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Abstract

Time-dependent data often exhibit characteristics, such as non-stationarity and
heavy-tailed errors, that would be inappropriate to model with the typical assump-
tions used in popular models. Thus, more flexible approaches are required to
be able to accommodate such issues. To this end, we propose a Bayesian mix-
ture of student-t processes with an overall-local scale structure for the covariance.
Moreover, we use a sequential Monte Carlo (SMC) sampler in order to perform
online inference as data arrive in real-time. We demonstrate the superiority of
our proposed approach compared to typical Gaussian process-based models on
real-world data sets in order to prove the necessity of using mixtures of student-t
processes.

1 Introduction

In modelling dynamical systems, it is common that the data will exhibit non-stationarity, where
the trend changes across the input space. Kernel methods like the Gaussian process (GP) are a
popular choice of prior distribution over real-valued functions in Bayesian models of time series data
(Rasmussen and Williams, 2005). However, in the non-stationary time series setting that this paper
focuses on, they face several challenges: 1.) The calculation of the likelihood in GP inference requires
inverting an N ×N matrix, which generally incurs a computational complexity of O(N3) where N
is the number of observations; 2.) Updating the model in real-time is not trivial; 3.) Stationarity is
often assumed by covariance kernels, while non-stationary kernels typically lead to computationally
intractable GPs, especially when the sample size is large. As a related stochastic process, the student-t
process (TP) is an attractive alternative prior distribution over function space compared to the GP
which has heavy tails controlled by the degree of freedom parameter, allowing more modelling
flexibility (Shah et al., 2014).

Similar to the GP, the TP has consistent marginals and closed-form conditionals which make it
as convenient as the GP to use in statistical modelling without any additional computational cost.
However, TPs are still liable to suffer from the aforementioned three issues that GPs face when
modelling real-world data. Hence, we introduce in this paper a mixture of TPs with an SMC sampler,
so that we may take advantage of the additional flexibility of a mixture-of-experts model with a
convenient online inference algorithm. To derive the TP, we assume a latent GP and integrate out
an inverse gamma prior on the kernel amplitude and the noise parameters. Moreover, we add an
additional parameter of the noise term to control the heteroscedasticity. Lastly, we model the level
of heavy-tailedness by automatically controlling the TPs’ degree of freedom using an efficient slice
sampling scheme.

Our paper proceeds as follows: In Section 2, we discuss some previous work about online GP models.
The online TP inference algorithm is detailed in Section 3. We use the experiment results to compare
it with GP-based models in Section 4. Finally, we conclude the paper in Section 5 with a discussion
of future work.
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2 Related Work

While the GP is a convenient choice of prior as it leads to tractable posterior inference in many classes
of models, GPs suffer from the typical cubic computational that other kernel methods face. Numerous
scalable methods have been developed to tackle the computational issue of GPs: Sparse inducing
point methods are a popular technique for reducing the computational complexity of GP methods
(Snelson and Ghahramani, 2006; Titsias, 2009; Bauer et al., 2016). In the sparse GP methods, they
form a low-rank approximation of the kernel function using a collection of M “pseudo-inputs” which
reduce the computational complexity of the GP to O(NM2) from O(N3).

Product-of-expert models employ a block diagonal approximation of the full covariance matrix
in order to reduce the complexity of the full covariance matrix inversion to individually inverting
each smaller block (Deisenroth and Ng, 2015; Cohen et al., 2020). While not necessarily faster,
mixture-of-expert models use a mixture of GPs to model functions with greater flexibility compared
to a single GP (Rasmussen and Ghahramani, 2001; Meeds and Osindero, 2005).

For fast online GP methods, Csató and Opper (2002) used variational inference to approximate the
posterior in a sparse online GP model, however, the hyperparameters are assumed to be fixed in their
method. Nguyen-tuong et al. (2008) proposed a product-of-experts local GP method for online fitting,
where the weights are based on the distance of the new observation to the local models. Though, in
such methods, ignoring the correlation between experts when adopting the local assumption can lead
to poor uncertainty quantification. Bui et al. (2017) developed a sparse variational GP regression
approach that allows for online updating of the hyperparameters, called OSVGP. However, OSVGP
has a tendency to be numerically unstable and, empirically, is liable to underfit the data. Stanton
et al. (2021) developed an exact sparse online model called WISKI, where a structured and sparse
covariance matrix approximation developed by Wilson and Nickisch (2015) is used, leading to
constant computational complexity with respect to the number of observations.

Regarding SMC methods in GPs, Svensson et al. (2015) proposed an SMC sampler with the purpose of
marginalizing the kernel hyperparameters and Gramacy and Polson (2011) proposed an SMC sampler
for sequential design in GPs. While these SMC methods allow for updating the GP model sequentially,
they cannot account for non-stationarity in the data, nor are they able to limit the computational
cost of the model as the complexity still scales O(N3). However, Zhang and Williamson (2019)
proposed an importance sampling method for scaling up a mixture-of-experts GP model to an average
complexity of O(N3/K2) for non-stationary data. Later, Zhang et al. (2023) and Härkönen et al.
(2022) developed an online SMC and SMC2 sampler for mixture of GPs. But despite the advances in
online mixtures of GPs, little attention has been paid to online mixtures of the student-t process.

3 Online Student-t Processes For Non-stationary Data

The data generating process for our proposed model is:

xi ∼ T (µzi ,Ψzi , νzi), α ∼ Gamma(a0, b0), zi|α ∼ CRP(α),

θk ∼ logN (m0, s
2
0I), νk ∼ Gamma(2, 0.1) hk ∼ N (0, k20), k20 ∼ Inv-Gamma

(
1

2
,
1

2

)
,

yk|Xk,θk,∼ T (νk, 0,Kθk
+ |hk|I). (1)

where the i-th input xi comes from an infinite Dirichlet process Gaussian-inverse Wishart mixture
model (Antoniak, 1974): N (Mzi ,Czi). The latent parameters (Mzi ,Czi), for zi ∈ {1, 2, . . .}, are
integrated out over a normal-inverse Wishart prior, NIW(µzi , λzi ,Ψzi , νzi). The xi marginally
follows a student-t distribution T (µzi ,Ψzi , νzi).

Since student-t distributions are not closed under addition, we cannot analytically obtain a latent TP
and independent student-t noise for modelling regression problems. Instead, a previous solution is
incorporating the noise into the kernel function. According to Shah et al. (2014), Zhang and Yeung
(2010) wrongly assumed the noise to be independent when raising this model. Shah et al. (2014)
stated that the noise term is uncorrelated but dependent, and argued it to behave similarly to a sum of
a latent TP with independent noise.
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However, directly incorporating the noise term into the kernel may not be sufficiently flexible for
modelling real data. In our model, the outputs yi from cluster k are denoted as yk, which we obtain:

σ2
k|νk ∼ Inv-Gamma

(νk
2
,
νk
2

)
, yk|σ2

k,Xk ∼ N (0, σ2
k(Kθk

+ |hk|I)),∫
P (yk|σ2

k,−)P (σ2
k)dσ

2
k ∼ T (νk, 0,Kθk

+ |hk|I). (2)

It is assumed to be a sum of a GP and dependent Gaussian noise. The covariance is determined by an
overall scale parameter σ2

k for both the kernel and the noise, a local scale parameter hk for the noise
only to control this heteroscedasticity, and kernel parameters θk. The overall scale parameter σ2

k is
integrated out over an inverse gamma prior, and a TP can be derived. When the ith streaming data
(xi, yi) comes, we assign it to cluster k according to the predictive distribution of the DP, the Chinese
restaurant process (Aldous, 1985):

P (zi = k|α,Xk) ∝
{

N ′
k · T (µ′

k,Ψ
′
k, ν

′
k) k ∈ K+.

α · T (µ0,Ψ0, ν0) o.w. (3)

K+ refers to the existing clusters, and all (·)′ represent summary statistics calculated with first i− 1

observations. The student-t likelihood’s parameters (µ
′

k,Ψ
′

k, ν
′

k) of inputs can be updated by:

µ′
k =

λ0µ0 +N ′
kx̄k

λ′
k

, ν′k = ν0 +N ′
k −D + 1, Ψ′

k =
λ′
k + 1

λ′
kν

′
k

(
Ψ0 + S′
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x̄k
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,

x̄′
k =

∑
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N ′
k

, N ′
k =
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i′=1

I(zi′ = k), λ′
k = λ0 +N ′

k,

S′
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∑
i′:(zi′=k,i′<i)

(xi′ − x̄′
k) (xi′ − x̄′

k)
T
, S′

x̄k
=

λ0N
′
k

λ′
k

(x̄′
k − µ0) (x̄

′
k − µ0)

T
. (4)

Also, a Gamma prior is placed on the Dirichlet process concentration parameter α. We can use a
variable augmentation scheme to sample its full conditional posterior up to observation i (Escobar
and West, 1995).

ρ|α ∼Beta(α+ 1, i), K = |{k : Nk > 0}|, πα

1− πα
=

a0 +K − 1

N(b0 − log ρ)
,

α|z1:i, πα, ρ =(1− πα) · Gamma(α0 +K − 1, b0 − log ρ) + πα · Gamma(α0 +K, b0 − log ρ).
(5)

The Gamma(2, 0.1) prior is commonly used when inferring the degree of freedom, which puts mass
on a large range of reasonable values for the degrees of freedom (Juárez and Steel, 2010). We sample
the degrees of freedom parameter through an efficient variable augmentation scheme. Given the
latent overall scale σ2

k, the degree of freedom νk will be independent of all other parameters and data.
Due to the conjugacy between the Gaussian likelihood and the inverse Gamma prior, we can directly
Gibbs sample the σ2

k from its full conditional. Then, conditioned on σ2
k, we sample νk using the slice

sampler from P (νk|σ2
k) (Neal, 2003; Damien et al., 1999).

We assume a hierarchical structure on the local heteroscedasticity parameter, |hk|, where global
scale k20 is shared over all mixtures. Here, we will share scale data from other clusters to inform
the posterior sampling of hk. Because the likelihood is Gaussian and the prior over k20 is an inverse
Gamma, we can again sample the full conditional of k20 in closed form. And we sample hk and the
TP parameters θk using the elliptical slice sampler (ESS), which is an efficient sampling algorithm
for non-conjugate models with Gaussian priors (Murray et al., 2010).

3.1 SMC for Online TP-MOE

In our proposed method, we use a sequential Monte Carlo sampler in order to update the model as
new data arrive (Del Moral et al., 2006). SMC follows from importance sampling (IS) and sequential
importance sampling (SIS) algorithms in Monte Carlo methods, and can avoid the degeneracy problem
the two can encounter, where one proposal weight w(j) dominates the rest of the proposals.
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For j = 1, . . . , J particles, the particles (z(j),θ(j),h(j), α(j)) are updated as described before when
a new observation arrives. Then, we calculate the particle weights, which results in a posterior
weighted sample TP product-of-experts models. Initially when i = 1, the particle j’s weight is:

w
(j)
1 ∝ P (y1|z(j)1 ,x1,θ

(j), h(j), ν(j))P (x1|z(j)1 , α(j)). (6)

Then the updating procedure for i > 1 is shown in Algorithm 1.

Algorithm 1: SMC Sampler for TP-MOE
Input: New observation (xi, yi)
for j = 1, · · · , J in parallel do

Sample z
(j)
i = k from P (z

(j)
i |α(j),X1:i−1)

Sample α(j) from the full conditional P (α(j)|z1:i)
Sample θ

(j)
k and h

(j)
k jointly by using the elliptical slice sampler

Sample (k20)
(j) from P ((k20)

(j)|h(j)
1 , . . . , h

(j)
K )

Sample (σ2
k)

(j) from P (σ2
k|Xk,yk, ν

(j)
k )

Sample ν
(j)
k by using the slice sampler

Update particle weight:

w
(j)
i = w

(j)
i−1P (xi|α(j), z

(j)
i )×

P
(
y1:i|X1:i, θ

(j)
k,i , h

(j)
k , ν

(j)
k

)
P
(
y1:i−1|X1:i−1, θ

′(j)
k , h

′(j)
k , ν

′(j)
k

) (7)

end
Normalize weights:

w
(j)
i :=

w
(j)
i∑J

j=1 w
(j)
i

if Neff < J
2 then

Resample particles (z(j
∗)

1:i , θ
(j∗)
k , h

(j∗)
k , ν

(j∗)
k , α(j∗)), where

j∗ ∼ Multinomial(J,w(1)
i , · · · , w(j)

i )

Set w(j)
i := 1

J for j = 1, · · · , J
end
Output: Particle weights (w(1)

i , · · · , w(j)
i ) and particles (z(1:J)1:i , θ(1:J),h(1:J), ν(1:J), α(1:J))

The computational complexity is dominated by the inversion of a Nk ×Nk matrix. If we assume
that the average size of Nk is N/K, the number of data divided by the number of clusters, the n
the computational complexity will be O(JN3/K2). Under the basic setting of our sampler, the
complexity of the sampler still grows as new data arrive so the method cannot truly be considered
“online”. To this end, we adopt the “minibatched” stochastic approximation that is widely used as a
method for substantially reducing the computational complexity of posterior inference (Zhang et al.,
2023; Zhang and Williamson, 2019; Minsker et al., 2014; Srivastava et al., 2015). A subsample of
size B from the mixture with Nk observations is drawn uniformly without replacement, then their
likelihood is calculated and upweighted by Nk/B power to approximate the full likelihood. The
stochastic approximation method leads us to:

u
(j)
k =(u1, . . . , uB) ∼ HyperGeometric

(
B,

{
i : z

(j)
i = k

})
,

(yuk
,Xuk

) =
(
yu,xu : u ∈ u

(j)
k

)
.

P
(
y
u

(j)
k

|X
u

(j)
k

,θ
(j)
k , hk, σ

2
k

)
∼ N

(
0, σ2

k(Kθ
(j)
k

+
Nk|hk|

B
I)

)
,

P
(
y
u

(j)
k

|X
u

(j)
k

,θ
(j)
k , hk, νk

)
∼ T

(
ν, 0,K

θ
(j)
k

+
Nk|hk|

B
I

)
. (8)

4



With minibatching, the complexity is reduced to O(Jmin{Nk, B}3/K2). As each particle can be
updated independently, the parallel computation can be adopted to further reduce the complexity
to O(min{Nk, B}3/K2). Then, we calculate the effective sample size, Neff = 1/

∑J
j=1(w

(j)
i )2,

based on the particle weights. If it is lower than a threshold set by the user, typically J/2, the particles
are resampled to only preserve the high-weighted ones and avoid the degeneracy problem. For a
future output, a particle predicts it by combining results from mixtures within it weighted by the CRP
probabilities of it belonging to each mixture. And we weighted average predictions from all particles
according to their weights.

4 Experiments

In this section, we proceed to study the advantages of the heavy tails by implementing the TP-
MOE and other Gaussian-based models on different non-stationary datasets and analysing their
performances in terms of one-step-ahead predictions. The GP models include a Gaussian mixture-
of-experts model (GP-MOE) (Zhang et al., 2023), a sparse online GP method using the Woodbury
identity and structured kernel interpolation (WISKI) (Stanton et al., 2021), and an online sparse
variational GP method (OSVGP) (Bui et al., 2017) 1.

For the experiments, we sequentially predict the next future observation and update the model with
the real data point. The one-step predictive mean squared error (MSE) is adopted to evaluate the
results. The 3 datasets used include: 1.) An accelerometer measurement of a motorcycle crash
(N=94). 2.) The price of Brent crude oil (N=100). 3.) The annual carbon dioxide output in Canada
(N=215). 2. They exhibit non-stationarity in both length-scale and noise, and have been pre-processed
to have zero mean and unit variance.

To make the results comparable, The TP-MOE and the GP-MOE share the same particle number
J = 100 and the same 16 cores used on a shared memory process based on OpenMP, and the number
of inducing points for all models is set to be 50. The OSVGP’s number of optimization iterations is
set to the default value of 1. The radial basis function kernel for all models is:

Σ(x,x′) = exp

{
−θ

2

D∑
d=1

(xd − x′
d)

2

}
(9)

The plots of four algorithms’ sample runs are shown in Figure 1-3, which contain data points, one-step
predictive mean (plotted with solid red lines) and 95% predictive interval (plotted with dashed black
lines). The data points in TP-MOE’s and GP-MOE’s plots are coloured according to the cluster
assignment given by the particle with the highest weight. The results in terms of the predictive MSE
are listed in Table 1.

Table 1: One-step Predictive MSE. One Standard Error Reported in Parentheses

Motorcycle Brent Canada
TP-MOE 0.363 (0.028) 0.146 (0.014) 0.015 (0.003)
GP-MOE 0.381 (0.038) 0.160 (0.019) 0.016 (0.004)
WISKI 0.631 (0.000) 0.220 (0.000) 0.048 (0.000)
OSVGP 0.998 (0.002) 0.782 (0.021) 0.711 (0.030)

From the comparisons in Table 1, we observe that our TP-MOE performs better than the GP-based
models and achieves lower predictive MSE. According to the plots of sample runs (Figure 1-3),we can
see that the MOE models can better capture the heterogeneity of the underlying function better than
the stationary models. Moreover, we can see that the TP-MOE produces tighter predictive credible
intervals compared to the GP-MOE, which sometimes produces overly conservative predictive
intervals. This suggests that the TP-MOE has better uncertainty quantification capabilities. The

1The implementation for GP-MOE is available at https://github.com/michaelzhang01/GPMOE. The
code of OSVGP and WISKI are available at: https://github.com/wjmaddox/online_gp. Our code is at
https://github.com/stlllll/TP-MOE

2The motorcycle dataset can be found in the R package VarReg. The Brent, Canada CO2, datasets are
available at: https://github.com/alanturing-institute/TCPD.
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OSVGP tends to underfit as expected, while the WISKI cannot quantify the uncertainty as well as the
mixture-of-experts models due to its assumption of stationarity.

(a) TP-MOE (b) GP-MOE (c) WISKI (d) OSVGP

Figure 1: Sample Runs on the Motorcycle Dataset. N = 94.

(a) TP-MOE (b) GP-MOE (c) WISKI (d) OSVGP

Figure 2: Sample Runs on the Brent Dataset. N = 100.

(a) TP-MOE (b) GP-MOE (c) WISKI (d) OSVGP

Figure 3: Sample Runs on the Canada Dataset. N = 215.

5 Conclusion

Heavy-tailed data sets appear in a wide variety of applied settings. However, devising models that
can adequately handle their noise structure is not trivial. In this paper, we build a Bayesian mixture of
student-t processes model with an overall-local scale structure for noisy data, which can be inferred
by an SMC online algorithm. We have shown that TP-MOE has advantages over the Gassian-based
models when facing commonly encountered non-stationary data.

In future work, we are interested in applying the TP-MOE in optimization and reinforcement learning
tasks. For such tasks, the learning, prediction, and decision making aspects of the model occur in
sparse, noisy environments that require heavy-tailed models in order for a learning agent to properly
handle the problem at hand. Modelling data with a mixture of Student-t processes is a natural method
for dealing with non-stationarity and heavy-tailed errors yet their popularity has still eluded the
machine learning community. We seek to fill that gap with the method proposed in this paper.
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