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ABSTRACT

Small molecules are vital to modern medicine, and accurately predicting their
bioactivity against protein targets is crucial for therapeutic discovery and develop-
ment. However, current machine learning models often rely on spurious features,
leading to biased outcomes. Notably, a simple pocket-only baseline can achieve
results comparable to, and sometimes better than, more complex models that incor-
porate both the protein pockets and the small molecules. Our analysis reveals that
this phenomenon arises from insufficient training data and an improper evaluation
process, which is typically conducted at the pocket level rather than the small
molecule level. To address these issues, we redefine the bioactivity prediction task
by introducing the SIU dataset-a million-scale Structural small molecule-protein
Interaction dataset for Unbiased bioactivity prediction task, which is 50 times
larger than the widely used PDBbind. The bioactivity labels in SIU are derived
from wet experiments and organized by label types, ensuring greater accuracy
and comparability. The complexes in SIU are constructed using a majority vote
from three commonly used docking software programs, enhancing their reliability.
Additionally, the structure of SIU allows for multiple small molecules to be associ-
ated with each protein pocket, enabling the redefinition of evaluation metrics like
Pearson and Spearman correlations across different small molecules targeting the
same protein pocket. Experimental results demonstrate that this new task provides
a more challenging and meaningful benchmark for training and evaluating bioac-
tivity prediction models, ultimately offering a more robust assessment of model
performance.

1 INTRODUCTION

Small molecules are essential active components in life-saving therapeutic drugs, with their safety
and efficacy intricately linked to interactions with various protein targets within the human body.
Consequently, bioactivity prediction has emerged as a critical task in the drug discovery process
(Tropsha et al., 2024; Gaulton & Overington, 2010), driven by the rapid advancement of machine
learning methods. In this context, ”bioactivity” encompasses the diverse biological effects resulting
from small molecule-protein interactions, including binding responses-commonly quantified by the
dissociation constant (Kd) and the inhibition constant (Ki)-as well as functional responses, typically
assessed through the half-maximal inhibitory concentration (IC50) and the half-maximal effective
concentration (EC50).

Recently, various 3D machine learning models have been proposed in this direction (Townshend et al.,
2020; Zhou et al., 2022; Gao et al., 2023a; Luo et al., 2023), achieving significant advancements.
These methods utilize the structural information of small molecules and protein targets as inputs
to learn a mapping function between these inputs and bioactivity labels. This methodology is
inherently sound and explainable, as biological insights suggest that the biological effect of a small
molecule largely depends on its 3D shape complementarity with its protein targets (Verma et al.,
2010), a principle known as the key-lock modulation theory (Koshland Jr, 1995; Eschenmoser, 1995).
Nevertheless, the applications of these methods have not yielded satisfactory results regarding drug
discovery capabilities. For instance, when using predicted biological labels to differentiate between
active and inactive molecules-an essential task in virtual screening-these predictive models often fail
to compete with widely used docking methods, as noted in Shen et al. (2021) and Gao et al. (2023b).

Our analysis reveals that these models can be easily biased to some spurious features, leading to
inaccurate predictions based on shortcuts. We propose a pocket-only baseline to diagnose the current
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bioactivity prediction task. While previous works assume that the bioactivity labels are determined
by the interaction between small molecules and protein targets, they tend to assess only the protein
target while ignoring the provided small molecules, representing a degenerate solution. As shown in
Figure 1 (A) (B), experiments on the widely used Atom3D ligand binding affinity (LBA) prediction
dataset (Townshend et al., 2020) demonstrate that this pocket-only approach achieves, or can even
outperforms, models utilizing the complex information across both 30% and 60% sequence identity
splits. These results support our claim by suggesting that statistical irregularities in the data enable a
model to achieve bioactivity predictions beyond what should be possible without access to the small
molecule information.

Figure 1: Analysis of Atom3D bioactivity prediction task. The evaluation metrics include (A)
Root Mean Squared Error (RMSE) and (B) Pearson correlation. The models tested include: a GNN
model using the full protein-ligand complexes as inputs, a Uni-Mol model with both a small molecule
encoder and a protein encoder, and a Uni-Mol model with only a protein encoder which only takes
pocket side information. Performance is evaluated across different sequence identity splits (30%
and 60%). It shows that Pocket-only model can overfit Atom3D bioactivity prediction task. (C)
Predicted versus actual label values for various small molecules within a single protein target.

Upon further analysis, we find that the key issue stems from the improper definition of the current
bioactivity prediction task, particularly in terms of both data construction and evaluation metrics.

From a data perspective, the constructed training data is not sufficient for developing a robust
bioactivity predictor. Although previous works have utilized different training data, they are all
derived form PDBbind (Wang et al., 2004; 2005), which contains only about 20,000 small molecule-
protein target pairs. More importantly, for each protein target, these datasets typically feature only a
single small-molecule ligand. This introduces bias into the training data, causing models to primarily
learn the bioactivity range for each protein target rather than differentiating between various small
molecules interacting with the same target. As demonstrated in Figure 1(C), when testing a model
with different small molecules for the same target, even with both protein and small molecule
information provided, the model generates predictions that cluster around the mean bioactivity value
of the target, while the actual label values vary across a much wider range. This behavior suggests
that the model trained on the current dataset fails to differentiate between different small molecules.
This also helps to explain why pocket-only baselines can achieve unexpectedly good metric values.

From an evaluation perspective, the current metrics fail to accurately reflect how well models capture
the interactions between a protein target and diverse small molecules. Specifically, established metrics
like Pearson and Spearman correlations are computed across different protein targets rather than
across multiple small molecules for the same target. This approach primarily measures differences
between various protein targets. Consequently, models can overfit by relying predominantly on
pocket information without truly learning the nuances of small molecule binding.

To address these issues, we propose redefining the bioactivity prediction task in this paper. Our strategy
involves constructing a novel, large-scale structural dataset of small molecule-protein interactions,
featuring multiple small molecules for each protein target, and evaluating metrics across these
different small molecules. A significant challenge lies in constructing a large-scale dataset of reliable
small molecule-protein complexes, as high-quality structural data depends on labor-intensive and
time-consuming wet-lab experiments. To tackle this, we first sourced, cleaned, and deduplicated
small molecules and protein targets from relevant databases containing high-quality bioactivity labels.
For each protein and its various pockets, we utilized multiple docking software programs, such as
Vina (Trott & Olson, 2010), to dock associated molecules, generating primary interaction complex
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structures. Subsequently, a majority vote mechanism was employed to obtain high-quality interaction
poses. Furthermore, we differentiated between various label types, such as Kd, Ki, IC50, and EC50,
to mitigate potential biases associated with label types during training and evaluation. This resulted
in a large-scale Structural dataset of small molecule-protein Interactions for Unbiased bioactivity
prediction, namely SIU.

The SIU dataset comprises over 5.34 million conformations and features 1.38 million rigorously
curated bioactivity annotations, each clearly designated by label types. This extensive dataset provides
comprehensive coverage of diverse small molecules, surpassing the limitations of datasets restricted
to molecules structurally similar to co-crystal ligands. It also includes a wide array of protein targets
across all major protein classes, with each protein linked to multiple PDB IDs that reflect distinct
pocket conformations (not necessarily different binding sites). Notably, SIU differs from existing
datasets that often overlook critical distinctions between label types, making it more suitable for fair
bioactivity prediction and comparison.

With the availability of multiple small molecules with bioactivity labels for each protein target in
SIU, we redefine the evaluation metrics by calculating values among different small-molecule ligands
with the same target, rather than across different targets. The results are then averaged across targets
using mean pooling. This approach ensures that the evaluation metrics accurately reflect the biactivity
difference between small molecules within the same targets, thereby mitigating the aforementioned
evaluation bias.

We compare the experimental results of training several classical baseline models on PDBbind and
SIU. Two key findings highlight the outperformance of SIU over PDBbind. First, when evaluated
using traditional metrics like RMSE, Pearson, and Spearman correlations across different targets,
models trained on SIU demonstrate significant improvements compared to those trained on PDBbind,
reflecting the value of the inclusion of more structural data. Notably, this performance enhancement
persists even after removing data with high sequence identity from the test set, while models trained
on PDBbind do not undergo the same removal. Second, our redefined metrics reveal a substantial
drop in performance when evaluating small molecules within the same target. For instance, the
Pearson correlation for Ki can decrease from 0.485 to 0.036. This indicates that the new task is more
challenging and that the bioactivity prediction abilities of the previous models may be overestimated
due to improper task definitions. These results underscores the importance of the unbiased bioactivity
prediction task we introduced, which we believe will advance the development of machine learning
models that are truly beneficial for drug discovery.

2 RELATED WORK

Commonly used bioactivity prediction tasks include the Comparative Assessment of Scoring Func-
tions (CASF) task (Cheng et al., 2009; Li et al., 2014b;a; Su et al., 2018) and the Atom3D LBA task
(Townshend et al., 2020). Both tasks are derived from the PDBbind dataset (Wang et al., 2004; 2005),
which is widely used and contains complex structures of small molecule-protein interactions along
with their corresponding bioactivity labels. However, the data cleaning and splitting methods differ
between these tasks. The CASF-2016 task (Su et al., 2018) consists of 285 protein-ligand complexes,
each labeled with an experimentally measured binding affinity. Since it does not provide a dedicated
training set, prior research typically relies on self-defined training datasets derived from PDBbind. In
contrast, the LBA task in Atom3D (Townshend et al., 2020) provides predefined training and testing
splits, using sequence identity-based splits on 30% and 60% to ensure that test results reflect the
model’s generalization ability. This task combines different label types, including IC50, Ki, and Kd,
into a unified prediction variable, with a total of 4,463 complexes in the dataset.

In this work, we introduce the SIU dataset to address specific challenges in bioactivity prediction
tasks. Similarly, large-scale, high-quality datasets like Papyrus (Béquignon et al., 2023), curated from
diverse sources, address other critical aspects and contribute valuable resources to the field.

Atom3D also introduced two widely adopted baseline models: a voxel-grid-based 3D convolutional
neural network (3D-CNN) and a graph neural network (GNN) (Townshend et al., 2020). Recent
advances in bioactivity prediction have been driven by the application of pretrained models, such
as Uni-Mol (Zhou et al., 2022) and ProFSA (Gao et al., 2023a). These models utilize large-scale
pretraining on molecular and structural data to achieve state-of-the-art performance across various
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bioactivity prediction tasks. In Atom3D, binding affinity prediction models are evaluated using
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation, and Spearman
correlation metrics.

3 METHODS

3.1 SIU DATASET CONSTRUCTION

Figure 2: Construction and features of the SIU dataset. (A) The construction pipeline began
with the collection of small molecules and protein targets from established databases, followed by
data cleaning and deduplication. The small molecules underwent a comprehensive multi-software
docking process, where they were prepared and docked to their experimentally validated targets. For
quality control, the resulting poses were filtered through a voting mechanism, resulting in a dataset
organized by both PDB and assay, designed to enable unbiased bioactivity prediction. (B) The SIU
dataset offers large-scale structural data, making it more than fifty times the size of PDBbind and
significantly larger than datasets currently used for bioactivity prediction tasks. (C) The SIU dataset
is meticulously structured to enhance unbiased bioactivity prediction. It features multiple pockets
(identified by PDB IDs) associated with the same protein target, multiple small molecules mapped
to individual pockets (green), multiple high-quality docking poses per small molecule, and detailed
label type annotations corresponding to all bioactivity values (orange).

Bioactivity label data cleaning and deduplication. Non-structural bioactivity data were retrieved
from ChEMBL (Mendez et al., 2019; Gaulton et al., 2012) and BindingDB (Chen et al., 2001;
Liu et al., 2007; Gilson et al., 2016). Non-drug-like small molecules were excluded based on
criteria such as molecular weight (150–650 Da), the presence of at least one carbon atom, and a
minimum of nine heavy atoms (details in Appendix C). Each small molecule retained its original
IUPAC International Chemical Identifier (InChI) keys (Heller et al., 2015) and Simplified Molecular
Input Line Entry System (SMILES) notations (Weininger, 1988; Weininger et al., 1989) to prevent
mismatches arising from different software calculations. Small molecules were deduplicated using
Extended-Connectivity Fingerprints (ECFP) (Rogers & Hahn, 2010). Molecules with a Tanimoto
similarity greater than 0.8 were clustered, and representatives were selected based on bioactivity,
ensuring both quality and structural diversity while reducing computational expense in molecular
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docking. Deduplication was applied only to protein targets with a small molecule count exceeding
2,146, the 90th percentile across all targets.

Protein target information for each assay was standardized using UniProt IDs (Consortium, 2015;
uni, 2017), ensuring consistency across datasets and alignment with structural data.

Protein target information was standardized using UniProt IDs, ensuring consistency across datasets
and alignment with structural data. Protein structures were retrieved, and pockets were extracted. An
area within a 15 Å radius of the co-crystal ligand in the same complex structure is defined as a distinct
pocket (identified by a single PDB ID), even if it belongs to the same binding site as pockets from
other PDB files of the same protein. A filtering mechanism excluded PDB files with non-specific
or irrelevant ligands, and pockets were further deduplicated using Fast Local Alignment of Protein
Pockets (FLAPP). Bioactivity labels were standardized to molar units (mol/L) and converted to their
negative logarithms, following conventions for drug-target binding affinity datasets (Öztürk et al.,
2018). The resulting dataset, featuring structural pocket information, non-structural small molecule
SMILES, and bioactivity labels, will also be publicly released (upon acceptance of this work).

Figure 3: Quality control of SIU structural data. (A) A feasibility study of our methods showing the
impact of root mean square deviation (RMSD) on success (when the pose simultaneously passes the
consensus filter and has an RMSD < 2 Å compared to the co-crystal pose) and remaining ratios (the
ratio of poses passing the filter) was analyzed using co-crystal poses, treated as the ground truth, and
redocked into their original PDB pockets according to our docking procedure. (B-D) Visualization of
our pose consensus mechanism, where RMSD is calculated between different docking poses from
different software (within same pocket PDB ID 3PB7). A single Glide docking pose is compared
with the top three docking poses generated by GOLD. (B) RMSD 1.544 Å: well-superimposed poses;
(C) RMSD 1.985 Å: similar predicted binding modes; (D) RMSD 8.095 Å: fundamentally different
predicted binding modes.

Structural data construction via multi-software docking SIU employs multiple docking software
programs (Friesner et al., 2004; Verdonk et al., 2003; Trott & Olson, 2010), reducing reliance on any
individual docking software. Initial 3D conformations for the small molecules were generated prior to
docking using the Glide LigPrep module with default settings. The preprocessed data were organized
into formats compatible with the chosen docking software. Protein targets were prepared, and grid
files were generated according to each software’s specific requirements to ensure compatibility. Small
molecules were then docked into the pockets of the protein structures (detailed in Appendix C.2).

For quality control, the SIU structural data underwent a majority voting mechanism: only docking
poses consistent across at least two of the three docking software were retained. This consensus-based
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approach mitigated the inclusion of erroneous or misleading docking poses, thereby improving the
overall quality and reliability of the dataset.

We investigated the selection of the consensus filtering RMSD cutoff by evaluating the trade-off
between pose accuracy and the quantity of retained data. Experiments were conducted to assess
the impact of varying RMSD cutoffs on these factors (Figure 3(A)). In this experiment, we re-
docked small-molecule ligands with known co-crystal structures using different docking software.
A successful docking pose was defined as one with an RMSD of less than 2 Å compared to the
experimental structure. The results demonstrate that with an RMSD cutoff below 2 Å, a significant
number of molecules are retained, and the success rate of the poses is satisfactory. However, as the
RMSD cutoff increases, the number of retained poses rises slightly, but their accuracy decreases
substantially. This suggests that our consensus method is effective for quality control of docked
structures. Furthermore, Figure 3(B-D) show that when the RMSD is around 2 Å, key interactions
are preserved, indicating a potentially valid docking result. Based on these observations, an RMSD
cutoff of 2 Å was selected as the optimal threshold.

3.2 DATASET OVERVIEW

Large-scale. The SIU dataset comprises 5,342,250 conformations detailing small molecule-protein
interactions, each entry providing comprehensive structural and bioactivity information, as shown
in figure 2(B). It includes 1,385,201 bioactivity labels derived from wet experiments, each with
standardized values and clearly annotated label types. The top four label types by small molecule-
protein pair count are half-maximal inhibitory concentration IC50 (994,409), Ki (201,458), half-
maximal effective concentration EC50 (103,435), and Kd (56,485), which form the primary subset
used in our subsequent experiments.

Diversity. SIU offers an extensive range of data, encompassing 214,686 diverse small molecules
and 1,720 distinct protein targets. It includes experimentally validated low-bioactivity or inactive
molecules, which are often absent in structural datasets from wet experiments, thus providing
valuable negative data for AI-driven drug discovery (AIDD). The dataset features broad protein
type coverage, including proteins from different species and major protein classes. As illustrated
in Figure 4(D), the assay values of different protein targets vary significantly. This broad coverage
ensures a comprehensive representation of small molecule-protein interaction modes, enhancing the
relevance of our bioactivity prediction tasks to real biological environments.

Figure 4: Differences in assay values across label types and protein targets. (A) The mean assay
values vary among representative label types, as shown by a heatmap of pairwise t-test p-values.
Smaller p-values (lighter colors) indicate significant differences. (B) Violin plots illustrate the
distributions of label values for different label types. (C) Differences in mean assay values among ten
protein targets. (D) The distributions of label values for different protein targets.
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High-quality. The structural information on small molecule-protein interactions in SIU is of
high quality, due to our multi-software voting mechanism that maximizes docking accuracy within
computational limits. As detailed in the structural data construction section, we achieved a satisfactory
balance between data accuracy and scale, presenting high-quality data unobtainable with a single
docking software or solely by ranking based on software-predicted docking scores. Docking software
often provides successful simulated docking poses within the top-ranking positions, but these are
not always ranked first by docking scores. Our method, however, is based on the consistency of
docking pose sampling across different algorithms. By examining consensus among different docking
algorithms, we effectively ensure more accurate docking pose data.

Well-organized. SIU’s bioactivity labels are meticulously curated and systematically organized by
PDB IDs and label types, ensuring data integrity and enabling effective PDB-wise and assay-wise
comparisons. This organization offers a robust resource for unbiased bioactivity prediction, addressing
the limitations of existing datasets that often fail to distinguish clearly between different bioactivity
label types. Traditional machine learning measurements of correlations in bioactivity prediction
tasks are often ineffective due to the lack of clarity in existing datasets. SIU can also address this
problem, ensuring more precise and meaningful analyses. Our structured approach facilitates nuanced
assessments, such as evaluating the impact of specific small molecule transformation on protein
interactions or comparing the efficacy of different compounds within the same protein pocket context.

Versatile-usage. By providing a well-structured SIU dataset, we not only support unbiased bioac-
tivity prediction but also enable a deeper understanding of the molecular mechanisms underlying
these interactions. This level of detail is also crucial for training robust models for other small
molecule-protein structure-based downstream tasks, such as protein-ligand docking, virtual screening,
and molecular generation, as discussed in Appendix F. Additionally, we provide parallel data of small
molecule-protein pairs that have not been subjected to docking, meaning they lack structural ligand
poses but retain valuable data points that either could not generate a pose or did not meet quality
control standards. This alternative dataset may be useful for evaluating bioactivity prediction models
that do not rely on structural ligand poses, particularly when comparing methods that require 3D
input data.

3.3 REFRAMING THE BIOACTIVITY PREDICTION TASK

Organization of different label types. We organized the data by label types to address the common
issue of mixing Kd and Ki data, while also ensuring that other bioactivities are not neglected. As
illustrated in Figure 4(A) and 4(B), the physical meanings of the label types differ, leading to
variations in their mean values and distributions. This highlights the importance of not mixing
different label types and suggests that they should be treated as distinct tasks.

Unbiased correlation metrics with group-by-pocket approach. As shown in Figure 4(C), we
selected 10 different protein targets along with their corresponding IC50 label values and calculated
the pairwise t-test p-values. A higher p-value (darker color) indicates a higher similarity in the mean
values of different targets. This observation is further corroborated by Figure 4(D), where violin plots
depict the distribution of label values for each of the representative targets, highlighting variations
in both mean values and overall distributions. The figure clearly demonstrates that most target
pairs exhibit significantly different distributions. These differences introduce bias into the dataset
and explain why utilizing only pocket information can still achieve strong Pearson and Spearman
correlation performance, as shown in Figure 1.

Thanks to the fact that our dataset provides multiple small-molecule ligands for each protein, we
can reframe the task and introduce new bioactivity prediction metrics, enabling more unbiased
benchmarking of the models.

In the traditional machine learning approach, Pearson correlation is calculated across all ligand-
pocket pairs without considering the individual protein pocket. Given N ligand-pocket pairs, where
ŷi represents the predicted bioactivity and yi represents the true bioactivity for each ligand-pocket
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pairs, the Pearson correlation r is computed as:

r =

∑N
i=1(ŷi − ¯̂y)(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2
√∑N

i=1(yi − ȳ)2
, (1)

where: ¯̂y is the mean of the predicted bioactivities across all ligand-pocket pairs. ȳ is the mean of the
true bioactivities across all ligand-pocket pairs.

We calculate Pearson correlation after grouping by protein pockets (PDB IDs). For each protein
pocket t, with nt ligands and their corresponding predicted bioactivities ŷi,t and true bioactivities
yi,t, we first compute the Pearson correlation rt for each pocket:

rt =

∑nt

i=1(ŷi,t − ¯̂yt)(yi,t − ȳt)√∑nt

i=1(ŷi,t − ¯̂yt)2
√∑nt

i=1(yi,t − ȳt)2
, (2)

where: ¯̂yt is the mean of predicted bioactivities for ligands within the same pocket t. ȳt is the mean
of true bioactivities for ligands within the same pocket t.

Once we have computed the Pearson correlation for each pocket, the overall correlation considering
all protein pockets (Pearson∗) is obtained by mean pooling:

r⋆ =
1

T

T∑
t=1

rt. (3)

where T is the total number of pockets.

The similar method is also applied to the Spearman correlation to get Spearman∗.

This grouped-by-pocket approach offers an unbiased and more useful evaluation, as it ensures that
the correlation reflects the model’s ability to predict bioactivities for different small-molecule ligands
within the same protein pocket, reducing bias introduced by variations between different pockets.

Dataset Splits. To ensure robust evaluation and flexibility, the dataset includes multiple predefined
splitting strategies. These include sequence identity filters at thresholds of 90%, 60%, and 30%,
as well as a combined sequence identity and structural similarity filter. A manually curated test
set focuses on biologically meaningful tasks by incorporating representative protein targets across
diverse classes, offering insights into the generalizability of predictions for key biochemically relevant
targets. Additionally, bioactivity prediction models can be assessed using a 10-fold cross-validation
framework, providing a reliable and unbiased approach for diverse training and testing scenarios
(details in Appendix A.3).

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTS

We conducted experiments using several classical models to provide baseline results and analyze our
SIU dataset. The models tested include a voxel-grid based 3D-CNN model, a Graph Neural Network
(GNN) model, and pretrained models such as Uni-Mol and ProFSA (Gao et al., 2023a) as it achieves
SOTA result for protein-ligand binding affinity prediction task. Our experiments were performed
in both Multi-Task Learning (MTL) and single-target settings. In the MTL setting, all data were
combined to train a single MTL model. In the single-target setting, the Uni-Mol model was trained
separately on individual labels.

The metrics used in our analysis include RMSE, Mean Absolute Error (MAE), general Pearson and
Spearman correlation, and the correlation after grouping by PDB IDs. The general Pearson and
Spearman correlations are calculated by mixing pairs of protein pockets and molecules. The grouped
correlation metrics are calculated for different molecules within a single protein pocket. We use
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Table 1: Results for multi task learning with different label types. We show results for 3D-CNN,
GNN, Uni-Mol, and ProFSA trained on SIU 0.9 version.

RMSE ↓ MAE ↓ Pearson ↑ Pearson∗ ↑ Spearman ↑ Spearman∗ ↑

IC50

3D-CNN 1.560 1.275 0.158 0.044 0.154 0.040
GNN 1.412 1.141 0.336 0.241 0.316 0.235

Uni-Mol 1.353 1.092 0.462 0.343 0.466 0.351
ProFSA 1.361 1.108 0.382 0.331 0.356 0.317

EC50

3D-CNN 1.518 1.234 0.128 0.010 0.128 0.004
GNN 1.334 1.025 0.444 0.108 0.481 0.120

Uni-Mol 1.273 1.017 0.428 0.178 0.461 0.144
ProFSA 1.255 0.971 0.438 0.204 0.495 0.154

Ki

3D-CNN 1.534 1.260 0.201 0.025 0.200 0.021
GNN 1.814 1.504 0.247 0.099 0.107 0.058

Uni-Mol 1.390 1.133 0.375 0.092 0.324 0.056
ProFSA 1.374 1.142 0.405 0.149 0.365 0.127

Kd

3D-CNN 1.503 1.233 0.173 0.024 0.167 0.038
GNN 1.711 1.431 -0.068 0.065 -0.147 0.033

Uni-Mol 1.429 1.223 -0.084 0.155 -0.175 0.144
ProFSA 1.546 1.334 -0.172 0.057 -0.205 0.029

Pearson∗ to represent Pearson correlation after grouping by PDB ID (pocket), and Spearman∗ to
represent Spearman correlation after grouping by PDB IDs.

Results for multi-task learning is shown in Table 1, and the results for single task learning is shown
in Table 2.

Table 2: Results for single task training with different label types. We show the results with Uni-Mol
model on PDBbind dataset, our SIU 0.6 version and 0.9 version dataset.

Train Set RMSE ↓ MAE ↓ Pearson ↑ Pearson∗ ↑ Spearman ↑ Spearman∗ ↑

IC50

PDBbind 1.575 1.279 0.430 0.245 0.425 0.229
SIU 0.6 1.407 1.138 0.461 0.317 0.463 0.311
SIU 0.9 1.357 1.099 0.470 0.345 0.474 0.347

EC50
SIU 0.6 1.400 1.163 0.280 0.171 0.284 0.150
SIU 0.9 1.340 1.096 0.384 0.196 0.379 0.142

Ki

PDBbind 1.315 1.085 0.368 0.040 0.323 0.026
SIU 0.6 1.255 1.034 0.472 0.106 0.452 0.112
SIU 0.9 1.235 1.017 0.485 0.036 0.452 0.041

Kd

PDBbind 1.565 1.308 0.041 0.010 0.004 0.006
SIU 0.6 1.389 1.192 -0.149 0.052 -0.206 0.022
SIU 0.9 1.364 1.141 -0.033 0.103 -0.082 0.065

Figure 5: (A) Pearson and Spearman correlations for various label types, calculated both before and
after grouping by PDB IDs. (B) Pearson correlations after grouping PDB IDs for different assay
types trained on different datasets.

4.2 ANALYSIS

Different label types. The bioactivity prediction difficulty varies among different label types. The
Kd task is the most challenging, primarily due to the varying correlations between different label
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types, as shown in Figure 4(A)(B). Although the means of Ki and Kd labels do not differ statistically,
the distribution of these two data groups is different. The intrinsic differences in label types of
bioactivity arise from the principles of the wet-lab experiments used to measure them. Binding
assays focus on the direct interaction between the small molecule and the protein target, providing
insights into the strength and specificity of this binding through metrics like Ki and Kd, using
techniques such as surface plasmon resonance (SPR) (Schasfoort, 2017; Englebienne et al., 2003)
and isothermal titration calorimetry (ITC) (Leavitt & Freire, 2001). In contrast, functional assays
measure the biological response elicited by the small molecule on the target, capturing its effect on
a biological system and often quantified by IC50 and EC50 by enzyme activity assays (Bisswanger,
2014; Hall, 1996) or other wet experiment techniques. The inherent differences in what these
assays measure mean that their values cannot be directly compared (Yung-Chi & Prusoff, 1973).
Furthermore, even within the categories of binding and functional assays, metrics should not be used
interchangeably, as Ki and Kd describe different aspects of binding affinity, just as IC50 and EC50

describe different aspects of biological response.

Influence of our unbiased metrics As demonstrated in Figure 5, calculating the correlation at
after grouping by PDB ID (pocket) across all label types results in a significant decline in both
Pearson and Spearman correlations. This observation suggests that it is more challenging to achieve
high correlation when assessing binding affinities for different molecules within the same pocket
after grouping. This challenge primarily arises from the different distribution of binding affinities
across various protein pockets, as shown in Figure 4(C)(D). Furthermore, these findings highlight that
conventional machine learning approaches to measuring correlation without grouping by target
may not effectively capture a model’s ability to differentiate between molecules targeting the
same protein. Such discriminatory capacity is crucial in drug discovery, emphasizing the importance
of focusing on molecular interactions specific to each target rather than general correlations across
diverse targets. This underscores the necessity of our dataset, which measures correlation within
the same PDB IDs, providing a more relevant assessment of a deep learning model’s utility in drug
discovery. Also, as the correlation is calculated within same pocket, it cannot be overfitted with
pocket only information, as it will result in similar prediction results for different molecules, which
would lead to NaN when calculating the pearson or spearman correlation.

Effectivness of training on our dataset. We compare models trained on the PDBbind 2020 dataset
with those trained on SIU versions 0.6 and 0.9. Notably, the PDBbind 2020 dataset was used in its en-
tirety, without implementing any filtering techniques to exclude pockets similar to those in the test set.
As illustrated in Table 10 and Figure 5, models trained on the SIU datasets outperform those trained
on PDBbind, despite the latter’s lack of homology removal. This underscores the effectiveness of
our large-scale dataset in enhancing model learning for binding affinity prediction. Also the 0.9
version gives a better performance compared to the 0.6 version, indicating the influence of removing
homology and scaling law of the dataset. We also provide the results of using docked structures of
PDBbind to train the model, which is shown in Appendix E.1. The results yield the same conclusion.

5 CONCLUSION

We identified and further analyzed the inherent biases present in mainstream bioactivity prediction
tasks. These tasks tend to introduce bias in both the training and testing processes. During training,
the bias arises due to the limited scale of small molecule-protein pairs; in most current datasets,
there is only one small molecule associated with each protein pocket. This limits the model’s
ability to learn the underlying interactions between small molecules and protein targets, leading to
overfitting to the value range of these protein pockets. Furthermore, during testing, existing metrics
primarily assess the models’ ability to discriminate between different protein pockets, neglecting their
ability to rank various small molecules that interact with the same protein pocket. To address these
critical challenges, we redefined the bioactivity prediction task by introducing a novel, large-scale,
high-quality structural dataset with well-organized labels. We also developed new metrics that
specifically evaluate a model’s ability to rank different small molecules for each protein target. Our
analysis, which included testing several classical models as baselines, demonstrates that our dataset
can improve model performance. Moreover, our proposed metrics provide a more challenging and
meaningful evaluation of bioactivity prediction models. Therefore, the task we introduced and the
SIU dataset we created represent valuable contributions to the field.
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APPENDIX

LIST OF CONTENTS FOR APPENDIX

• A Detailed data usage description
• B General statistics and quality evaluation
• C Data construction methodology
• D Model training details
• E Additional experimental results
• F Other potential applications of the SIU dataset

A DETAILED DATA USAGE DESCRIPTION

A.1 A PICKLE FILE THAT CONTAINS PROCESSED DATA AND LABELS FOR THE DATASET

The dataset is provided as a dictionary containing processed information. Each key represents a
UniProt ID, and the corresponding value is a list of dictionaries. Each dictionary represents a data
point and contains the following keys:

{
source data : PDB ID and UniProt ID information,
label : A dictionary for different labels,
including Ki, Kd, IC50, EC50,
ik : InChIKey of the ligand,
smi : SMILES of the ligand

}

A.2 STRUCTURE FILES

The structure files are organized as follows:

DIR
uniprotid

pdb_id
pocket_pdb_file
inchikey1

pose1.sdf
pose2.sdf
pose3.sdf

inchikey2
pose1.sdf
pose2.sdf
pose3.sdf

...
...

Users can use this structure to process their own data for their models.

A.3 DATA SPLITS

To ensure both flexibility and robust evaluation, we provide a range of predefined dataset splitting
strategies. Splits for the training and test sets of our task are provided. However, we do not impose a
fixed split for the dataset, allowing users the flexibility to perform their own splits. These options
provide users with the flexibility to evaluate models under various levels of sequence and structural
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similarity constraints. A 10-fold cross-validation setting is also provided, as it provides a reliable and
unbiased framework for machine learning model evaluation by ensuring diverse training and testing
scenarios.

The updated version of the dataset includes five different predefined splitting strategies:

1. 90% Sequence Identity Filter: A fixed test set is provided, and proteins with a sequence
identity greater than 90% to the test set are removed from the training set.

2. 60% Sequence Identity Filter: A fixed test set is provided, and proteins with a sequence
identity greater than 60% to the test set are removed from the training set.

3. 60% Sequence Identity + Structural Similarity Filter: A fixed test set is provided, and
proteins with a sequence identity greater than 60% to the test set are removed from the
training set. Additionally, protein pockets with a structural similarity greater than 20% to
the test set are also excluded from the training set.

4. 30% Sequence Identity Filter: A fixed test set is provided, and proteins with a sequence
identity greater than 30% to the test set are removed from the training set.

5. 10-Fold Cross-Validation Split: The dataset is divided into 10 clusters. Any pair of proteins
with a sequence identity greater than 60% are placed within the same cluster. This split can
be used for 10-fold cross-validation.

Splitting methods. To ensure the generalizability of the experimental findings with SIU, we
employed a manual curation approach for dataset splitting. We selected a set of 10 representative
protein targets to serve as the test set. These targets were intentionally chosen to cover a diverse range
of protein classes, including well-known drug targets such as G-Protein Coupled Receptors (GPCRs)
(Hauser et al., 2017), kinases (Attwood et al., 2021; Cohen et al., 2021), and cytochromes (Danielson,
2002). This selection strategy was designed to encompass the bioactivity landscape across various
protein functionalities, thereby enhancing the applicability of our results to a wider range of potential
drug discovery applications. We conducted non-homology analyses at two levels, 0.6 and 0.9, to
ensure the independence and diversity of the training and test sets. For both versions 0.9 and 0.6, we
have 21,528 data pairs allocated for testing. Specifically, version 0.9 includes 1,250,807 data pairs
for training and validation, while version 0.6 includes 386,330 data pairs for these purposes.

Table 3: The curated test set of 10 protein targets, covering a diverse range of protein classes and
displaying an even distribution of small molecule-pocket pair counts.

UniProt Gene name Class Small molecule-
pocket pair count

P61073 CXCR4 HUMAN GPCR 1376
P42866 OPRM MOUSE GPCR 2379
Q00535 CDK5 HUMAN Kinase 2189
Q04759 KPCT HUMAN Kinase 2320
P15538 C11B1 HUMAN Cytochrome 2427
P13631 RARG HUMAN Nuclear Receptor 1888
Q12879 NMDE1 HUMAN Ion Channel 2144

Q9UGN5 PARP2 HUMAN Epigenetic 2251
Q86WV6 STING HUMAN Others 2495
Q96SW2 CRBN HUMAN Others 2059

Test set construction. To ensure the robustness and generalizability of the experimental findings
with SIU, we meticulously curated a test set composed of 10 protein targets, as listed in Table 3.
These targets were selected to represent a wide range of protein classes, including G-Protein Coupled
Receptors (GPCRs), kinases, cytochrome, nuclear receptor, ion channel, epigenetic, and others,
ensuring broad coverage of the bioactivity landscape. For example, ”C11B1 HUMAN” belongs to
the cytochrome P450 family, which is involved in the metabolism of various drugs (Bureik et al.,
2002; Denisov et al., 2005). ”RARG HUMAN” belongs to the Nuclear Receptor family, with drugs
like bexarotene used for certain cancers (Altucci et al., 2007; Qu & Tang, 2010). ”NMDE1 HUMAN”
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represents the NMDA receptor, a critical glutamate receptor in neurons implicated in various neuro-
logical disorders, with memantine being an approved NMDA receptor antagonist for moderate to
severe Alzheimer’s disease (Mori & Mishina, 1995; Reisberg et al., 2003). Including these targets
across various functionalities enhances the applicability of our results in drug discovery.

B GENERAL STATISTICS AND QUALITY EVALUATION

B.1 GENERAL STATISTICS OF THE DATASET

SIU represents a large-scale, high-quality dataset of small molecule-protein interactions, meticulously
organized to facilitate unbiased bioactivity prediction, both PDB-wise and assay-type-wise. The
dataset comprises a total of 5,342,250 conformations. Each instance in the dataset provides detailed
information about small molecule-protein interactions, including the coordinates and element types
of each atom in the small molecule and the corresponding pockets of each interaction. Additionally,
the assay value and type of each conformation, along with other critical information, are carefully
obtained and retained from the original bioactivity databases. This includes the UniProt ID and PDB
ID of the protein pockets, as well as the InChI keys (Heller et al., 2015) and SMILES Weininger
(1988); Weininger et al. (1989) notations of the small molecules.

Table 4: The label count for 4 representative label types in SIU total, SIU 0.9, and 0.6 versions.

SIU 0.9 version SIU 0.6 version
Total Train Valid Test Total Train Valid Test

MTL 1272335 1125727 125080 21528 407858 347697 38633 21528
IC50 962063 854230 94859 12974 320594 276969 30651 12974
EC50 97952 84067 9508 4377 32842 25675 2790 4377

Ki 198091 175442 19447 3202 47946 40188 4556 3202
Kd 54570 47347 5347 1876 17509 14003 1630 1876

B.2 FURTHER EVALUATION OF LABEL VALUE DIFFERENCES ACROSS LABEL TYPES

To further support our rationale for dividing predictions by label type, we consider the potential
coupling relationships between label types and proteins, which could lead to distributional differences
across label types. To address this, we selected only pairs that contain all four label types, ensuring
that the corresponding list of proteins is identical for each label type.

Figure 6: Differences in assay values across different label types. (A) Pairwise differences in mean
assay values among these label types, as shown by a heatmap of pairwise t-test p-values. Smaller
p-values (lighter colors) indicate significant differences. (B) Violin plots illustrate the distributions of
label values for different label types.

Despite this refinement, the figures still reveal distributional differences across label types. Further-
more, by ensuring that each pair includes all four label types, we calculated the Pearson correlation
between label types for a given protein. The results are presented in Table 5.

Thus, we continue to believe that separating these types into distinct tasks is a worthwhile approach.
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Table 5: Correlation matrix for IC50, EC50, Kd, and Ki values. The table shows pairwise correlations
between the different bioactivity measures.

IC50 EC50 Kd Ki

IC50 1 0.0773 -0.0080 0.5849
EC50 0.0773 1 0.3752 0.2673
Kd -0.0080 0.3752 1 0.0463
Ki 0.5849 0.2673 0.0463 1

B.3 FURTHER EVALUATION OF LABEL VALUE DIFFERENCES ACROSS PROTEIN POCKETS.

In Figure 4 we have vitualized the label value ranges difference in ten targets. To further provide a
more comprehensive and convincing demonstration, in Figure 7 we provide here a heatmap and violin
plot across more randomly sampled protein targets following the same logic. These representations
further confirm that our findings remain consistent and valid in this broader context.

Figure 7: Differences in assay values across more random-sampled protein targets. (A) Pairwise
differences in mean assay values among these protein targets, as shown by a heatmap of pairwise
t-test p-values. Smaller p-values (lighter colors) indicate significant differences. (B) Violin plots
illustrate the distributions of label values for different protein targets.

B.4 FURTHER EVALUATION OF STRUCTURAL DATA QUALITY

We implemented rigorous quality control measures, such as the consensus method described earlier,
to enhance the overall reliability of the generated structrual data. The intention of our work is not to
propose a new docking algorithm but rather to create a dataset that facilitates redefining the bioactivity
prediction task. In this effort, our focus was on selecting robust and widely accepted mainstream
docking methods.

Further evaluation in a cross-docking scenario. We conducted an experiment focusing on one
target with 20 PDB structures with co-crystal ligands within the same binding site. After aligning
these complex structures, we performed cross-docking on them and calculated the RMSD between
the docked ligand poses in all holo pockets and the corresponding co-crystal ligand poses.

As shown in Table 6, there is a significant improvement across various metrics for the docking
poses that pass the filter compared to those that fail, highlighting the effectiveness of our consensus
algorithm in ensuring the quality of docking poses.

B.5 FURTHER COMPARISON WITH PDBBIND

Additionally, as illustrated in Table 7, the dataset encompasses over 1,385,201 assay labels, each
derived from corresponding wet-lab bioactivity experiments, ensuring the reliability and accuracy
of the bioactivity information. SIU includes 1,720 diverse protein targets, with each protein poten-
tially possessing multiple distinct binding pockets, verified through rigorous deduplication methods,
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Table 6: RMSD statistics for structures that passed or failed the filter. The table shows mean and
median RMSD values, as well as the percentage of structures with RMSD below 1 Å , 2 Å, and 3 Å.

Metric RMSD RMSD Percentage Percentage Percentage
Mean Median < 1 Å RMSD < 2 Å RMSD < 3 Å RMSD

Passed the Filter 3.24 2.02 17.12% 49.42% 61.87%
Failed the Filter 5.76 5.24 1.80% 6.26% 16.44%

resulting in a total of 9,662 unique pockets. The dataset also features a substantial and diverse collec-
tion of small molecules, totaling 214,686, across all pockets. Importantly, we have only included
protein pocket-small molecule pairs confirmed to be active or inactive through wet-lab experiments,
amounting to over 1,291,362 million pairs.

Table 7: Comparison of PDBbind and SIU datasets, showing the number of pocket-molecule pairs,
average molecules per pocket, and unique pockets and molecules.

Dataset Pocket-molecule pairs Avg. molecules per pocket Unique pockets Unique molecules
PDBbind 19,443 1 19,443 19,443
SIU 1,312,827 137.6 9,544 214,686

B.6 COMPARISON WITH FEP DATASET

By predicting binding free energy, FEP can be considered a bioactivity prediction method to some
extent. However, handling one pocket at a time represents an inherent limitation of these methods,
as they do not actively group data to address biases when evaluating the model. When evaluating
models with FEP dataset, it is still necessary to calculate metrics as an average across different
targets to assess general performance. While reporting metrics for individual targets can highlight
performance of one model on specific targets, it does not provide a clear comparison of overall
performance. Another limitation of the FEP dataset is the small number of targets and the limited
number of small molecules per target. While this setup might serve as a held-out test for machine
learning models, it addresses a different aspect from the motivation of this paper, which aims to
provide a more comprehensive and unbiased evaluation.

C DATA CONSTRUCTION METHODOLOGY

C.1 DATA PREPROCESSING METHOD DETAILS

Label data extraction and cleaning. We retrieved non-structural bioactivity data from ChEMBL
(Release 33) and BindingDB (version 202404), applying rigorous filtering to refine the dataset. For
ChEMBL, data were extracted via SQLite, focusing on records with an assays.confidence score
of 9, targeting a single protein, and classified as binding (B) or functional (F). We included
entries with non-null values for activities.standard relation and activities.standard value, where
activities.standard units were ’pM’, ’nM’, or ’µM’. Further refinement was applied to activi-
ties.activity comment to capture specific biological activity descriptions, and molecular weight
(compound properties.mw freebase) was restricted to between 150 and 650 Da. For small molecules,
stringent filtering criteria were used to exclude non-drug-like entities. We selected molecules with
a molecular weight of 150-650 Da, containing at least one carbon atom, and having a minimum
of nine heavy atoms. Each small molecule retained its original IUPAC International Chemical
Identifier (InChI) keys and Simplified Molecular Input Line Entry System (SMILES) notations. From
BindingDB, we extracted relevant data from the .tsv file and standardized protein target information
using UniProt IDs. The ChEMBL and BindingDB datasets were merged by matching InChI keys
for small molecules with UniProt IDs for protein targets, ensuring accurate alignment of bioactivity
labels with their corresponding small molecule-protein interactions.
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Figure 8: Property Distributions of Small Molecules Before and After Deduplication. Key
characteristics such as molecular weight, water-oil partition coefficient (logP), hydrogen bond
acceptor (HBA) count, and hydrogen bond donor (HBD) count remain consistent, despite a reduction
in the total number of small molecules. (A-D) Distributions of small molecules across different
ranges of molecular properties. The y-axes represent the number of small molecules within specific
property ranges. (E-H) Cumulative distributions of the same molecular properties, with the y-axes
indicating cumulative probabilities.

Label data deduplication. To deduplicate small molecules, the Extended Connectivity Fingerprint
(ECFP) (Rogers & Hahn, 2010) was utilized. ECFP is a type of molecular fingerprint commonly
used in cheminformatics to represent the structural features of small molecules. It extends the
circular fingerprint method by encoding a molecule into a fixed-length bit string that reflects its
substructural characteristics. ECFPs are widely applied in various computational chemistry tasks,
such as virtual screening, similarity searching, and machine learning. In this work, small molecules
with high structural similarity (Tanimoto similarity > 0.8) were grouped into clusters. One or more
representatives from each cluster, prioritized based on bioactivity, were selected to deduplicate the
dataset while maintaining structural diversity. Notably, only small molecules within pockets where
the molecule count exceeds the 90th percentile threshold (2,146) across all pockets were subjected to
deduplication. As illustrated in Figure 8, the diversity of small molecules was preserved following the
application of this deduplication method. Fast Local Alignment of Protein Pockets (FLAPP) (Sankar
et al., 2022) is a program that used to calculate the structure similarity between two protein pockets.
We remove structurally redundant pockets using this program. The threshold is set to 0.9.

Pocket definition. Biologically speaking, a protein typically exhibits a limited number of distinct
binding sites, defined as regions accommodating specific ligands. It’s important to differentiate
between these binding sites and the ”pockets” we identify, which are characterized by the ligands
used for their definition rather than their spatial distribution on the protein surface. In essence,
multiple pockets can potentially reside within a single binding site, since a lot of binding sites
have complex structures with multiple ligands therefore have a lot of PDB IDs. Different PDB IDs
represent distinct resolved structures for a single protein, all associated with the same UniProt ID.
For each PDB ID, a single pocket was extracted, defined as the region centered on the co-crystal
ligand within a 15 Å radius.

Mapping small molecule to pocket. While our method can be considered a form of cross-docking,
it fundamentally differs from the well-known CrossDocked2020 dataset (Francoeur et al., 2020).
Specifically, we use only small molecules with experimentally determined bioactivity values to dock
to their corresponding protein targets. This ensures that each small molecule is docked to at least
the correct protein target. Additionally, our consensus docking not only generates structural data but
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also serves as a reverse strategy for identifying the appropriate binding pocket, thereby enhancing the
reliability of the pocket assignments.

C.2 DOCKING METHOD DETAILS

Constructing a structural dataset of this scale required careful optimization of docking parameters
to balance performance and computational resource efficiency. Ligands from bioactivity databases,
provided as 1D representations (SMILES), were first processed with Glide LigPrep to generate up to
32 stereoisomers per molecule, accounting for potential variations in stereochemistry at chiral centers.
Ionization states were predicted at physiological pH to ensure accurate representation of charged
forms. Multiple conformations were prepared for each small molecule to account for molecular
flexibility. Protein structures were preprocessed by predicting their ionization states, removing water
molecules, and preparing docking grid files centered on the co-crystal ligand. Docking was performed
with default settings. The resulting conformations were filtered through a consensus pipeline to select
the final set of conformations included in the SIU dataset.

D MODEL TRAINING DETAILS

For GNN Model, we use the same model in Atom3D (Townshend et al., 2021). We train the model
using one NVIDIA A100 GPU. The batch size is 256, the max number of epochs is 20, the optimizer
is Adam, the learning rate is 1e-3.

For 3D-CNN Model, we use the same model in Atom3D. We train the model using one NVIDIA
A100 GPU. The batch size is 256, the max number of epochs is 20, the optimizer is Adam, the
learning rate is 1e-4.

For Uni-Mol model, we use the pretrained model weights provided. The pretrained molecular encoder
and pocket encoder outputs are concatenated and passed through a four-layer Multi-Layer Perceptron
(MLP) with hidden dimension 1024, 521, 256, 128. We use four NVIDIA A100 GPU to train the
model. The batch size is 384, the max number of epochs is 50, the optimizer is Adam, the learning
rate is 1e-4.

For ProFSA model, we use the pretrained model weights provided. The pretrained molecular encoder
and pocket encoder outputs are concatenated and passed through a four-layer MLP with hidden
dimension 1024, 521, 256, 128. We use four NVIDIA A100 GPU to train the model. The batch size
is 384, the max number of epochs is 50, the optimizer is Adam, the learning rate is 1e-4.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ADDITIONAL RESULTS FOR USING THE DOCKED STRUCTURE OF PDBBIND

We conduct additional results using the docked structures instead of the original complex of PDBbind.
The result is shown in Table 8.

E.2 ADDITIONAL RESULTS FOR DIFFERENT SPLITTING

The results for combining 60% sequence identity and 0.2 FLAPP structure similarity are shown in
Table 9.

The results for 10 folds split are shown in Table 10.

Those results pertain to the Uni-Mol model.

F OTHER POTENTIAL APPLICATIONS OF THE SIU DATASET

The SIU dataset offers a wealth of opportunities for advancing drug discovery by addressing a wide
range of applications. Beyond its core use in unbiased bioactivity prediction, the dataset is being
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Table 8: Results for single task training with different label types. We show the results with Uni-Mol
model on PDBbind dataset, our SIU 0.6 version and 0.9 version dataset. Pdocked is the model trained
on PDBbind but with the docked structure instead of original complex structure.

Train Set RMSE MAE Pearson Pearson∗ Spearman Spearman∗

IC50

PDBbind 1.575 1.279 0.430 0.245 0.425 0.229
Pdocked 1.600 1.304 0.439 0.241 0.436 0.229
SIU 0.6 1.407 1.138 0.461 0.317 0.463 0.311
SIU 0.9 1.357 1.099 0.470 0.345 0.474 0.347

EC50
SIU 0.6 1.400 1.163 0.280 0.171 0.284 0.150
SIU 0.9 1.340 1.096 0.384 0.196 0.379 0.142

Ki

PDBbind 1.315 1.085 0.368 0.040 0.323 0.026
Pdocked 1.301 1.059 0.365 0.035 0.311 -0.001
SIU 0.6 1.255 1.034 0.407 0.106 0.452 0.112
SIU 0.9 1.235 1.017 0.385 0.036 0.452 0.041

Kd

PDBbind 1.565 1.308 0.041 0.010 0.004 0.006
Pdocked 1.447 1.231 -0.015 0.034 -0.062 0.011
SIU 0.6 1.389 1.192 -0.049 0.052 -0.206 0.022
SIU 0.9 1.364 1.141 0.033 0.103 -0.082 0.065

Table 9: Results for single task training with different label types. We show the results with Uni-Mol
model on SIU that is based on our original 0.6 split, with FLAPP to remove additional similar pockets
from the train set.

RMSE MAE Pearson Pearson∗ Spearman Spearman∗

IC50 1.389 1.117 0.411 0.353 0.412 0.355

EC50 1.399 1.164 0.212 0.165 0.232 0.154

Ki 1.318 1.096 0.456 0.122 0.443 0.118
Kd 1.349 1.154 -0.087 -0.042 -0.123 -0.14

extended to support pairwise ranking tasks, ensuring that comparisons are restricted to docking poses
from the same PDB structure and bioactivity data with consistent label types. Additionally, SIU
can be leveraged as a virtual screening resource. Another promising application lies in training
models for molecular optimization based on pairwise data, distinguishing molecules with high and
low bioactivity. Furthermore, SIU serves as a supplementary dataset for docking pose prediction
tasks, providing a reliable resource. Finally, the automated pipeline demonstrated in this work
showcases the feasibility and scalability of generating large-scale, high-quality datasets. Future
efforts could refine these methods to construct even larger datasets, enhancing the understanding of
small molecule-protein interactions and accelerating progress in AIDD.
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Table 10: Results for single task training with different label types. We show the results with Uni-Mol
model on SIU that is splitter in to 10 folds based on sequence identity. The result is trained on 8 folds,
validate on 1 fold, and tested on another fold.

RMSE MAE Pearson Pearson∗ Spearman Spearman∗

IC50 1.332 1.046 0.421 0.216 0.408 0.203

EC50 1.322 1.123 0.494 0.227 0.520 0.228

Ki 1.545 1.281 0.356 0.143 0.355 0.133
Kd 1.678 1.369 0.474 0.149 0.347 0.153
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