.219 ± 0.034
vi-mv 0.173 ± 0.003
vi-eb 0.182 ± 0.004
sgd 0.351 ± 0.002
swa 0.251 ± 0.012
swag 0.238 ± 0.001

repulsive 0.686 ± 0.007
dir 0.692 ± 0.003

dropout 0.211 ± 0.009

Table F.5: CIFAR10, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.473 ± 0.005 0.487 ± 0.011 0.486 ± 0.010 0.479 ± 0.008
vifo-mean 0.393 ± 0.010 0.433 ± 0.018 0.411 ± 0.013 0.430 ± 0.020
vifo-mv 0.361 ± 0.010 0.371 ± 0.010 0.367 ± 0.006 0.363 ± 0.016
vifo-eb 0.419 ± 0.014 0.429 ± 0.016 0.413 ± 0.007 0.425 ± 0.008
vi-naive 0.410 ± 0.028
vi-mean 0.415 ± 0.032
vi-mv 0.437 ± 0.029
vi-eb 0.429 ± 0.035
sgd 0.335 ± 0.013
swa 0.336 ± 0.008
swag 0.307 ± 0.010

repulsive 0.875 ± 0.007
dir 0.961 ± 0.022

dropout 0.423 ± 0.026
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Table F.6: CIFAR100, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.880 ± 0.009 1.935 ± 0.020 1.864 ± 0.008 1.844 ± 0.011
vifo-mean 1.632 ± 0.013 1.728 ± 0.005 1.686 ± 0.004 1.731 ± 0.018
vifo-mv 2.726 ± 0.021 2.826 ± 0.008 2.899 ± 0.019 2.867 ± 0.014
vifo-eb 2.076 ± 0.006 2.147 ± 0.004 2.340 ± 0.043 2.503 ± 0.034
vi-naive 1.642 ± 0.030
vi-mean 1.753 ± 0.086
vi-mv 1.804 ± 0.089
vi-eb 1.731 ± 0.097
sgd 1.445 ± 0.021
swa 1.355 ± 0.023
swag 1.354 ± 0.019

repulsive 2.948 ± 0.020
dir 3.580 ± 0.009

dropout 1.644 ± 0.045

Table F.7: STL10, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.146 ± 0.012 1.159 ± 0.008 1.155 ± 0.015 1.145 ± 0.005
vifo-mean 1.067 ± 0.009 1.066 ± 0.011 1.056 ± 0.007 1.069 ± 0.009
vifo-mv 1.070 ± 0.017 1.078 ± 0.003 1.067 ± 0.019 1.073 ± 0.011
vifo-eb 1.162 ± 0.015 1.164 ± 0.020 1.191 ± 0.014 1.180 ± 0.016
vi-naive 0.920 ± 0.032
vi-mean 1.000 ± 0.029
vi-mv 1.002 ± 0.036
vi-eb 1.018 ± 0.028
sgd 1.203 ± 0.008
swa 1.100 ± 0.006
swag 1.100 ± 0.010

repulsive 1.365 ± 0.009
dir 1.418 ± 0.019

dropout 1.665 ± 0.059

Table F.8: SVHN, PreResNet20, NLL

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.391 ± 0.019 0.603 ± 0.057 0.486 ± 0.050 0.479 ± 0.018
vifo-mean 0.341 ± 0.004 0.357 ± 0.004 0.385 ± 0.015 0.334 ± 0.015
vifo-mv 0.269 ± 0.009 0.297 ± 0.010 0.323 ± 0.013 0.314 ± 0.009
vifo-eb 0.359 ± 0.002 0.391 ± 0.008 0.452 ± 0.018 0.402 ± 0.028
vi-naive 0.314 ± 0.024
vi-mean 0.342 ± 0.040
vi-mv 0.359 ± 0.033
vi-eb 0.379 ± 0.057
sgd 0.337 ± 0.011
swa 0.320 ± 0.009
swag 0.320 ± 0.009

repulsive 0.822 ± 0.020
dir 0.845 ± 0.031

dropout 0.421 ± 0.068

30



Under review as submission to TMLR

Table F.9: CIFAR10, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.914 ± 0.001 0.916 ± 0.001 0.915 ± 0.001 0.916 ± 0.001
vifo-mean 0.916 ± 0.002 0.914 ± 0.001 0.914 ± 0.001 0.912 ± 0.001
vifo-mv 0.914 ± 0.001 0.910 ± 0.001 0.912 ± 0.002 0.915 ± 0.002
vifo-eb 0.914 ± 0.002 0.914 ± 0.001 0.913 ± 0.001 0.914 ± 0.002
vi-naive 0.893 ± 0.004
vi-mean 0.884 ± 0.004
vi-mv 0.901 ± 0.003
vi-eb 0.886 ± 0.003
sgd 0.907 ± 0.001
swa 0.909 ± 0.001
swag 0.909 ± 0.001

repulsive 0.915 ± 0.001
dir 0.915 ± 0.001

dropout 0.888 ± 0.003

Table F.10: CIFAR100, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.658 ± 0.003 0.651 ± 0.004 0.657 ± 0.003 0.644 ± 0.003
vifo-mean 0.667 ± 0.002 0.654 ± 0.003 0.650 ± 0.007 0.658 ± 0.002
vifo-mv 0.665 ± 0.002 0.638 ± 0.010 0.568 ± 0.038 0.558 ± 0.028
vifo-eb 0.669 ± 0.002 0.671 ± 0.001 0.668 ± 0.003 0.664 ± 0.002
vi-naive 0.620 ± 0.003
vi-mean 0.608 ± 0.002
vi-mv 0.606 ± 0.002
vi-eb 0.629 ± 0.004
sgd 0.651 ± 0.002
swa 0.652 ± 0.002
swag 0.652 ± 0.002

repulsive 0.653 ± 0.002
dir 0.654 ± 0.001

dropout 0.596 ± 0.003

Table F.11: STL10, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.670 ± 0.003 0.672 ± 0.002 0.674 ± 0.002 0.665 ± 0.001
vifo-mean 0.680 ± 0.002 0.666 ± 0.003 0.669 ± 0.003 0.663 ± 0.003
vifo-mv 0.678 ± 0.002 0.665 ± 0.002 0.665 ± 0.002 0.668 ± 0.002
vifo-eb 0.662 ± 0.002 0.668 ± 0.002 0.670 ± 0.004 0.670 ± 0.002
vi-naive 0.661 ± 0.003
vi-mean 0.649 ± 0.009
vi-mv 0.644 ± 0.006
vi-eb 0.414 ± 0.025
sgd 0.614 ± 0.004
swa 0.598 ± 0.006
swag 0.615 ± 0.003

repulsive 0.675 ± 0.003
dir 0.667 ± 0.004

dropout 0.622 ± 0.004
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Table F.12: SVHN, AlexNet, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.962 ± 0.001 0.962 ± 0.001 0.962 ± 0.000 0.962 ± 0.001
vifo-mean 0.961 ± 0.001 0.962 ± 0.000 0.962 ± 0.001 0.963 ± 0.001
vifo-mv 0.963 ± 0.001 0.962 ± 0.001 0.963 ± 0.000 0.962 ± 0.000
vifo-eb 0.962 ± 0.000 0.961 ± 0.001 0.961 ± 0.000 0.961 ± 0.000
vi-naive 0.953 ± 0.002
vi-mean 0.945 ± 0.008
vi-mv 0.955 ± 0.001
vi-eb 0.950 ± 0.001
sgd 0.955 ± 0.001
swa 0.954 ± 0.002
swag 0.957 ± 0.001

repulsive 0.962 ± 0.001
dir 0.964 ± 0.000

dropout 0.949 ± 0.001

Table F.13: CIFAR10, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.897 ± 0.003 0.896 ± 0.002 0.893 ± 0.003 0.899 ± 0.003
vifo-mean 0.906 ± 0.002 0.900 ± 0.004 0.907 ± 0.002 0.904 ± 0.005
vifo-mv 0.903 ± 0.001 0.902 ± 0.002 0.902 ± 0.001 0.903 ± 0.002
vifo-eb 0.900 ± 0.003 0.900 ± 0.005 0.902 ± 0.002 0.901 ± 0.003
vi-naive 0.862 ± 0.009
vi-mean 0.867 ± 0.009
vi-mv 0.864 ± 0.010
vi-eb 0.859 ± 0.011
sgd 0.903 ± 0.003
swa 0.902 ± 0.003
swag 0.907 ± 0.002

repulsive 0.903 ± 0.002
dir 0.901 ± 0.002

dropout 0.866 ± 0.007

Table F.14: CIFAR100, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.631 ± 0.004 0.620 ± 0.005 0.631 ± 0.002 0.628 ± 0.002
vifo-mean 0.642 ± 0.003 0.635 ± 0.003 0.643 ± 0.003 0.637 ± 0.006
vifo-mv 0.436 ± 0.005 0.413 ± 0.007 0.398 ± 0.006 0.405 ± 0.004
vifo-eb 0.579 ± 0.004 0.567 ± 0.009 0.535 ± 0.004 0.499 ± 0.017
vi-naive 0.620 ± 0.003
vi-mean 0.608 ± 0.002
vi-mv 0.606 ± 0.002
vi-eb 0.629 ± 0.004
sgd 0.638 ± 0.002
swa 0.640 ± 0.002
swag 0.642 ± 0.002

repulsive 0.610 ± 0.005
dir 0.603 ± 0.003

dropout 0.565 ± 0.010
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Table F.15: STL10, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.658 ± 0.004 0.658 ± 0.002 0.656 ± 0.001 0.656 ± 0.003
vifo-mean 0.660 ± 0.003 0.663 ± 0.003 0.669 ± 0.004 0.663 ± 0.004
vifo-mv 0.670 ± 0.004 0.663 ± 0.005 0.662 ± 0.005 0.662 ± 0.003
vifo-eb 0.661 ± 0.004 0.661 ± 0.004 0.657 ± 0.003 0.660 ± 0.005
vi-naive 0.690 ± 0.009
vi-mean 0.674 ± 0.010
vi-mv 0.688 ± 0.009
vi-eb 0.638 ± 0.011
sgd 0.672 ± 0.002
swa 0.673 ± 0.003
swag 0.679 ± 0.002

repulsive 0.665 ± 0.005
dir 0.668 ± 0.003

dropout 0.621 ± 0.011

Table F.16: SVHN, PreResNet20, Accuracy

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.930 ± 0.004 0.911 ± 0.014 0.912 ± 0.004 0.915 ± 0.008
vifo-mean 0.933 ± 0.004 0.929 ± 0.001 0.930 ± 0.001 0.936 ± 0.009
vifo-mv 0.934 ± 0.006 0.935 ± 0.005 0.928 ± 0.008 0.930 ± 0.002
vifo-eb 0.929 ± 0.004 0.917 ± 0.005 0.905 ± 0.003 0.924 ± 0.007
vi-naive 0.914 ± 0.009
vi-mean 0.901 ± 0.015
vi-mv 0.902 ± 0.012
vi-eb 0.890 ± 0.019
sgd 0.929 ± 0.007
swa 0.936 ± 0.006
swag 0.936 ± 0.006

repulsive 0.931 ± 0.004
dir 0.932 ± 0.002

dropout 0.877 ± 0.023

Table F.17: ECE:CIFAR10-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.042 ± 0.003 0.042 ± 0.002 0.047 ± 0.004 0.045 ± 0.003
vifo-mean 0.056 ± 0.002 0.053 ± 0.003 0.055 ± 0.001 0.059 ± 0.002
vifo-mv 0.067 ± 0.002 0.069 ± 0.002 0.068 ± 0.002 0.068 ± 0.003
vifo-eb 0.039 ± 0.003 0.042 ± 0.002 0.038 ± 0.002 0.038 ± 0.002
vi-naive 0.108 ± 0.002
vi-mean 0.105 ± 0.007
vi-mv 0.131 ± 0.003
vi-eb 0.118 ± 0.004
sgd 0.152 ± 0.002
swa 0.150 ± 0.001
swag 0.144 ± 0.001

repulsive 0.246 ± 0.003
dir 0.248 ± 0.002

dropout 0.180 ± 0.002
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Table F.18: ECE:STL10-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.053 ± 0.004 0.053 ± 0.004 0.040 ± 0.004 0.034 ± 0.004
vifo-mean 0.065 ± 0.002 0.063 ± 0.003 0.055 ± 0.003 0.046 ± 0.002
vifo-mv 0.075 ± 0.002 0.067 ± 0.003 0.078 ± 0.003 0.073 ± 0.002
vifo-eb 0.081 ± 0.004 0.078 ± 0.002 0.066 ± 0.002 0.075 ± 0.004
vi-naive 0.072 ± 0.007
vi-mean 0.107 ± 0.007
vi-mv 0.155 ± 0.004
vi-eb 0.030 ± 0.006
sgd 0.238 ± 0.007
swa 0.137 ± 0.016
swag 0.117 ± 0.007

repulsive 0.197 ± 0.006
dir 0.146 ± 0.004

dropout 0.365 ± 0.007

Table F.19: ECE:CIFAR10-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.029 ± 0.001 0.032 ± 0.003 0.032 ± 0.004 0.037 ± 0.004
vifo-mean 0.036 ± 0.003 0.028 ± 0.005 0.032 ± 0.002 0.029 ± 0.003
vifo-mv 0.058 ± 0.003 0.047 ± 0.004 0.052 ± 0.002 0.051 ± 0.002
vifo-eb 0.024 ± 0.003 0.028 ± 0.005 0.031 ± 0.002 0.026 ± 0.002
vi-naive 0.126 ± 0.004
vi-mean 0.147 ± 0.002
vi-mv 0.159 ± 0.003
vi-eb 0.137 ± 0.005
sgd 0.092 ± 0.004
swa 0.089 ± 0.001
swag 0.078 ± 0.003

repulsive 0.259 ± 0.004
dir 0.319 ± 0.007

dropout 0.146 ± 0.002

Table F.20: ECE:STL10-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.021 ± 0.001 0.022 ± 0.002 0.025 ± 0.003 0.028 ± 0.004
vifo-mean 0.029 ± 0.003 0.024 ± 0.005 0.019 ± 0.002 0.019 ± 0.003
vifo-mv 0.088 ± 0.005 0.081 ± 0.003 0.081 ± 0.004 0.086 ± 0.002
vifo-eb 0.051 ± 0.005 0.039 ± 0.002 0.030 ± 0.003 0.038 ± 0.002
vi-naive 0.129 ± 0.003
vi-mean 0.151 ± 0.004
vi-mv 0.171 ± 0.011
vi-eb 0.094 ± 0.005
sgd 0.112 ± 0.002
swa 0.107 ± 0.003
swag 0.093 ± 0.004

repulsive 0.185 ± 0.006
dir 0.200 ± 0.005

dropout 0.290 ± 0.007
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Table F.21: Entropy:CIFAR10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.357 ± 0.009 1.399 ± 0.023 1.286 ± 0.049 1.355 ± 0.033
vifo-mean 1.344 ± 0.020 1.336 ± 0.021 1.313 ± 0.042 1.342 ± 0.039
vifo-mv 1.344 ± 0.020 1.342 ± 0.018 1.354 ± 0.023 1.332 ± 0.017
vifo-eb 1.330 ± 0.045 1.330 ± 0.026 1.323 ± 0.017 1.296 ± 0.027
vi-naive 1.238 ± 0.075
vi-mean 1.280 ± 0.157
vi-mv 1.053 ± 0.068
vi-eb 1.133 ± 0.069
sgd 0.633 ± 0.014
swa 0.676 ± 0.014
swag 0.705 ± 0.011

repulsive 1.990 ± 0.021
dir 1.970 ± 0.002

dropout 0.585 ± 0.033

Table F.22: Entropy:STL10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.772 ± 0.017 1.773 ± 0.015 1.779 ± 0.024 1.763 ± 0.011
vifo-mean 1.840 ± 0.023 1.748 ± 0.012 1.818 ± 0.029 1.826 ± 0.015
vifo-mv 1.889 ± 0.026 1.915 ± 0.031 1.848 ± 0.051 1.859 ± 0.018
vifo-eb 1.764 ± 0.026 1.754 ± 0.018 1.798 ± 0.028 1.716 ± 0.012
vi-naive 1.601 ± 0.049
vi-mean 1.495 ± 0.018
vi-mv 1.345 ± 0.046
vi-eb 2.024 ± 0.019
sgd 1.127 ± 0.030
swa 1.479 ± 0.047
swag 1.525 ± 0.010

repulsive 2.208 ± 0.006
dir 2.157 ± 0.008

dropout 0.601 ± 0.037

Table F.23: Entropy:SVHN-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.694 ± 0.008 1.711 ± 0.005 1.694 ± 0.003 1.693 ± 0.002
vifo-mean 1.721 ± 0.013 1.735 ± 0.007 1.729 ± 0.009 1.742 ± 0.008
vifo-mv 1.709 ± 0.014 1.738 ± 0.011 1.754 ± 0.014 1.758 ± 0.011
vifo-eb 1.740 ± 0.015 1.749 ± 0.005 1.739 ± 0.007 1.773 ± 0.033
vi-naive 1.624 ± 0.048
vi-mean 1.711 ± 0.052
vi-mv 1.448 ± 0.036
vi-eb 1.577 ± 0.058
sgd 1.237 ± 0.009
swa 1.323 ± 0.035
swag 1.465 ± 0.004

repulsive 2.129 ± 0.003
dir 2.121 ± 0.002

dropout 1.206 ± 0.047
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Table F.24: Entropy:SVHN-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.720 ± 0.007 1.734 ± 0.005 1.711 ± 0.004 1.708 ± 0.008
vifo-mean 1.744 ± 0.007 1.756 ± 0.006 1.753 ± 0.011 1.756 ± 0.007
vifo-mv 1.754 ± 0.012 1.763 ± 0.006 1.804 ± 0.017 1.790 ± 0.009
vifo-eb 1.764 ± 0.016 1.776 ± 0.007 1.775 ± 0.017 1.765 ± 0.030
vi-naive 1.685 ± 0.056
vi-mean 1.772 ± 0.042
vi-mv 1.512 ± 0.041
vi-eb 1.631 ± 0.047
sgd 1.277 ± 0.009
swa 1.371 ± 0.013
swag 1.507 ± 0.007

repulsive 2.138 ± 0.004
dir 2.132 ± 0.002

dropout 1.272 ± 0.054

Table F.25: Entropy:CIFAR10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.465 ± 0.007 1.516 ± 0.009 1.553 ± 0.006 1.540 ± 0.004
vifo-mean 1.469 ± 0.009 1.553 ± 0.018 1.599 ± 0.005 1.580 ± 0.010
vifo-mv 1.559 ± 0.013 1.611 ± 0.016 1.590 ± 0.017 1.543 ± 0.015
vifo-eb 1.532 ± 0.011 1.540 ± 0.013 1.582 ± 0.018 1.548 ± 0.005
vi-naive 1.192 ± 0.025
vi-mean 1.097 ± 0.015
vi-mv 1.048 ± 0.019
vi-eb 1.174 ± 0.049
sgd 1.398 ± 0.009
swa 1.398 ± 0.015
swag 1.586 ± 0.016

repulsive 1.971 ± 0.006
dir 2.246 ± 0.002

dropout 0.995 ± 0.022

Table F.26: Entropy:STL10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.763 ± 0.008 1.770 ± 0.005 1.742 ± 0.009 1.728 ± 0.007
vifo-mean 1.796 ± 0.006 1.908 ± 0.008 1.876 ± 0.002 1.862 ± 0.008
vifo-mv 1.565 ± 0.007 1.607 ± 0.004 1.588 ± 0.005 1.574 ± 0.008
vifo-eb 1.603 ± 0.005 1.637 ± 0.011 1.634 ± 0.008 1.656 ± 0.017
vi-naive 1.394 ± 0.020
vi-mean 1.323 ± 0.013
vi-mv 1.267 ± 0.030
vi-eb 1.517 ± 0.060
sgd 1.432 ± 0.022
swa 1.462 ± 0.013
swag 1.579 ± 0.013

repulsive 2.160 ± 0.005
dir 2.194 ± 0.004

dropout 0.830 ± 0.024
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Table F.27: Entropy:SVHN-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.531 ± 0.008 2.019 ± 0.026 1.942 ± 0.051 1.959 ± 0.039
vifo-mean 1.515 ± 0.012 1.908 ± 0.080 1.850 ± 0.065 1.780 ± 0.028
vifo-mv 1.568 ± 0.014 1.758 ± 0.051 1.848 ± 0.067 1.706 ± 0.057
vifo-eb 1.539 ± 0.004 1.775 ± 0.038 1.898 ± 0.022 1.923 ± 0.015
vi-naive 1.213 ± 0.010
vi-mean 1.169 ± 0.017
vi-mv 1.080 ± 0.011
vi-eb 1.219 ± 0.029
sgd 1.384 ± 0.005
swa 1.403 ± 0.002
swag 1.476 ± 0.005

repulsive 2.006 ± 0.013
dir 2.250 ± 0.001

dropout 1.059 ± 0.019

Table F.28: Entropy:SVHN-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 1.529 ± 0.016 1.995 ± 0.042 1.860 ± 0.041 1.885 ± 0.054
vifo-mean 1.543 ± 0.012 1.837 ± 0.070 1.875 ± 0.066 1.762 ± 0.052
vifo-mv 1.588 ± 0.010 1.763 ± 0.061 1.875 ± 0.041 1.671 ± 0.039
vifo-eb 1.544 ± 0.004 1.724 ± 0.045 1.895 ± 0.054 1.785 ± 0.028
vi-naive 1.222 ± 0.013
vi-mean 1.174 ± 0.016
vi-mv 1.078 ± 0.014
vi-eb 1.219 ± 0.024
sgd 1.375 ± 0.007
swa 1.389 ± 0.011
swag 1.464 ± 0.005

repulsive 2.014 ± 0.011
dir 2.252 ± 0.002

dropout 1.053 ± 0.014

Table F.29: AUROC:CIFAR10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.860 ± 0.005 0.857 ± 0.008 0.833 ± 0.018 0.853 ± 0.018
vifo-mean 0.873 ± 0.005 0.855 ± 0.008 0.858 ± 0.007 0.856 ± 0.008
vifo-mv 0.893 ± 0.007 0.871 ± 0.004 0.873 ± 0.004 0.861 ± 0.006
vifo-eb 0.860 ± 0.007 0.859 ± 0.007 0.864 ± 0.002 0.844 ± 0.010
vi-naive 0.898 ± 0.016
vi-mean 0.886 ± 0.029
vi-mv 0.893 ± 0.009
vi-eb 0.885 ± 0.010
sgd 0.851 ± 0.004
swa 0.862 ± 0.009
swag 0.863 ± 0.005

repulsive 0.857 ± 0.020
dir 0.846 ± 0.006

dropout 0.822 ± 0.011
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Table F.30: AUROC:STL10-SVHN, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.787 ± 0.005 0.776 ± 0.009 0.781 ± 0.010 0.755 ± 0.015
vifo-mean 0.789 ± 0.010 0.757 ± 0.006 0.768 ± 0.013 0.774 ± 0.006
vifo-mv 0.798 ± 0.008 0.772 ± 0.010 0.764 ± 0.016 0.779 ± 0.013
vifo-eb 0.793 ± 0.007 0.793 ± 0.010 0.769 ± 0.009 0.758 ± 0.005
vi-naive 0.818 ± 0.020
vi-mean 0.792 ± 0.011
vi-mv 0.775 ± 0.018
vi-eb 0.736 ± 0.044
sgd 0.750 ± 0.010
swa 0.761 ± 0.010
swag 0.769 ± 0.005

repulsive 0.799 ± 0.013
dir 0.779 ± 0.004

dropout 0.681 ± 0.017

Table F.31: AUROC:SVHN-CIFAR10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.969 ± 0.001 0.968 ± 0.001 0.967 ± 0.001 0.967 ± 0.001
vifo-mean 0.976 ± 0.001 0.974 ± 0.001 0.973 ± 0.001 0.973 ± 0.002
vifo-mv 0.972 ± 0.001 0.973 ± 0.001 0.972 ± 0.000 0.973 ± 0.001
vifo-eb 0.969 ± 0.001 0.971 ± 0.001 0.970 ± 0.001 0.973 ± 0.003
vi-naive 0.970 ± 0.002
vi-mean 0.963 ± 0.014
vi-mv 0.965 ± 0.003
vi-eb 0.967 ± 0.003
sgd 0.962 ± 0.001
swa 0.963 ± 0.001
swag 0.968 ± 0.001

repulsive 0.972 ± 0.002
dir 0.976 ± 0.001

dropout 0.952 ± 0.003

Table F.32: AUROC:SVHN-STL10, AlexNet

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.971 ± 0.000 0.972 ± 0.001 0.969 ± 0.001 0.971 ± 0.001
vifo-mean 0.976 ± 0.000 0.976 ± 0.000 0.977 ± 0.001 0.977 ± 0.001
vifo-mv 0.976 ± 0.001 0.975 ± 0.000 0.977 ± 0.001 0.976 ± 0.000
vifo-eb 0.974 ± 0.001 0.974 ± 0.001 0.973 ± 0.001 0.977 ± 0.002
vi-naive 0.974 ± 0.003
vi-mean 0.968 ± 0.013
vi-mv 0.970 ± 0.002
vi-eb 0.971 ± 0.002
sgd 0.966 ± 0.001
swa 0.968 ± 0.002
swag 0.972 ± 0.000

repulsive 0.975 ± 0.002
dir 0.979 ± 0.001

dropout 0.958 ± 0.004
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Table F.33: AUROC:CIFAR10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.885 ± 0.004 0.880 ± 0.006 0.889 ± 0.005 0.898 ± 0.006
vifo-mean 0.894 ± 0.004 0.889 ± 0.008 0.907 ± 0.007 0.896 ± 0.002
vifo-mv 0.914 ± 0.002 0.919 ± 0.007 0.917 ± 0.001 0.915 ± 0.003
vifo-eb 0.908 ± 0.002 0.912 ± 0.005 0.918 ± 0.002 0.913 ± 0.004
vi-naive 0.863 ± 0.008
vi-mean 0.868 ± 0.011
vi-mv 0.868 ± 0.008
vi-eb 0.858 ± 0.013
sgd 0.950 ± 0.001
swa 0.950 ± 0.001
swag 0.963 ± 0.001

repulsive 0.819 ± 0.004
dir 0.962 ± 0.002

dropout 0.837 ± 0.010

Table F.34: AUROC:STL10-SVHN, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.810 ± 0.005 0.810 ± 0.004 0.804 ± 0.004 0.803 ± 0.003
vifo-mean 0.810 ± 0.001 0.835 ± 0.006 0.836 ± 0.004 0.820 ± 0.003
vifo-mv 0.788 ± 0.004 0.794 ± 0.001 0.789 ± 0.003 0.784 ± 0.005
vifo-eb 0.799 ± 0.004 0.800 ± 0.005 0.803 ± 0.002 0.803 ± 0.004
vi-naive 0.788 ± 0.014
vi-mean 0.784 ± 0.006
vi-mv 0.788 ± 0.015
vi-eb 0.728 ± 0.030
sgd 0.795 ± 0.008
swa 0.837 ± 0.008
swag 0.877 ± 0.005

repulsive 0.804 ± 0.005
dir 0.812 ± 0.004

dropout 0.689 ± 0.007

Table F.35: AUROC:SVHN-CIFAR10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.890 ± 0.005 0.958 ± 0.003 0.934 ± 0.010 0.948 ± 0.004
vifo-mean 0.893 ± 0.002 0.931 ± 0.010 0.925 ± 0.006 0.928 ± 0.014
vifo-mv 0.912 ± 0.004 0.936 ± 0.005 0.927 ± 0.007 0.916 ± 0.006
vifo-eb 0.916 ± 0.007 0.922 ± 0.002 0.923 ± 0.008 0.941 ± 0.009
vi-naive 0.870 ± 0.008
vi-mean 0.867 ± 0.016
vi-mv 0.866 ± 0.012
vi-eb 0.847 ± 0.026
sgd 0.909 ± 0.006
swa 0.918 ± 0.005
swag 0.919 ± 0.006

repulsive 0.843 ± 0.006
dir 0.970 ± 0.003

dropout 0.830 ± 0.028
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Table F.36: AUROC:SVHN-STL10, PreResNet20

method ηaux = 0 ηaux = 0.1 ηaux = 0.5 ηaux = 1.0
vifo-naive 0.894 ± 0.009 0.957 ± 0.009 0.934 ± 0.008 0.936 ± 0.010
vifo-mean 0.896 ± 0.004 0.924 ± 0.013 0.914 ± 0.010 0.921 ± 0.009
vifo-mv 0.917 ± 0.006 0.933 ± 0.008 0.928 ± 0.009 0.922 ± 0.001
vifo-eb 0.911 ± 0.006 0.916 ± 0.005 0.923 ± 0.004 0.936 ± 0.006
vi-naive 0.870 ± 0.010
vi-mean 0.867 ± 0.016
vi-mv 0.865 ± 0.011
vi-eb 0.846 ± 0.027
sgd 0.907 ± 0.007
swa 0.913 ± 0.008
swag 0.915 ± 0.007

repulsive 0.847 ± 0.007
dir 0.970 ± 0.003

dropout 0.829 ± 0.029
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