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ABSTRACT

Deep learning models are often evaluated under the assumption that setting ran-
dom seeds ensures reproducibility and fairness. While repeating the same seed
yields identical results, this form of reproducibility does not capture the variabil-
ity that arises when different seeds are used. Such seed-dependent variation un-
dermines the robustness and trustworthiness of reported results. We introduce
Variance Minimizer Loss (VML), an adaptive, volatility-aware penalty that re-
duces stochastic fluctuation within a single training run. VML is architecture-
agnostic and integrates as a drop-in replacement for the standard objective. On
CIFAR-10/100 across four architectures, VML reduces across-seed accuracy stan-
dard deviation by 33–75% while keeping mean accuracy essentially unchanged.
Crucially, VML achieves these gains without extra computational cost.

1 INTRODUCTION

Deep Learning (DL) models have become foundational across a wide range of applications, includ-
ing healthcare diagnostics, autonomous systems, and financial forecasting, due to their remarkable
ability to learn complex representations from large-scale data. Despite this success, achieving con-
sistent and trustworthy performance from these models remains a significant and under-addressed
challenge. Even when training conditions such as architecture, hyperparameters, and datasets are
fixed, models often yield substantially different results across runs. This variability arises from algo-
rithmic sources of randomness such as weight initialization, data shuffling, and optimizer behavior,
which affect the trajectory of model training and lead to inconsistent outcomes. Recent studies have
highlighted the sensitivity of deep neural networks to such stochastic factors, revealing that even
minor changes in initialization can cause large deviations in final model performance (Summers
& Dinneen, 2021). A common practice for controlling stochastic effects in deep learning is to fix
the random seed during training. This does not directly reduce the influence of stochastic factors;
instead, it determines the sequence of all random operations through pseudo-random number gen-
erators (PRNGs), ensuring that the same sequence is reproduced in every run with that seed. As
a result, repeating an experiment with the same seed yields identical outcomes. However, when a
different seed is used, the sequence of random operations changes, which in turn alters the training
trajectory and can lead to substantially different results. Consequently, model performance remains
sensitive to the choice of seed, and variability introduced by stochastic factors persists. While seed
fixing enables a narrow form of reproducibility for a specific experimental setup, it does not en-
sure robustness in the broader sense needed for reliable conclusions across different runs (Pham
et al., 2020). Secondly, another common approach is to report averaged metrics over multiple runs
with different seeds. This provides a more comprehensive view of model performance by sampling
across multiple PRNG sequences, thereby capturing a broader range of variability. While statisti-
cally more sound than relying on a single seed, this approach comes at a substantial computational
cost. In many cases, it requires 25 or more complete training runs to obtain stable estimates (Renard
et al., 2020; Bouthillier et al., 2019), making it impractical for large-scale experiments, resource-
constrained environments, or real-time development settings.

Our research addresses these limitations by proposing the Variance Minimizer Loss (VML), an
architecture-agnostic objective composed of base loss and Stable Loss (SL). The SL coefficient is
scaled by current-to-reference volatility, smoothing the optimization trajectory without modifying
the model or schedule. We evaluate VML under fixed training protocols while explicitly controlling
individual sources of stochasticity (initialization, augmentation, and data shuffling) to isolate their
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effects. Our analysis focused on the sensitivity of VML to two key hyperparameters: the penalty
weight, which determines the strength of the variance reduction, and the application schedule, which
controls when VML is introduced during training. Results show that applying VML early and
maintaining it throughout training yields the best balance between variance reduction and learning
efficiency, while keeping computational overhead minimal.

We validate our approach through extensive experiments on image classification tasks using CIFAR-
10 and CIFAR-100 (Krizhevsky et al., 2009) with architectures including ResNet (He et al., 2016),
VGG (Simonyan & Zisserman, 2015) ,MobileNet (Howard et al., 2017) and ShuffleNet (Ma et al.,
2018). Our key contributions are:

1. Variance Minimizer Loss (VML). We introduce an architecture-agnostic objective that
augments the base loss with a Stable-Loss controller to penalize volatility relative to an
EMA baseline, reducing run-to-run variability with 1× training and 1× inference per de-
ployed model.

2. Adaptive and tuning-free control. VML’s controller self-calibrates using the ratio
σt/σref , EMA baselines, and clipping to adjust its gain online. One default hyperparameter
set works across models and datasets, removing per-architecture tuning.

3. Robust gains and favorable cost–variance trade-off. Across CIFAR-10/100 and four
backbones, VML consistently lowers across-seed accuracy SD while keeping mean accu-
racy essentially unchanged.

Together, these findings pave the way for more reliable and trustworthy deep learning systems by
addressing variability not only at the statistical level, but within the training dynamics themselves.

2 RELATED WORK

Robust solutions is a fundamental requirement for trustworthy deep learning, especially in domains
where models are deployed under varying conditions or where reproducibility is essential for sci-
entific credibility. Kaur et al. (2022) provide a comprehensive survey, emphasizing the need for
systems that are resilient to perturbations and implementation variability in order to ensure reli-
able behavior. Bouthillier et al. (2019) present a critical assessment of reproducibility failures in
machine learning and argue that many of these issues stem from insufficient control over experi-
mental variability. Their study illustrates how minor implementation details, random seed choices,
or system-level factors can lead to substantial performance fluctuations. Building on this, Picard
(2021) specifically focuses on the role of random seeds within the broader space of randomness.
He provides empirical evidence showing how seed selection can dramatically affect reported re-
sults in computer vision models. However, in the absence of a systematic strategy for seed setting,
ambiguity in the results remains. Following this lack of a systematic approach, Ji et al. (2023) fur-
ther analyze the effect of randomness on evaluation metrics. They recommend multi-run reporting
and controlled seed strategies as a partial remedy, yet they acknowledge that determining a suffi-
cient number of runs remains unresolved. Addressing this open question, Gundersen et al. (2023)
investigate robustness against algorithmic randomness in neural network training. Crucially, they
propose methodological standards requiring at least 25 repeated training runs to draw statistically
sound conclusions. They argue that robustness to randomness is not a secondary technical detail but
a prerequisite for trustworthy scientific and empirical claims. Several approaches have attempted to
address stochastic sensitivity indirectly. Summers & Dinneen (2021) investigates nondeterminism
in highly controlled environments such as ours. While they propose accelerated ensembling as a
partial mitigation, this strategy does not address instability arising from fluctuations within the op-
timization trajectory itself; rather, it provides a statistical solution similar to ensembling. Ahmed
& Lofstead (2022) propose practical strategies to manage pseudo-randomness, including consistent
seeding and systematic logging of random state. They frame this as essential for improving both
trustworthiness and experimental reliability. However, as Summers & Dinneen (2021) show, such
control measures alone do not eliminate variability; this is functionally similar to seed fixing, it
constrains the sequence of random events without reducing the underlying sensitivity to stochastic
variation.

In response to these limitations, our work shifts the focus from external mitigation strategies to an
internal algorithmic solution. We propose an architecture-agnostic loss function, Variance Mini-
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mizer Loss (VML), that operates directly at the loss level to target the root causes of variability.
While past work has explored regularization as a way to stabilize training, these methods differ
fundamentally from our approach. Unlike gradient clipping (Zhang et al., 2019), which constrains
parameter updates to prevent exploding gradients, VML achieves stability by smoothing the loss
curve across epochs through the Stable Loss (SL) term. Compared to Sharpness-Aware Minimiza-
tion (SAM) (Foret et al., 2020), which perturbs weights to seek flatter minima primarily for better
generalization, VML also smooths the effective loss surface through SL but applies this smoothing at
the output logit level, with the explicit objective of enhancing robustness to stochastic effects rather
than only improving generalization. This approach supports the development of neural networks
that behave consistently under varying stochastic conditions.

3 VARIANCE MINIMIZER LOSS (VML)

Training a neural network minimizes a stochastic loss over mini-batches. For a batch Bt at iteration
t, the empirical loss is

ℓt(θ) =
1

|Bt|
∑

(xi,yi)∈Bt

CE(fθ(xi), yi) ,

where fθ(x) ∈ RC are class logits and CE is the cross-entropy.

Since ℓt depends on initialization, sampling order, and data augmentation, the optimization trajec-
tory may fluctuate substantially across training runs. Such fluctuations make the training dynamics
more variable than what the base objective prescribes. The Variance Minimizer Loss (VML) aug-
ments the standard training objective with an adaptive penalty on these fluctuations. The formulation
is based on three components: (i) maintaining a running baseline of the loss, (ii) quantifying devia-
tions from this baseline, and (iii) weighting penalties according to the observed volatility. Together,
these steps turn variability in the training loss into a measurable signal that can be regulated during
optimization. Formally, the per-iteration training objective is

Lt(θ) = ℓt(θ) + wVML SLt

(
ℓt(θ), ℓ̄t−1

)
, (1)

where ℓt(θ) is the standard cross-entropy loss, wVML ≥ 0 is a global mixing weight that balances
the contribution of the variance-minimizing term against the base objective, ℓ̄t−1 is an exponential
moving average (EMA) baseline of the batch loss, and SLt denotes the stable loss penalty defined in
terms of a Huber function (Gokcesu & Gokcesu, 2021) with adaptive scaling (Sec. 3.1). We denote
the complete training objective by Lt, which we refer to as the VML. This formulation treats the
stable loss term not as an auxiliary diagnostic, but as an integral part of the objective, ensuring that
the penalty on variability is embedded directly into the optimization process.

3.1 TRACKING THE BASELINE AND DEVIATION

The first step in constructing the penalty term SLt in Eq. equation 1 is to establish a running baseline
of the batch loss. To this end, VML maintains an exponential moving average (EMA) of ℓt:

ℓ̄t = (1− α) ℓ̄t−1 + α ℓt, ℓ̄0 = ℓ0, (2)

where α ∈ (0, 1) is a smoothing factor. This EMA baseline ℓ̄t represents the recent trend of the
training loss against which new values are compared. The choice of α controls how much history is
retained: a small α (e.g. α = 0.01) makes the baseline very stable, averaging over a long horizon,
while a larger α (e.g. α = 0.2) makes it more responsive to recent changes. Thus, α acts as a
memory parameter that determines the effective time window of the baseline. The instantaneous
deviation of the current batch loss from its baseline is then

δt = ℓt − ℓ̄t−1, (3)

which is positive if ℓt exceeds the previous baseline and negative if it falls below. This deviation δt is
the primary signal passed into the penalty function of SLt, with its scale later adjusted by volatility
statistics (Sec. 3.2).
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3.2 MEASURING VOLATILITY

To determine whether a deviation δt is significant, VML maintains a running estimate of the typical
fluctuation scale. This is done with an exponential moving average of absolute deviations:

σt = (1− β)σt−1 + β |δt|, σ0 = 0, (4)

where β ∈ (0, 1) is a smoothing factor similar to α for the volatility. After a warm-up period of
Twarmup iterations, we latch a reference value

σref = max{σt, ε},
where ε prevents division by zero. This σref represents the “typical” scale of loss fluctuations and
provides a stable denominator for subsequent normalization. In later steps (Sec. 3.3), the ratio of
current volatility σt to this reference will determine how strongly the penalty term SLt is activated.

3.3 ADAPTIVE GAIN AND GATING

The penalty should not be active at all times: minor fluctuations are part of normal training dynamics
and should not be over-regularized. Instead, VML is designed to respond primarily when training
enters a volatile phase. To achieve this, we compare the current volatility σt against a reference σref
and compute a relative gain factor.

Formally,

gaint =


max{σt − γσref , 0}

σref + ε
, γ > 1,

σt
σref + ε

, γ = 1,
(5)

where γ ≥ 1 is a gating parameter and ε avoids division by zero. The role of γ is to set a tolerance
threshold. When γ = 1, every fluctuation contributes proportionally to the penalty. For γ >
1, only volatility that exceeds γ times the reference is considered; fluctuations below this level
are suppressed. This design ensures that VML activates only under excess variability and remains
inactive in stable regimes.

The adaptive penalty coefficient is then

λSLt = clip(λbase · gaint, λmin, λmax) , (6)

which scales the strength of the stable loss regularization based purely on observed statistics. Be-
cause λSLt is self-adjusting, no additional manual tuning is required for the inner penalty weight; the
controller adapts automatically during training.

3.4 DEVIATION PENALTY

Once deviations are measured, they must be penalized in a way that is both sensitive to typical
fluctuations and robust against rare spikes. To achieve this, VML applies a Huber penalty to the
deviation δt:

ρ∆(δt) =

{
1
2 δ

2
t /∆, |δt| ≤ ∆,

|δt| − 1
2∆, |δt| > ∆,

(7)

where ∆ > 0 is a robustness threshold. This choice provides two benefits: (i) for small devia-
tions, the quadratic region encourages smooth convergence around the EMA baseline ℓ̄t−1, and (ii)
for large deviations, the linear region caps the penalty’s growth, preventing instability due to rare
outliers.

Recalling that δt = ℓt − ℓ̄t−1 (Eq. 3), the complete stable loss term at step t is

SLt = clip

(
λbase ·

max{σt − γσref , 0}
σref + ε

, λmin, λmax

)
︸ ︷︷ ︸

adaptive coefficient λSL
t

· ρ∆
(
δt
)︸ ︷︷ ︸

Huber penalty on deviation

. (8)

Together, δt measures deviation, σt provides the volatility scale, λSLt adaptively adjusts the strength,
and ρ∆(δt) ensures robustness.
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3.5 GRADIENT EFFECT

The gradient of the stable loss penalty with respect to model parameters is

∇θSLt = λSLt ψ∆(δt)∇θℓt, (9)

where ψ∆(δt) is the derivative of the Huber function ρ∆(δt). Because |ψ∆(δt)| ≤ 1, the penalty
term rescales but never amplifies the gradient of the base loss. Thus, λSLt modulates the effective
update size according to observed volatility. Combining the base loss and the stable penalty, the
effective gradient used for parameter updates is

∇θLt(θ) =
(
1 + wVML λ

SL
t ψ∆(δt)

)
∇θℓt, (10)

This formulation shows that VML does not introduce an additional gradient direction but instead
adaptively rescales the base gradient magnitude depending on volatility in the loss trajectory.

4 METHODOLOGY

To assess the effectiveness of VML, we developed a systematic experimental protocol that isolates
stochastic effects and quantifies variance in both performance and training behavior.

4.1 DETERMINISTIC TRAINING

We began by establishing deterministic baselines through strict control of known randomness
sources. To do so, we fixed random seeds across all relevant libraries and disabled nondetermin-
istic operations at the framework level, such as cuDNN benchmarking and parallel kernel execution.
This ensured that observed variability arises only from inherent stochastic effects not eliminated by
seeding. All experiments were conducted under identical hardware, software, and hyperparameter
settings. To evaluate sensitivity of model training to stochastic factors, we trained models across 5
different seeds S = {1, 2, . . . , 5}. For a more rigorous analysis, we further conducted experiments
with 20 seeds for the ResNet–CIFAR-10 pair. Each training run used the same architecture and
optimization configuration, enabling a controlled analysis of run-to-run variability. We adopted a
from-scratch training protocol, following the recommendations of Summers & Dinneen (2021), in
which each model is trained independently from randomized initialization. This approach captures
the full variability introduced by stochastic components in model initialization and optimization,
and avoids bias from warm-started models or transfer learning. We explicitly study three of these
common stochastic components: weight initialization, data shuffling, data augmentation, and the
combined effect of all three. Unless stated otherwise, all results use standard augmentations: hori-
zontal flip, padding by four pixels, and random crop. We quantified performance variability across
seeds by measuring the standard deviation (SD) of test accuracy.

4.2 VML HYPERPARAMETERS

VML exposes a small set of scalar hyperparameters. Although the VML is adaptive and updates
its internal statistics online, a few scalars must be initialized to sensible values (e.g., the warmup
horizon used to form the reference statistic σref ). We therefore ran a one–factor–at–a–time ablation
on the ResNet-14 / CIFAR-10 pair, sweeping each VML hyperparameter while holding all others
fixed. The best setting (by mean test accuracy and SD across seeds) was then frozen and reused for
all subsequent experiments (other architectures and CIFAR-100 as well). The selected configuration
transfers well and does not require per-dataset recalibration, consistent with VML’s adaptive na-
ture. All other training hyperparameters (optimizer, schedule, batch size, etc.) are fixed and shared
between conditions. See Appendix ??, Table 5 for SL hyperparameters.

4.3 EXPERIMENTAL SETUP

Our experiments are conducted across multiple pairs of models and datasets for image classification.
We utilize the CIFAR-10 and CIFAR-100 datasets. We evaluate four convolutional neural networks:
ResNet-14, MobileNet-V2, VGG-16, and ShuffleNet-V2. These models cover a broad range of
design strategies. ResNet uses residual connections to enable deeper training. MobileNet-V2 is
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lightweight and optimized for efficiency. VGG-16 is a classical deep model with uniform structure.
ShuffleNet-V2 is designed for speed and low resource cost. By selecting these diverse architectures,
we test the generality of our method across both heavy and lightweight models. Training follows a
cosine decay learning rate schedule with an initial peak of 0.40, a batch size of 512, momentum set
to 0.9, and a weight decay of 5× 10−4. All experiments are conducted using PyTorch Paszke et al.
(2019) on a compute environment with 64 CPU cores, 512 GB of RAM, and NVIDIA A100 GPU.

5 RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the VML across various settings of image clas-
sification tasks. Overall, we executed 255 fixed, identical training sessions, along with a SL internal
parameter exploration, totaling approximately 230 hours of GPU time.

5.1 DIAGNOSING VML REACTIVITY TO LOSS DYNAMICS

We analyze to what extend the SL controller in VML (Sec. 3) is active and temporally coupled to
training dynamics. As in §3, t indexes iterations. We introduce an epoch index k and denote by Ik
the iterations inside epoch k. We aggregate the per-iteration controller coefficient from Eq. equa-
tion 6 into an epoch-level signal

λk :=
1

|Ik|
∑
t∈Ik

λSLt ,

and denote the test loss evaluated at the end of epoch k by ℓtestk . (All series are averaged across
seeds; conclusions are unchanged if computed per seed.) To focus on changes rather than levels we
use first differences

∆λk := λk − λk−1, ∆ℓtestk := ℓtestk − ℓtestk−1.

Because ∆λk is numerically small, we z-score each sequence for the scatter plot: z(∆xk) :=
(∆xk − µ∆x)/σ∆x. This removes units and makes the effect size comparable across axes.

Cross–correlation function (CCF): We quantify timing via the Pearson cross–correlation

rτ := corr
(
∆λk, ∆ℓ

test
k+τ

)
, τ ∈ [−10, 10],

where a positive lag τ > 0 means changes in the controller ∆λk lead changes in test loss, and
τ < 0 means they lag. (Here corr(·, ·) is the Pearson correlation coefficient r ∈ [−1, 1], with
r>0 indicating positive linear association and r<0 negative.) On CIFAR10/ResNet-14, the CCF
(right panel of Fig. 1) peaks at τ⋆ = +1 with rτ⋆ ≈ 0.44, consistent with the SL design in §3:
the controller λSLt reacts to volatility estimated from δt = ℓt − ℓ̄t−1 and σt (Eqs. 3–4), and this
adjustment influences the next epoch’s outcome.

Standardized scatter: The left panel of Fig. 1 plots one blue marker per epoch k, whose co-
ordinates are the paired standardized changes

(
z(∆λk), z(∆ℓ

test
k+1)

)
. Thus each dot shows how a

change in the controller during epoch k relates to the change in test loss in epoch k+1. We overlay
the least-squares best-fit line to summarize the trend. Because both axes are standardized, the slope
of this line equals the Pearson correlation r. We obtain r ≈ 0.435 with two-sided p ≈ 1.6× 10−10,
indicating a statistically significant, moderate positive association: when the controller strengthens
(∆λk > 0) in response to volatility, the subsequent change in test loss tends to move in the same
direction.1

The τ= + 1 CCF peak together with the significant standardized association confirms that VML’s
controller λSLt is engaged in volatile phases and its adjustments are reflected in the following epoch’s
test loss. These diagnostics complement the across-seed variance results by revealing how stabiliza-
tion operates during training.

1This diagnostic targets timing and coupling; effects on the mean and variance across seeds are reported
separately.
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Figure 1: VML reactivity and temporal coupling (CIFAR-10 / ResNet-14). Left: Standardized
scatter with one blue dot per epoch k, showing z(∆λk) on the x-axis and z(∆ℓtestk+1) on the y-axis;
the least-squares line (slope= r) summarizes the trend. We find r ≈ 0.435 (p ≈ 1.6 × 10−10).
Right: Cross–correlation function rτ = corr(∆λk,∆ℓ

test
k+τ ) for τ ∈ [−10, 10]; the peak at τ = +1

indicates controller updates precede changes in test loss by one epoch.

Table 1: Mean accuracy and variability across various stochastic sources. Var. reduction is computed
relative to the Base SD within the same setting.

Sources Base Acc. (%) ± SD VML Acc. (%) ± SD Var. Red. (%)

All 94.95 ± 0.169 94.88 ± 0.112 33.3
Init 94.90 ± 0.194 94.91 ± 0.112 42.4
Aug 94.87 ± 0.167 94.82 ± 0.043 74.0
Shuf 94.82 ± 0.159 94.88 ± 0.106 33.1

5.2 VARIABILITY REDUCTION ACROSS STOCHASTIC SOURCES

To identify where VML reduces run-to-run variability, we isolate each source of stochasticity in turn.
We evaluate them: Init (only weight initialization varies; augmentation and data shuffling random
number generators are fixed), Aug (only augmentation randomness varies), Shuf (only data-loader
shuffling varies), and All (all three vary simultaneously). For each regime we report the mean final
test accuracy and the across-run standard deviation of accuracy (“Acc. SD”), computed over repeated
seeds. We summarize variability reduction as

Var. Red. = 100×
(
1− SDVML

SDBase

)
,

that is, the percentage drop in across-run spread when replacing the base objective with VML.
Table 1 shows a consistent reduction in variability for VML in every regime while leaving average
accuracy essentially unchanged (differences are within typical noise). The largest variance reduction
occurs when augmentation is the only active randomness (Aug), which is also the setting where per-
iteration losses fluctuate most due to instance-level transforms; in this case VML’s SL controller
down-weights volatile steps, leading to tighter outcomes. When only initialization varies (Init)
or only data shuffling varies (Shuf), VML still reduces spread, indicating lower sensitivity to the
starting point and to minibatch ordering. With all sources active simultaneously (All), variability
remains lower under VML, demonstrating that the effect is robust when randomness sources act
together.

5.3 VARIABILITY REDUCTION ACROSS MODELS AND DATASETS

We assess VML as a drop-in objective on CIFAR-10/100 across four architectures (ResNet-14,
VGG-16, ShuffleNet-V2, MobileNetV2). For each dataset–model pair, Table 2 reports the mean
final test accuracy, the across-run standard deviation of accuracy (“Acc. SD”), and the within-
pair variability reduction. Across all models and both datasets, VML consistently lowers Acc.
SD while keeping average accuracy essentially unchanged. Reductions are most pronounced for
lightweight/mobile backbones, which are typically more sensitive to stochasticity in data order and

7
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Table 2: Reduction of variability through the introduction of VML across CIFAR-10/100 and multi-
ple architectures. Each dataset–model pair shows Base and VML side by side for easy comparison.

Dataset Model Base Acc. (%) ± SD VML Acc. (%) ± SD Var. Red. (%)

CIFAR-10

ResNet-14 94.95 ± 0.168 94.88 ± 0.112 33.3
VGG-16 93.74 ± 0.140 93.89 ± 0.098 29.7
ShuffleNet-V2 91.08 ± 0.217 91.01 ± 0.056 74.4
MobileNetV2 92.03 ± 0.232 91.98 ± 0.147 36.3

CIFAR-100

ResNet-14 75.66 ± 0.304 75.68 ± 0.112 63.3
VGG-16 74.17 ± 0.384 73.93 ± 0.200 48.1
ShuffleNet-V2 67.97 ± 0.465 68.11 ± 0.279 40.0
MobileNetV2 69.59 ± 0.288 69.52 ± 0.079 72.7

Table 3: Variability reduction across seed-group sizes on CIFAR-10 / ResNet-14. Each cell reports
mean accuracy ± SD across runs; Var. Red. is the percentage drop in SD from Base to VML within
the same group size.

Group Size Base Acc. (%) ± SD VML Acc. (%) ± SD Var. Red. (%)
5 94.95 ± 0.168 94.88 ± 0.112 33.3
10 94.89 ± 0.140 94.85 ± 0.114 18.0
15 94.94 ± 0.132 94.88 ± 0.118 10.5
20 94.89 ± 0.129 94.85 ± 0.125 3.0

augmentation; standard backbones also benefit, albeit to a lesser extent when the baseline variability
is already small (leaving less room to improve under a ratio metric). The same qualitative pattern
appears on CIFAR-100, indicating that VML’s effect is not tied to a particular dataset difficulty.
Overall, the variability reduction spans roughly 33% to 74% across the dataset–model pairs in Ta-
ble 2. It is worth noticing that we do not target accuracy-optimal tuning here, Achieving the highest
possible accuracy is not the goal of this analysis. While we could also pursue accuracy-optimal
settings, this would substantially increase computational cost and time, since our analysis requires
multiple independent training runs with different seeds. This design emphasizes stability under
repeated training rather than one-off peak performance.

5.4 SAMPLE-BASED EVALUATION OF VML ROBUSTNESS

To test whether VML’s stability is robust to the choice and number of seeds available at evaluation
time, we use a fixed pool of 20 CIFAR-10/ResNet-14 runs per training regime (Base vs. VML)
and form seed groups of sizes 5, 10, 15, and 20. For group sizes 5–15 we repeatedly subsample
seed sets from the pool (fixed-size resampling; the full set is used for size 20), compute the group’s
mean accuracy and across-run standard deviation (“Acc. SD”), and then summarize these statistics
per regime. As reported in Table 3, VML reduces Acc. SD for every group size while leaving
mean accuracy essentially unchanged. The variability reduction is largest for small groups and
tapers as the group size increases, which is expected because averaging over more independent
runs already dampens seed noise in the baseline. At the full pool size (20 runs), the Base and
VML estimates become almost indistinguishable, consistent with prior guidance that drawing seed-
insensitive conclusions typically requires on the order of 25 independent trainings, since groups of
“good” and “bad” seeds tend to average out at that scale (Gundersen et al., 2023). Overall, these
results show that VML’s benefit is not tied to a particular seed choice and remains useful in practical
settings where only a limited number of runs can be afforded.

5.5 COMPARISON TO EXISTING METHODOLOGIES

Table 4 compares VML with full ensembling, accelerated (snapshot/EMA) ensembling (Wen et al.,
2020), and test-time data augmentation (TTA) (Szegedy et al., 2014) on CIFAR-10/ResNet-14. Full
ensembling gives the largest SD drop but costs 20× training. Accelerated ensembling keeps training
at 1× (via EMA/snapshots) but typically reduces less. TTA stabilizes predictions by averaging K
stochastic test-time views, incurring about K× inference. In contrast, VML is a single-model,
single-view method with 1× training and 1× inference; it improves stability by directly shaping

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Method comparison on CIFAR 10 with ResNet-14. Training cost is measured relative to a
single-model run. Variability reduction is the percentage drop in across-seed accuracy SD relative
to the single-model baseline.

Method Training Cost Model Dataset Variability Reduction (%)

Ensemble (N=20)1 20× ResNet-14 CIFAR 10 58
Accelerated Ensemble2 1× ResNet-14 CIFAR 10 27.0
Test-time Data Aug. (K views)3 K× (inference) ResNet-14 CIFAR 10 30.7
VML (Ours) 1× ResNet-14 CIFAR 10 33.3

optimization through the SL controller and is architecture-agnostic. Among 1×-training baselines,
VML offers the best cost vs. variance trade-off, matching or exceeding their variability reduction
without extra runs or multi-view inference. Complementing the SD results, the seed effect size (top-
10 vs. bottom-10 seeds) on CIFAR-10/ResNet-14 drops from 0.85 (prior work) to 0.63 with VML,
narrowing the gap between “good” and “bad” seeds under the same budget.

6 CONCLUSION AND FUTURE WORK

We introduced the Variance Minimizer Loss (VML), a simple, architecture-agnostic objective that
reduces run-to-run variability by modulating a stable-loss coefficient λt in response to volatility in
the training signal. On CIFAR-10/100 with ResNet-14, VGG-16, ShuffleNet-V2, and MobileNetV2,
VML consistently lowers across-seed accuracy SD while keeping mean accuracy essentially un-
changed, with the largest gains in regimes that induce high step-to-step variability (e.g., heavy aug-
mentation). Our diagnostics show that controller updates lead changes in test loss by one epoch
(a cross-correlation peak at +1) and that standardized changes z(∆λt) co-move with z(∆Lt+1),
confirming that the controller is most active when the signal is unstable. Compared to common
variance-reduction baselines, VML offers a favorable cost–variance trade-off: unlike full or acceler-
ated ensembling and test-time augmentation, it keeps both training and inference at 1×. Beyond SD,
the seed effect size on CIFAR-10/ResNet-14 (gap between the average of the top-10 and bottom-10
seeds) drops from 0.85 to 0.63 with VML, narrowing the spread between “good” and “bad” seeds
under the same budget.

Limitations. Estimating variability requires many independent trainings, which makes our anal-
ysis computationally expensive; as a result, we have not yet validated the approach at ImageNet
scale. We also fixed the controller hyperparameters (e.g., EMA windows, gating threshold γ, and
clipping bounds) across all experiments. A systematic ablation of these settings across different
model-dataset pairs may yield further gains and clarify sensitivity. Addressing these limitations,
namely scaling to larger benchmarks and exploring the hyperparameter design space, will require
additional experimentation and is part of our planned future work.

1Training and storing N independently trained models; cost scales linearly with N .
2E.g., snapshot ensembles, SWA/EMA checkpoints; multiple predictions from one or a few training sched-

ules.
3Average K stochastic test-time transforms per image; no extra training, but K× inference cost.
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A FURTHER DETAILS ON FORMULATION OF VML

This appendix collects the full mathematical details for the Stable Loss (SL) and the Variance Penalty
Loss (VPL) used in the Variance Minimizer Loss (VML). The main paper presents the streamlined
formulation and intuition.

A.1 NOTATION SNAPSHOT

We follow the main text: θ ∈ Θ ⊆ Rd are parameters, x ∈ X inputs, y ∈ {1, . . . , C} labels,
fθ(x) ∈ RC logits (pre-softmax), ℓt(θ) the mini-batch loss at step t. For a class c, Sc = {i :
yi = c} and mc = |Sc|, f̄c := m−1

c

∑
i∈Sc

fθ(xi) with c-th component f̄c,c. The eligible set is
Ct = {c : mc ≥ 2}.

A.2 STABLE LOSS (SL): EXTENDED DETAILS

Huber penalty. SL applies a Huber penalty to the deviation δt = ℓt(θ)− ℓ̄t−1:

ρ∆(u) =

{
1
2 u

2/∆, |u| ≤ ∆,

|u| − 1
2∆, |u| > ∆,

(11)

with soft threshold ∆ > 0. This is quadratic near 0 and linear for large |u|.

Threshold modes. We use either a fixed absolute threshold or a scale-free fractional one:

∆ = δabs > 0 or ∆ = δfrac · st, st ∈ {σt, σref},

where σt is an EMA of |δt| and σref a latched reference.

SL gradient. The derivative of equation 11 is

ψ∆(u) = ∂uρ∆(u) =

{
u/∆, |u| ≤ ∆,

sign(u), |u| > ∆,

so the SL contribution to the gradient (controller treated as constant) is

∇θSLt = λSLt ψ∆(δt)∇θℓt(θ),

with |ψ∆(δt)| ≤ 1.
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Volatility gating. With gate γ > 1 and reference dt = max{σref , ε}, the gain in the main text
is zero whenever σt ≤ γdt, keeping SL inactive in calm regimes. The adaptive weight is λSLt =
clip(λSLbase ·gaint, λSLmin, λ

SL
max).

A.3 COMPACT ALGORITHMIC SUMMARY

Algorithm 1 VML training step (base loss + Stable Loss; controller updates are stop-grad)

1: Inputs: batch Bt = {(xi, yi)}Nt
i=1; network fθ; controller state {ℓ̄t−1, σt−1, σref}

2: Hyperparams: EMA factors α, β; gating γ; Huber threshold ∆; warmup steps W ; base gain
λbase; clip [λmin, λmax]; mix wVML; ε

3: Forward & base loss
4: zi ← fθ(xi); ℓt ← 1

Nt

∑
i CE(zi, yi)

5: Update SL statistics (stop-grad)
6: ℓ̄t ← (1− α) ℓ̄t−1 + αsg(ℓt) (EMA baseline; cf. Eq. equation 2)
7: δt ← sg(ℓt)− ℓ̄t−1 (deviation; Eq. equation 3)
8: σt ← (1− β)σt−1 + β |δt| (volatility EMA; Eq. equation 4)
9: if t =W then σref ← max{σt, ε} (latch reference)

10: Compute adaptive SL gain and weight

11: if γ > 1 then gaint ←
max{σt − γ σref , 0}

σref + ε
else gaint ←

σt
σref + ε

(Eq. equation 5)

12: λSLt ← clip
(
λbase · gaint, λmin, λmax

)
(Eq. equation 6)

13: Stable-Loss penalty and total objective

14: ρ∆(δt)←
{

1
2 δ

2
t /∆, |δt| ≤ ∆

|δt| − 1
2∆, |δt| > ∆

(Huber; Eq. equation 7)

15: SLt ← λSLt · ρ∆(δt)
16: Lt ← ℓt + wVML SLt (total objective; Eq. equation 1)
17: Backprop & update θ ← SGD/Adam(∇θLt)
18: Note: sg denotes stop-gradient; no gradients flow through ℓ̄t, σt, σref , gaint, or λSLt .

B STABLE-LOSS INTERNALS

Table 5: Stable-Loss (SL) hyperparameters, implementation names, roles, and values. Values were
selected via a ResNet-14/CIFAR-10 ablation and reused unchanged across all experiments.

Parameter (Sec. 3) Implementation arg Role / intuition Chosen

λbase lambda base Base SL gain; after warmup it scales as λt = λbase · σt/σref

(clipped).
0.10

α alpha EMA blend for L̄t; smaller ⇒ slower, stabler baseline. 0.05
β beta EMA blend for volatility σt = EMAβ(|∆t|); sets responsiveness

to loss deviations.
0.20

δ delta Huber threshold in Hδ(∆t); sets quadratic→linear transition for
robustness.

0.20

W (warmup steps) warmup steps Steps used to capture the reference σref ; SL gain adapts relative to
this reference thereafter.

200

[λmin, λmax] lambda min /
lambda max

Safety bounds on λt to prevent extreme gains. [0.0, 2.0]

ε eps Numerical stabilizer in divisions and clamps. 10−8

B.1 SEED–GROUP VIEW VIA KERNEL DENSITY ESTIMATES

To visualize across–seed variability, Fig. 2 plots kernel density estimates (KDEs) of the final test
accuracy for the CIFAR 10 / ResNet-14 runs under Base and VML. The KDEs are normalized (area
= 1), so taller peaks indicate smaller dispersion, while horizontal spread reflects variability. With
n=5 seeds (left), both distributions are relatively broad and sampling noise is evident; nevertheless,
VML already concentrates mass more tightly around its mode. With n=20 seeds (right), the picture
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(a) Five seeds (b) Twenty seeds

Figure 2: Across–seed distribution of final accuracy on CIFAR 10 / ResNet-14. KDE curves (area
= 1) show similar central tendencies for Base and VML but reduced spread under VML, especially
with more repeats, consistent with Table 3.

stabilizes: the Base and VML modes remain close (means essentially unchanged), but the VML
curve is visibly narrower with lighter tails, mirroring the lower accuracy SD reported in Table 3.
The contrast between the two panels also illustrates why small seed groups can be misleading: es-
timates with five repeats are noisy, whereas twenty repeats yield a clearer—and more reliable—gap
in dispersion in favor of VML.

B.2 ABLATION OF THE SL CONTROLLER HYPERPARAMETERS

We ablate the Stable–Loss (SL) controller on CIFAR 10 / ResNet-14 by varying one knob at a
time while fixing the others at their defaults (Table 5): SLA (α, EMA for the loss baseline L̄t),
SLB (β, EMA for the volatility σt), SLD (δ, Huber transition), SLW (W , warm-up steps for σref ),
and SW (λbase, base gain for λt). Each panel in Fig. 3 shows a Pareto-style scatter of across-
seed standard deviation (x, lower is better) versus mean accuracy (y, higher is better); points are
annotated with the setting (e.g., SLA005=α=0.05).

Findings. (1) Baseline smoothing (α) exhibits a clear sweet-spot: very small α tracks too slowly
(higher variance), and very large α over-reacts; α≈0.05 gives the best stability–accuracy balance.
(2) Volatility EMA (β) benefits from faster adaptation: larger β reduces variance more consistently.
(3) Huber threshold (δ) is best at a moderate value: too small makes SL effectively linear (noisy),
while too large delays activation. (4) Warm-up (W ): a longer warm-up (e.g., W=200) stabilizes
σref and lowers variance with only minor movement in the mean. (5) Base gain (λbase) shows
a U-shaped trade-off: very small under-activates SL (little reduction), very large over-regularizes
(hurting stability and/or mean). A mid-range value (λbase≈0.10) sits near the knee.

These trends support the defaults used throughout the paper: they lie close to the low-variance region
while preserving accuracy, and we reuse the same settings across models and datasets without per-
architecture tuning.2

2Runs were grouped with --hp tag prefix (e.g., SLA, SLB, SLD, SLW, SW); example:
--dataset cifar10 --arch resnet14 --out analysis/sl internal/sl sw sweep
--hp tag prefix SW.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) SLA: α (EMA for L̄t) (b) SLB: β (EMA for σt)

(c) SLD: δ (Huber threshold) (d) SLW: W (warm-up steps)

(e) SW: λbase (base gain for λt)

Figure 3: SL ablations (Pareto view). Each point shows mean accuracy (y) vs. across-seed SD
(x) for one setting, annotated with its tag (e.g., SLA005⇒ α=0.05). Lower-left is better; the
recommended defaults (Table 5) sit near the low-variance knee without sacrificing accuracy.
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