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Abstract
Modern advancements in large-scale machine
learning would be impossible without the
paradigm of data-parallel distributed computing.
Since distributed computing with large-scale mod-
els imparts excessive pressure on communication
channels, significant recent research has been di-
rected toward co-designing communication com-
pression strategies and training algorithms with
the goal of reducing communication costs. While
pure data parallelism allows better data scaling,
it suffers from poor model scaling properties. In-
deed, compute nodes are severely limited by mem-
ory constraints, preventing further increases in
model size. For this reason, the latest achieve-
ments in training giant neural network models
also rely on some form of model parallelism. In
this work, we take a closer theoretical look at
Independent Subnetwork Training (IST), which
is a recently proposed and highly effective tech-
nique for solving the aforementioned problems.
We identify fundamental differences between IST
and alternative approaches, such as distributed
methods with compressed communication, and
provide a precise analysis of its optimization per-
formance on a quadratic model.

1. Introduction
A huge part of today’s machine learning success is driven by
the possibility of building more and more complex models
and training them on increasingly larger datasets. This rapid
progress has become feasible due to advancements in dis-
tributed optimization, which is necessary for proper scaling
when the size of the training data grows (Zinkevich et al.,
2010). In a typical scenario, data parallelism is used for effi-
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ciency and implies sharding the dataset across computing
devices. This allowed very efficient scaling and acceleration
of training moderately sized models by using additional
hardware (Goyal et al., 2018). However, this data parallel
approach can suffer from communication bottleneck, which
has sparked extensive research on distributed optimization
with compressed communication of the parameters between
nodes (Alistarh et al., 2017; Konečný et al., 2016; Seide
et al., 2014).

1.1. The Need for Model Parallelism

Despite its efficiency, data parallelism has some fundamen-
tal limitations when it comes to scaling up the model size.
As the dimensions of a model increase, the amount of mem-
ory required to store and update the parameters also in-
creases, which becomes problematic due to resource con-
straints on individual devices. This has led to the devel-
opment of model parallelism (Dean et al., 2012; Richtárik
& Takáč, 2016), which splits a large model across multi-
ple nodes, with each node responsible for computations of
parts of the model (Farber & Asanovic, 1997; Zhang et al.,
1989). However, naive model parallelism also poses chal-
lenges because each node can only update its portion of the
model based on the data it has access to. This creates a need
for very careful management of communication between
devices. Thus, a combination of both data and model par-
allelism is often necessary to achieve efficient and scalable
training of huge models.

IST. Independent Subnetwork Training (IST) is a technique
that suggests dividing a neural network into smaller sub-
parts, training them in a distributed parallel fashion, and
then aggregating the results to update the weights of the
whole model. In IST, every subnetwork can operate inde-
pendently and has fewer parameters than the full model,
which not only reduces the load on computing nodes but
also results in faster synchronization. A generalized analog
of the described method is formalized as an iterative proce-
dure in Algorithm 1 and schematically depicted in Figure 3.
IST paradigm was pioneered by Yuan et al. (2022) for net-
works with fully connected layers and was later extended to
ResNets (Dun et al., 2022) and Graph architectures (Wolfe
et al., 2023). Previous experimental studies have shown
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Algorithm 1 Distributed Submodel (Stochastic) Gradient Descent
1: Parameters: learning rate γ > 0; sketches C1, . . . ,Cn; initial model x0 ∈ Rd

2: for k = 0, 1, 2 . . . do
3: Select submodels wk

i = Ck
i x

k for i ∈ [n] and broadcast to all computing nodes
4: for i = 1, . . . , n in parallel do
5: Compute local (stochastic) gradient w.r.t. submodel: Ck

i∇fi(w
k
i )

6: Take (maybe multiple) gradient descent step z+i = wk
i − γCk

i∇fi(w
k
i )

7: Send z+i to the server
8: end for
9: Aggregate/merge received submodels: xk+1 = 1

n

∑n
i=1 z

+
i

10: end for

that IST is a very promising approach for various applica-
tions as it allows to effectively combine data and model
parallelism and train larger models with limited compute.
In addition, Liao & Kyrillidis (2022) performed theoret-
ical analysis of IST for overparameterized single hidden
layer neural networks with ReLU activations. The idea of
IST was also recently extended to the federated setting via
an asynchronous distributed dropout technique (Dun et al.,
2023).

Federated Learning. Another important setting when the
data is distributed (due to privacy reasons) is Federated
Learning (Kairouz et al., 2021; Konečný et al., 2016; McMa-
han et al., 2017). In this scenario, computing devices are
often heterogeneous and more resource-constrained (Caldas
et al., 2018) (e.g. mobile phones) in comparison to data-
center settings. Such challenges have prompted extensive
research efforts into selecting smaller and more efficient
submodels for local on-device training (Alam et al., 2022;
Charles et al., 2022; Chen et al., 2023; Diao et al., 2021;
Horvath et al., 2021; Jiang et al., 2022; Lin et al., 2022; Qiu
et al., 2022; Wen et al., 2022; Yang et al., 2022). Many of
these works propose approaches to adapt submodels, often
tailored to specific neural network architectures, based on
the capabilities of individual clients for various machine
learning tasks. However, there is a lack of comprehension
regarding the theoretical properties of these methods.

1.2. Summary of Contributions

After reviewing the literature, we identified a glaring gap
in the rigorous understanding of IST convergence, directly
motivating our research. The main contributions of this
paper include:

• A novel approach to analyzing distributed methods that
combine data and model parallelism by operating with
sparse submodels for a quadratic model.

• The first analysis of independent subnetwork training
in homogeneous and heterogeneous scenarios without
restrictive assumptions on gradient estimators.

• Identification of the settings when IST can optimize
very efficiently or not converge to the optimal solution
but only to an irreducible neighborhood that is also
tightly characterized.

• Empirical validation of the proposed theory through
experiments for several practical settings.

2. Formalism and Setup
We consider the standard optimization formulation of a
distributed/federated learning problem (Wang et al., 2021)

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (1)

where n is the number of clients/workers, and each fi :
Rd → R represents the loss of the model parameterized by
vector x ∈ Rd on the data of client i.

A typical Stochastic Gradient Descent (SGD)-type method
for solving this problem has the form

xk+1 = xk − γgk, gk =
1

n

n∑
i=1

gki , (2)

where γ > 0 is the stepsize and gki is a suitably con-
structed estimator of ∇fi(x

k). In the distributed setting,
computation of gradient estimators gki is typically per-
formed by clients, and the results are sent to the server,
which subsequently performs aggregation via averaging
gk = 1

n

∑n
i=1 g

k
i . The average is then used to update the

model xk+1 via a gradient-type method (2), and at the next
iteration, the model is broadcasted back to the clients. The
process is repeated iteratively until a suitable model is found.

One of the main techniques used to accelerate distributed
training is lossy communication compression (Alistarh et al.,
2017; Konečný et al., 2016; Seide et al., 2014), which sug-
gests applying a (possibly randomized) lossy compression
mapping C to a vector/matrix/tensor x before broadcast-
ing. This reduces the bits sent per communication round
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at the cost of transmitting a less accurate estimate C(x) of
x. Described technique can be formalized in the following
definition.

Definition 2.1 (Unbiased compressor). A randomized map-
ping C : Rd → Rd is an unbiased compression operator
(C ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω∥x∥2. (3)

A notable example of a mapping from this class is the ran-
dom sparsification (Rand-q for q ∈ {1, . . . , d}) operator
defined by

CRand-q(x) := Cqx =
d

q

∑
i∈S

eie
⊤
i x, (4)

where e1, . . . , ed ∈ Rd are standard unit basis vectors, and
S is a random subset of [d] := {1, . . . , d} sampled from the
uniform distribution on the all subsets of [d] with cardinal-
ity q. Rand-q belongs to U (d/q − 1), which means that
the more elements are “dropped” (lower q), the higher the
variance ω of the compressor.

In this work, we are mainly interested in a somewhat more
general class of operators than mere sparsifiers. In particu-
lar, we are interested in compressing via the application of
random matrices, i.e., via sketching. A sketch Ck

i ∈ Rd×d

can be used to represent submodel computations in the fol-
lowing way:

gki := Ck
i∇fi(C

k
i x

k),

where we require Ck
i to be a symmetric positive semi-

definite matrix. Such gradient estimates correspond to com-
puting the local gradient with respect to a sparse submodel
Ck

i x
k, and additionally sketching the resulting gradient with

the same matrix Ck
i to guarantee that the resulting update

lies in the lower-dimensional subspace.

Using this notion, Algorithm 1 (with one local gradient step)
can be represented in the following form:

xk+1 =
1

n

n∑
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
, (5)

which is equivalent to the SGD-type update (2) when the
perfect reconstruction property holds (with probability one)

Ck :=
1

n

n∑
i=1

Ck
i = I,

where I is the identity matrix. This property is inherent for
a specific class of compressors that are particularly useful
for capturing the concept of an independent subnetwork
partition.

Definition 2.2 (Permutation sketch). Assume that model
size is greater than the number of clients d ≥ n and d = qn,
where q ≥ 1 is an integer1. Let π = (π1, . . . , πd) be a
random permutation of [d]. Then for all i ∈ [n], we define
Perm-q operator

Ci := n ·
qi∑

j=q(i−1)+1

eπj
e⊤πj

. (6)

Perm-q is unbiased and can be conveniently used for rep-
resenting a structured decomposition of the model, such
that every client i is responsible for computations over a
submodel Cix

k.

Our convergence analysis relies on the assumption that was
previously used for coordinate descent-type methods.

Assumption 2.3 (Matrix smoothness). A differentiable
function f : Rd → R is L-smooth, if there exists a pos-
itive semi-definite matrix L ∈ Rd×d such that ∀x, h ∈ Rd

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ . (7)

A standard L-smoothness condition is obtained as a special
case of (7) for L = L · I. Matrix smoothness was previously
used for designing data-dependent gradient sparsification
to accelerate optimization in communication-constrained
settings (Safaryan et al., 2021; Wang et al., 2022).

2.1. Issues with Existing Approaches

Consider the simplest gradient descent method with a com-
pressed model in the single-node setting:

xk+1 = xk − γ∇f(C(xk)). (8)

Algorithms belonging to this family require a different anal-
ysis in comparison to SGD (Gorbunov et al., 2020; Gower
et al., 2019), Distributed Compressed Gradient Descent (Al-
istarh et al., 2017; Khirirat et al., 2018), and Randomized
Coordinate Descent (Nesterov, 2012; Richtárik & Takáč,
2014)-type methods because the gradient estimator is no
longer unbiased

E [∇f(C(x))] ̸= ∇f(x) = E [C(∇f(x))] .

This is why such kind of algorithms (8) are harder to analyze.
So, prior results for unbiased SGD (Khaled & Richtárik,
2023) cannot be directly reused. Furthermore, the nature of

1While this condition may look restrictive, it naturally holds for
distributed learning in a data-center setting. Permutation sparsifiers
were introduced by (Szlendak et al., 2022) and generalized to other
scenarios (like n ≥ d).
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the bias in this type of gradient estimator does not exhibit ad-
ditive noise, thereby preventing the application of previous
analyses for biased SGD (Ajalloeian & Stich, 2020).

An assumption like the bounded stochastic gradient norm
extensively used in previous works (Lin et al., 2019; Zhou
et al., 2022) hinders an accurate understanding of such meth-
ods. This assumption hides the fundamental difficulty of
analyzing a biased gradient estimator:

E
[
∥∇f(C(x))∥2

]
≤ G (9)

and may not hold, even for quadratic functions f(x) =
x⊤Ax. In addition, in the distributed setting, such a condi-
tion can result in vacuous bounds (Khaled et al., 2020) as it
does not capture heterogeneity accurately.

2.2. Simplifications Taken

To conduct a thorough theoretical analysis of methods that
combine data with model parallelism, we simplify the algo-
rithm and problem setting to isolate the unique effects of
this approach. The following considerations are made:

(a) We assume that every node i computes the true gradient
at the submodel Ci∇fi(Cix

k).

(b) A notable difference compared to the original IST Al-
gorithm 1 is that workers perform a single gradient
descent step (or just gradient computation).

(c) Finally, we consider a special case of a quadratic model
(10) as a loss function (1).

Condition (a) is mainly for the sake of simplicity and clarity
of exposition and can be generalized to stochastic gradient
estimators with bounded variance. Condition (b) is imposed
because local steps did not bring any theoretical efficiency
improvements for heterogeneous settings until very recently
(Mishchenko et al., 2022), and even then, only with the intro-
duction of additional control variables, which goes against
the requirements of resource-constrained device settings.
The reason behind (c) is that despite its apparent simplicity,
the quadratic problem has been used extensively to study
properties of neural networks (Zhang et al., 2019; Zhu et al.,
2023). Moreover, it is a non-trivial model, which makes it
possible to understand complex optimization algorithms (Ar-
jevani et al., 2020; Cunha et al., 2022; Goujaud et al., 2022).
The quadratic problem is suitable for observing complex
phenomena and providing theoretical insights, which can
also be observed in practical scenarios. Finally, Appendix
C presents a generalization for smooth functions.

Having said that, we consider a special case of problem (1)

for symmetric matrices Li

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi . (10)

In this case, f(x) is L-smooth, and ∇f(x) = Lx − b,
where L = 1

n

∑n
i=1 Li and b := 1

n

∑n
i=1 bi.

3. Results in the Interpolation Case
First, let us examine the case of bi ≡ 0, which we call
interpolation for quadratics, and perform the analysis for
general sketches Ck

i . In this case, the gradient estimator (2)
takes the form

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) = B
k
xk, (11)

where B
k
:= 1

n

∑n
i=1 C

k
i LiC

k
i . We prove the following

result for a method with such an estimator.

Theorem 3.1. Consider the method (2) with estimator (11)
for a quadratic problem (10) with L ≻ 0 and bi ≡ 0.
Then if W := 1

2E
[
LB

k
+B

k
L
]
⪰ 0 and there exists a

constant θ > 0:

E
[
B

k
LB

k
]
⪯ θW, (12)

and the step size is chosen as 0 < γ ≤ 1
θ , the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤ 2δK

γK
, (13)

for δK := f(x0)− E
[
f(xK)

]
and

E
[
∥xk − x⋆∥2

L

]
≤ (1− γΛ)

k ∥x0 − x⋆∥2
L
, (14)

where Λ := λmin

(
L
− 1

2 WL
− 1

2

)
.

This theorem establishes an O(1/K) convergence rate with
a constant step size up to a stationary point (13) and linear
convergence (14) for the expected distance to the optimum
x⋆ := argmin f(x). Note that we employ weighted norms
in our analysis, as the considered class of loss functions sat-
isfies the matrix L-smoothness Assumption 2.3. The use of
standard Euclidean distance may result in loose bounds that
do not recover correct rates for special cases like gradient
descent.

It is important to highlight that the inequality (12) may not
hold (for any θ > 0) in the general case as the matrix W
is not guaranteed to be positive (semi-)definite in the case
of general sampling. The intuition behind this issue is that
arbitrary sketches Ck

i can result in the gradient estimator gk,
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which is misaligned with the true gradient ∇f(xk). Specifi-
cally, the inner product

〈
∇f(xk), gk

〉
can be negative, and

there is no expected descent after one step.

Next, we give examples of samplings for which the inequal-
ity (12) can be satisfied.

1. Identity. Consider Ci ≡ I. Then B
k
= L, B

k
LB

k
=

L
3
,W = L

2 ≻ 0 and hence (12) is satisfied for θ =
λmax(L). So, (13) says that if we choose γ = 1/θ, then

1

K

K−1∑
k=0

∥∥∇f(xk)
∥∥2
I
≤

2λmax(L)
(
f(x0)− f(xK)

)
K

,

which exactly matches the rate of gradient descent in the
non-convex setting. As for convergence of the iterates, the
rate in (14) is λmax(L)/λmin(L) which corresponds to the pre-
cise gradient descent result for strongly convex functions.

2. Permutation. Assume2 n = d and the use of Perm-1
(special case of Definition 2.2) sketch Ck

i = neπk
i
e⊤
πk
i

,

where πk = (πk
1 , . . . , π

k
n) is a random permutation of [n].

Then

E
[
B

k
]
=

1

n

n∑
i=1

E
[
Ck

i LiC
k
i

]
=

1

n

n∑
i=1

nDiag(Li) = nD

where D := 1
n

∑n
i=1 Di,Di := Diag(Li). Then inequality

(12) leads to

nDLD ⪯ θ

2

(
LD+DL

)
,

which may not always hold as LD+DL is not guaranteed
to be positive-definite—even in the case of L ≻ 0. However,
such a condition can be enforced via a slight modification
of the permutation sketches, which is done in Section 3.2.
The limitation of such an approach is that the resulting
compressors are no longer unbiased.
Remark 3.2. Matrix W in the case of permutation sketches
may not be positive-definite. Consider the following exam-
ple of a homogeneous (Li ≡ L) two-dimensional problem:

L =

[
a c
c b

]
.

Then W equals to

1

2

[
LD+DL

]
=

[
a2 c(a+ b)/2

c(a+ b)/2 b2

]
,

which for c > 2ab
a+b has det(W) < 0, and thus W ⊁ 0

according to Sylvester’s criterion.

2This is mainly done to simplify the presentation. Results can
be generalized to the case of n ̸= d in a similar manner as in
(Szlendak et al., 2022), which can be found in the Appendix.

Next, we focus on the particular case of permutation
sketches, which are the most suitable for model partitioning
according to Independent Subnetwork Training (IST). In the
rest of this section, we discuss how the condition (12) can
be enforced via a specially designed preconditioning of the
problem (10) or modification of the sketch mechanism (6).

3.1. Homogeneous Problem Preconditioning

To start, consider a homogeneous setting fi(x) =
1
2x

⊤Lx,
so Li ≡ L. Now define D = Diag(L) – a diagonal matrix
with elements equal to the diagonal of L. Then, the problem
can be converted to

fi(D
− 1

2x) =
1

2

(
D− 1

2x
)⊤

L
(
D− 1

2x
)
=

1

2
x⊤ L̃x,

where L̃ := D− 1
2LD− 1

2 . It is equivalent to the original
problem after changing the variables x̃ := D− 1

2x. Note that
D = Diag(L) is positive-definite as L ≻ 0, and therefore
L̃ ≻ 0. Moreover, the preconditioned matrix L̃ has all
ones on the diagonal: Diag(L̃) = I. If we now combine
reformulated problem with Perm-1 sketches

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci L̃Ci

]
= nDiag(L̃) = nI.

Therefore, inequality (12) takes the form W̃ = n L̃ ⪰
1
θn

2 L̃, which holds for θ ≥ n, and the left-hand side of (13)
can be transformed (for an accurate comparison to standard
methods) in the following way:∥∥∇f(xk)

∥∥2
L̃

−1
W̃ L̃

−1 ≥ nλmin

(
L̃
−1

)∥∥∇f(xk)
∥∥2
I

= nλmax(L̃)
∥∥∇f(xk)

∥∥2
I

The resulting convergence guarantee is

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L̃)δ

K

K
,

which matches classical gradient descent.

3.2. Heterogeneous Sketch Preconditioning

In contrast to the homogeneous case, the heterogeneous
problem fi(x) = 1

2x
⊤Lix cannot be so easily precondi-

tioned by a simple change of variables x̃ := D− 1
2x, as

every client i has its own matrix Li. However, this prob-
lem can be fixed via the following modification of Perm-1,
which scales the output according to the diagonal elements
of the local smoothness matrix Li:

C̃i :=
√

n/ [Li]πi,πi
eπi

e⊤πi
. (15)

In this case, E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I, and W = L.

Then inequality (12) is satisfied for θ ≥ 1.

5



Towards a Better Theoretical Understanding of Independent Subnetwork Training

If one inputs these results into (13), such convergence guar-
antee can be obtained

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
I

]
≤ 2λmax(L)δ

K

K
,

which matches the gradient descent result as well. Thus, we
can conclude that heterogeneity does not bring such a fun-
damental challenge in this scenario. In addition, the method
with Perm-1 is significantly better in terms of computa-
tional and communication complexity, as it requires calcu-
lation of the local gradients with respect to much smaller
submodels and transmits only sparse updates.

This construction also shows that for γ = 1/θ = 1

γλmin

(
L
− 1

2 WL
− 1

2

)
= 1,

which, after plugging into the bound for the iterates (14),
shows that the method basically converges in one iteration.
This observation indicates that sketch preconditioning can
be extremely efficient, although it uses only the diagonal
elements of matrices Li.

Now that we understand that the method can perform very
well in the special case of b̃i ≡ 0, we can move on to a
more complicated situation.

4. Irreducible Bias in the General Case
Now we look at the most general heterogeneous case with
different matrices and linear terms fi(x) ≡ 1

2x
⊤Lix −

x⊤ bi . In this instance, the gradient estimator (2) takes the
form

gk =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk −Cb, (16)

where Cb = 1
n

∑n
i=1 C

k
i bi. Herewith let us use a het-

erogeneous permutation sketch preconditioner (15), as in
Section 3.2. Then E

[
B

k
]
= I and E

[
Cb

]
= 1√

n
D̃ b,

where D̃b := 1
n

∑n
i=1 D

− 1
2

i bi. Furthermore, the expected
gradient estimator (16) results in E

[
gk

]
= xk − 1√

n
D̃b

and can be transformed in the following manner:

E
[
gk

]
= L

−1
Lxk ± L

−1
b− 1√

n
D̃ b

= L
−1 ∇f(xk) + L

−1
b− 1√

n
D̃ b︸ ︷︷ ︸

h

,
(17)

which reflects the decomposition of the estimator into the
optimally preconditioned true gradient and a bias, depending
on the linear terms bi.

4.1. Bias of the Method

Estimator (17) can be directly plugged (with proper condi-
tioning) into the general SGD update (2)

E
[
xk+1

]
= (1− γ)xk +

γ√
n
D̃ b

= (1− γ)
k+1

x0 +
γ√
n
D̃ b

k∑
j=0

(1− γ)j .
(18)

The resulting recursion (18) is exact, and its asymptotic
limit can be analyzed. Thus, for constant γ < 1, by using
the formula for the sum of the first k terms of a geometric
series, one gets

E
[
xk

]
= (1− γ)

k
x0 +

1− (1− γ)k√
n

D̃ b −→
k→∞

1√
n
D̃ b,

which shows that in the limit, the first initialization term
(with x0) vanishes while the second converges to 1√

n
D̃b.

This reasoning shows that the method does not converge to
the exact solution

E
[
xk

]
→ x∞ ̸= x⋆ ∈ argmin

x∈Rd

{
1

2
x⊤ Lx− x⊤ b

}
,

which for the positive-definite L can be defined as x⋆ =

L
−1

b, while x∞ = 1
n
√
n

∑n
i=1 D

− 1
2

i bi. So, in general,
there is an unavoidable bias. However, in the limit case:
n = d → ∞, the bias diminishes.

4.2. Generic Convergence Analysis

While the analysis in Section 4.1 is precise, it does not
allow us to compare the convergence of IST to standard
optimization methods. Therefore, we also analyze the non-
asymptotic behavior of the method to understand the con-
vergence speed. Our result is formalized in the following
theorem:

Theorem 4.1. Consider the method (2) with the estimator
(16) for the quadratic problem (10) with the positive-definite
matrix L ≻ 0. Assume that for every Di := Diag(Li) ma-

trices D− 1
2

i exist, scaled permutation sketches (15) are used,

and heterogeneity is bounded as E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2.

Then, for the step size chosen as follows:

0 < γ ≤ γβ :=
1/2− β

β + 1/2
,

where γc,β ∈ (0, 1] for β ∈ (0, 1/2), the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
0.5γK

(19)

+

(
1− γ

0.5β
+ γ

)
∥h∥2

L
+ γσ2,
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where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1

n3/2

∑n
i=1 D

− 1
2

i bi
and b = 1

n

∑n
i=1 bi.

Note that the derived convergence upper bound has a neigh-
borhood proportional to the bias of the gradient estimator
h and level of heterogeneity σ2. Some of these terms with
factor γ can be eliminated by decreasing the learning rate
(e.g., ∼ 1/

√
K). However, such a strategy does not di-

minish the term with a multiplier 2β−1 (1− γ), making
the neighborhood irreducible. Moreover, this term can be
eliminated for γ = 1, which also minimizes the first term
that decreases as 1/K. However, this step size choice maxi-
mizes the terms with factor γ. Thus, there exists an inherent
trade-off between convergence speed and the size of the
neighborhood.

In addition, convergence to the stationary point is measured
by the weighted L

−1
squared norm of the gradient. At the

same time, the neighborhood term depends on the weighted
by L norm of h. This fine-grained decoupling is achieved
by carefully applying the Fenchel-Young inequality and pro-
vides a tighter characterization of the convergence compared
to using standard Euclidean distances.

Homogeneous Case. In this scenario, every worker has
access to all data fi(x) ≡ 1

2x
⊤Lx− x⊤ b. Then diagonal

preconditioning of the problem can be used, as in the previ-
ous Section 3.1. This results in a gradient ∇f(x) = L̃x− b̃

for L̃ = D− 1
2LD− 1

2 and b̃ = D− 1
2 b. If this expression

is further combined with a permutation sketch scaled by
1/
√
n C′

i :=
√
neπi

e⊤πi
, the resulting gradient estimator is:

gk = xk − 1√
n
b̃ = L̃

−1 ∇f(xk) + h̃, (20)

for h̃ = L̃
−1

b̃− 1√
n
b̃. In this case, the heterogene-

ity term σ2 from the upper bound (19) disappears as
E
[∥∥gk − E

[
gk

]∥∥2
L

]
= 0, which significantly decreases

the neighborhood size. However, the bias term depending
on h̃ still remains, as the method does not converge to the ex-
act solution xk → x∞ ̸= x⋆ = L̃

−1
b̃ for positive-definite

L̃. Nevertheless the method’s fixed point x∞ = b̃ /
√
n

and solution x⋆ can coincide when L̃
−1

b̃ = 1√
n
b̃, which

means that b̃ is the right eigenvector of matrix L̃
−1

with
eigenvalue 1√

n
.

Let us contrast the obtained result (19) with the non-convex
rate of SGD (Khaled & Richtárik, 2023) with constant step
size γ for L-smooth and lower-bounded f

min
k<K−1

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− inf f

0.1γK
+ γLC, (21)

where constant C depends, for example, on the variance of
the stochastic gradient estimator. Observe that the first term

in the compared upper bounds (21) and (19) is almost iden-
tical and decreases with speed 1/K. However, unlike (19),
the neighborhood for SGD can be completely eliminated
by reducing the step size γ. This highlights a fundamental
difference between our results and unbiased methods. The
intuition behind this issue is that for SGD-type methods like
compressed gradient descent

xk+1 = xk − C(∇f(xk))

the gradient estimate is unbiased and enjoys the property
that variance

E
[
∥C(∇f(xk))−∇f(xk)∥2

]
≤ ω∥∇f(xk)∥2

goes down to zero as the method progresses because
∇f(xk) → ∇f(x⋆) = 0 in the unconstrained case. In
addition, any stationary point x⋆ ceases to be a fixed point
of the iterative procedure as

x⋆ ̸= x⋆ −∇f(C(x⋆)),

in the general case, unlike for compressed gradient descent
with both biased and unbiased compressors C. Thus, even if
the method—computing the gradient with a sparse model—
is initialized from the solution after one gradient step, the
method may get away from the optimum.

4.3. Comparison to Previous Works

Independent Subnetwork Training (Yuan et al., 2022).
There are several improvements over the previous works that
tried to theoretically analyze the convergence of distributed
IST.

The first difference is that our results allow for an almost
arbitrary level of model sparsification, i.e., will work for any
ω ≥ 0 as permutation sketches can be viewed as a special
case of compression operators (2.1). This represents a sig-
nificant improvement over the work of Yuan et al. (2022),
which demands3 ω ≲ µ2

/L2. Such a requirement is very
restrictive as the condition number L/µ of the loss func-
tion f is typically very large for any non-trivial optimization
problem. Thus, the sparsifier’s (4) variance ω = d/q−1 has
to be very close to 0 and q ≈ d. Thus, the previous theory
allows almost no compression (sparsification) because it is
based on the analysis of gradient descent with compressed
iterates (Khaled & Richtárik, 2019).

The second distinction is that the original IST work (Yuan
et al., 2022) considered a single node setting, and thus their
convergence bounds did not capture the effect of heterogene-
ity, which we believe is of crucial importance for distributed
settings (Chraibi et al., 2019; Shulgin & Richtárik, 2022).

3µ refers to a constant from the Polyak-Łojasiewicz (or strong
convexity) condition. In case of a quadratic problem with positive-
definite matrix A constant µ equals to λmin(A)
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(a) Function convergence for heterogeneous case.
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(b) Iterates convergence for homogeneous case.

Figure 1. Performance of simplified IST on a quadratic problem for varying step size values.

Moreover, the original work considers the Lipschitz continu-
ity of the loss function f , which is not satisfied for a simple
quadratic model. A more detailed comparison, including
additional assumptions on the gradient estimator made by
Yuan et al. (2022), is presented in the Appendix D.

FL with Model Pruning. In a recent work, Zhou et al.
(2022) made an attempt to analyze a variant of the FedAvg
algorithm with sparse local initialization and compressed
gradient training (pruned local models). They considered
a case of L-smooth loss and a sparsification operator sat-
isfying a similar condition to (2.1). However, they also
assumed that the squared norm of the stochastic gradient
is uniformly bounded (9), which is “pathological” (Khaled
et al., 2020)—especially in the case of local methods—as
it does not allow the analysis to capture the very important
effect of heterogeneity and can result in vacuous bounds.

In the Appendix D, we present some limitations of other
relevant previous approaches to training with compressed
models: too restrictive assumptions on the algorithm (Mo-
htashami et al., 2022) or non-applicability in our problem
setting (Chayti & Karimireddy, 2024). In addition, we
discuss the differences between IST and 3D parallelism
(Shoeybi et al., 2019).

5. Experiments
To empirically validate our theoretical framework and its im-
plications, we focus on carefully controlled setting that sat-
isfy the assumptions of our work. Specifically, we consider
a quadratic problem defined in (10), where Li = B⊤

i Bi.
Entries of the matrices Bi ∈ Rd×d, vectors bi ∈ Rd, and
initialization x0 ∈ Rd are generated from a standard Gaus-

sian distribution N (0, 1).

Heterogeneous setting. In Figure 1(a), we present the
performance of the simplified Independent Subnetwork
Training (IST) algorithm (update (2) with estimator (16))
for a heterogeneous problem. We fix the dimension d
to 1000 and the number of computing nodes n to 10.
We evaluate the logarithm of a relative functional error
log(f(xk)− f(x⋆))/(f(x0)− f(x⋆)), while the horizontal
axis denotes the number of communication rounds required
to achieve a certain error tolerance. According to our theory
(19) and (54), the method converges to a neighborhood of
the solution, which depends on the chosen step size. Specif-
ically, a larger step size allows for faster convergence but
results in a larger neighborhood.

Homogeneous setting. In Figure 1(b), we demonstrate the
convergence of the iterates xk for a homogeneous problem
with d = n = 50. The results are in close agreement
with our theoretical predictions for the estimator (20). We
observe that the distance to the method’s expected fixed
point x∞ = b̃ /

√
n decreases linearly for different step size

values. This confirms that IST may not converge to the
optimal solution x⋆ = L̃

−1
b̃ of the original problem (10)

in general (no interpolation) cases. In addition, there are
no visible oscillations in comparison to the heterogeneous
case.

5.1. Neural Network Results

We closely follow the experimental setup of Liao & Kyril-
lidis (2022) and use a one-hidden-layer neural network with
ReLU activations. For completeness, we repeat some of the
details here. ResNet-50 model (He et al., 2016) pre-trained
on ImageNet is used as a feature extractor and concatenated

8
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Figure 2. Experimental study of IST on a neural network problem.

with two fully connected layers. The resulting model is then
trained on the CIFAR-10 (Krizhevsky et al., 2009) dataset.
We take the outputs of the re-trained ResNet-50 as the input
features resulting in d = 2048, and the logit outputs of the
combined model are used as the labels.

The goal of the experiment is to study the optimization per-
formance of the IST method described in Section 2. Namely,
we consider Algorithm 1 with 1) Ci chosen as Perm-q (6)
for IST and 2) Ci = I for Distributed Gradient Descent
(DGD). Both methods are implemented across n = 10
nodes, employing constant step sizes γ, and one local step
per communication round.

Figure 2(a) shows the logarithm of the average loss of sub-
models after every iteration. The main observation is that
IST’s performance stagnates (starts oscillating) at some
point, unlike DGD’s. Namely, the studied method converges
to the neighborhood whose size is basically the same for
different step size values. This phenomenon distinguishes
the method from standard SGD. Moreover, larger γ speeds
up DGD and allows reaching the error floor (oscillation
level) faster for IST. These observations agree well with our
Theorems 4.1 and B.4 as the convergence upper bound (19)
has an irreducible term proportional to the bias norm ∥h∥2L
of the gradient estimator. This term can not be eliminated
completely by decreasing the step size γ, unlike SGD (21).

In Figure 2(b), we take a closer look at the training loss
during IST optimization. For this problem, the situation
differs from Figure 1(a) as for even smaller step size values
(γ ∈ {0.01, 0.02}), the method converges to a higher error
floor. Interestingly, if γ is decreased by 10 every 1000 itera-
tions, the method’s performance (red dotted curve) almost
does not change. This can be explained by the second term
(1− γ)β−1 ∥h∥2L from Theorem 4.1 convergence bound

(19), which increases for smaller γ. The observed effect
distinguishes IST from the typical training situation in deep
learning.

6. Conclusions and Future Work
In this study, we introduced a novel approach to under-
standing training with combined model and data parallelism
for a quadratic model. Our framework sheds light on dis-
tributed submodel optimization, which reveals the advan-
tages and limitations of Independent Subnetwork Training
(IST). Moreover, we accurately characterized the behavior
of the considered method in both homogeneous and hetero-
geneous scenarios without imposing restrictive assumptions
on the gradient estimators.

In future research, it would be valuable to explore exten-
sions of our findings to settings that are closer to scenarios,
such as cross-device federated learning. This could involve
investigating partial participation support, leveraging local
training benefits, and ensuring robustness against stragglers.

It would be interesting to generalize our analysis to non-
quadratic scenarios without relying on pathological assump-
tions. This work shows a somewhat negative result regard-
ing worst-case IST performance for standard Empirical Risk
Minimization problem (1). However, IST was recently
shown to be effective at solving an alternative optimiza-
tion problem formulation by Demidovich et al. (2023). An-
other potential promising research direction is algorithmic
modifications of the original IST to solve the fundamen-
tal problems highlighted in this work and acceleration of
training.
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Caldas, S., Konečny, J., McMahan, H. B., and Talwalkar,
A. Expanding the reach of federated learning by re-
ducing client resource requirements. arXiv preprint
arXiv:1812.07210, 2018. (Cited on page 2)

Charles, Z., Bonawitz, K., Chiknavaryan, S., McMahan, B.,
et al. Federated select: A primitive for communication-
and memory-efficient federated learning. arXiv preprint
arXiv:2208.09432, 2022. (Cited on page 2)

Chayti, E. M. and Karimireddy, S. P. Optimization
with access to auxiliary information. Transactions
on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?
id=kxYqgSkH8I. (Cited on pages 8 and 28)

Chen, Y., Chen, Z., Wu, P., and Yu, H. FEDOBD: Oppor-
tunistic block dropout for efficiently training large-scale
neural networks through federated learning. In Proceed-
ings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 3541–3549, 2023. (Cited on
page 2)

Chraibi, S., Khaled, A., Kovalev, D., Richtárik, P., Salim,
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Figure 3. Schematic depiction of a Neural Network trained with IST across two nodes (source: Yuan et al. (2022)).

A. Basic and Auxiliary Facts
L-matrix smoothness:

f(x+ h) ≤ f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Lh, h⟩ , ∀x, h ∈ Rd. (22)

Basic Inequalities. For all vectors a, b ∈ Rd and random vector X ∈ Rd:

2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, (23)

∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1 + β−1)∥b∥2, for β > 0 (24)

E ∥X − a∥2 = E ∥X −EX∥2 + ∥EX − a∥2. (25)

For a set of n ≥ 1 vectors a1, . . . , an ∈ Rd it holds∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥ai∥2. (26)

Lemma A.1 (Fenchel–Young inequality). For any function f and its convex conjugate f∗, Fenchel’s inequality (also known
as the Fenchel–Young inequality) holds for every x, y ∈ Rd

⟨x, y⟩ ≤ f(x) + f∗(y).

The proof follows from the definition of conjugate: f∗(y) := supx′ {⟨y, x′⟩ − f(x′)} ≥ ⟨y, x⟩ − f(x).

In the case of a quadratic function f(x) = β∥x∥2L, we can compute f∗(y) = 1
4β

−1∥y∥2L−1 . Thus

⟨x, y⟩ ≤ β∥x∥2L +
1

4
β−1∥y∥2L−1 . (27)

B. Proofs
B.1. Permutation Sketch Computations

All derivations in this section are performed for the n = d case.

14
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Classical Permutation Sketching. Perm-1: Ci = neπi
e⊤πi

, where π = (π1, . . . , πn) is a random permutation of [n].
For the homogeneous problem Li ≡ L:

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci LCi

]
= nDiag(L) (28)

Then
2W = E

[
LB

k
+B

k
L
]
= n (LDiag(L) + Diag(L)L) (29)

and
E
[
B

k
LB

k
]
= n2Diag(L)LDiag(L). (30)

By repeating basically the same calculations for C′
i =

√
neπi

e⊤πi
we have that

E
[
B

k
]
= E

[
1

n

n∑
i=1

C′
iLC

′
i

]
= Diag(L), (31)

and E
[
B

k
LB

k
]
= Diag(L)LDiag(L), 2W = E

[
LB

k
+B

k
L
]
= LDiag(L) + Diag(L)L.

B.1.1. HETEROGENEOUS SKETCH PRECONDITIONING.

We recall the following modification of Perm-1:

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (32)

Then

E
[
C̃iLiC̃i

]
= E

[
n[Li]

−1
πi,πi

eπi
e⊤πi

Lieπi
e⊤πi

]
=

1

n

n∑
j=1

nejIj,je
⊤
j = I. (33)

and

E
[
B

k
]

= E

[
1

n

n∑
i=1

C̃iLiC̃i

]

=
1

n

n∑
i=1

E
[
n[Li]

−1
πi,πi

eπi
e⊤πi

Lieπi
e⊤πi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

n[Li]
−1
j,j ej [Li]j,je

⊤
j

=
1

n

n∑
i=1

n∑
j=1

eje
⊤
j

= I.

Thus W = 1
2E

[
LB

k
+B

k
L
]
= L. On the left hand side of inequality (12), we have

E
[
B

k
LB

k
]

= E

 1

n

n∑
i=1

C̃iLiC̃i L
1

n

n∑
i=j

C̃jLjC̃j


=

1

n2

n∑
i,j=1

E
[
C̃iLiC̃i L C̃jLjC̃j

]
=

n∑
i,j=1

eie
⊤
i L eje

⊤
j

= IL I

= L .
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B.2. Interpolation Case: Proof of Theorem 3.1

In the quadratic interpolation regime, the linear term is zero fi(x) =
1
2x

⊤Lix, and the gradient estimator has the form

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i LiC

k
i x

k = B
k
xk. (34)

Proof. First, we prove the stationary point convergence result (13).

Using the L-smoothness of function f , we get

f(xk+1)
(2)
= f(xk − γgk)

(7)
≤ f(xk)−

〈
∇f(xk), γgk

〉
+

γ2

2

∥∥gk∥∥2
L

(11)
= f(xk)− γ

〈
Lxk,B

k
xk

〉
+

γ2

2

∥∥∥Bk
xk

∥∥∥2
L

= f(xk)− γ(xk)⊤ LB
k
xk +

γ2

2
(xk)⊤ B

k
LB

k
xk.

After applying conditional expectation, using its linearity, and the fact that

x⊤Ax =
1

2
x⊤ (

A+A⊤)x
we get

E
[
f(xk+1) | xk

]
≤ f(xk)− γ(xk)⊤E

[
LB

k
]
xk +

γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(xk)⊤ W xk +
γ2

2
(xk)⊤E

[
B

k
LB

k
]
xk

= f(xk)− γ(∇f(xk))⊤ L
−1

WL
−1 ∇f(xk)

+
γ2

2
(∇f(xk))⊤ L

−1 E
[
B

k
LB

k
]
L
−1 ∇f(xk)

(12)
≤ f(xk)− γ∥∇f(xk)∥2

L
−1

WL
−1 +

θγ2

2
∥∇f(xk)∥2

L
−1

WL
−1

= f(xk)− γ (1− θγ/2) ∥∇f(xk)∥2
L

−1
WL

−1

≤ f(xk)− γ

2
∥∇f(xk)∥2

L
−1

WL
−1 ,

where the last inequality holds for the stepsize γ ≤ 1
θ .

Rearranging gives ∥∥∇f(xk)
∥∥2
L

−1
WL

−1 ≤ 2

γ

(
f(xk)− E

[
f(xk+1) | xk

])
,

which after averaging gives the desired result

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1
WL

−1

]
≤ 2

γK

K−1∑
k=0

(f(xk)− E
[
f(xk+1)

]
) =

2
(
f(x0)− E

[
f(xK)

])
γK

. (35)

Now we show the result for the iterates convergence (14).
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Expectation conditioned on xk:

E
[
∥xk+1 − x⋆∥2

L

]
= E

[
∥xk − γgk − x⋆∥2

L

]
= ∥xk − x⋆∥2

L
− 2γ

〈
xk − x⋆,E

[
LB

k
]
(xk − x⋆)

〉
+γ2

〈
E
[
B

k
LB

k
]
(xk − x⋆), xk − x⋆

〉
x⋆=0
= ∥xk − x⋆∥2

L
− 2γ

〈
xk − x⋆,W(xk − x⋆)

〉
+γ2

〈
xk − x⋆,E

[
B

k
LB

k
]
(xk − x⋆)

〉
(12)
≤ ∥xk − x⋆∥2

L
− 2γ

〈
xk − x⋆,W(xk − x⋆)

〉
+ θγ2

〈
xk − x⋆,W(xk − x⋆)

〉
= ∥xk − x⋆∥2

L
− 2γ (1− θγ/2)

∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
L

− 1
2 WL

− 1
2

γ≤1/θ

≤ ∥xk − x⋆∥2
L
− γ

∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
L

− 1
2 WL

− 1
2

≤ ∥xk − x⋆∥2
L
− γλmin

(
L
− 1

2 WL
− 1

2

)∥∥∥L 1
2 (xk − x⋆)

∥∥∥2
=

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))
∥xk − x⋆∥2

L
.

After unrolling the recursion we obtain the convergence result

E
[
∥xk+1 − x⋆∥2

L

]
≤

(
1− γλmin

(
L
− 1

2 WL
− 1

2

))k+1

∥x0 − x⋆∥2
L
.

B.3. Non-zero Solution

As a reminder, in the most general case, the problem has the form

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi .

with the gradient estimator

gk =
1

n

n∑
i=1

Ck
i∇fi(C

k
i x

k) =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi
)
= B

k
xk − 1

n

n∑
i=1

Ck
i bi . (36)

General Calculations for Estimator (16). In the heterogeneous case, the following sketch preconditioner is used

C̃i :=
√

n/ [Li]πi,πi
eπi

e⊤πi
.

Then E
[
B

k
]
= I (calculation was done as in Section B.1.1) and

E
[
Cb

]
=

1

n

n∑
i=1

E
[
C̃k

i bi

]
=

1

n

n∑
i=1

E
[√

n[Li]
− 1

2
πi,πieπi

e⊤πi
bi

]
=

1

n

n∑
i=1

1

n

n∑
j=1

√
n[Li]

− 1
2

j,j ej [bi]j
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=
1

n

n∑
i=1

1

n

√
nD

− 1
2

i bi

=
1√
n

1

n

n∑
i=1

D
− 1

2
i bi

=
1√
n
D- 12 b︸ ︷︷ ︸
D̃ b

B.3.1. CONVERGENCE ANALYSIS FOR HETEROGENEOUS CASE: PROOF OF THEOREM 4.1.

Here we formulate and further prove a more general version of Theorem 4.1, which is obtained as a special case of the next
result for c = 1/2.
Theorem B.1. Consider the method (2) with estimator (16) for a quadratic problem (10) with positive-definite matrix
L ≻ 0. Then, if for every Di := Diag(Li) matrices D− 1

2
i exist, scaled permutation sketches Ci :=

√
n[L

− 1
2

i ]πi,πi
eπi

e⊤πi

are used and heterogeneity is bounded as E
[∥∥gk − E

[
gk

]∥∥2
L

]
≤ σ2. Then, the step size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (37)

where γc,β ∈ (0, 1] for β + c < 1, the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L
+

γ

2c
σ2. (38)

where L = 1
n

∑n
i=1 Li, h = L

−1
b− 1√

n
1
n

∑n
i=1 D

− 1
2

i bi and b = 1
n

∑n
i=1 bi.

Proof. By using L-smoothness

E
[
f(xk+1) | xk

] (7)
≤ f(xk)− γ

〈
∇f(xk),E

[
gk

]〉
+

γ2

2
E
[
∥gk∥2

L

]
(17),(25)
= f(xk)− γ

〈
∇f(xk),L

−1 ∇f(xk) + h
〉

+
γ2

2

(∥∥E [
gk

]∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(17)
= f(xk)− γ

(〈
∇f(xk),L

−1 ∇f(xk)
〉
+
〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∥L−1 ∇f(xk) + h
∥∥∥2
L
+ E

[∥∥gk − E
[
gk

]∥∥2
L

])
(23)
= f(xk)− γ

(∥∥∇f(xk)
∥∥2
L

−1 +
〈
∇f(xk), h

〉)
+

γ2

2
E
[∥∥gk − E

[
gk

]∥∥2
L

]
+
γ2

2

(∥∥∇f(xk)
∥∥2
L

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L

)
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2
σ2

−γ (1− γ)
〈
∇f(xk), h

〉
+

γ2

2
∥h∥2

L
,

where the last inequality follows from the grouping of similar terms and bounded heterogeneity

E
[∥∥gk − E

[
gk

]∥∥2
L

]
= E

[∥∥∥gk −
(
L
−1 ∇f(xk) + h

)∥∥∥2
L

]
(39)

= E

[∥∥∥∥Bk
xk −Cb−

(
xk − 1√

n
D̃b

)∥∥∥∥2
L

]
≤ σ2. (40)
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Next, using a Fenchel-Young inequality (27) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L

−1 +
γ2

2

(
∥h∥2

L
+ σ2

)
+γ (1− γ)

[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
≤ f(xk)− γ (1− γ/2 − β (1− γ))

∥∥∇f(xk)
∥∥2
L

−1

+γ
{(

β−1 (1− γ) +
γ

2

)
∥h∥2

L
+

γ

2
σ2

}
, (41)

where in the last inequality we grouped similar terms and used the fact that 0.25 < 1.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0, we choose the step size using

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (42)

where γc,β > 0 for β + c < 1. This means that β can not arbitrarily grow to diminish β−1.
Then, after standard manipulations and unrolling the recursion

γc
∥∥∇f(xk)

∥∥2
L

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ2

2
σ2 (43)

we obtain
c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L
+

γ

2
σ2. (44)

B.3.2. HOMOGENEOUS CASE

The main difference compared to the result in the previous subsection is that the gradient estimator expression (20) holds
deterministically (without expectation E). That is why gk = E

[
gk

]
and heterogeneity term σ2 equals to 0.

We provide the full statement and proof for the homogeneous result discussed in 4.2.
Theorem B.2. Consider the method (2) with estimator (20) for a homogeneous quadratic problem (10) with positive-definite
matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled permutation sketch C′
i =

√
neπie

⊤
πi

is used and the step
size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (45)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
cγK

+

(
1− γ

cβ
+

γ

2c

)
∥h∥2

L̃
, (46)

where L̃ = D− 1
2LD− 1

2 , h = L̃
−1

b̃− 1√
n
b̃ and b̃ = D− 1

2 b.

Proof. By using L-smoothness

E
[
f(xk − γgk) | xk

] (7)
≤ f(xk)−

〈
∇f(xk), γE

[
gk

]〉
+

γ2

2
E
[∥∥gk∥∥2

L̃

]
≤ f(xk)− γ

〈
∇f(xk), L̃

−1 ∇f(xk) + h
〉
+

γ2

2

∥∥∥L̃−1 ∇f(xk) + h
∥∥∥2
L̃

(23)
= f(xk)− γ

(〈
∇f(xk), L̃

−1 ∇f(xk)
〉
+

〈
∇f(xk), h

〉)
+
γ2

2

(∥∥∇f(xk)
∥∥2
L̃

−1 + 2
〈
∇f(xk), h

〉
+ ∥h∥2

L̃

)
= f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃
− γ (1− γ)

〈
∇f(xk), h

〉
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Next by using a Fenchel-Young inequality (27) for
〈
∇f(xk),−h

〉
and 1− γ ≥ 0

E
[
f(xk+1) | xk

]
≤ f(xk)− γ (1− γ/2)

∥∥∇f(xk)
∥∥2
L̃

−1 +
γ2

2
∥h∥2

L̃

+γ (1− γ)
[
β∥∇f(xk)∥2

L̃
−1 + 0.25β−1∥h∥2

L̃

]
= f(xk)− γ (1− γ/2 − β(1− γ))

∥∥∇f(xk)
∥∥2
L̃

−1

+γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

Now to guarantee that 1− γ/2 − β(1− γ) ≥ c > 0 we choose the step size as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (47)

where γc,β ≥ 0 for β + c < 1.
Then after standard manipulations and unrolling the recursion

γc
∥∥∇f(xk)

∥∥2
L̃

−1 ≤ f(xk)− E
[
f(xk+1) | xk

]
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
(48)

we obtain the formulated result

c

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
L̃

−1

]
≤

f(x0)− E
[
f(xK)

]
γK

+
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
. (49)

Remark B.3. 1) The first term in the convergence upper bound (46) is minimized by maximizing product c · γ, which
motivates to choose c > 0 and γ ≤ 1 as large as possible. Although due to the constraint on the step size (and β > 0)

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (50)

constant c ∈ (0, 1). So, by maximizing c the value γc,β becomes smaller, thus there is a trade-off.

2) The second term or the neighborhood size (multiplier in front of ∥h∥2
L̃

)

Ψ(β, γ) :=
β−1 (1− γ) + γ/2

c
=

β−1 (1− γ) + γ/2

1− γ/2− β(1− γ)
(51)

can be numerically minimized (e.g. by using WolframAlpha) with constraints γ ∈ (0, 1] and β > 0. The solution of such
optimization problem is γ⋆ ≈ 1 and β⋆ ≈ ξ ∈ {3.992, 2.606, 2.613}. In fact, Ψ(β⋆, γ⋆) ≈ 0.5.

Functional Gap Convergence. Note that for the quadratic optimization problem (10)∥∥∇f(xk)
∥∥2
L̃

−1 =
〈
L̃xk − b̃, L̃

−1
(
L̃xk − b̃

)〉
= 2

(
f(xk)− f(x⋆)

)
. (52)

Then by rearranging and subtracting f⋆ := f(x⋆) from both sides of inequality (48) we obtain

E
[
f(xk+1) | xk

]
− f⋆ ≤ f(xk)− f⋆ − γc

∥∥∇f(xk)
∥∥2
L̃

−1 + γ
(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

(52)
=

(
f(xk)− f⋆

)
− γc · 2

(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

= (1− 2γc)
(
f(xk)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

After unrolling the recursion

E
[
f(xk+1) | xk

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+ γ

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃

k∑
i=0

(1− 2γc)
i

≤ (1− 2γc)
k (

f(x0)− f⋆
)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
.

This result is formalized in the following Theorem.
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Theorem B.4. Consider the method (2) with estimator (20) for a homogeneous quadratic problem (10) with positive-definite
matrix Li ≡ L ≻ 0. Then if exists D− 1

2 for D := Diag(L), scaled permutation sketch C′
i =

√
neπie

⊤
πi

is used and the step
size is chosen as

0 < γ ≤ γc,β :=
1− c− β

β + 1/2
, (53)

where γc,β > 0 for β + c < 1. Then the iterates satisfy

E
[
f(xk)

]
− f⋆ ≤ (1− 2γc)

k (
f(x0)− f⋆

)
+

1

2c

(
β−1 (1− γ) + γ/2

)
∥h∥2

L̃
, (54)

where h = L̃
−1

b̃− 1√
n
b̃ and L̃ = D− 1

2LD− 1
2 , b̃ = D− 1

2 b.

This result shows that for a proper choice of the step size γ = 1 and constant c = 1/2, the functional gap can converge in
basically one iteration to the neighborhood of size

∥h∥2
L̃
=

〈
L̃

(
L̃
−1

b̃− 1√
n
b̃

)
, L̃

−1
b̃− 1√

n
b̃

〉
,

which equals zero if L̃
−1

b̃ = 1√
n
b̃. This condition is the same as the condition we obtained at the end of Subsection 4.2

with asymptotic analysis of the iterates in the homogeneous case.

Discussion of the Trace. Consider a positive-definite L ≻ 0 such that ∃D− 1
2 . Thus L̃ = D− 1

2LD− 1
2 has only ones on

the diagonal and tr(L̃) = n. Then

n · tr(L̃−1
) = tr(L̃)tr(L̃

−1
) = (λ1 + · · ·+ λn)

(
1

λ1
+ · · ·+ 1

λn

)
≥ n2,

where the last inequality is due to the relation between harmonic and arithmetic means. Therefore tr(L̃
−1

) = λ−1
1 + · · ·+

λ−1
n ≥ n and sum of L̃

−1
eigenvalues has to be greater than n.

B.4. Generalization to n ̸= d Case.

Our results can be generalized in a similar way as in (Szlendak et al., 2022).

1) d = qn, for integer q ≥ 1. Let π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. Then for each i ∈ {1, . . . , n}
define

C′
i :=

√
n ·

qi∑
j=q(i−1)+1

eπj
e⊤πj

. (55)

Matrix E
[
B

k
]

for the homogeneous preconditioned case can be computed as follows:

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]

=
1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

neπj
e⊤πj

L̃ eπj
e⊤πj


=

n∑
i=1

qi∑
j=q(i−1)+1

E
[
eπj

e⊤πj
L̃ eπj

e⊤πj

]

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d

d∑
l=1

ele
⊤
l L̃ ele

⊤
l

=

n∑
i=1

qi∑
j=q(i−1)+1

1

d
Diag(L̃)
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= n
q

d
Diag(L̃)

= Diag(L̃)

= I.

As for the linear term

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E

 qi∑
j=q(i−1)+1

√
neπj

e⊤πj
b̃


=

1√
n

n∑
i=1

qi∑
j=q(i−1)+1

1

d
I b̃ =

√
nq

d
I b̃ =

1√
n
b̃ .

2) n = qd, for integer q ≥ 1. Define the multiset S := {1, . . . , 1, 2, . . . , 2, . . . , d, . . . , d}, where each number occurs
precisely q times. Let π = (π1, . . . , πn) be a random permutation of S. Then for each i ∈ {1, . . . , n} define

C′
i :=

√
d · eπi

e⊤πi
. (56)

E
[
B

k
]

= E

[
1

n

n∑
i=1

C′
i L̃C′

i

]
=

1

n

n∑
i=1

E
[
deπi

e⊤πi
L̃ eπi

e⊤πi

]
=

1

n

n∑
i=1

1

d

d∑
j=1

deje
⊤
j L̃ eje

⊤
j =

1

n

n∑
i=1

Diag(L̃) = I.

The linear term

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b̃

]
=

1

n

n∑
i=1

E
[√

deπi
e⊤πi

b̃
]
=

√
d

n

n∑
i=1

1

d
I b̃ =

1√
d
b̃ .

To sum up both cases, in a homogeneous preconditioned setting E
[
B

k
]
= I and

E [C′ b] = E

[
1

n

n∑
i=1

C′
i b

]
= b̃ /

√
min(n, d).

Similar modifications and calculations can be performed for heterogeneous scenarios. The case when n does not divide d
and vice versa is generalized using constructions from (Szlendak et al., 2022).

C. Generalization Beyond Quadratics
In this section our analysis is revisited for the more general case of smooth (non-convex) functions and class of compressors.
While this result may not be as nuanced as for the quadratic model, it still does not require restrictive assumptions on
gradient estimator, unlike prior works.

C.1. Preliminary Facts

Our convergence analysis relies on the following Lemma.

Lemma C.1 (Descent Lemma (Li et al., 2021)). Suppose that function f is L-smooth (7) and let xk+1 := xk − γgk. Then
for any gk ∈ Rd and γ > 0, we have

f(xk+1) ≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 − (

1

2γ
− L

2

)
∥xk+1 − xk∥2 + γ

2

∥∥gk −∇f(xk)
∥∥2 , (57)
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If a continuously differentiable function f is L-smooth (7), then for any x, y ∈ Rd, it is satisfied

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (58)

Lemma C.2 (Khaled & Richtárik (2023)). Let f be L-smooth (7) and f inf -lower bounded. Then for any x ∈ Rd we have:

∥∇f(x)∥2 ≤ 2L(f(x)− f inf) (59)

We also use introduced by Szlendak et al. (2022) notion of AB inequality for a collection of (correlated) compressors Ci.
Definition C.3 (AB inequality). A collection of random unbiased operators C1, . . . , Cn : Rd → Rd satisfies AB inequality
if there exist constants A,B ≥ 0 such that

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(xi)−
1

n

n∑
i=1

xi

∥∥∥∥∥
2

≤ A
1

n

n∑
i=1

∥xi∥2 −B

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

(60)

for all x1, . . . , xn ∈ Rd. For brevity: {Ci}ni=1 ∈ C(A,B).

This definition is handy for analyzing algorithms like IST as it allows to generalize analysis for the case when compressors
C1, . . . , Cn are dependent, which happens when the parameters of the model are randomly decomposed in a non-overlapping
fashion. Moreover, AB inequality is satisfied for unbiased compressors (2.1): Ci ∈ U(ωi) for all i.

Denote wk
i := Ck

i (x
k). If compressors Ck

i satisfy the perfect reconstruction property 1
n

∑n
i=1 Ck

i (x) = x, which makes
sense for the IST formulation, then method (5) can be reformulated in the following way

xk+1 =
1

n

n∑
i=1

(
wk

i − γQk
i

(
∇fi(w

k
i )
))

=
1

n

n∑
i=1

Ck
i (x

k)− γ
1

n

n∑
i=1

Qk
i

(
∇fi(w

k
i ))

)
= xk − γ

1

n

n∑
i=1

Qk
i

(
∇fi(Ck

i (x
k))

)
︸ ︷︷ ︸

gk

. (61)

This reformulation makes the algorithm amenable to analysis using Lemma C.1.

C.2. Convergence Analysis

Theorem C.4. Let f and fi be L and Li-smooth (7) respectively. Collection of unbiased compressors Ck
i ,Qk

i satisfy
AB-inequality (60) and property 1

n

∑n
i=1 Ck

i (x) = x for every k. Then for step size chosen as

γ ≤ min

{
1

L
,

√
1 + 2/(ALmK) − 1

2

}

the iterations of Algorithm (61) for any K ≥ 1 satisfy

min
0≤k≤K−1

∥∥∇f(xk)
∥∥2 ≤

6
(
f(x0)− f inf

)
γK

+ 2
(
1 + (1 + β−1)A

)
max

k
∥xk∥2L2

ω + 4ALmax(1 + β)∆, (62)

where β ≤ γ, L2
ω = 1

n

∑n
i=1 L

2
iωi, Lmax = maxi Li, and ∆ = 1

n

∑n
i=1

(
f inf − f inf

i

)
.

Note that minimum over squared gradient norm
∥∥∇f(xk)

∥∥2 and maximum over model weights ∥xk∥2 in (62) can be
replaced with with weighted sums due to proof step (68). Let us contrast the obtained convergence result with what we
have for the quadratic case in (19). The first term is basically the same and decreases as 1/K for constant step size γ. The
other terms are different as they involve the norm of the iterates ∥xk∥2 throughout training. However, they also can not be
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decreased by diminishing the step size, which is similar to the quadratic case. Thus, we showed that for the more general
case of smooth losses, IST can converge to the irreducible neighborhood of the stationary point. The obtained conclusions
highlight the generalizability of our insights beyond the quadratic model.

Moreover, there is an additional part representing the heterogeneity of the distributed problem proportional to ∆. In contrast
to the term involving ∥xk∥2 it can be eliminated in the homogeneous case when functions have a shared “minimizer”
f inf
i = f inf , which may hold in the overparametrized regime.

Contrasting to prior works. Khaled & Richtárik (2019) analyzed a similar method with unbiased compression in the single
node and strongly convex setting. Yuan et al. (2022) extended their results to a finite-sum case with random sampling of one
client. However, prior works suffer from a very strong condition on the sparsification variance ω ≲ µ/L, which is not the
case for our analysis. Another important difference is that convergence bounds in (Khaled & Richtárik, 2019) and (Yuan
et al., 2022) depend on the norm of the optimal solution x⋆ = argmin f(x), which may not exist in the non-convex setting.

Proof. We start with the Descent Lemma (57)

f(xk+1) ≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 − (

1

2γ
− L

2

)
∥xk+1 − xk∥2 + γ

2

∥∥gk −∇f(xk)
∥∥2

≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 + γ

2

∥∥gk −∇f(xk)
∥∥2 , (63)

where the step size is chosen as γ ≤ 1/L.

Next prove an auxiliary result needed to work with the last term of (63)

E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(Ck
i (x

k))−∇fi(x
k)

∥∥∥∥∥
2

(26)
≤ 1

n

n∑
i=1

E
∥∥∇fi(Ck

i (x
k))−∇fi(x

k)
∥∥2

(58)
≤ 1

n

n∑
i=1

L2
i E

∥∥Ck
i (x

k)− xk
∥∥2

(3)
≤ 1

n

n∑
i=1

L2
iωi∥xk∥2

= L2
ω∥xk∥2, (64)

for L2
ω := 1

n

∑n
i=1 L

2
iωi.

Recall the expression for gk = 1
n

∑n
i=1 Qk

i

(
∇fi(w

k
i )
)

and wk
i := Ck

i (x
k). Now we can upper bound the last term of (63)

E
∥∥gk −∇f(xk)

∥∥2 = E

∥∥∥∥∥ 1n
n∑

i=1

Qk
i

(
∇fi(w

k
i )
)
−∇fi(x

k)

∥∥∥∥∥
2

(24)
≤ 2E

∥∥∥∥∥ 1n
n∑

i=1

Qk
i

(
∇fi(w

k
i )
)
−∇fi(w

k
i )

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(w
k
i )−∇fi(x

k)

∥∥∥∥∥
2

(60)
≤ 2

A 1

n

n∑
i=1

E
∥∥∇fi(w

k
i )
∥∥2 −BE

∥∥∥∥∥ 1n
n∑

i=1

∇fi(w
k
i )

∥∥∥∥∥
2


+2E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(Ck
i (x

k))−∇fi(x
k)

∥∥∥∥∥
2

(64)
≤ 2A

1

n

n∑
i=1

E
∥∥∇fi(Ck

i (x
k))±∇fi(x

k)
∥∥2 + 2

1

n

n∑
i=1

L2
iωi∥xk∥2

(24)
≤ 2A

1

n

n∑
i=1

[(
1 + β−1

)
E
∥∥∇fi(Ck

i (x
k))−∇fi(x

k)
∥∥2 + (1 + β)

∥∥∇fi(x
k)
∥∥2]+ 2L2

ω∥xk∥2
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(64)
≤ 2A

1

n

n∑
i=1

[(
1 + β−1

)
L2
iωi∥xk∥2 + (1 + β)

∥∥∇fi(x
k)
∥∥2]+ 2L2

ω∥xk∥2

(59)
≤ 2

(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 2A (1 + β)

1

n

n∑
i=1

2Li

[
fi(x

k)− f inf
i

]
= 2

(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 4A (1 + β)

1

n

n∑
i=1

Li

[
fi(x

k)− f inf − f inf
i + f inf

]
≤ 2

(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 4A (1 + β)Lmax

1

n

n∑
i=1

[
fi(x

k)− f inf + f inf − f inf
i

]
= 2

(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 4A (1 + β)Lm

[
f(xk)− f inf +

1

n

n∑
i=1

(
f inf − f inf

i

)
︸ ︷︷ ︸

∆

]
,

where Lm = Lmax = maxLi.

Combined with (63) and denoting δk := f(xk)− f inf it leads to

δk+1 ≤ δk − γ

2

∥∥∇f(xk)
∥∥2 + 2γA (1 + β)Lm

(
f(xk)− f inf

)
+

γ

2

[
2
(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 4A (1 + β)Lm∆

]
= (1 + 2γALm (1 + β)) δk − γ

2

∥∥∇f(xk)
∥∥2

+
γ

2

[
2
(
1 +A

(
1 + β−1

))
L2
ω∥xk∥2 + 4A (1 + β)Lm∆

]
︸ ︷︷ ︸

Ck

.

(65)

After rearranging we obtain ∥∥∇f(xk)
∥∥2 ≤ 2

γ

(
1 + 2γA (1 + β)Lm︸ ︷︷ ︸

D

)
δk − 2

γ
δk+1 + Ck. (66)

Next by following technique by Stich (2019) we introduce an exponentially decaying weighting sequence

wk =
wk−1

1 +D
≤ · · · ≤ w−1.

Multiplying recursion (66) by wk, we get

wk
∥∥∇f(xk)

∥∥2 ≤ 2wk (1 +D)

γ
δk − 2wk

γ
δk+1 + wkCk

=
2wk−1

γ
δk − 2wk

γ
δk+1 + wkCk

After summing up both sides for k from 0 to K − 1, and telescoping terms

K−1∑
k=0

wk
∥∥∇f(xk)

∥∥2 ≤ 2w−1

γ
δ0 − 2wK−1

γ
δK +

K−1∑
k=0

wkCk. (67)

Now define WK :=
∑K−1

k=0 wk and divide both sides of (67) by WK

min
0≤k≤K−1

∥∥∇f(xk)
∥∥2 ≤ 1

W k

K−1∑
k=0

wk
∥∥∇f(xk)

∥∥2 ≤ 2w−1

W kγ
δ0 − 2wK−1

W kγ
δK +

1

W k

K−1∑
k=0

wkCk. (68)
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By using the fact that

W k =

K−1∑
k=0

wk ≥
K−1∑
k=0

min
0≤i≤K−1

wi = KwK−1 =
Kw−1

(1 +D)K
,

we obtain

min
k

∥∥∇f(xk)
∥∥2 ≤ 2

(1 + 2γA (1 + β)Lm)
K

γK
δ0 +max

k
Ck. (69)

Next to simplify the obtained upper bound we use the fact that 1 + x ≤ exp(x)

(1 + 2γA (1 + β)Lm)
K ≤ (exp (2γA (1 + β)Lm))

K
= exp (2γA (1 + β)LmK) ≤ exp(1) ≤ 3,

where the second inequality for β ≤ γ holds if

2ALmK︸ ︷︷ ︸
A′

K

γ (1 + γ) ≤ 1.

Then condition A′
Kγ +A′

Kγ2 − 1 ≤ 0 holds for

γ ≤
√
1 + 4/A′

K − 1

2
=

√
1 + 2/(ALmK) − 1

2
.

As a result (69) leads to

min
k

∥∥∇f(xk)
∥∥2 ≤

6
(
f(x0)− f inf

)
γK

+ 2
(
1 +A

(
1 + β−1

))
L2
ω max

k
∥xk∥2 + 4A (1 + β)Lm∆,

where β ≤ γ, ∆ = 1
n

∑n
i=1

(
f inf − f inf

i

)
, and L2

ω = 1
n

∑n
i=1 L

2
iωi.

D. Comparison to Related Works
Overview of theory provided in the original IST work (Yuan et al., 2022). The authors consider the following method

xk+1 = C(xk)− γ∇fik(C(xk)), (70)

where [C(x)]i = xi · Be(p)4 is a Bernoulli sparsifier and ik is sampled uniformly at random from [n].

The analysis in (Yuan et al., 2022) relies on the assumptions

1. Li-smoothness of individual losses fi;

2. Q-Lipschitz continuity of f : |f(x)− f(y)| ≤ Q∥x− y∥;

3. Error bound (or PŁ-condition): ∥∇f(x)∥ ≥ µ∥x⋆ − x∥, where x⋆ is the global optimum;

4. Stochastic gradient variance: E
[
∥∇fik(x)∥

2
]
≤ M +Mf ∥∇f(x)∥2;

5. E
[
∇fik(C(xk)) |xk

]
= ∇f(xk) + ε, ∥ε∥ ≤ B.

Convergence result from Theorem 1 (Yuan et al., 2022) for step size γ = 1/(2Lmax):

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(

BQ

2Lmax
+

5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (71)

4Bp(x) :=

{
x/p with probability p
0 with probability 1− p
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where α := 1
2Lmax

(
1− Mf

2

)
− 5ωLmax

2µ2 , ω := 1
p − 1 < µ2

10L2
max

, and Lmax := maxi Li.

If Lipschitzness and Assumption 5 are replaced with norm condition:

∥E
[
∇fik(C(xk)) |xk

]
−∇f(xk)∥ ≤ θ∥∇f(xk)∥ (72)

they obtain the following (for step size γ = 1/2Lmax)

min
k∈{1,...,K}

E
[∥∥∇f(xk)

∥∥2] ≤ f(x0)− f(x⋆)

α(K + 1)
+

1

α
·
(
5Lmaxω

2
∥x⋆∥2 + M

4Lmax

)
, (73)

where α = 1
2Lmax

(
1
2 − θ − Mf

2

)
− 5ωLmax

2µ2 and ω = 1
p − 1 < µ2

5L2
max

(
1
2−θ−

Mf
2

) .

Remark D.1. The original method (70) does not incorporate gradient sparsification, which can create a significant disparity
between theory and practice. This is because the gradient computed at the compressed model, denoted as ∇f(C(x)), is not
guaranteed to be sparse and representative of the submodel computations. Such modification of the method also significantly
simplifies theoretical analysis, as using a single sketch (instead of CLC) allows for an unbiased gradient estimator.

Through our analysis of the IST gradient estimator in Equation (20), we discover that conditions—such as Assumption 5
and Inequality (72)—are not satisfied, even in the homogeneous setting for a simple quadratic problem. Furthermore, it is
evident that such conditions are also not met for logistic loss. At the same time, in general, it is expected that insightful
theory for general (non-)convex functions should yield appropriate results for quadratic problems. Additionally, it remains
unclear whether the norm condition (72) is satisfied in practical scenarios. The situation is not straightforward—even for
quadratic problems—as we show in the expression for σ2 in Equation (39).

Masked Training (Mohtashami et al., 2022). The authors consider the following “Partial SGD” method

x̂k = xk + δxk = xk − (1− p)⊙ xk

xk+1 = xk − γp⊙∇f(x̂k, ξk),
(74)

where ∇f(x, ξ) is an unbiased stochastic gradient estimator of a L-smooth loss function f , ⊙ is an element-wise product,
and p is a binary sparsification mask.

Mohtashami et al. (2022) make the following “bounded perturbation” assumption

max
k

∥δxk∥
max {∥pk ⊙∇f(xk)∥, ∥pk ⊙∇f(x̂k)∥}

≤ 1

2L
. (75)

This inequality may not hold for a simple convex case. Consider a function f(x) = 1
2x

⊤Ax, for

A =

(
a 0
0 c

)
, x0 =

(
x1

x2

)
, p0 =

(
0
1

)
. (76)

Then condition (75) (at iteration k = 0) will be equivalent to

x1

cx2
≤ 1

2a
⇔ 2 ≤ 2a

c
≤ x2

x1
,

which clearly does not hold for an arbitrary initialization x0.

In addition, the convergence bound in Theorem 1 (Mohtashami et al., 2022) suggests choosing the step size as γ0αk, where

αk = min

{
1,

〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
∥pk ⊙∇f(x̂k)∥2

}
(77)

is not guaranteed to be positive to the inner product
〈
pk ⊙∇f(xk), pk ⊙∇f(x̂k)

〉
, which may lead to non-convergence of

the method.
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Optimization with access to auxiliary information framework (Chayti & Karimireddy, 2024) suggests modeling
training with compressed models via performing gradient steps with respect to function h(x) := EM [f(1M ⊙ x)]. This
function allows access to a sparse version of the original model f(x). They impose the following bounded Hessian
dissimilarity assumption on h and f

∥∥∇2f(x)− EM
[
DM∇2f(1M ⊙ x)DM

]∥∥
2
≤ δ, (78)

where 1M and DM = Diag(1M) refer to a binary vector and matrix sparsification masks.

This approach relies on variance-reduction and requires gradient computations on the full model x, and thus it is not suitable
for our problem setting.

Comparison to the work of Liao & Kyrillidis (2022). Next, we try our best to briefly and accurately represent some of
the previous work’s findings and comment on the differences.

The authors provide a high probability convergence analysis of a “Single Hidden-Layer Neural Network with ReLU
activations” based on the Neural Tangent Kernel (NTK) framework. The network’s first layer weights are initialized based
on N (0, κ2I) and the weight vector of the second layer is initialized uniformly at random from {−1, 1}. In contrast, we do
not make any assumptions on the initialized parameters x (in our notation).

The second differentiation is assumptions on the data. Liao & Kyrillidis (2022) assume that for every data point (aj , yj), it
holds that ||aj ||2 = 1 and |yj | ≤ C − 1 for some constant C ≥ 1. Moreover, for any j ̸= l, it holds that the points ai, al are
not co-aligned, i.e., ai ̸= ξal for any ξ ∈ R. In contrast, we do not make any assumptions about the data apart from the ones
on matrices Li. In addition, analysis by Liao & Kyrillidis (2022) assumes that the number of hidden nodes is greater than a
certain quantity and that NN’s weights distance from initialization is uniformly bounded.

Liao & Kyrillidis (2022) consider a regression (MSE) loss function, a special case of quadratic loss and full gradients
computation. They provide guarantees for IST under a “simplified assumption that every worker has full data access”, which
corresponds to the homogeneous setting in our terminology.

Comparison of IST and 3D Parallelism (Shoeybi et al., 2019). IST and 3D parallelism were introduced independently
and concurrently in 2019. While sharing some conceptual similarities (combination of data and model parallelism), they
have a different focus. The key distinction is the way how model parallelism is implemented. Namely, 3D parallelism
combines Pipeline and Tensor parallelism.

Pipeline parallelism suggests splitting the model’s layers across computing nodes which requires additional transmission of
tensors for every forward and backward step. Tensor parallelism breaks the layers (MLP blocks and attention heads) into
parts, which creates a need for additional synchronization between GPUs. Thus, 3D parallelism makes computation on
nodes dependent on mutual communications, unlike IST.

Independent Subnetwork Training decomposes the model into smaller subnets independently trained in parallel. IST does
not need synchronization during local updates and requires the transmission of fewer parameters, which decreases per-step
communication costs.

3D parallelism introduces significant communication overhead, which greatly increases computational cost (Bian et al.,
2023). The problem described is especially relevant for public compute clouds (such as Amazon EC2), which often suffer
from slow interconnects. At the same time, IST is most beneficial for such a setup as it improves communication efficiency
by design. Moreover, 3D parallelism is incompatible with a standard federated learning setting. At the same time, the
IST-like approach is a viable technique, as every network is independent and can be trained on resource-constrained devices
(Dun et al., 2023). In summary, both IST and 3D parallelism are viable approaches with pros and cons and are best suited
for different scenarios.
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