
Under review as a conference paper at ICLR 2024

FRUGALGPT: HOW TO USE LARGE LANGUAGE MOD-
ELS WHILE REDUCING COST AND IMPROVING PER-
FORMANCE

Anonymous authors

Paper under double-blind review

ABSTRACT

The rapid adoption of large language models (LLMs) has led to an growing
number of companies offering generative LLMs as callable services at varying
costs. We find that popular generative LLM APIs, such as GPT-4, ChatGPT, and
J1-Jumbo, exhibit heterogeneous pricing structures, with fees that can differ by
two orders of magnitude, and heterogeneous performance across tasks and input
queries. This makes it challenging for users to decide which generative LLM
APIs to utilize for their applications and budget. Motivated by these findings,
we propose FrugalGPT, an algorithmic framework that adaptively selects which
generative LLMs to use for different queries to reduce cost and improve accu-
racy. Our experiments demonstrate that, for a range of natural language tasks
including news classification, reading comprehension, and scientific question an-
swering, FrugalGPT can match the performance of the best individual generative
LLM (e.g., GPT-4) with up to a 98% cost reduction or improve the accuracy over
GPT-4 by 4% at the same cost. The ideas and findings presented in this paper lay
a foundation for using LLMs sustainably and efficiently.

1 INTRODUCTION

We are currently witnessing a surge in the adoption of large language models (LLMs). The enticing
potential of employing generative LLMs for applications in commerce, science, and finance has
led to a growing number of companies (such as OpenAI, AI21, CoHere, etc.) offering generative
LLMs as callable services. Consequently, machine learning (ML) practitioners now frequently build
applications by invoking these foundation models.

However, users often face challenges in deciding which generative LLM APIs to utilize for their
applications and budget. The cost of generative LLMs can vary by up to two orders of magnitude:
for instance, the prompt cost for 10M tokens is $30 for OpenAI’s GPT-4 but only $0.2 for GPT-J
hosted by Textsyth (as shown in Table 1). Smaller generative LLMs are generally more affordable,
but their performance is comparatively limited (as depicted in Figure 1(d)). Larger generative LLMs
like GPT-4 offer better performance but at the risk of escalating costs. In addition to the financial
burden, employing larger LLMs incurs significant environmental and energy impacts Bender et al.
(2021); Wu et al. (2022), affecting the social welfare of current and future generations.

In this paper, we demonstrate that it is possible to simultaneously lower the cost and enhance the
performance of generative LLM applications. This is based on two key findings. First, no generative
LLM is ”universally” superior to others. Take the task of predicting price trends from news headlines
as an example. There are 6% of queries where GPT-J is entirely accurate while GPT-4 makes errors,
and 80% of queries where both models provide identical responses (as illustrated in Figure 1(c)).
Directing 86% of queries to GPT-J and the remaining 14% to GPT-4 is considerably more cost-
effective and performant than relying solely on GPT-4. Second, assessing the quality of an answer
to a query is often easier than generating the answer itself. In fact, we discovered that for many
natural language tasks, a ”small” language model (such as DistillBERT) can accurately predict the
answer quality of a large model (e.g., GPT-4).

Inspired by these findings, we propose FrugalGPT, an algorithmic framework that adaptively de-
termines which generative LLMs to use given a user’s budget. FrugalGPT first learns a generation

1



Under review as a conference paper at ICLR 2024

Query Answer

(a) Existing LLM Usage

(d) Performance and cost tradeoffs

GPT-Neo

FSQ

GPT-J

     J1

J1-G

J1-L

  CoHere
CoHere-M

FQ

GPT-3

ChatGPT

      GPT-C

GPT-4

Dolly

0 10 20 30 40

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88 FrugalGPT

Cost ($)

A
cc

ur
ac

y

Query

Budget

Answer

(b) Proposed FrugalGPT

ChatGPTGPT-J

accept

accept

score>0.9 

accept

score>0.8 

$2 $20 $300 
GPT-4

(c) LLM pairwise comparison

GPT-J 
Better 

GPT-4 
BetterTie

6% 80% 14%

Figure 1: Comparisons of different approaches to using LLM services. (a) The standard usage
sends queries to a single LLM (e.g., GPT-4), which can be expensive. (b) FrugalGPT, adaptively
decides which LLMs to trigger for different user queries to reduce the inference cost. By optimizing
the selection of different LLM APIs (e.g., GPT-J, ChatGPT, and GPT-4), we can achieve substantial
efficiency gains. (c) LLM performance breakdown on HEADLINES (a financial news dataset).
GPT-J outperforms GPT-4 on 6% of queries and produces identical generations on 80% of queries.
(d) FrugalGPT can reduce the inference cost by 98% while exceeding the performance of the best
individual LLM (GPT-4) on HEADLINES. This is because FrugalGPT successfully learns data
subsets on which inexpensive LLMs like GPT-J are as good as or better than GPT-4, and directs
these data to the corresponding low-cost LLMs only.

judger that assigns a score to indicate the quality of different LLMs’ generations for any given query.
It then invokes a list of LLMs sequentially until the judger’s score for an answer surpasses a thresh-
old. For example, FrugalGPT may initially call GPT-J to obtain an answer. If the judger’s score for
this answer is lower than a threshold of 0.9, ChatGPT is subsequently invoked to generate a new
response. The judger’s score for ChatGPT’s answer exceeds a threshold of 0.8, so no further gen-
erative LLMs are needed, and ChatGPT’s answer is returned to the user. We developed an efficient
optimization technique to determine the optimal order of generative LLMs to call and the stopping
threshold for each generative LLM as the core of FrugalGPT.

To demonstrate the potential of FrugalGPT, we implement and evaluate it on various tasks, such
as news classification, reading comprehension, and scientific question answering, using real-world
generative LLMs, including ChatGPT Cha, GPT-3 Brown et al. (2020), and GPT-4 OpenAI (2023).
Our experiments show that FrugalGPT can save up to 98% of the inference cost of the best individual
LLM API while matching its performance on the downstream task. On the other hand, FrugalGPT
can improve performance by up to 4% at the same cost. This is because FrugalGPT accurately
identifies queries on which some inexpensive LLMs are correct but the most powerful LLM (e.g.,
GPT-4) is incorrect, and directs these queries exclusively to the low-cost LLMs. We will also release
the code and datasets used in our experiments. We hope FrugalGPT paves the way for enhancing
LLMs’ inference cost and performance.

Related Works. Model Ensembles. Model ensembles Dong et al. (2020), which involve com-
bining multiple ML models for prediction, have gained popularity in supervised learning Garcı́a-
Pedrajas (2009); Friedman (2002), unsupervised learning Yang et al. (2014), semi-supervised learn-
ing Gupta et al. (2022), and weakly supervised learning Diba et al. (2017). Recent work Arora et al.
(2022) shows that fusing multiple generations from GPT-J Wang & Komatsuzaki (2021) can com-
pete with GPT-3’s performance, and synthesizing multiple open-source LLMs’ generations leads to
better performance than individual LLMs Jiang et al. (2023). Model ensembles typically require

2



Under review as a conference paper at ICLR 2024

white-box access to multiple models for training, but LLM APIs are often black-box. Moreover,
model ensembles necessitate querying all models for any single query, thereby increasing costs.

ML-as-a-Service and Cascade. Generative LLM APIs constitute a crucial component of the rapidly
expanding machine-learning-as-a-service (MLaaS) industry. Recent studies have demonstrated the
diversity of different ML APIs’ predictions Buolamwini & Gebru (2018); Koenecke et al. (2020);
Chen et al. (2021). The concept of using multiple services for speed is known as model cascade Viola
& Jones (2004), which has been applied in predictive ML domains such as pedestrian detection Cai
et al. (2015) and facial recognition Li et al. (2015); Sun et al. (2013). Recent work Chen et al.
(2020; 2022) builds a customized cascade for cost reduction, with a focus on classification ML APIs.
However, their approach needs to estimate the performance of an ML API without querying it, based
on simple signals such as labels from a proxy model. Such pre-query estimation is challenging for
generative LLM APIs, whose outputs encompass a much larger space. FrugalGPT overcomes this
by creating a post-query quality estimator. Furthermore, for a given query, previous work invokes
at most two APIs, while FrugalGPT allows invoking three or more given the vast number of LLM
APIs. This renders it computationally more challenging to find the best calling strategies, and thus
we also develop novel techniques to identify the optimal strategies efficiently (Section 3).

Speculative Decoding. Speculative decoding has recently emerged for LLM inference acceleration
without retraining or model architecture modification Leviathan et al. (2023); Chen et al. (2023);
Sun et al. (2023). Its goal is to provide the same output as a large LLM at lower latency. It relies
on inexpensive LLMs for most generation and switches to costly LLMs when necessary. However,
it requires access to the decoding module, which is not available for proprietary LLMs like GPT-4,
and because it aims to give the same answer as the large LLM, it misses the opportunity to provide
a better answer in cases where the small LLM is more accurate.

The remainder of the paper is organized as follows. We start by offering more context and the
problem statement in Section 2. We present how FrugalGPT works in Section 3. Section 4 shows
the empirical benefits of FrugalGPT using real-world LLM APIs (including GPT-3, ChatGPT, and
GPT-4). We discuss future prospects in Section 5.

2 SCOPE AND PROBLEM STATEMENT

Natural language query answering. In this paper, we concentrate on the standard natural lan-
guage query answering task, where the objective is to answer a query q sampled from a natural
language query distribution Q. Various real-world natural language tasks, such as news classifica-
tion and commonsense reasoning, can be formulated as query-answering problems.

LLM marketplace. We consider answering queries via the LLM market, which comprises K

different LLM APIs, denoted by {fi(·)}Ki=1. Each fi(·) : P 7! A is a function that, given a prompt p
from the prompt space P , generates an answer from the answer distribution A. Note that to use LLM
APIs, one has to convert each query q to some corresponding prompt first. LLM APIs are associated
with their own cost, typically consisting of three components: a portion proportional to the length
of the prompt, a portion proportional to the length of the generated answer, and (sometimes) a
fixed cost per query. Formally, given a prompt p, the cost of using the ith LLM API is denoted by
ci(p) , c̃i,2kfi(p)k+ c̃i,1kpk+ c̃i,0, where c̃i,j , j = 0, 1, 2 are constants.

An illustrative example. Adapting the case study provided by Kaiser & Slowik (2023), assume a
small business operates a customer service using GPT-4. The company caters to 15,000 customers
each month, with each customer asking three questions twice a week, totaling 360,000 queries per
month. Suppose for each question, its prompt averages 1800 tokens and the answer is around 80
tokens (as estimated by Kaiser & Slowik (2023)). Considering that the input and response costs of
GPT-4 are $0.03 and $0.06 per thousand tokens, the total monthly cost amounts to 360⇥ ($0.03⇥
1800 + $0.06⇥ 80) ⇡ $21.2K. Such a high cost is prohibitive for many small businesses.

Problem statement: budget-aware LLM API usage. Our primary goal in this paper is lever-
aging LLM APIs within a budget constraint. Formally, this can be formulated as maximizing the
overall task performance E(q,a)2Q⇥A[r(a, â(s, q))], while ensuring the average cost is bounded by
a user-defined value b, i.e., E(q,a)2Q⇥A[c(s, q)]  b. Here, a denotes the correct answer to the query

3



Under review as a conference paper at ICLR 2024

q, â(s, q) is the generated answer by some strategy s for query q, and c(s, q) is the associated cost for
processing query q using strategy s. The reward function r(·, ·) measures how closely the generated
answer aligns with the correct one.

3 FRUGALGPT: A COST-AWARE PARADIGM TO LEVERAGE LLMS

In this section, we present FrugalGPT, a cost-aware approach designed to harness the power of mul-
tiple LLM services. We begin by outlining the FrugalGPT pipeline and explaining the functionality
of each component. Subsequently, we delve into the construction of the FrugalGPT pipeline for a
given application and user budget.

FrugalGPT Pipeline. FrugalGPT comprises three main components: an LLM router, an answer
scorer, and a stop judger. Given a user query q, the LLM router is first invoked to select an LLM
to obtain its response to the query. Next, the generation scorer takes the query, the answer, and
the selected LLM as input and generates a quality measurement as output. Based on the quality
measurement and the invoked LLM service, the stop judger determines whether (i) to stop and
return the answer, or (ii) to repeat the process of invoking the LLM router and generation scorer.

The LLM router consists of two parts. First, given the previously invoked LLM service k
0, it

selects the next LLM service to use, denoted by k , �(k0), where � : {?, 1, 2, · · · ,K} 7!
{?, 1, 2, · · · ,K} is a permutation of all LLM services (with ? representing no invocation). Sec-
ond, it sends the query q to the kth service and obtains the generation fk(q) as output. Although
the service permutation could depend on the input query in principle, our instantiation adopts a
query-agnostic permutation �(·) for simplicity.

The generation scorer, denoted by gi(·, ·) : Q⇥A 7! [0, 1], generates a quality measurement given
a query and an answer produced by the ith LLM API. Generally, the generation scorer can be any
function such that its higher values strongly correlate with the input generation’s quality. In our in-
stantiation, we adopt a DistilBERT Sanh et al. (2019) model tailored for regression as the generation
scorer, as it is smaller, cheaper, and faster than LLM services while still providing a reliable qual-
ity measurement. Specifically, we have added a linear layer on top of the original DistilBERT that
takes the last representation layer (768-dimensional) as input and produces a 2-dimensional output
to encode the answer correctness. The maximum value of the last layer, normalized by softmax, is
returned as the final score. We utilize the same embedding as DistilBERT, ensuring compatibility
and seamless integration. For each LLM service, we have trained the model weights with (i) the
query appended by the service’s response as input features, and (ii) whether the response is correct
as labels. We will present an ablation study on the generation scorer in Section 4.

The stop judger is responsible for deciding when to stop and return the answer to the user. As higher
quality measurements indicate better generation quality, we use a threshold-based stop judger: return
answer a if the quality measurement gi(q, a) is higher than a threshold ⌧⌧⌧ i and go back to the router
otherwise. The threshold vector ⌧⌧⌧ controls the trade-offs between performance and cost: larger
values often lead to better performance, while smaller values favor lower cost.

Joint optimization of the FrugalGPT Pipeline. Configuring the LLM router and stop judger
appropriately is crucial to FrugalGPT. Technically, we need to configure (i) the LLM router’s service
permutation function �(·) and (ii) the stop judger’s threshold vector ⌧⌧⌧ . Our goal is to maximize the
expected reward on the query distribution while satisfying the user budget. This problem can be
formally modeled as the following optimization problem:

max
�(·),⌧⌧⌧

E [r(a, fz(q))] // Performance

s.t. E

2

4
X

z0:z0=�(t0)(?),t0t

c̃z0,2kfi(q)k+ c̃z0,1kqk+ c̃z0,0

3

5  b, // cost bounded by budget

t 2 [L], z = �
(t)(?), gz(q, fz(q)) > ⌧⌧⌧z, // Stop at the t-th iteration

8t0 < t, z
0 = �

(t0)(?), gz0(q, fz0(q))  ⌧⌧⌧z0 // No stop at previous iterations

4



Under review as a conference paper at ICLR 2024

Here, the objective is the expected performance (reward), the first constraint ensures the average cost
is bounded by the budget, the second constraint indicates that the stop judger returns the answer at
the t-th iteration, and the last constraint indicates that the LLM router and the generation scorer are
called repeatedly for previous iterations. L is a hyperparameter that controls the maximum number
of LLM services to call for a query. Solving this problem is inherently challenging because the
optimization space is vastly large. �(·) is a permutation function over all possible LLM services, and
exhaustive search takes O(LK) computations. Moreover, even if �(·) is fixed, the problem is non-
convex with respect to the threshold vector ⌧⌧⌧ . In fact, the problem is a mixed-integer optimization
in nature, which is computationally expensive to solve in general.

To overcome this computational obstacle, we design a specialized optimizer for this problem. It (i)
prunes the search space of ���(·) by ignoring any consecutive selection of LLMs with small answer
disagreement, and (ii) approximates the objective by interpolating it within a few samples.

Search space pruning removes candidate permutation functions with relatively small maximum per-
formance improvement, or MPI. Here, MPI is a function of two LLMs, k1, k2, that measures at most
how many mistakes k2 incurs can be fixed by k1. Formally, MPI(k1, k2) , Pr[r(q, fk1(q)) >

r(q, fk2(q))]. Suppose k is called from the last iteration in the cascade. Then in the next iteration,
calling any LLMs with small MPI would not yield significant performance gains and thus could be
avoided. Inspired by this, we introduce the following pruning condition

�(k) 2 {k0 2 K | MPI(k00, k) � MPI(k0, k) for at most m� 1 other values of k00 2 K}

That is to say, given the previously invoked LLM k, the next LLM to call must hold the top-m value
of MPI with respect to k. This reduces the search complexity from O(LK) to O(Lm). In practice,
we found that m = 3 often suffices to identify a high-quality cascade.

Now suppose the function �(·) is fixed. The remaining step is to find the optimal threshold vector
⌧⌧⌧ . This can be resolved via a two-stage approximation. First, we divide the search space [0, 1]L into
a few equal-size grids. Next, within each grid, we approximate the objective by a quadratic function
of the threshold vector, whose parameters are determined by the grid bound values. Then within
each grid, we can leverage a QP solver to find the optimal solution. The final solution is the best
among all grids. The combination of the above two techniques provides an efficient implementation
with satisfactory performance, as demonstrated later in Figure 3.

4 EXPERIMENTS

In this section, we present an empirical study on FrugalGPT. Our goals are four-fold: (i) understand
when and why FrugalGPT lowers the cost, (ii) quantify the cost savings attained by FrugalGPT
while matching the best individual LLM API’s performance, (iii) measure the trade-offs between
performance and cost enabled by FrugalGPT, and (iv) explore how different factors including data
distribution shifts and scorer’s quality affect FrugalGPT.

Setups: LLM APIs, Tasks, Datasets, and FrugalGPT instances. We have selected 14 LLM
APIs from 6 mainstream providers, namely, OpenAI Ope, AI21 AI2, CoHere CoH, Textsynth Tex,
Databricks Dol, and ForeFrontAI FFA. The details are summarized in Table 1. FrugalGPT has been
developed on top of these APIs and evaluated on a range of datasets belonging to different tasks, in-
cluding HEADLINES Sinha & Khandait (2021), OVERRULING Zheng et al. (2021), COQA Reddy
et al. (2019), AGNEWS Zhang et al. (2015) and SCIQ Welbl et al. (2017). More details of the
datasets and tasks can be found in the Appendix. We focus on FrugalGPT with the hyperparameter
L = 3, as this simplifies the optimization space and demonstrates exciting results. Each dataset is
randomly split into a training set (50%) to learn FrugalGPT and a test set for evaluation (50%).

A Case Study. We begin with a case study on the HEADLINES dataset. We set the budget to be
$6.5, which is one-fifth of GPT-4’s cost. As depicted in Figure 2 (a), the learned FrugalGPT sequen-
tially calls GPT-J, J1-L, and GPT-4. For any given query, it first extracts an answer from GPT-J. If
the score of this answer is greater than 0.96, the answer is accepted as the final response. Otherwise,
J1-L is queried. J1-L’s answer is accepted as the final response if its score is greater than 0.37; oth-
erwise, GPT-4 is invoked to obtain the final answer. Interestingly, this approach outperforms GPT-4
for numerous queries. For instance, given a headline ”Gold prices trade near 3-month high as Fed

5



Under review as a conference paper at ICLR 2024

Table 1: Summary of commercial LLM APIs. We use 14 LLM APIs from 6 providers. The cost was
retrieved in March 2023. The cost can have three additive components: input (proportional to the
number of input tokens), output (proportional to the number of generated tokens) and a fixed cost
per request. The LLMs’s costs can differ by up to 2 orders of magnitudes. For example, to process
10M input tokens, GPT-J from Textsynth costs only $0.2, but OpenAI’s GPT-4 needs $30.

Provider API Size/B

Cost (USD)

10M input tok. 10M output tok. request

OpenAI

GPT-Curie 6.7 2 2 0
ChatGPT NA 2 2 0

GPT-3 175 20 20 0
GPT-4 NA 30 60 0

AI21

J1-Large 7.5 0 30 0.0003
J1-Grande 17 0 80 0.0008
J1-Jumbo 178 0 250 0.005

Cohere

Xlarge 52 10 10 0
Medium 6.1 10 10 0

Textsynth

GPT-J 6 0.2 5 0
FAIRSEQ 13 0.6 15 0
GPT-Neox 20 1.4 35 0

Databricks Model Serving Dolly 7 0.27 0.27 0

ForeFrontAI QA 16 5.8 5.8 0

Table 2: Cost (USD) savings by FrugalGPT to match the best individual LLM’s performance.

Dataset Best individual LLM
Cost to reach the same accuracy

Cost SavingsBest individual LLM FrugalGPT

HEADLINES GPT-4 33.1 0.6 98.3%

OVERRULING GPT-4 9.7 2.6 73.3%

COQA GPT-3 72.5 29.6 59.2%

AGNEWS GPT-4 64.6 15.9 75.4%

SCIQ GPT-3 132.4 63.1 52.3%

begins meeting” from NASDAQ, FrugalGPT accurately predicts that the price is going down, while
GPT-4 provides an incorrect answer (as shown in Figure 2(b)). Overall, FrugalGPT results in both
accuracy gains and cost reduction, as illustrated in Figure 2(c).

LLM diversity. Why can multiple LLM APIs potentially produce better performance than the best
individual LLM? This is often due to generation diversity: even an inexpensive LLM can sometimes
correctly answer queries on which a more expensive LLM fails. Recall that we introduce maxi-
mum performance improvement ( MPI) in Section 3 as an pruning metric. In fact, it also measures
the generation diversity well: larger value of MPI indicates that one generative LLM give more re-
sponses different from another one. As shown in Figure 2 (d), MPI is indeed large for many pairs
of generative LLMs. For instance, there are 6% queries where GPT-4 is incorrect but GPT-J (and
GPT-C, J1-L, or Dolly) can give desired answers. This indicates the potential of combining multiple
generative LLMs, and verifies why FrugalGPT offers cost reduction without performance drops.

Cost Savings. Subsequently, we examine if FrugalGPT can reduce costs while maintaining accu-
racy and, if so, by how much. Table 2 displays the overall cost savings of FrugalGPT, which range
from 50% to 98%. This is feasible because FrugalGPT identifies the queries that can be accurately

6



Under review as a conference paper at ICLR 2024

GPT-J GPT-4J1-Lscore<0.04? score<0.63?

No
No

Yes Yes
Financial News

(a) Learned FrugalGPT strategy  

GPT-4

FrugalGPT price down

neural

(b) A query and response example 

Assets

Approch Accuracy Cost ($)

GPT-4 0.857 33.1

FrugalGPT 0.872 6.5

(c) Overall performance and cost (d) Each LLM pair's MPI 

Figure 2: A case study of FrugalGPT on the HEADLINES dataset. (a) The cascade strategy that Fru-
galGPT learned on this dataset with an overall budget of $6.5, one-fifth of GPT-4’s cost. FrugalGPT
avoids querying GPT-4 as long as GPT-J and J1-L produce high-quality answers. (b) Sometimes
GPT-4 makes a mistake, but FrugalGPT learns to use the correct answers by J-1 and GPT-J. (c)
Overall, FrugalGPT reduces the cost by 80%, while improving the accuracy by 1.5% compared to
GPT-4. (d) The maximum possible improvement (MPI) for each LLM pair, measuring how often
one LLM (each row) makes a mistake while another (each column) is correct. Even for the best
individual LLM, GPT-4, cheap LLMs (e.g., GPT-J) can be better on 6% of the data.

answered by smaller LLMs and, as a result, only invokes those cost-effective LLMs. Powerful but
expensive LLMs, such as GPT-4, are utilized only for challenging queries detected by FrugalGPT.

Performance and Cost Trade-offs. Now, we investigate the trade-offs between performance and
cost achieved by FrugalGPT, as illustrated in Figure 3. Here we focus on three datasets due to space
limitations; more results on other datasets can be found in the Appendix.

Several interesting observations can be made. First, the cost ranking of different LLM APIs is not
fixed. For instance, J1 is the second most expensive LLM on the HEADLINES dataset, while GPT-3
holds that position on the OVERRULING and COQA datasets. This is primarily due to the hetero-
geneous pricing mechanism: J1 incurs a high cost for each generated token but charges nothing for
input tokens, whereas GPT-3 charges for both input and output tokens. Moreover, more expensive
LLM APIs sometimes result in worse performance than their cheaper counterparts. For example, J1
is costlier than GPT-3 on HEADLINES, but its performance is inferior. These observations under-
score the importance of aptly selecting LLM APIs, even in the absence of budget constraints.

Next, we note that FrugalGPT enables smooth performance-cost trade-offs across all evaluated
datasets. This offers flexible choices to LLM users and potentially helps LLM API providers save
energy and reduce carbon emissions. In fact, FrugalGPT can simultaneously reduce costs and im-
prove accuracy. For example, on the OVERRULING dataset, FrugalGPT achieves a 1% accuracy
gain while reducing costs by 73% compared to the best LLM API, GPT-4. This is likely because
FrugalGPT integrates knowledge from multiple LLMs.

The example queries shown in Figure 3 further aid in understanding why FrugalGPT can simulta-
neously improve performance and reduce costs. GPT-4 makes mistakes on some queries (e.g., the
first example in part (a)), but some low-cost APIs provide correct predictions. FrugalGPT accurately
identifies those queries and relies solely on the inexpensive APIs. For example, GPT-4 incorrectly
infers no overruling from the legal statement ”The time has come to reconcile and regularize our
cases in this field,” as shown in Figure 3(b). However, FrugalGPT accepts GPT-J’s correct answer,

7



Under review as a conference paper at ICLR 2024

Kinross Gold
upgraded to

outperformer from
neutral at CIBC

0.17 < 0.96
GPT-J GPT-4J1-L

Up Up None
0.13 < 0.37

None

GPT-4 None

0.16 < 0.96GPT-J J1-L
Up Down

neutral

Down

0.97 > 0.96GPT-J
Down Down

GPT-4 Up

0.44 > 0.37

GPT-4

[...] denying an
available and

accommodation. Q:
Is it overruling?

0.2 < 0.9GPT-J GPT-3ChatGPT
Yes No No

0.8 < 0.9 No

GPT-4 No

The court [...] was
expressly overruled
by this court in lima.
Q: Is it overruling?

0.6 < 0.9GPT-J J1-L
Yes Yes

No

Yes

0.91 > 0.9GPT-J
Yes Yes

GPT-4 No

1.0 > 0.9

GPT-4

When I [...] a little
black-walnut shelf

[...] Q: What was the
shelf made of?

GPT-3 GPT-4J1

GPT-4

[...] told every
Tuesday for their

story time. [...].  Q:
when did they have

time free?

0.1 < 0.2
GPT-3 J1

[..] Cap Winters [...]
added a thousand
grey hairs to his

head [...] Q: Did he
have red hair?

0.8 > 0.2
GPT-3

GPT-4

0.6 > 0.3

GPT-4

The text
does not

mention this.

No

Tuesday

their day off
from school

black-walnut

black-walnut
black-walnut black walnut black-walnut

their day off
from school Tuesday

No

0.1 < 0.2 0.2 < 0.3

(a) HEADLINES

(b) OVERRULING

(c) COQA

Gold holds ground
at 1-month low on

hawkish Fed
comments

GPT-Neo

FSQ

GPT-J

     J1

J1-G

J1-L

    CoHere
    CoHere-M

FQ

GPT-3
ChatGPT

      GPT-C

GPT-4

Dolly
0 10 20 30 40

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88 FrugalGPT

Cost ($)

A
cc

ur
ac

y

FSQ

GPT-J

J1

J1-G

 CoHere

CoHere-M

    FQ

GPT-3
ChatGPT

GPT-C

GPT-4

Dolly

0 2 4 6 8 10 12
0.5

0.6

0.7

0.8

0.9

1 FrugalGPT

Cost ($)

A
cc

ur
ac

y

GPT-NeoGPT-J

J1
J1-G

J1-L CoHere

CoHere-M

FQ

GPT-3

   ChatGPT

GPT-4

Dolly
0 50 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5 FrugalGPT

Cost ($)

A
cc

ur
ac

y

Gold off the lows
after dismal U.S.

GDP

The time has come
to reconcile and

regularize our cases
in this field. Q: Is it

overruling?

Figure 3: Accuracy and cost tradeoffs achieved by FrugalGPT. Overall, FrugalGPT often achieves
the same performance of the best individual LLM API (e.g., GPT-4) with orders of magnitudes
smaller cost. When incurring the same cost, FrugalGPT can improve the accuracy by up to 5%.
Examples of FrugalGPT for each dataset are shown on the right. We show similar performance-cost
tradeoff improvements for FrugalGPT for AGNEWS and SCIQ in the Appendix.

avoiding the use of expensive LLMs and improving overall performance. Naturally, a single LLM
API is not always correct; FrugalGPT overcomes this by employing a chain of LLM APIs. For
example, in the second example shown in Figure 3(a), FrugalGPT identifies that GPT-J’s genera-
tion may not be reliable and turns to the second LLM in the chain, J1-L, to find the correct answer.
Again, GPT-4 provides the wrong answer. FrugalGPT is not perfect, and there remains ample room
for cost reduction. For example, in the third example in Figure 3(c), all LLM APIs in the chain give
the same answer. However, FrugalGPT is unsure if the first LLMs are correct, resulting in the need
to query all LLMs in the chain. How to avoid such cases is an interesting direction of future work.

Performance Resilience to Data Distribution Shifts. A common challenge when deploying ML
systems in practice is data distribution shifts, i.e., the queries encountered during deployment differ
from those in development. To understand the robustness of FrugalGPT against data distribution
shifts, we trained FrugalGPT on the original HEADLINES training data and evaluated its perfor-
mance on four testing datasets with different distributions. Specifically, we created these testing
datasets by altering the distribution of labels. For instance, in Variant 1, the label distribution is 33%
(up), 17% (down), 17% (none), and 33% (neutral). Conversely, the original dataset’s label distribu-
tion is balanced (25% for each label). Details can be found in Table 4 in the Appendix. As depicted
in Figure 4(a), the performance of both FrugalGPT and GPT-4 remains relatively consistent across
different data distributions. Interestingly, while using only 10% of GPT-4’s cost, FrugalGPT often
delivers similar or superior performance compared to GPT-4 under several testing data distributions.

Effects of Scorer Functions. The scorer plays a crucial role in FrugalGPT. Therefore, it is essen-
tial to study how the scorer’s quality impacts FrugalGPT’s performance. In this regard, we focused

8



Under review as a conference paper at ICLR 2024

85.9

86.3

84.8

87.4

85.5

85.1

85.5

84.8

Original Variant 1 Variant 2 Variant 3
0

20

40

60

80
77.5

85.9 85.4

ALBERT
(11M)

DistilBERT
(67M)

BERT
(110M)

0

20

40

60

80

1 2 3 4
0

0.2

0.4

0.6

0.8

1

FrugalGPT GPT-4 FrugalGPT GPT-4

Data Distribution
Scorer Backbone

Latency (sec)

Pe
rfo

rm
an

ce

Pe
rfo

rm
an

ce

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y(a) Data Shift Effects (b) Scorer Quality Effects (c) Response Time Distribution

FrugalGPT GPT-4 FrugalGPT GPT-4

Figure 4: Ablation study of FrugalGPT with a budget of 10% of GPT-4 on the HEADLINES dataset.
(a) Effects of data distribution shifts. Each variant corresponds to one label shift instance. Details
can be found in the appendix. (b) Effects of scorer quality. (c) Latency (response time) distribu-
tion. Overall, the performance of FrugalGPT remains relatively consistent under various testing
data distributions different from its training data. As expected, a small and low-quality scorer, such
as ALBERT, leads to limited performance, while larger and higher-quality scorers (DistilBERT and
BERT) yield better performance. FrugalGPT calls cheaper and faster LLMs on most queries, result-
ing in shorter response times than GPT-4.

on three backbones for the scorer with varying numbers of parameters: ALBERT (11M), Distil-
BERT (67M), and BERT (110M). We trained the scorer on the HEADLINES dataset using different
backbone models and compared the performance of the resulting FrugalGPT, with a budget of 10%
of GPT-4. As illustrated in Figure 4(b), a low-quality scorer (such as ALBERT) indeed leads to
limited performance, as expected. Conversely, larger scorers with better quality, such as DistilBERT
and BERT, offer higher performance.

Improved Latency. The increasing size of LLMs often correlates with better performance but
at the expense of longer response times. Here, we compare the response times of FrugalGPT and
GPT-4. Specifically, we set the budget of FrugalGPT to be 10% of GPT-4’s cost and compared their
performance on the HEADLINES dataset. Overall, we observe that FrugalGPT is often much faster
than GPT-4. For instance, 90% of the queries can be answered within 0.9 seconds by FrugalGPT,
but more than 1.1 seconds by GPT-4, as shown in Figure 4(c). This is because FrugalGPT learns to
call cheaper and faster LLMs for many queries, only invoking the expensive and slow GPT-4 when
necessary. Although not explicitly optimized for latency, FrugalGPT inherently provides shorter
response times for most queries.

5 DISCUSSIONS, LIMITATIONS, AND FUTURE PROSPECTS

The substantial cost of employing LLMs in real-world scenarios presents a considerable barrier to
their widespread usage. In this paper, we introduce FrugalGPT, our approach towards resolving
this challenge. Our empirical findings show that FrugalGPT can reduce costs by up to 98% while
preserving the performance of cutting-edge LLMs.

FrugalGPT lays the groundwork for optimizing task performance with LLM APIs under budget
constraints; however, it has some limitations. To train FrugalGPT, we need some labeled examples
and additional computational resources. We view this as a one-time upfront cost, which is beneficial
when the final query dataset is larger than the data used to train the cascade. There are also other
promising strategies for cost saving, such as speeding up attention computation itself and sparsifying
LM, that we do not explore here due to limited space. Given the rapid development of LLM, this
paper is not meant to be comprehensive, but to lay a foundation for this important research agenda.

There are many related directions for future exploration. While FrugalGPT concentrates on balanc-
ing performance and cost, real-world applications call for the evaluation of other critical factors,
including latency, fairness, privacy, and environmental impact. Incorporating these elements into
optimization methodologies while maintaining performance and cost-effectiveness is an important
avenue for future research. Furthermore, utilizing LLMs in risk-critical applications necessitates the
careful quantification of uncertainty in LLM-generated outputs. As the field progresses, addressing
the environmental ramifications of training and deploying LLMs demands a joint effort from LLM
users and API providers.

9



Under review as a conference paper at ICLR 2024

REFERENCES

AI21 LLM API. https://www.ai21.com/. Accessed: 2023-03-31.

ChatGPT Announcement. https://openai.com/blog/chatgpt. Accessed: 2023-03-31.

CoHere LLM API. https://cohere.com/. Accessed: 2023-03-31.

Dolly deployed on Databricks Model Serving. https://www.databricks.com/blog/
2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm.
Accessed: 2023-03-31.

forefront AI LLM API. https://beta.forefront.ai/. Accessed: 2023-03-31.

OpenAI LLM API. https://platform.openai.com/. Accessed: 2023-03-31.

Textsynth LLM API. https://textsynth.com/. Accessed: 2023-03-31.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel J Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441, 2022.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commer-
cial gender classification. In Conference on fairness, accountability and transparency, pp. 77–91.
PMLR, 2018.

Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-aware cascades
for deep pedestrian detection. In Proceedings of the IEEE international conference on computer
vision, pp. 3361–3369, 2015.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Lingjiao Chen, Matei Zaharia, and James Y Zou. Frugalml: How to use ml prediction apis more
accurately and cheaply. Advances in neural information processing systems, 33:10685–10696,
2020.

Lingjiao Chen, Tracy Cai, Matei Zaharia, and James Zou. Did the model change? efficiently assess-
ing machine learning api shifts. arXiv preprint arXiv:2107.14203, 2021.

Lingjiao Chen, Matei Zaharia, and James Zou. Efficient online ml api selection for multi-label
classification tasks. In International Conference on Machine Learning, pp. 3716–3746. PMLR,
2022.

Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, and Luc Van Gool. Weakly supervised
cascaded convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 914–922, 2017.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241–258, 2020.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367–378, 2002.

Nicolás Garcı́a-Pedrajas. Constructing ensembles of classifiers by means of weighted instance se-
lection. IEEE Transactions on Neural Networks, 20(2):258–277, 2009.

10

https://www.ai21.com/
https://openai.com/blog/chatgpt
https://cohere.com/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://beta.forefront.ai/
https://platform.openai.com/
https://textsynth.com/


Under review as a conference paper at ICLR 2024

Ashit Gupta, Anirudh Deodhar, Tathagata Mukherjee, and Venkataramana Runkana. Semi-
supervised cascaded clustering for classification of noisy label data. arXiv preprint
arXiv:2205.02209, 2022.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise comparison and generative fusion. In Proceedings of the 61th Annual Meeting of
the Association for Computational Linguistics (ACL 2023), 2023.

Filip Kaiser and Claudia Slowik. Cost estimation of using GPT-
3 for real applications. https://neoteric.eu/blog/
how-much-does-it-cost-to-use-gpt-models-gpt-3-pricing-explained,
2023. Accessed: 2023-03-31.

Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor
Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated speech
recognition. Proceedings of the National Academy of Sciences, 117(14):7684–7689, 2020.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. A convolutional neural
network cascade for face detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5325–5334, 2015.

OpenAI. Gpt-4 technical report. arXiv preprint https://arxiv.org/abs/2303.08774, 2023.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Ankur Sinha and Tanmay Khandait. Impact of news on the commodity market: Dataset and results.
In Advances in Information and Communication: Proceedings of the 2021 Future of Information
and Communication Conference (FICC), Volume 2, pp. 589–601. Springer, 2021.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial point
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3476–3483, 2013.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix Yu,
Michael Riley, and Sanjiv Kumar. Spectr: Fast speculative decoding via optimal transport. In
Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

Paul Viola and Michael J Jones. Robust real-time face detection. International journal of computer
vision, 57:137–154, 2004.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
2021.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
cations, challenges and opportunities. Proceedings of Machine Learning and Systems, 2022.

Fan Yang, Xuan Li, Qianmu Li, and Tao Li. Exploring the diversity in cluster ensemble generation:
Random sampling and random projection. Expert Systems with Applications, 2014.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NIPS, 2015.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter Henderson, and Daniel E Ho. When does
pretraining help? assessing self-supervised learning for law and the casehold dataset of 53,000+
legal holdings. In Proceedings of the eighteenth international conference on artificial intelligence
and law, pp. 159–168, 2021.

11

https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt-models-gpt-3-pricing-explained
https://neoteric.eu/blog/how-much-does-it-cost-to-use-gpt-models-gpt-3-pricing-explained

	Introduction
	Scope and Problem Statement
	FrugalGPT: A Cost-aware Paradigm to Leverage LLMs
	Experiments
	Discussions, Limitations, and Future Prospects
	Discussions on Other Strategies
	Experiment Setups and Extra Results
	Tasks and Datasets
	Additional Evaluations
	Data Shift Synthesis
	Comparisons with output ensemble
	Effects of training dataset size

	Prompt Details
	Prompt for HEADLINES
	Prompt for OVERRULING
	Prompt for COQA
	Prompt for AGNEWS
	Prompt for SCIQ

	Additional Discussions

