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ABSTRACT

Arena-based evaluation has become a key method for assessing large language
models (LLMs) through head-to-head model comparisons, closely reflecting hu-
man preferences. However, current arena rating systems (e.g., ELO rating system)
often suffer from inefficiencies due to exhaustive or random model pair annota-
tions, leading to redundant evaluations, longer evaluation times, and lower over-
all efficiency. To address these challenges, we propose a novel adaptive model-
pair selection algorithm. By leveraging the asymptotic normality of LLM abil-
ity estimation under sparse conditions, our approach strategically selects high-
value model pairs, focusing on confrontations with the lowest variance. Specif-
ically, we introduce Fisher information as a metric to guide model pair selec-
tion, optimizing the evaluation process through A-optimality and D-optimality.
A-optimality minimizes estimation variance, ensuring balanced reliability across
models, while D-optimality reduces uncertainty by maximizing the determinant
of the Fisher Information Matrix. Extensive experiments on both simulated
and real-world datasets demonstrate that our method outperforms existing ap-
proaches in terms of information efficiency and result reliability. Notably, our
method offers a flexible, general toolkit that can be easily integrated into existing
arena-based platforms, greatly improving scalability and efficiency for large-scale
LLM evaluations. Our code is publicly available to promote reproducibility at
https://anonymous.4open.science/r/Adaptive-Arena-870D.

1 INTRODUCTION

The rapid advancements in large language models (LLMs) have led to their widespread use in vari-
ous fields, including content generation (Wang et al., 2024a), customer service, and intelligent tutor-
ing (Kasneci et al., 2023). As LLM architectures (Liu et al., 2024a), fine-tuned variants (Hu et al.,
2023), and domain-specific models (Patil & Gudivada, 2024) continue to evolve, thus the demand
for efficient and scalable evaluation frameworks is growing (Mizrahi et al., 2024; Zhou et al., 2023;
Li et al., 2024b). Among existing evaluation methods, arena-based evaluation is notable (Chiang
et al., 2024): unlike traditional benchmark-based approaches (Wang et al., 2024b; Mirzadeh et al.,
2024) that rely on predefined prompts and fixed answers, arena-based frameworks assess models
through head-to-head confrontations. This approach captures real-world performance dynamics and
produces rankings that closely align with human judgments (Zheng et al., 2023; Luo et al., 2024),
making it a valuable tool for assessing LLMs’ practical utility.

However, current arena-based evaluation methods face significant issues. First, is the efficiency (Luo
et al., 2024; Spangher et al., 2025). As shown in Figure 1, these frameworks often rely on exhaustive
or random pairwise annotations to generate reliable rankings, which becomes increasingly resource-
intensive. Second, is the scalability. As the number of newly proposed models grows, platforms
like Chatbot Arena (Chiang et al., 2024), hosting over 190 models, require tens of thousands of
confrontations to produce reliable rankings (Patil & Gudivada, 2024). This not only consumes
considerable resources but also results in substantial evaluation cycles, making it difficult to keep up
with the rapid development of LLMs (Min et al., 2025).
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Figure 1: The diagram of Arena-based Evaluation. Models engage in pairwise battles, annotators
label the outcomes, and the ELO ratings are then estimated based on these annotations.

To address these challenges, we propose a novel adaptive arena-based evaluation method. Lever-
aging the asymptotic normality of ability estimation under sparse conditions, we can strategically
select high-value model pairs for evaluation and improve efficiency by minimizing the variance of
the asymptotic distribution. Specifically, we introduce two key methods: A-optimality, which mini-
mizes the variance in model estimates, and D-optimality, which reduces uncertainty by maximizing
the determinant of the Fisher Information Matrix (Rissanen, 1996; Ly et al., 2017). Through these
techniques, we achieve more gain in each annotation, leading to fewer battles.

Our contributions are as follows:

• We first introduce the concept of efficiency in arena-based LLM evaluation, using statisti-
cal uncertainty to minimize redundant evaluations, significantly improving both speed and
resource usage in ranking.

• We apply A-optimality and D-optimality to model-pair selection, backed by rigorous theo-
retical analysis, to reduce annotation costs while preserving ranking reliability.

• Through extensive experiments, we show that our method outperforms existing approaches
in efficiency and reliability, and can seamlessly integrate with current arena-based plat-
forms. This makes our method not just a theoretical innovation, but a practical and scalable
solution for large-scale LLM evaluations.

2 RELATED WORK

Arena-based Evaluation Arena-based evaluation is a key approach in LLM evaluation, distin-
guished from traditional benchmark methods by its focus on direct head-to-head model competi-
tions (Wang et al., 2025). This design provides a more realistic measure of models’ relative abili-
ties (Zellers et al., 2019; Hendrycks et al., 2020; Cobbe et al., 2021). Unlike traditional approaches
that use predefined datasets (Liang et al., 2022; Liu et al., 2024b), arena settings emphasize dynamic
model confrontations that better reflect real-world usage scenarios. Ranking systems are central
to Arena-based evaluation (Busa-Fekete et al., 2014; Szörényi et al., 2015; Chernoff, 1992), with
most methods relying on the ELO Rating System to estimate model proficiency (Coulom, 2007;
Pelánek, 2016). However, ELO’s sensitivity to sample order can lead to instability in performance
estimates (Boubdir et al., 2024). To address this, recent studies have proposed adaptations, such
as statistical refinements (Ameli et al., 2024; Yin et al., 2024; Liu et al., 2025) and bias-mitigation
methods like UDA (Zhang et al., 2025). Notably, all existing Arena-based methods aim to improve
ranking accuracy but overlook the critical issue of annotation efficiency. Whether using standard
ELO, adapted variants, or frameworks like UDA, these approaches often involve unnecessary con-
frontations, leading to low annotation efficiency and high evaluation overhead.

Efficiency of LLM Evaluation Efficiency has become a key focus in LLM evaluation due to the
high costs of annotating large datasets and conducting extensive tests (Marion et al., 2023). Exist-
ing methods (Xie et al., 2023; Chung et al., 2023; Saranathan et al., 2024; Li et al., 2024a) share
the goal of reducing the number of evaluation examples while maintaining accuracy, but they are
designed primarily for traditional static question-answering (QA) tasks, where models are assessed
against predefined prompts and answers. For example, Polo et al. (2024a) introduced TinyBench-
marks, which evaluates LLMs with fewer examples than traditional benchmarks by prioritizing
information-dense samples, thus reducing annotation and computational costs while maintaining
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reliable performance estimation. Similarly, Kipnis et al. (2024) proposed MetaBench, which selects
diverse, compact prompts based on statistical analysis, avoiding redundant evaluations while cap-
turing core model abilities. Based on this, Polo et al. (2024b) developed an efficient multi-prompt
evaluation method, which optimizes prompt selection across rounds to reduce redundant data collec-
tion and computation without sacrificing accuracy. However, these efficiency-driven methods are not
applicable to dynamic Arena-based evaluation for two key reasons: First, Arena scenarios involve
pairwise head-to-head model confrontations rather than static QA tasks; second, rankings in Arena
settings rely on iterative human judgments (Kruglanski & Ajzen, 1983), breaking the assumption of
fixed criteria inherent in traditional QA methods. Therefore, the dynamic and interactive nature of
Arena evaluation makes current efficiency methods unsuitable.

Given these gaps—existing efficiency methods being incompatible with dynamic Arena scenarios,
and Arena-based methods neglecting annotation efficiency—our study aims to address these issues.
We propose optimizing Arena-based evaluation through strategic sample selection techniques to
both accelerate system convergence and improve overall evaluation efficiency.

3 ADAPTIVE ARENA METHOD

3.1 MODELING ELO RATINGS

Arena-based evaluation has emerged as a key approach for LLM evaluation, where models com-
pete head-to-head on benchmarks or datasets, with outcomes annotated by evaluators. Let S =
{(i, j, wij)|i < j ∈ [N ]} represent the comparative records, where N is the total number of mod-
els being evaluated. Each element (i, j, wij) ∈ S contains important information: it indicates that
model i and model j have engaged in a competition, and wij is the annotation result. Specifically,
if wij = 1, model i wins; if wij = 0, model j wins; and if wij = 0.5, it indicates a tie. The goal of
arena-based evaluation is to estimate the ranking scores (r1, . . . , rN ). Since the ranking is relative,
we assume that the ability of the last model is 0, i.e., rN = 0, and in the following, we focus on the
ability estimation of the first N − 1 models, denoted as r = (r1, . . . , rN−1).

To model the win probabilities, we use the Bradley-Terry model (Rao & Kupper, 1967), which
forms the statistical foundation for modern ELO-style rating systems. It posits that the probability
of model i winning against model j, denoted Pij , is a logistic function of their ability difference:

Pij =
1

1 + e−C(ri−rj)
, (1)

where C is a scaling constant.

With the obtained winning probability, many methods can be adopted to get the ranking scores.
Among these, Maximum Likelihood Estimation (MLE)-based ELO finds the ratings that best ex-
plain all observed match results simultaneously. It is a more statistically robust batch approach to
estimate the abilities r by MLE. It is achieved by minimizing the negative log-likelihood function:

r̂ = argmin
r
LS(r), where LS(r) = −

∑
(i,j,wij)∈S

[wij lnPij + wji lnPji] . (2)

Adopting the MLE framework is crucial as it allows us to rigorously analyze the statistical proper-
ties of the estimated ratings, which is essential for developing our adaptive selection strategy. The
detailed properties are as follows.

Statistical Properties of ELO. Consider modeling the arena as an Erdős-Rényi (E-R) Graph
G(N, qN ) (Kumar et al., 2000; Guimera et al., 2004), where N is variable and the sample size |S|
increases with N . Here, qN represents the probability that a confrontation occurs between models i
and j. Under this framework, the estimation results of ELO exhibit both uniqueness and asymptotic
normality (Simons & Yao, 1999; Han et al., 2020):

Lemma 1. Let G(N, qN ) be the Erdős-Rényi Graph, and r̂n, r
∗
n be the estimated and true abilities

of the first n models, respectively. We have:

(1) (Uniqueness) If qN = ω
(

logN
N

)
, then ELO almost surely has a unique solution r̂N−1.

3
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(2) (Asymptotic Normality) If qN · N1/10

(logN)1/5
→ ∞ as N → ∞, then for any n < N ,√

|S|(r̂n − r∗n)
d−→ N (0, IS(r∗n)−1), where IS(r∗) is the Fisher information matrix.

In the ELO method, Fisher information (Frieden, 2004) is calculated by solving the Hessian matrix:

IS(r) = −E[H(LS(r))] = C2
∑

(i,j,wij)∈S

PijPji(ei − ej)(ei − ej)
⊤, (3)

where ei is the i-th standard basis vector, and eN = 0. To explain the Fisher information matrix
intuitively, consider a toy example with three models, X , Y , and Z, and two battle records S =
{(X > Y ), (X = Z)}. Assuming all models have an initial ability of 0 and that model Z is fixed
during the estimation process, the calculation of the information quantity is as follows:

C2

[
0 0
0 0

]
X>Y−−−→ C2

[
0.25 −0.25
−0.25 0.25

]
X=Z−−−→ C2

[
0.5 −0.25
−0.25 0.25

]
, (4)

and we also provide a case study of the information matrix based on real dataset in Appendix E.

Considering Lemma 1 with Fisher information matrix like Equation 4, it can be confirmed that
ELO has a unique estimated solution and this estimation is asymptotically unbiased and normally
distributed, even in sparse scenarios. Therefore, from a statistical perspective, the efficiency problem
in arena evaluation essentially revolves around how to reduce variance more quickly during the
evaluation process. Specifically, the key lies in reducing the inverse of the Fisher information
matrix IS(r∗) under ELO context.

3.2 SELECTION STRATEGY FOR ARENA-BASED EVALUATION

As mentioned earlier, our direct goal is to reduce the inverse of the information matrix. However,
the true ability values of candidate models, r∗, are unknown, making it impossible to directly se-
lect the model pairs. Therefore, we dynamically select each subsequent model pair based on the
accumulated records St−1. Specifically, by approximating the true abilities r∗ with the estimated
abilities r̂t−1 derived from St−1, we can compute an approximate information matrix. Using the
Fisher information of the current abilities, we propose the following A-optimality method (Chan,
1982; Wanyonyi et al., 2021) for Arena-based Evaluation:

The A-optimality method. This method aims to select the model pair that minimizes the sum of
the sampling variances of the ability estimators, which is equivalent to minimizing the trace of the
inverse of the information matrix:

(it, jt) = arg min
1≤i<j≤N

tr
[(
ISt−1(r̂

t−1) + I{(i,j)}(r̂t−1)
)−1

]
. (5)

For this method to be feasible, the Fisher information matrix must be invertible. We have the fol-
lowing theorem:

Theorem 1. Consider the Erdős-Rényi Graph G(N, qN ) for ELO. If qN = ω
(

logN
N

)
, then the

information matrix IS(r) is almost surely positive definite.

From Theorem 1, it follows that as long as there are sufficient battle samples, the information matrix
is guaranteed to be positive definite (Johnson, 1970). This not only ensures that the information
matrix is invertible but also guarantees that the determinant is positive.

However, A-optimality method still requires calculating the inverse of a matrix, which increases
computational complexity. To address this, we consider maximizing the determinant of information
matrix and propose the D-optimality method (John & Draper, 1975) for Arena-based Evaluation:

The D-optimality method. The D-optimality method aims to select the model pair that maximizes
the determinant of the information matrix in the current state, expressed as:

(it, jt) = arg max
1≤i<j≤N

∣∣ISt−1
(r̂t−1) + I{(i,j)}(r̂t−1)

∣∣ . (6)

4
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Table 1: This table summarizes the characteristics of each strategy. Using r̂ indicates whether the
strategy utilizes currently estimated abilities; Global Info indicates whether global information is
used, and min qN represents the minimum edge probability that ensures effective selection.

Method Random Nearest Ada-Pair A-optimality D-optimality

Using r̂ % ✓ ✓ ✓ ✓
Global Info % % % ✓ ✓
min qN 0 w( logN

N ) 1 w( logN
N ) w( logN

N )
Complexity O(1) O(N) O(N2) O(Nβ+3) O(Nβ+2)

3.3 THEORETICAL ANALYSIS

In this subsection, we analyze our proposed method from three perspectives: algorithmic prerequi-
sites, numerical computation, and time complexity.

Algorithmic Prerequisites. Different selection strategies depend on distinct prerequisites. Table
1 summarizes the conditions for each method.

For example, the Random selection method requires no additional variables, so it is often used to
initialize other strategies. In contrast, methods that consider model abilities r̂ must meet at least the
conditions outlined in Lemma 1(1), which represents the theoretical lower bound of qN for these
methods. More stringent conditions apply to methods like Ada-Pair, which considers the confidence
interval of each model pair (i, j). To ensure the existence of confidence intervals, Ada-Pair requires
that each pair has competed at least once, implying that the density of the E-R graph must satisfy
qN = 1. This requirement becomes restrictive as the number of models N increases. This highlights
a key advantage of our proposed method: it only requires the minimal condition, ω( logN

N ), to ensure
the positive definiteness of the information matrix (Theorem 1) without requiring additional samples
for initialization. This feature demonstrates the broad applicability of our approach.

Numerical Computation. To avoid numerical instability and ensure computational validity, we
need to consider the relationship between Fisher information and the number of samples. We present
the following theorem to address this:
Theorem 2. Let r be the ability parameter vector, and let ISt

(r) denote the Fisher information
matrix based on the subset St with size t. Define:

• A(St) = 1
tr[ISt (r)

−1] (average information efficiency),

• D(St) = |ISt(r)|
1

N−1 (normalized geometric information density).

Assume that each element in St contributes bounded positive information and that ISt(r) is positive
definite for sufficiently large t. Then as t→∞:

1. A(St) = O(t) (there exist constants C1 and t1 such that A(St) ≤ C1 · t for all t ≥ t1),
2. D(St) = O(t) (there exist constants C2 and t2 such that D(St) ≤ C2 · t for all t ≥ t2).

Theorem 2 provides the upper bound for the variation of Fisher information with respect to the num-
ber of competitions. Specifically, the inverse of the A-optimality measure grows linearly with the
increase in the number of samples, while the (N − 1)-th root of the D-optimality measure grows
linearly. Therefore, when practically implementing the D-optimality method, it is advisable to trans-
form the calculation into the form defined in Theorem 2 to prevent numerical explosion.

Time Complexity. Algorithm 1 presents the pseudo-code for model selection in the Arena. The
main computational cost in the model pair selection phase comes from calculating the determinant or
the inverse of the matrix. Both operations have a complexity of O(Nβ) (Kaltofen & Villard, 2005),
where N is the matrix size or the number of models in the arena. Therefore, for the D-optimality
method, which traverses all model pairs and computes the determinant of the information matrix at
each step, the complexity is O(Nβ+2). For the A-optimality method, whether calculating the trace
of the inverse matrix or computing N submatrices, it requires N additional calculations per iteration,
resulting in a complexity of O(N × N2 × Nβ) = O(Nβ+3). The complexity for calculating the

5
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Algorithm 1: The Adaptive Arena Framework

Initialize: Step t← 1, Model’s ability r̂0, Battle records S0 ← ∅.
1 while True do
2 Select model pair: (it, jt)← argmax1≤i<j≤N

∣∣ISt−1(r̂
t−1) + I{(i,j)}(r̂t−1)

∣∣ .
3 Get Annotation for model pair: witjt ← Anno(it, jt).
4 Add record in S: St ← St−1 ∪ {(it, jt, witjt)}.
5 Update model’s ability r̂: r̂t ← argmaxr LSt

(r), t← t+ 1.
Output: The models’ estimated abilities r̂t.

information matrix involves summing over t iterations, making the overall time complexity for the
A-optimality method O(|S|2+ |S| ·Nβ+3), and for the D-optimality method, O(|S|2+ |S| ·Nβ+2).

Although our method has a higher time complexity than previous approaches, its primary goal is
to reduce human-annotated samples by leveraging computational time, ultimately minimizing the
overall annotation effort. Therefore, we only require our method to meet the operational needs of
the Arena system—providing model pairs for evaluation within a limited time for each user request.
To achieve this, we have implemented the following improvements: (1) The information matrix is
updated directly by adding the current model pair’s information to the matrix from the previous
step. (2) To address system concurrency, the top-K model pairs with the highest information gain
are selected for each request.

We discuss the time cost and the efficiency of these improvements in section 4.2. Although our
method does not directly reduce the complexity related to the annotation volume, its value becomes
evident within the iterative, ongoing Arena framework. For example, if our method improves effi-
ciency by 50%, it means that the annotation results from our approach can achieve the same out-
comes as twice the original annotation volume, given the Arena’s continuous operation. This offers a
significant long-term advantage, enabling comparable or even superior results with fewer resources
over extended periods.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed A-optimality and D-optimality meth-
ods through experiments on both simulated and real-world datasets, analyzing the abilities of each
method and discussing the time cost for proposed method.

4.1 EXPERIMENTAL SETUP

Evaluation Metric. Since the ELO score is relative, we use the pairwise index (Hastie & Tibshi-
rani, 1997) to measure the consistency between the estimated abilities and the true abilities:

Pairwise =
2

N(N − 1)

∑
1≤i<j≤N

I
[
(r∗i − r∗j )(r̂i − r̂j) > 0

]
, (7)

where I[·] is the indicator function, r∗ is true abilities of the models, and r̂ is the estimated abilities.
Since the true abilities are not available in real-world scenarios, we use the results estimated from
the full dataset by ELO (Equation 2) as the ground truth (Zhuang et al., 2023; Liu et al., 2024c).
Lemma 1 ensures that r∗ derived from this process is unique and unbiased, making this ground
truth feasible.

Dataset. We conducted experiments on two real-world datasets: Chatbot (Chiang et al., 2024;
Zheng et al., 2023) and PPE (Frick et al., 2024). The Chatbot dataset1 was collected from 13,000
distinct IP addresses on the Chatbot Arena platform, while the PPE dataset2 contains human prefer-
ence evaluations for Preference Proxy Evaluations. Detailed statistics and experimental settings are
provided in Appendix C.1.

1https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
2https://huggingface.co/datasets/lmarena-ai/PPE-Human-Preference-V1
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Figure 2: This Error bar illustrates pairwise metrics for each dataset and ELO method. ”Dataset”
indicates randomly sampled competition results, while ”Simulation” denotes results simulated based
on real model abilities. Error bars represent standard deviation.

Compared Approaches. This paper compares two model ability evaluation methods: ELO (Al-
bers & Vries, 2001) and m-ELO (Liu et al., 2025). ELO refers to the traditional ELO, it updates
each model’s rating iteratively by adding the difference between the annotation wij and the predic-
tion Pij , while m-ELO uses a MLE process like Equation 2. For model pair selection, we compare
several common strategies used in both traditional competitions and modern LLM arenas. These
strategies include: Random, which randomly selects a model pair for annotation at each step and
serves as a baseline; Nearest, which selects the two models with the closest abilities at each step,
a typical strategy in competitive games; and Ada-Pair (Chiang et al., 2024), an official selection
strategy from Chatbot Arena, which takes into account the confidence interval of each model pair
and selects the one that maximizes the reduction of the interval. Additionally, for each method, we
consider both the original version and the time-improved version discussed in Section 3.3, referred
to as Original and Improved, respectively.

4.2 EXPERIMENT RESULTS AND ANALYSIS

To evaluate the effectiveness of our proposed selection method, we conducted experiments on real-
world datasets. The following conclusions were drawn:

Performance on Pairwise Metrics. Figure 2(a) shows the performance of different selection
strategies at each step, and Table 2 presents the average pairwise for each strategy. Our proposed
method, D-optim, outperforms all others across all scenarios and is the only method that significantly
surpasses the Random baseline. Additionally, as shown in Figure 2(a), D-optim effectively reduces
variance in most cases, indicating that it lowers evaluation uncertainty and enhances efficiency.
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Table 2: Performance of Pairwise Metrics for Different Strategies. Results are averaged over five
experiments and four steps. Bold values indicate significant improvements over the baseline.

Method Dataset Is Simu ELO Method Total
Chatbot PPE Real Simu ELO m-ELO

Original

Random 0.8797 0.8021 0.8501 0.8316 0.8379 0.8439 0.8409
Nearest 0.8825 0.7995 0.8422 0.8398 0.8412 0.8407 0.8410
Ada-Pair 0.8835 0.8040 0.8452 0.8423 0.8379 0.8496 0.8437
A-optim 0.8880 0.8033 0.8494 0.8418 0.8406 0.8506 0.8456
D-optim 0.8941 0.8122 0.8596 0.8466 0.8486 0.8577 0.8531

Improved

Nearest 0.8897 0.8020 0.8525 0.8392 0.8351 0.8566 0.8459
Ada-Pair 0.8849 0.7993 0.8509 0.8332 0.8376 0.8465 0.8421
A-optim 0.8807 0.8061 0.8488 0.8380 0.8372 0.8495 0.8434
D-optim 0.8918 0.8243 0.8581 0.8581 0.8546 0.8616 0.8581
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Figure 3: This line chart shows A-Info and D-Info for each dataset and ELO method.

The Nearest method, on the other hand, performs suboptimally in the LLM arena. This is due to
the nature of the arena: rather than actual battles, models answer a single question, making ties
more likely than in traditional competitions. This diminishes the effectiveness of pairing models
with similar abilities. We also observe that while m-ELO incurs additional time costs, its impact on
selection strategies that rely on current model abilities is notable. In practical applications, engineers
need to balance computational efficiency and accuracy, such as using m-ELO for high-precision
tasks and ELO in resource-constrained settings.

Performance of Time-Improved Method on Pairwise Metrics. To assess the impact of our
improvements on proposed methods, we compared the Nearest, Ada-Pair, A-optimality, and D-
optimality methods, where the Top-10 samples were selected in each sampling round (i.e., K = 10).
The experimental results are presented in Figure 2(b) and Table 2.

We can observe that our D-optimality method not only maintains its original performance but also
shows improvements, where a total 0.5% gain is observed compared to the time-improved version.
This suggests that model pairs with higher D-Info are indeed prioritized for selection, supporting the
effectiveness of our D-Info design. This result confirms the effectiveness of our improved D-optim.
In the appendix C.3, we also present its performance on larger-scale datasets.

Performance on Fisher Information Gain. Figure 3 shows the variation of A(St) = 1
tr[ISt (r)

−1]

(A-Info) and D(St) = |ISt
(r)|

1
N−1 (D-Info) as the number of samples increases. As shown in

Theorem 2, both A-Info and D-Info exhibit linear growth. The experimental results confirm that
under most strategies, their growth is indeed linear. Furthermore, our method achieves the fastest
improvement rate (steepest slope) in both A-Info and D-Info. In contrast, Ada-Pair shows similar
information gain to the Random method. This suggests that our method, despite using estimated
abilities, enhances information gain from samples, improving evaluation efficiency.
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Figure 4: Heatmap of model pair sampling frequency for different selection methods. Each cell
represents the number of battles between Model i (ranked by ability) and Model j (ranked by ability).

Visualization of Sampling Distribution. To visualize the sampling distribution of model pairs
selected by each strategy, we sorted the models by true abilities and used heatmaps to represent
the sampling frequency of each model pair. Figure 4 shows that D-optim selects model pairs with
similar true abilities more often (darker colors near the diagonal), while ensuring diverse coverage.
In contrast, Ada-Pair samples more uniformly across all pairs, and Nearest focuses too much on
similar models.

Interestingly, the A-optimality method results in many samplings involving a specific model, since
this model’s ability is fixed in the ELO system. This creates a unique role for the model pair selec-
tion: The A-optimality method, while ensuring sparsity (i.e., most pairs have battled), prefer to use
this model as an ”anchor” to estimate others’ abilities. As shown in Figure 3, this method actually
leads to high A-Info, but may introduce bias and impact the Arena’s sustainability. An improvement
could be to fix each model sequentially, calculate A-Info for each, and average the results, but this
would increase complexity. In contrast, D-optimality is minimally impacted by this constraint by
ELO, making D-Info a more suitable metric for Arena-based evaluation.
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Figure 5: Time costs for Original D-optimality and Improved D-optimality Methods as the number
of samples and models increases.

Performance on Time Cost. Figure 5 shows the time required for each sample selection as the
number of samples increases. The red line indicates a time cost of 1 second. While the D-optimality
method does not achieve the lowest time cost, its time cost is significantly lower than the time
consumed by LLM API calls and human annotations in practical scenarios. Moreover, increasing
the value of K can further reduce the time cost. These observations confirm that our method is well-
suited for real-world arena-based evaluation scenarios and can be easily integrated into existing
arena-based platforms.

5 CONCLUSION

In this work, we addressed the efficiency bottleneck in arena-based LLM evaluation. By leveraging
the asymptotic normality of ELO-based ability estimation and introducing Fisher information as a
guiding principle, we proposed adaptive model-pair selection strategies grounded in A-optimality
and D-optimality. These methods systematically reduce redundant battles while preserving ranking
reliability, thereby accelerating evaluation and lowering annotation costs. Extensive experiments
on both simulated and real-world datasets confirm that our framework consistently outperforms
existing approaches in efficiency and robustness. Beyond improving scalability for current arenas,
our approach can be regarded as a general and flexible toolkit that can be readily integrated into
future evaluation platforms. We believe this work opens a promising direction toward information-
efficient, scalable, and reliable assessment of large language models.
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6 ETHICS STATEMENT

This research does not involve any human subjects, animals, or sensitive data. The proposed methods
and experiments focus solely on the evaluation of LLMs using publicly available datasets. We
ensure that all data used in our experiments are publicly accessible, adhering to ethical standards
and relevant data usage policies. Furthermore, our work does not raise any concerns related to bias,
fairness, or social impact, as it is focused on improving the efficiency of model evaluations in a
controlled, academic setting. In summary, our research does not present any ethical issues, and we
are committed to conducting future work in line with ethical best practices and standards.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the complete implementation of our meth-
ods, along with all necessary code and data, on an anonymous GitHub repository. The repository
includes scripts to replicate the experiments presented in the paper, including data preprocessing,
model training, and evaluation procedures. All hyperparameters, random seeds, and environment
configurations are specified to ensure consistent results across different platforms. The repository
can be accessed at the following anonymous link: https://anonymous.4open.science/
r/Adaptive-Arena-870D.
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A PROOFS OF THEOREM 1

Theorem 1. Consider the Erdős-Rényi Graph G(N, qN ), if qN = ω( logNN ), then the infomation
matrix IS(r) is almost surely positive definite.

Proof. Given that qN = ω( logNN ) implies that the graph G(N, qN ) is almost surely con-
nected (Guimera et al., 2004; Chatterjee & Varadhan, 2011), we next prove the following: if there ex-
ists a path between any two models i and j, then the information matrix is positive definite. Assume
rN = 0 and consider the remaining variables r = (r1, · · · , rN−1). Consider the log-likelihood
function for records S:

IS(r) = C2
∑

(i,j,wij)∈S

PijPji(ei − ej)(ei − ej)
⊤ (8)

where ei is the i-st standard basis vector and let eN = 0. Let the number of matches between model
i and model j be δij and define aij = δijC

2PijPji, then the quadratic form (O’Meara, 2013) for
IS(r) can be expressed as:

xIS(r)x⊤ =
∑

1≤i<j≤N−1

aij(xi − xj)
2 +

N−1∑
i=1

aiNx2
i +

N−1∑
j=1

ajNx2
j .

Note that aij ≥ 0, therefore:
xIS(r)x⊤ ≥ 0.

The following proves that the condition for the equality of this inequality can only be achieved at 0.

Suppose there exists a non-zero vector x̂ = (x̂1, · · · , x̂N−1) such that x̂IS(r)x̂⊤ = 0. Without
loss of generality, assume that x̂1 ̸= 0. Then, since the graph formed by the pairwise battles among
the models is connected, it means that there must exist a path (c0 = 1, c1, c2, · · · , ck−1, ck = N)
that connects 1 and N . Then acici+1

> 0, from which we can deduce that x̂1 = x̂c1 = · · · = x̂ck−1
.

Since ck−1 and N are connected, it indicated that ack−1N > 0. Therefore, x̂ck−1
= 0, and thus

x̂1 = 0, which is a contradiction! So xIS(r)x⊤ = 0 if and only if x is the zero vector. Therefore,
IS(r) is a positive definite matrix (Johnson, 1970).

B PROOFS OF THEOREM 2

Lemma 2. Let 0 < λt
1 ≤ λt

2 ≤ · · · ≤ λt
N denote the eigenvalues of the information matrix ISt

(r),
then λt

N = O(t).

Proof. Without loss of generality, we can assume that model i and j compete against each other at
time t + 1. It is not hard to see that the information increment C2PijPji(ei − ej)(ei − ej)

⊤ is a
rank-1 matrix and its only positive eigenvalue a satisfies that 0 < a ≤ 2C2PijPji ≤ C2. Therefore,
by Weyl’s Inequality for matrix perturbations (Weyl, 1949; Franklin, 2000), the eigenvalues of the
information matrix at time t+1 satisfy λt

N ≤ λt+1
N ≤ λt

N+a ≤ λt
N+C2. By recursively expanding

this inequality, we obtain that λt
N ≤ λt−1

N + C2 ≤ · · · ≤ N · C2, i.e.λt
N = O(t).

Theorem 2. Let A(St) = 1
tr[ISt (r)

−1] and D(St) = |ISt(r)|
1

N−1 , then it can be proved that:
(1)A(St) = O(t) (2)D(St) = O(t).

Proof. Since tr(ISt
(r)−1) = 1

λt
1
+ 1

λt
2
+ · · · + 1

λt
N
≥ N

λt
N

and |ISt
(r)| = λt

1λ
t
2 · · ·λt

N ≤ (λt
N )N ,

we can derive the following bounds for the optimality criteria:
For the A-optimality criterion A(St) = 1

tr[ISt (r)
−1] ≤

λt
N

N .

For the D-optimality criterion D(St) = |ISt
(r)|

1
N−1 ≤ λt

N .
By Lemma 2, we know λt

N = O(t), substituting this into the above inequalities yieldsA(St) = O(t)
and D(St) = O(t).
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C DETAILS OF EXPERIMENTS

C.1 STATISTICS OF THE DATASET

In addition to the two datasets (Chatbot and PPE) mentioned in the main text, we have also included
a larger dataset Arena-100k (Chiang et al., 2024; Tang et al., 2025) in the appendix. The Arena-
100k1 dataset comprises conversation data collected from June 2024 to August 2024, as well as
English human preference evaluations, which were used to develop Arena Explorer. Each record
in datasets includes a question ID, the names of the two competing models, their full conversation
transcripts and the annotator’s vote. The statistics of the datasets can be seen in Table 3.

Table 3: Statistics of the dataset
Dataset Chatbot PPE Arena-100k
#Models 20 20 55
#Response logs 33000 16038 106134
#Response logs per model 1650.0 801.9 1929.7
#Response logs per model pair 173.68 89.10 71.47

C.2 DETAILS OF EXPERIMENTAL SETTING.

In this experiment, 100 sample pairs will be randomly selected during the model initialization phase
to initialize ELO, and the performance of different selection strategies will be recorded at steps 100,
200, 500, and 1000. After a selection strategy chooses a model pair, we consider two methods to
simulate the competition result: (1) Conducting without-replacement random sampling on the real
competition results in the dataset; (2) Simulating based on the real model abilities. If the abilities of
the two models are r∗i , r

∗
j and p = σ(C(r∗i − r∗j )), then each battle will return 1 with a probability

of p2, 0 with a probability of (1 − p)2 and 0.5 with a probability of 2p(1 − p). As for ELO rating
system, we set the hyperparameter C of ELO to log 10

400 and epochs to 50 for each battle in m-ELO.
All experiments described in this paper can be executed on one 8G NVIDIA GeForce RTX 4060.

C.3 PERFORMANCE ON LARGE DATASET

To further validate the effectiveness of the D-optimality method, we also conducted experiments on
a larger dataset, namely Arena-100k. The key difference from the previous experiments lies in the
following: as the number of models increased to 55, the number of initial samples we used was also
increased to 1000. All other experimental settings remained unchanged. The experimental results
are presented in Figure 6 and Table 4.
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Figure 6: This line chart illustrates the pairwise metrics for Arena-100k dataset and each ELO
method. Here, “Dataset” indicates that the competition results are randomly sampled from the
dataset, while “Simulation” denotes that the results are simulated based on the real model abilities.
The error bars represent the standard deviation.

It can be observed that with an increase in the number of models, the errors introduced by the tradi-
tional ELO method into the information matrix become amplified, leading to inaccurate information
estimation. This explains why the D-optim method exhibits superior performance specifically in
terms of m-ELO. However, at step 1000, the D-optim method achieves the best performance across
all experimental settings. Therefore, overall speaking, as long as the current abilities of the models
can be effectively estimated, the D-optimality method remains fully effective even in scenarios with
a relatively large number of models.

1https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k
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Table 4: The Performance of pairwise for Different Selection Algorithms. Each experimental re-
sult represents the average of five experiments and four selection steps, the bold font represents a
significant improvement in statistics compared to the baseline.

Method Is Simu ELO Method Total
Real Simu ELO m-ELO

Random 0.8000 0.8499 0.8164 0.8335 0.8249
Nearest 0.8083 0.8415 0.8133 0.8365 0.8249
Ada-Pair 0.8138 0.8486 0.8236 0.8388 0.8312

A-optim 0.8047 0.8438 0.8145 0.8340 0.8243
D-optim 0.8132 0.8561 0.8225 0.8468 0.8346

D USAGE OF LLM

According to the rules about LLM use set by the ICLR 2026 conference, when we worked on this
paper, we only used LLMs to polish the text. This includes making the flow of language smoother
and improving how well sentences connect logically. We did not use LLMs for key steps like
coming up with main points, making research content, or handling data. Also, we made sure that the
polishing process does not change the main ideas or weaken the academic strictness of the original
text, and we fully follow the standards for proper LLM use set by ICLR 2026.

E CASE STUDY OF FISHER INFOMATION MATRIX

To facilitate a better understanding of our method, we directly visualize the changes in the informa-
tion matrix throughout the experimental process. Specifically, we adopt the D-optimality method:
in each iteration, a model pair is selected, and the model ability estimates are updated in real time.
Below, we present the information matrix of 5 iterations under the condition of 100 initial samples:
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
↓ Step 1:(17,4,1)


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−0.2 0.0 −0.2 2.9 0.0 −0.2 0.0 −0.2 −0.2 −0.2 −0.4 0.0 0.0 −0.5 −0.2 0.0 0.0 −0.2 0.0
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−0.2 0.0 0.0 −0.4 0.0 0.0 −0.4 0.0 0.0 −0.2 2.8 −0.4 0.0 −0.2 −0.7 0.0 0.0 0.0 0.0
−0.5 −0.4 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 −0.6 −0.4 3.0 −0.2 0.0 0.0 −0.2 −0.2 0.0 0.0
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
↓ Step 2:(17,13,0)
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
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
↓ Step 3:(8,4,0)


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
↓ Step 4:(17,5,1)



3.7 −0.4 −0.2 −0.2 0.0 0.0 0.0 0.0 −0.5 −0.2 −0.2 −0.5 0.0 −0.5 −0.2 −0.2 0.0 0.0 −0.2
−0.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 −0.4 −0.2 0.0 −0.2 0.0 0.0 0.0 −0.2
−0.2 0.0 2.0 −0.2 0.0 0.0 −0.5 0.0 0.0 −0.2 0.0 0.0 0.0 −0.2 −0.2 0.0 0.0 0.0 −0.2
−0.2 0.0 −0.2 2.8 0.0 −0.2 0.0 −0.2 −0.2 −0.2 −0.4 0.0 0.0 −0.5 −0.2 0.0 0.0 −0.2 0.0
0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 −0.2 0.0 0.0 −0.2 0.0 0.0 −0.2 −0.2 −0.2 −0.2 0.0
0.0 0.0 0.0 −0.2 0.0 1.9 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 −0.4 0.0 −0.2 −0.2
0.0 0.0 −0.5 0.0 0.0 −0.2 2.7 −0.5 0.0 0.0 −0.4 −0.2 −0.4 0.0 −0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 −0.2 0.0 0.0 −0.5 2.7 −0.2 −0.2 0.0 0.0 0.0 0.0 0.0 −0.4 −0.4 0.0 −0.2
−0.5 0.0 0.0 −0.2 −0.2 0.0 0.0 −0.2 1.9 0.0 0.0 0.0 −0.4 0.0 0.0 0.0 0.0 0.0 0.0
−0.2 −0.5 −0.2 −0.2 0.0 0.0 0.0 −0.2 0.0 2.6 −0.2 −0.6 0.0 0.0 0.0 0.0 0.0 −0.2 0.0
−0.2 0.0 0.0 −0.4 0.0 0.0 −0.4 0.0 0.0 −0.2 2.7 −0.4 0.0 −0.2 −0.7 0.0 0.0 0.0 0.0
−0.5 −0.4 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 −0.6 −0.4 3.0 −0.2 0.0 0.0 −0.2 −0.2 0.0 0.0
0.0 −0.2 0.0 0.0 0.0 0.0 −0.4 0.0 −0.4 0.0 0.0 −0.2 1.9 −0.2 −0.5 0.0 0.0 0.0 0.0
−0.5 0.0 −0.2 −0.5 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 0.0 −0.2 1.9 0.0 0.0 0.0 −0.2 0.0
−0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 0.0 0.0 0.0 −0.7 0.0 −0.5 0.0 3.1 0.0 −0.2 0.0 0.0
−0.2 0.0 0.0 0.0 −0.2 −0.4 0.0 −0.4 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 2.2 −0.2 −0.2 0.0
0.0 0.0 0.0 0.0 −0.2 0.0 0.0 −0.4 0.0 0.0 0.0 −0.2 0.0 0.0 −0.2 −0.2 1.8 0.0 −0.2
0.0 0.0 0.0 −0.2 −0.2 −0.2 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 −0.2 0.0 −0.2 0.0 1.6 −0.2
−0.2 −0.2 −0.2 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 −0.2 2.1


↓ Step 5:(4,2,0.5)



3.7 −0.4 −0.2 −0.2 0.0 0.0 0.0 0.0 −0.5 −0.2 −0.2 −0.5 0.0 −0.5 −0.2 −0.2 0.0 0.0 −0.2
−0.4 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 −0.4 −0.2 0.0 −0.2 0.0 0.0 0.0 −0.2
−0.2 0.0 2.2 −0.2 −0.2 0.0 −0.5 0.0 0.0 −0.2 0.0 0.0 0.0 −0.2 −0.2 0.0 0.0 0.0 −0.2
−0.2 0.0 −0.2 2.8 0.0 −0.2 0.0 −0.2 −0.2 −0.2 −0.4 0.0 0.0 −0.5 −0.2 0.0 0.0 −0.2 0.0
0.0 0.0 −0.2 0.0 1.7 0.0 0.0 0.0 −0.2 0.0 0.0 −0.2 0.0 0.0 −0.2 −0.2 −0.2 −0.2 0.0
0.0 0.0 0.0 −0.2 0.0 1.8 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 −0.4 0.0 −0.2 −0.2
0.0 0.0 −0.5 0.0 0.0 −0.2 2.6 −0.5 0.0 0.0 −0.4 −0.2 −0.4 0.0 −0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 −0.2 0.0 0.0 −0.5 2.7 −0.2 −0.2 0.0 0.0 0.0 0.0 0.0 −0.4 −0.4 0.0 −0.2
−0.5 0.0 0.0 −0.2 −0.2 0.0 0.0 −0.2 1.8 0.0 0.0 0.0 −0.4 0.0 0.0 0.0 0.0 0.0 0.0
−0.2 −0.5 −0.2 −0.2 0.0 0.0 0.0 −0.2 0.0 2.6 −0.2 −0.6 0.0 0.0 0.0 0.0 0.0 −0.2 0.0
−0.2 0.0 0.0 −0.4 0.0 0.0 −0.4 0.0 0.0 −0.2 2.6 −0.4 0.0 −0.2 −0.7 0.0 0.0 0.0 0.0
−0.5 −0.4 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 −0.6 −0.4 2.9 −0.2 0.0 0.0 −0.2 −0.2 0.0 0.0
0.0 −0.2 0.0 0.0 0.0 0.0 −0.4 0.0 −0.4 0.0 0.0 −0.2 1.8 −0.2 −0.5 0.0 0.0 0.0 0.0
−0.5 0.0 −0.2 −0.5 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 0.0 −0.2 1.9 0.0 0.0 0.0 −0.2 0.0
−0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 0.0 0.0 0.0 −0.7 0.0 −0.5 0.0 3.0 0.0 −0.2 0.0 0.0
−0.2 0.0 0.0 0.0 −0.2 −0.4 0.0 −0.4 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 2.2 −0.2 −0.2 0.0
0.0 0.0 0.0 0.0 −0.2 0.0 0.0 −0.4 0.0 0.0 0.0 −0.2 0.0 0.0 −0.2 −0.2 1.8 0.0 −0.2
0.0 0.0 0.0 −0.2 −0.2 −0.2 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 −0.2 0.0 −0.2 0.0 1.6 −0.2
−0.2 −0.2 −0.2 0.0 0.0 −0.2 0.0 −0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.2 −0.2 2.1
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