
Magicoder: Empowering Code Generation with OSS-INSTRUCT

Yuxiang Wei 1 Zhe Wang 2 † Jiawei Liu 1 Yifeng Ding 1 Lingming Zhang 1

Abstract
We introduce Magicoder, a series of fully open-
source (code, weights, and data) Large Language
Models (LLMs) for code that significantly closes
the gap with top code models while having no
more than 7B parameters. Magicoder models are
trained on 75K synthetic instruction data using
OSS-INSTRUCT, a novel approach to enlighten-
ing LLMs with open-source code snippets to gen-
erate diverse instruction data for code. Our main
motivation is to mitigate the inherent bias of the
synthetic data generated by LLMs through the
wealth of open-source references for the produc-
tion of more realistic and controllable data. The
orthogonality of OSS-INSTRUCT and other data
generation methods like Evol-Instruct further en-
ables us to build an enhanced MagicoderS . Both
Magicoder and MagicoderS substantially outper-
form state-of-the-art code models with similar or
even larger sizes on a wide range of coding bench-
marks. Notably, MagicoderS-CL-7B based on
CODELLAMA even surpasses the prominent Chat-
GPT on HumanEval+ (66.5 vs. 65.9 in pass@1).
Overall, OSS-INSTRUCT opens a new direction
for crafting diverse synthetic instruction data for
code using abundant open-source references.

1. Introduction
Code generation, also known as program synthesis (Gul-
wani et al., 2017), is a long-standing challenge in com-
puter science. In the past few decades, a large body of
research has been studying symbolic approaches, such as
abstraction-based synthesis (Wang et al., 2017; Feng et al.,
2018) for general-purpose synthesis problems and program-
ming by examples (Cambronero et al., 2023; Liu et al.,

†The work was done during a remote summer internship at the
University of Illinois. 1University of Illinois at Urbana-Champaign,
USA 2Tsinghua University, China. Correspondence to: Yuxiang
Wei <ywei40@illinois.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2023a) for domain-specific tasks. Until recently, Large Lan-
guage Models (LLMs) trained on code (Austin et al., 2021;
Chen et al., 2021) has shown outstanding breakthroughs in
generating code that accurately satisfies user intents, and
they are widely deployed to assist real-world software de-
velopment (Microsoft, 2023b; Services, 2023).

Initially, closed-source models such as GPT-3.5 Turbo (Ope-
nAI, 2022) (i.e., ChatGPT) and GPT-4 (OpenAI, 2023) mas-
sively dominated various coding benchmarks and leader-
boards (Chen et al., 2021; Austin et al., 2021; Liu et al.,
2023b; Lai et al., 2022; Xia & Zhang, 2023). To further push
the boundaries of code generation with open source LLMs,
SELF-INSTRUCT (Wang et al., 2023a) is adopted to boot-
strap the instruction-following ability of LLMs. In the realm
of code, practitioners commonly devise synthetic coding
instructions using a stronger teacher model (e.g., ChatGPT
and GPT-4) and then finetune a weaker student model (e.g.,
CODELLAMA (Rozière et al., 2023)) with the generated data
to distill the knowledge from the teacher (Taori et al., 2023;
Chaudhary, 2023). For example, Code Alpaca (Chaudhary,
2023) consists of 20K automatically generated code instruc-
tions by applying SELF-INSTRUCT on ChatGPT using 21
seed tasks. To further enhance the coding abilities of LLMs,
Luo et al. (2023b) proposes Code Evol-Instruct that employs
various heuristics to increase the complexity of seed code
instructions (Code Alpaca in this case), achieving state-of-
the-art (SOTA) results among open-source models.

While these data generation methods can effectively im-
prove the instruction-following capability of an LLM, they
rely on a narrow range of predefined tasks or heuristics
under the hood. For example, on the one hand, Code Al-
paca that adopts SELF-INSTRUCT only relies on 21 seed
tasks to generate new code instructions using an identical
prompt template. On the other hand, Code Evol-Instruct
takes Code Alpaca as seeds and merely depends on 5 heuris-
tics to evolve the dataset. As partly suggested by Yu et al.
(2023) and Wang et al. (2023a), such approaches may sig-
nificantly inherit the system bias inherent in the LLMs as
well as the predefined tasks.

Therefore, in this paper, we propose OSS-INSTRUCT to
mitigate the inherent bias of LLMs and to unleash their
potential to craft diverse and creative code instructions via
direct learning from the open source. As shown in Figure 1,

1

Magicoder: Empowering Code Generation with OSS-INSTRUCT

You are working on a natural language processing (NLP)
project and need to create a program to preprocess and
classify movie reviews...
...

Your program should be able to preprocess new movie
reviews, train the model, and classify new reviews accurately.

Generated problem (details omitted)

PosNeg.py
Log.cpp
GrantInfo.ts

Program.cs
Strength.swift
…

Open-source codebase
 learn_model(
 tf_idfSVM, tf_idfNB, target)

def get_clean_review(raw_review):
 letters_only = re.sub(
 "[^a-zA-Z]", " ", raw_review)

Seed code snippet

OSS-INSTRUCT

Please gain inspiration from the
code snippet to create a high-
quality programming problem…

Prompt (details omitted)

from sklearn.feature_extraction.text import TfidfVectorizer ...

def get_clean_review(raw_review): ...
def train_model(tf_idfSVM, tf_idfNB, reviews, labels): ...
def classify_review(clean_review, tf_idfSVM, tf_idfNB): ...
...
train_model(tf_idfSVM, tf_idfNB, reviews, labels)
cleaned_review = get_clean_review(...)...

Generated solution (details omitted)

Language
Model

Figure 1: Overview of OSS-INSTRUCT and the pass@1 results of different LLMs on HumanEval (+)

OSS-INSTRUCT leverages a powerful LLM to automati-
cally generate new coding problems by drawing inspira-
tion from any random code snippets collected from the
open source. In this example, the LLM gets inspired by
two incomplete code fragments from different functions
and manages to relate them and craft a realistic machine
learning problem. Thanks to the “infinite” real-world open-
source code, OSS-INSTRUCT can directly produce diverse,
realistic, and controllable code instructions by providing
distinct seed code snippets. In the end, we generate 75K
synthetic data to finetune CODELLAMA-PYTHON-7B, re-
sulting in Magicoder-CL. While being simple and effective,
OSS-INSTRUCT is orthogonal to existing data generation
methods, and they can be combined to further boost the
models’ coding capabilities. Therefore, we continually fine-
tune Magicoder-CL on an open-source Evol-Instruct dataset
with 110K entries, producing MagicoderS-CL.

We evaluate Magicoder and MagicoderS on a wide range
of coding tasks, including HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) for Python text-to-code gen-
eration, MultiPL-E (Cassano et al., 2022) for multilingual
code completion, and DS-1000 (Lai et al., 2022) for solving
data science problems. We further adopt EvalPlus (Liu et al.,
2023b), which includes the augmented HumanEval+ and
MBPP+ datasets for more rigorous model evaluation. Both
Magicoder-CL and MagicoderS-CL substantially boost the
base CODELLAMA-PYTHON-7B. Additionally, Magicoder-

CL even outperforms WizardCoder-CL-7B, WizardCoder-
SC-15B, and all studied SOTA LLMs with less than or equal
to 16B parameters on all the benchmarks we tested. Also,
the pass@1 result of the enhanced MagicoderS-CL is on
par with ChatGPT on HumanEval (70.7 vs. 72.6) and sur-
passes it on the more rigorous HumanEval+ (66.5 vs. 65.9),
indicating that MagicoderS-CL can generate more robust
code. It also achieves SOTA results among all code models
at the same scale.

Additionally, we notice a very recent advancement in the
development of the DeepSeek-Coder series (Guo et al.,
2024) which has shown exceptional coding performance.
However, due to the limited technical details disclosed,
we only briefly discuss them in §3.4. Despite this, we
applied OSS-INSTRUCT on DeepSeek-Coder-Base 6.7B,
resulting in the creation of Magicoder-DS and MagicoderS-
DS. In addition to the consistent findings on the previous
results with CODELLAMA-PYTHON-7B as the base model,
Magicoder-DS and MagicoderS-DS benefit from the more
powerful DeepSeek-Coder-Base-6.7B. This advantage is
demonstrated by MagicoderS-DS, which achieves a remark-
able 76.8 pass@1 on HumanEval. MagicoderS-DS also out-
performs DeepSeek-Coder-Instruct-6.7B on HumanEval (+)
and MBPP (+) with 8× less finetuning tokens.

To justify the design of OSS-INSTRUCT, i.e., generating
instruction-tuning data from open-source references rather

2

Magicoder: Empowering Code Generation with OSS-INSTRUCT

than using the references directly, we demonstrate that fine-
tuning the base models with semantically relevant comment-
function pairs extracted from open-source projects even
negatively impacts the model performance (§4.2).

In general, we make the following contributions:

• We introduce OSS-INSTRUCT, a pioneering approach to
enlightening LLMs with open-source code snippets to
generate more diverse, realistic, and controllable coding
instruction data, which can be leveraged to substantially
boost the performance of various LLMs via instruction
tuning. It opens a new dimension for creating low-bias
and diverse instruction-tuning data from the abundance of
open-source references.

• We build the Magicoder series trained with OSS-
INSTRUCT and MagicoderS series trained on a combi-
nation of OSS-INSTRUCT and Evol-Instruct. Our eval-
uation across 6 benchmarks shows that all Magicoders
significantly improve the base LLMs. Notably, both
MagicoderS-CL and MagicoderS-DS outperform Chat-
GPT on HumanEval+ with only 7B parameters.

• We fully open source the model weights, training data, and
source code at https://github.com/ise-uiuc/
magicoder to facilitate future research.

2. OSS-INSTRUCT: Instruction Tuning from
Open Source

In this section, we elaborate on our OSS-INSTRUCT ap-
proach. From a high level, as shown in Figure 1, OSS-
INSTRUCT works by prompting an LLM (e.g., ChatGPT)
to generate a coding problem and its solution according to
some seed code snippet collected from the wild (e.g., from
GitHub). The seed snippet offers controllability of the gen-
eration and encourages the LLM to create diverse coding
problems that can reflect real-world programming scenarios.

2.1. Generating Coding Problems

OSS-INSTRUCT is powered by seed code snippets that can
be easily collected from open source. In this work, we
directly adopt starcoderdata as our seed corpus, a fil-
tered version of The Stack (Kocetkov et al., 2022) dataset
that StarCoder is trained on, containing permissively li-
censed source code documents in various programming lan-
guages. We chose starcoderdata because it is widely
adopted, includes massive high-quality code snippets, and
is even post-processed for data decontamination (Li et al.,
2023; Allal et al., 2023). For each code document from
the corpus, we randomly extract 1–15 consecutive lines
as the seed snippet for the model to gain inspiration from
and produce coding problems. In total, we collected 80K

initial seed snippets from 80K code documents, 40K from
Python, and 5K from each of C++, Java, TypeScript, Shell,
C#, Rust, PHP, and Swift respectively. Then, each collected
seed code snippet is applied to the prompt template shown
in Appendix A.1, which a teacher model takes as input and
outputs both a coding problem and its solution.

2.2. Data Cleaning and Decontamination

We perform data cleaning by excluding samples that are
identical or share the same seed code snippet. While there
exist other sorts of noisiness (e.g., the solution is incom-
plete) in the generated data, inspired by Honovich et al.
(2023), they are not removed as we believe they still con-
tain valuable information for LLMs to learn. More experi-
mental details can be found in Appendix C.3. Finally, we
apply the same logic as StarCoder Li et al. (2023) to decon-
taminate our training data by removing coding problems
that contain docstrings or solutions from HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021), docstrings
from APPS (Hendrycks et al., 2021), prompts from DS-
1000 (Lai et al., 2022), or questions from GSM8K (Cobbe
et al., 2021). As part of our analysis, the decontamination
procedure only filters out 9 additional samples. Since the
seed corpus starcoderdata has already gone through
rigorous data decontamination, this observation suggests
that OSS-INSTRUCT is unlikely to introduce additional data
leakage beyond the seeds. The eventual OSS-INSTRUCT
dataset contains about 75K entries. An overview of the
dataset statistics can be found in Appendix A.3.

2.3. Qualitative Examples of OSS-INSTRUCT

Figure 2 shows some qualitative examples of how OSS-
INSTRUCT can help LLM get inspiration from a seed code
snippet to create new coding problems and solutions. For
example, the shell script example shows how an LLM crafts
a Python coding problem with just one line of shell script.
The library imports example demonstrates how an LLM
can create a realistic machine learning problem using just
a few import statements. Meanwhile, the class signature
instance illustrates the ability of LLM to draw inspiration
from an incomplete class definition featuring annotations
like SpringBootApplication and keywords such as
bank. From this, the LLM generates a problem that re-
quires implementing a complete banking system based on
Spring Boot. Overall, OSS-INSTRUCT can inspire an LLM
with distinct code structures and semantics to create diverse
coding tasks, including algorithmic challenges, realistic
issues, single-function code generation, library-based pro-
gram completion, whole-program development, and even
whole-application construction.

Similarity with HumanEval To study whether our data
generation process produces more HumanEval-like prob-

3

https://github.com/ise-uiuc/magicoder
https://github.com/ise-uiuc/magicoder

Magicoder: Empowering Code Generation with OSS-INSTRUCT

 Seed: shell script
python3 makeErrorFile.py data/test_dataset_14 14

 Problem
Create a Python program that generates an error file
based on a given dataset...

 Code
def generate_error_file(dataset_file, ...):
 error_lines = []
 with open(dataset_file, 'r') as file:
 for line in file:
 ...
 with open(error_file_name, 'w') as error_file:
 for error_line in error_lines:
 error_file.write(error_line + '\n')
if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("Usage: ...")
 else:
 dataset_file = sys.argv[1]
 dataset_number = sys.argv[2]
 generate_error_file(...)

 Seed: library imports
import numpy as np
import gym_electric_motor as gem
import matplotlib.pyplot as plt

 Problem
Create a reinforcement learning agent to control an
electric motor using the OpenAI Gym environment...

 Code
import numpy as np
import gym_electric_motor as gem
...
env = gem.make("DcSeriesCont-v1")
class DQNAgent:
 def __init__(self, state_dim, action_dim): ...
 def build_model(self): ...
 def act(self, state): ...
 def train(self, state, action, reward, ...): ...
...
for episode in range(episodes):
 state = env.reset()
 state = np.reshape(state, [1, state_dim])
 ...

 Seed: class signature
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {
 public static void main(String[] args) {

 Problem
Create a simple Java Spring Boot application
for a banking system...

 Code
import org.axonframework.commandhandling...
import org.axonframework.config...
...
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {...}
public class BankAccount {...}
public class CreateAccountCommand {...}
public class DepositFundsCommand {...}
public class WithdrawFundsCommand {...}
public class AccountCreatedEvent {...}
public class FundsDepositedEvent {...}
public class FundsWithdrawnEvent {...}

Figure 2: Examples showing how OSS-INSTRUCT generates problems and solutions from seed code snippets. Detailed
problem requirements, implementations, and explanations are omitted for brevity. More examples can be found in
Appendix A.2.

0.0 0.1 0.2 0.3 0.4 0.5
Cosine Similarity Score

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
er

ce
nt

ag
e

Self-Instruct; Avg Score: 0.169

Evol-Instruct; Avg Score: 0.131

OSS-Instruct; Avg Score: 0.105

Figure 3: Cosine similarities between HumanEval and syn-
thetic data generated by different methods.

lems or solutions that contribute to high performance, we
pair each sample from our 75K dataset with each of the
164 HumanEval (Chen et al., 2021) samples and compute
their cosine similarity using TF-IDF (SPARCK JONES,
1972) embeddings. We then associate each OSS-INSTRUCT
sample with a HumanEval sample with the highest simi-
larity score. We also compare our dataset against Code
Alpaca, a 20K dataset applying SELF-INSTRUCT to code,
and evol-codealpaca-v1 (theblackcat102, 2023), an
open-source reproduction of Evol-Instruct containing 110K
coding instructions. We resort to the open-source implemen-
tation because the official Code Evol-Instruct (Luo et al.,
2023b) dataset is not released. We decontaminate all the
datasets beforehand using the same way discussed in §2.2.
Figure 3 shows that OSS-INSTRUCT exhibits the lowest
average similarity among all the studied data generation
techniques while SELF-INSTRUCT shows the highest aver-

age similarity. This result indicates that the improvements
from OSS-INSTRUCT are not merely due to including data
from the same distribution.

3. Evaluation
We choose CODELLAMA-PYTHON-7B and DeepSeek-
Coder-Base 6.7B as the base LLMs. To derive Magicoder
series, we first finetune them on 75K synthetic data
generated through OSS-INSTRUCT. We then obtain
MagicoderS by continuing finetuning Magicoder with the
evol-codealpaca-v1 dataset, an open-source Evol-
Instruct implementation containing about 110K samples.
More implementation details and additional evaluation re-
sults are listed in Appendices B and C. We also present
interesting use cases that reflect the effectiveness of instruc-
tion tuning in Appendix D and demonstrate Magicoder’s
capability to generate complex programs in Appendix E.

3.1. Python Text-to-Code Generation

HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021) are two of the most widely used benchmarks for code
generation. Each task in these benchmarks includes a task
description (e.g., docstring) as the prompt, where LLMs
generate corresponding code whose correctness is checked
by a handful of test cases. Because tests in these benchmarks
can be insufficient, for more rigorous evaluation, we use
HumanEval+ and MBPP+, both powered by the EvalPlus
framework (Liu et al., 2023b) to obtain 80×/35× more tests.
Following prior work (Liu et al., 2023b; Chen et al., 2023),
for each task and LLM we use greedy decoding to generate
one sample and focus on comparing the pass@1 metric.

We consider a wide range of baseline models, including

4

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 1: Pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) computed with greedy decoding. The
abbreviations “CL” and “SC” refer to the base models CODELLAMA-PYTHON and StarCoder, respectively. We report the
results consistently from the EvalPlus (Liu et al., 2023b) Leaderboard.

Model Release Date Size
Benchmark Open-Source

HumanEval (+) MBPP (+) Weight Data

GPT-3.5 Turbo Nov 2023 - 72.6 (65.9) 81.7 (69.4) # #
GPT-4 Turbo Nov 2023 - 85.4 (81.7) 83.0 (70.7) # #

CODELLAMA-PYTHON Aug 2023 34B 51.8 (42.7) 67.2 (52.9) #
WizardCoder-CL Sep 2023 34B 73.2 (64.6) 73.2 (59.9) #

CodeT5+ May 2023 16B 31.7 (26.2) 54.6 (44.4)
CodeGen-Mono Mar 2022 16B 32.9 (27.4) 52.6 (43.6)
StarCoder May 2023 15B 34.1 (29.3) 55.1 (46.1)
CODELLAMA-PYTHON Aug 2023 13B 42.7 (36.6) 61.2 (50.9) #
WizardCoder-SC Sep 2023 15B 51.9 (45.1) 61.9 (50.6) #

StarCoder May 2023 7B 24.4 (20.7) 33.1 (28.8)
Mistral Oct 2023 7B 28.7 (23.2) 50.1 (40.9) #
CodeT5+ May 2023 6B 29.3 (23.8) 51.9 (40.9)
CodeGen-Mono Mar 2022 6B 29.3 (25.6) 49.9 (42.1)
CODELLAMA-PYTHON Aug 2023 7B 37.8 (34.1) 57.6 (45.4) #
WizardCoder-CL Sep 2023 7B 48.2 (40.9) 56.6 (47.1) #

Magicoder-CL Dec 2023 7B 60.4 (55.5) 64.2 (52.6)
MagicoderS-CL Dec 2023 7B 70.7 (66.5) 68.4 (56.6)

CODELLAMA-PYTHON (Rozière et al., 2023), Wizard-
Coder (Luo et al., 2023b), GPT-3.5 Turbo (OpenAI, 2022),
GPT-4 Turbo (OpenAI, 2023), StarCoder (Li et al., 2023),
CodeT5+ (Wang et al., 2023b), CodeGen-Mono (Nijkamp
et al., 2023), and Mistral (Jiang et al., 2023a). All the re-
sults are consistently reported from the EvalPlus (Liu et al.,
2023b) leaderboard (EvalPlus hash: 1895d2f).

Table 1 shows the pass@1 results of different LLMs on
these benchmarks. From the results, we can first observe
that Magicoder-CL has a clear improvement over the base
CODELLAMA-PYTHON-7B, and outperforms all studied
open-source models except CODELLAMA-PYTHON-34B
and WizardCoder-CL-34B. Notably, Magicoder-CL sur-
passes WizardCoder-SC-15B and has a substantial improve-
ment on HumanEval and HumanEval+ over CODELLAMA-
PYTHON-34B. MagicoderS-CL demonstrates further im-
provements by being trained with the orthogonal Evol-
Instruct method. MagicoderS-CL outperforms ChatGPT
and all other open-source models on HumanEval+. More-
over, although it scores slightly lower than WizardCoder-
CL-34B and ChatGPT on HumanEval, it surpasses both of
them on the more rigorous HumanEval+ dataset, indicating
that MagicoderS-CL may produce more robust code.

3.2. Multilingual Code Generation

In addition to Python, as shown in Table 2, we perform
an extensive evaluation on 6 widely used programming
languages, i.e., Java, JavaScript, C++, PHP, Swift, and
Rust, using the MultiPL-E benchmark (Cassano et al.,
2022). We report available results from the WizardCoder pa-
per (Luo et al., 2023b) and evaluate our models consistently
through bigcode-evaluation-harness (Ben Allal
et al., 2022). We skip proprietary models such as Chat-
GPT and GPT-4 as they are not supported by the frame-
work. Due to a significant inference latency when running
WizardCoder-CL-7B using the harness in our environment,
we choose not to include it in our analysis.

The results indicate that Magicoder-CL improves the base
CODELLAMA-PYTHON-7B by a large margin among all
the studied programming languages. Moreover, Magicoder-
CL also achieves better results than the SOTA 15B
WizardCoder-SC among half of the programming lan-
guages. Additionally, MagicoderS-CL demonstrates fur-
ther improvement over Magicoder-CL on all program-
ming languages, achieving comparable performance against
WizardCoder-CL-34B with only 7B parameters. It is worth
noting that Magicoder-CL is only trained with very limited
multilingual data but still outperforms other LLMs with
similar or even larger sizes. Also, although the harness

5

Magicoder: Empowering Code Generation with OSS-INSTRUCT

evaluates models in completion formats which are for base
models, Magicoders still show significant improvements de-
spite being only instruction-tuned. This implies that LLMs
can learn knowledge from the data beyond its format.

3.3. Code Generation for Data Science

The DS-1000 dataset (Lai et al., 2022) contains 1K distinct
data science coding issues ranging from 7 popular data sci-
ence libraries in Python. It evaluates the realistic and practi-
cal use case of an LLM and offers unit tests for validating
each problem. DS-1000 has both completion and insertion
modes, but here we only evaluate completion because the
base CODELLAMA-PYTHON does not support infilling. Ta-
ble 3 shows the evaluation results where we include the
recent INCODER (Fried et al., 2023), CodeGen (Nijkamp
et al., 2023), Code-Cushman-001 (Microsoft, 2023a), Star-
Coder (Li et al., 2023), CODELLAMA-PYTHON (Rozière
et al., 2023), and WizardCoder (Luo et al., 2023b). We
can see from the table that Magicoder-CL-7B already out-
performs all the baselines we evaluate, including state-
of-the-art WizardCoder-CL-7B and WizardCoder-SC-15B.
MagicoderS-CL-7B further breaks the limit by introduc-
ing an 8.3 percentage point absolute improvement over
WizardCoder-SC-15B.

3.4. Comparison with DeepSeek-Coder

DeepSeek-Coder (Guo et al., 2024) is a series of models
released concurrently to our work and they demonstrate su-
perior coding performance. We only briefly discuss it in
this section because its data and instruction tuning details
are not publicly available at the time of writing. We apply
the same finetuning strategy on DeepSeek-Coder-Base-6.7B
as we performed on CODELLAMA-PYTHON-7B, leading
to Magicoder-DS and MagicoderS-DS. Table 4 shows a
similar trend as Table 1 that the base model can be sig-
nificantly improved after applying OSS-INSTRUCT. Re-
markably, the MagicoderS-DS variant surpasses DeepSeek-
Coder-Instruct-6.7B on all the benchmarks with ×8 fewer
training tokens, and it also closely matches DeepSeek-
Coder-Instruct-33B on these datasets.

4. Ablations of Data Source
4.1. Impact of the Language Distribution

To understand the correlation between the programming lan-
guages appearing in the training data and the downstream
performance of different languages, we conduct an addi-
tional ablation study about the training data. We classify the
75K training data into approximately 43K Python-only, and
32K non-Python data according to whether ‘‘‘python
is a substring of the generated data. We do not classify
the data based on the seed code snippet because LLMs per-

forming OSS-INSTRUCT may produce code in a different
programming language than the seed.

Table 5 shows the evaluation results, where we consistently
finetune the base CODELLAMA-PYTHON-7B for 2 epochs
on different data partitions using the same training hyper-
parameters explained in Appendix B. From the table, we
can see that, as can be imagined, training on Python or
non-Python data can substantially boost the performance of
the base model in Python or non-Python tasks, respectively.
Interestingly, instruction tuning on different programming
languages can still boost the overall coding performance
that includes out-of-distribution languages. For example,
when trained on only non-Python data, Magicoder-CL still
achieves a 10.4 percentage point improvement over the base
model in the Python-only evaluation. This implies LLMs
can establish correlations between different programming
languages and perform transfer learning of deeper code se-
mantics. Finally, we observe a more significant boost in
Python evaluation when combining data from both sources,
with a slight decrease in multilingual performance compared
with only finetuning on multilingual data. We attribute this
decrease to the dominant amount of Python data (around
57%) during instruction tuning.

4.2. OSS-INSTRUCT vs. Direct Finetuning

The fact that OSS-INSTRUCT gets an LLM inspired from
open-source code snippets may lead to a natural question:
why not directly finetuning on these open-source code? To
answer this question, we follow CodeSearchNet (Husain
et al., 2020) to mine semantically relevant comment-function
pairs from the same seed document corpus we use to con-
struct the 75K OSS-INSTRUCT dataset. We then train the
model to predict the function bodies from the function signa-
tures and comments. We prioritize comment-function pairs
that overlap with our 75K seed snippets, resulting in about
11K data points. To align with our 75K samples, we collect
the remaining 64K samples using the whole corpus of 75K
seed documents. Eventually, we have the same number of
comment-function pairs with OSS-INSTRUCT data.

We finetune the base CODELLAMA-PYTHON-7B for 2
epochs using the paired data, following the same training
setup discussed in Appendix B. From Table 6, we observe
that finetuning on 75K paired comment-function data even
worsens the base model, while OSS-INSTRUCT helps to
introduce a substantial boost. We conjecture that the degra-
dation is owing to the substantial noise and inconsistency
that exists intrinsically in the data pairs, even though these
paired data exhibit very similar format as HumanEval or
MultiPL-E problems. This further shows that data factual-
ity, rather than the format, is essential to code instruction
tuning. It also indicates the superiority of OSS-INSTRUCT
which can translate these loosely related code fragments

6

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 2: Pass@1 results of different LLMs on MultiPL-E (Cassano et al., 2022) following the same hyperparameter
settings as the WizardCoder paper (Luo et al., 2023b): temperature = 0.2, top p = 0.95, max length = 512, and
num samples = 50. We evaluate all 7B models using bigcode-evaluation-harness (Ben Allal et al., 2022) and
report other results from WizardCoder.

Model Size
Programming Language

Java JavaScript C++ PHP Swift Rust

CODELLAMA 34B 40.2 41.7 41.4 40.4 35.3 38.7
CODELLAMA-PYTHON 34B 39.5 44.7 39.1 39.8 34.3 39.7
CODELLAMA-INSTRUCT 34B 41.5 45.9 41.5 37.0 37.6 39.3
WizardCoder-CL 34B 44.9 55.3 47.2 47.2 44.3 46.2

StarCoderBase 15B 28.5 31.7 30.6 26.8 16.7 24.5
StarCoder 15B 30.2 30.8 31.6 26.1 22.7 21.8
WizardCoder-SC 15B 35.8 41.9 39.0 39.3 33.7 27.1

CODELLAMA 7B 29.3 31.7 27.0 25.1 25.6 25.5
CODELLAMA-PYTHON 7B 29.1 35.7 30.2 29.0 27.1 27.0

Magicoder-CL 7B 36.4 45.9 36.5 39.5 33.4 30.6
MagicoderS-CL 7B 42.9 57.5 44.4 47.6 44.1 40.3

Table 3: Pass@1 results on DS-1000 (completion format) with temperature = 0.2, top p = 0.5, max length =
1024, and num samples = 40, following the same hyperparameter setting used in WizardCoder (Luo et al., 2023b). We
evaluate all the 7B models with their preferred prompt formats and report other results from WizardCoder.

Model Size
+ 155

Matplotlib
+ 220

NumPy
+ 291

Pandas
+ 68

PyTorch
+ 106
SciPy

+ 115
Sklearn

+ 45
TensorFlow

= 1000
Overall

INCODER 6.7B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
CodeGen-Mono 16B 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Code-Cushman-001 - 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

StarCoder 15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
WizardCoder-SC 15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

CODELLAMA-PYTHON 7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder-CL 7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4

Magicoder-CL 7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagicoderS-CL 7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

Table 4: Pass@1 (greedy decoding) comparison between Magicoder and DeepSeek-Coder (Guo et al., 2024) on Hu-
manEval (+) and MBPP (+). DeepSeek-Coder results are reported from EvalPlus (Liu et al., 2023b) Leaderboard.

Model Size Training Tokens
Benchmark Open-Source

HumanEval (+) MBPP (+) Weight Data

DeepSeek-Coder-Base
1.3B 2T - 55.4 (46.9) #
6.7B 2T 47.6 (39.6) 70.2 (56.6) #
33B 2T 51.2 (43.3) - #

DeepSeek-Coder Instruct
1.3B +2B 64.6 (58.5) 63.7 (53.1) #
6.7B +2B 73.8 (70.1) 72.7 (63.4) #
33B +2B 78.7 (72.6) 78.7 (66.7) #

Magicoder-DS 6.7B +90M 66.5 (60.4) 75.4 (61.9)
MagicoderS-DS 6.7B +240M 76.8 (70.7) 75.7 (64.4)

7

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Table 5: Ablation study of using different programming languages as training data. We show the pass@1 results on
HumanEval+ (Liu et al., 2023b) for Python and the average pass@1 results on MultiPL-E (Cassano et al., 2022) for the
same set of programming languages used in Table 2 (i.e., Java, JavaScript, C++, PHP, Swift, and Rust). All the variants are
finetuned with 2 epochs and evaluated through greedy-decoding.

Model (7B) Finetuning Data Python (HumanEval+) Others (MultiPL-E)

CODELLAMA-PYTHON - 34.1 29.6

Magicoder-CL Python (43K) 47.6 32.7
Magicoder-CL Others (32K) 44.5 38.3

Magicoder-CL Both (75K) 55.5 37.8

Table 6: Comparison between OSS-INSTRUCT and directly
finetuning on comment-function pairs with CODELLAMA-
PYTHON-7B as the base model.

Finetuning Data HumanEval+ MultiPL-E

Base model w/o finetuning 34.1 29.6
Comment-function pairs (75K) 34.1 24.1
OSS-INSTRUCT (75K) 55.5 37.8

into semantically-consistent instruction-tuning data.

4.3. OSS-INSTRUCT with A Less Powerful Teacher

In this section, we explore the factors contributing to the
effectiveness of OSS-INSTRUCT beyond just the distillation
of the teacher model. We propose two potential key reasons.
First, since the base model is pretrained with comprehen-
sive code data, the distillation process likely activates the
model’s internal capabilities, leading to improved perfor-
mance in coding tasks. Second, OSS-INSTRUCT uses seed
code snippets to generate problem-solution pairs in one shot.
These seed snippets provide valuable context, enabling the
model to create better solutions than a plain teacher model
lacking such seed information. These enhanced solutions
can then be used to train more effective student models. To
verify these points, we conduct an additional experiment
by generating a subset of 20K OSS-INSTRUCT data using
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024), a state-of-
the-art, general-purpose, open-source LLM.

Table 7: Pass@1 on HumanEval+ and MBPP+ when fine-
tuning CODELLAMA-PYTHON-7B for 2 epochs on 20K
OSS-INSTRUCT data generated by Mixtral-8x7B-Instruct-
v0.1 (Jiang et al., 2024).

Model HumanEval+ MBPP+

Mixtral-8x7B-Instruct-v0.1 39.6 47.4
CODELLAMA-PYTHON-7B 34.1 45.4
Magicoder-CL-Mixtral-7B 55.5 50.4

Table 7 indicates that Magicoder-CL-Mixtral-7B not
only significantly improves over the base CODELLAMA-
PYTHON, but is also better than Mixtral-8x7B-Instruct-v0.1
(i.e., the teacher model) across HumanEval+ and MBPP+.
These results suggest that OSS-INSTRUCT is not simply dis-
tilling a teacher model, but also triggering the base model’s
own capability and effectively leveraging the information
encapsulated in seed code snippets.

5. Related Work
Foundation models for code Trained over billions of
lines of code, LLMs have demonstrated outstanding per-
formance in a wide range of software engineering tasks,
including code generation (Chen et al., 2021; Austin et al.,
2021), program repair (Xia & Zhang, 2022; Wei et al.,
2023; Xia et al., 2023b; Jiang et al., 2023b; Bouzenia et al.,
2024), and software testing (Xia et al., 2023a; Deng et al.,
2023; Yuan et al., 2023; Schäfer et al., 2023; Lemieux et al.,
2023). In particular, prominent base models, such as Code-
Gen (Nijkamp et al., 2023), CodeT5 (Wang et al., 2021),
StarCoder (Li et al., 2023), and CODELLAMA (Rozière
et al., 2023), are pre-trained over a huge number of code-
base from scratch, establishing the fundamental ability of
general code generation and understanding. More recent
code LLMs, such as DeepSeek-Coder (Guo et al., 2024) and
StarCoder2 (Lozhkov et al., 2024), additionally organize
the pretraining data at the repository level to enhance the
model’s contextual understanding capabilities. Furthermore,
these base models are also finetuned (Luo et al., 2023b) or
prompted (Chen et al., 2023) to unlock their true potential
to specialize in solving domain-specific coding tasks.

Instruction tuning with synthetic data Instruction tun-
ing aims to improve pretrained LLMs by finetuning them
with a mixture of instructions and corresponding re-
sponses (Wei et al., 2022). However, obtaining high-
quality instructional data is oftentimes laborious. Hence,
researchers are increasingly focusing on the development
of methods to generate synthetic instruction data. Wang
et al. (2023a) introduces SELF-INSTRUCT, where a founda-

8

Magicoder: Empowering Code Generation with OSS-INSTRUCT

tion LLM (GPT-3 (Brown et al., 2020)) is used to gen-
erate synthetic instruction-response pairs with carefully
crafted prompts. The same LLM is then instruction-tuned on
the synthetic data to distill such self-generated knowledge.
This technique has been further extended to create synthetic
data with different LLMs. For example, Alpaca (Taori et al.,
2023) and Code Alpaca (Chaudhary, 2023) apply SELF-
INSTRUCT to finetune LLAMA with ChatGPT-generated
instructions. To improve SELF-INSTRUCT, WizardLM (Xu
et al., 2023) and WizardCoder (Luo et al., 2023a) propose
Evol-Instruct and Code Evol-Instruct by guiding ChatGPT
with heuristic prompts to make the synthetic data more com-
plex and diverse. More recently, Gunasekar et al. (2023)
shows that textbook-quality synthetic data alone can help
the model achieve remarkable coding and reasoning capa-
bilities. Orthogonal to all existing methods, our proposed
OSS-INSTRUCT allows LLMs to get inspired from real-
world code snippets for better controllability, quality, and
creativity in coding tasks.

Evaluating LLMs for code Most code benchmarks eval-
uate LLMs on generating single-function programs from
natural language descriptions. Such benchmarks include
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and CodeContests (Li et al.,
2022). A handful of manual tests are used to assess the
functional correctness of LLM-generated solutions. How-
ever, insufficient tests can lead to false negatives. Conse-
quently, the EvalPlus framework (Liu et al., 2023b) pro-
duces HumanEval+ and MBPP+ by extending 80×/35×
more tests. To address dataset contamination issues, re-
searchers propose LiveCodeBench (Jain et al., 2024), which
compiles fresh coding problems not included in model
training, and EvoEval (Xia et al., 2024), which strategi-
cally leverages LLMs to evolve existing benchmarks into
new coding tasks. Meanwhile, there are comprehensive
benchmarks evaluating code generation for data science
(DS-1000 (Lai et al., 2022)), addressing open-source issues
(SWE-bench (Jimenez et al., 2023)), and repository-level
code generation (CROSSCODEEVAL (Ding et al., 2023) and
RepoEval (Zhang et al., 2023)).

6. Conclusion and Future Work
We propose OSS-INSTRUCT, a novel data generation
method using Large Language Models to generate diverse
coding challenges from open-source code snippets. This
approach enables Magicoder, which significantly improves
the base LLM. Despite having less than 7B parameters, it
can outperform all evaluate LLMs with less than or equal to
16B parameters, including the 15B WizardCoder. Combin-
ing OSS-INSTRUCT with Evol-Instruct allows us to build
the enhanced MagicoderS models. They achieve remark-
able results by rivaling leading models like ChatGPT in

HumanEval benchmarks. We fully open source the model
weights, training data, and source code, to enable future
research in LLMs for code. In the near future, we will ap-
ply OSS-INSTRUCT to larger base models. We will also
continue advancing OSS-INSTRUCT by generating higher-
quality data with a strategically designed distribution of the
seed code snippets and with more advanced teacher LLMs
such as GPT-4.

Acknowledgement
We thank all the reviewers for their insightful comments and
suggestions for our paper. This work was partially supported
by NSF grant CCF-2131943, as well as Kwai Inc.

Impact Statement
This work is motivated to boost large language models
in terms of their code generation and understanding ca-
pabilities through instruction tuning. The proposed OSS-
INSTRUCT method leverages the abundance of open source
to generate diverse and controllable instruction data. We ex-
pect this idea to also foster innovative software solutions tai-
lored to domain-specific needs, particularly in areas where
real data is private and scarce, by generating extensive syn-
thetic data. Additionally, our method reinforces the value
of community-driven content and knowledge sharing by
incorporating open-source code as references.

However, it is essential to recognize the potential for misuse,
such as the deliberate generation of vulnerable code that can
be exploited for malicious purposes. Ultimately, adhering
to ethical guidelines is crucial to ensure the responsible use
of this technique.

References
Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Fer-

randis, C. M., Muennighoff, N., Mishra, M., Gu, A., Dey,
M., Umapathi, L. K., Anderson, C. J., Zi, Y., Poirier, J. L.,
Schoelkopf, H., Troshin, S., Abulkhanov, D., Romero,
M., Lappert, M., Toni, F. D., del Rı́o, B. G., Liu, Q.,
Bose, S., Bhattacharyya, U., Zhuo, T. Y., Yu, I., Villegas,
P., Zocca, M., Mangrulkar, S., Lansky, D., Nguyen, H.,
Contractor, D., Villa, L., Li, J., Bahdanau, D., Jernite, Y.,
Hughes, S., Fried, D., Guha, A., de Vries, H., and von
Werra, L. Santacoder: don’t reach for the stars!, 2023.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Ben Allal, L., Muennighoff, N., Kumar Umapathi,

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Magicoder: Empowering Code Generation with OSS-INSTRUCT

L., Lipkin, B., and von Werra, L. A framework
for the evaluation of code generation models.
https://github.com/bigcode-project/
bigcode-evaluation-harness, 2022.

Bouzenia, I., Devanbu, P., and Pradel, M. Repairagent: An
autonomous, llm-based agent for program repair. arXiv
preprint arXiv:2403.17134, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Cambronero, J., Gulwani, S., Le, V., Perelman, D., Rad-
hakrishna, A., Simon, C., and Tiwari, A. Flashfill++:
Scaling programming by example by cutting to the
chase. Proc. ACM Program. Lang., 7(POPL), jan 2023.
doi: 10.1145/3571226. URL https://doi.org/10.
1145/3571226.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-
Costin, L., Pinckney, D., Yee, M.-H., Zi, Y., Anderson,
C. J., Feldman, M. Q., Guha, A., Greenberg, M., and
Jangda, A. Multipl-e: A scalable and extensible approach
to benchmarking neural code generation, 2022.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code,
2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large
language models to self-debug, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Deng, Y., Xia, C. S., Peng, H., Yang, C., and Zhang, L.
Large language models are zero-shot fuzzers: Fuzzing
deep-learning libraries via large language models, 2023.

Ding, Y., Wang, Z., Ahmad, W. U., Ding, H., Tan, M.,
Jain, N., Ramanathan, M. K., Nallapati, R., Bhatia, P.,
Roth, D., and Xiang, B. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code comple-
tion. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2023. URL https://openreview.net/forum?
id=wgDcbBMSfh.

Feng, Y., Martins, R., Bastani, O., and Dillig, I. Program
synthesis using conflict-driven learning. SIGPLAN Not.,
53(4):420–435, jun 2018. ISSN 0362-1340. doi: 10.
1145/3296979.3192382. URL https://doi.org/
10.1145/3296979.3192382.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace,
E., Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and
Lewis, M. Incoder: A generative model for code infilling
and synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hQwb-lbM6EL.

Gulwani, S., Polozov, O., and Singh, R. Program syn-
thesis. Foundations and Trends® in Programming Lan-
guages, 4(1-2):1–119, 2017. ISSN 2325-1107. doi:
10.1561/2500000010. URL http://dx.doi.org/
10.1561/2500000010.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y., Li, Y. K., Luo, F., Xiong, Y.,
and Liang, W. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence,
2024.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps, 2021.

10

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3571226
https://doi.org/10.1145/3571226
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3296979.3192382
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Honovich, O., Scialom, T., Levy, O., and Schick, T. Unnat-
ural instructions: Tuning language models with (almost)
no human labor. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 14409–14428, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.806. URL https:
//aclanthology.org/2023.acl-long.806.

Hugging Face. Hugging face: The ai community build-
ing the future. https://huggingface.co/, 2023.
Accessed: 2023-12-01.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search, 2020.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation of
large language models for code, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023a.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Jiang, N., Liu, K., Lutellier, T., and Tan, L. Impact of code
language models on automated program repair, 2023b.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues?, 2023.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
Bahdanau, D., von Werra, L., and de Vries, H. The stack:
3 tb of permissively licensed source code, 2022.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., tau Yih, S. W., Fried, D., Wang, S., and Yu, T. Ds-
1000: A natural and reliable benchmark for data science
code generation, 2022.

Lemieux, C., Inala, J. P., Lahiri, S. K., and Sen, S. Co-
damosa: Escaping coverage plateaus in test genera-
tion with pre-trained large language models. In 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 919–931. IEEE, 2023.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,
D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you!, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Sutherland Robson, E., Kohli, P., de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-
level code generation with alphacode. Science, 378
(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.
org/10.1126/science.abq1158.

Liu, J., Peng, J., Wang, Y., and Zhang, L. Neuri: Di-
versifying dnn generation via inductive rule inference.
In Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023,
pp. 657–669, New York, NY, USA, 2023a. Associa-
tion for Computing Machinery. ISBN 9798400703270.
doi: 10.1145/3611643.3616337. URL https://doi.
org/10.1145/3611643.3616337.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/
forum?id=1qvx610Cu7.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,
E., Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y.,
He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,
Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,
C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,
Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,

11

https://aclanthology.org/2023.acl-long.806
https://aclanthology.org/2023.acl-long.806
https://huggingface.co/
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3611643.3616337
https://doi.org/10.1145/3611643.3616337
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,
Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,
Ferrandis, C. M., Zhang, L., Hughes, S., Wolf, T., Guha,
A., von Werra, L., and de Vries, H. Starcoder 2 and the
stack v2: The next generation, 2024.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568, 2023a.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct, 2023b.

Microsoft. Azure openai service models. https:
//learn.microsoft.com/en-us/azure/
cognitive-services/openai/concepts/
models, 2023a.

Microsoft. GitHub Copilot – Your AI pair pro-
grammer. https://github.com/features/
copilot, 2023b.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large
language models, 2023.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and
Solar-Lezama, A. Is self-repair a silver bullet for code
generation? In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=y0GJXRungR.

OpenAI. Chatgpt: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt/, 2022.

OpenAI. Gpt-4 technical report, 2023.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C. C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and
Synnaeve, G. Code llama: Open foundation models for
code, 2023.

Schäfer, M., Nadi, S., Eghbali, A., and Tip, F. An empirical
evaluation of using large language models for automated
unit test generation. IEEE Transactions on Software En-
gineering, 2023.

Services, A. W. AI Code Generator - Amazon Code-
Whisperer - AWS. https://aws.amazon.com/
codewhisperer/, 2023.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost, 2018.

SPARCK JONES, K. A statistical interpretation of term
specificity and its application in retrieval. 28(1):11–21,
2023/11/30 1972. doi: 10.1108/eb026526. URL https:
//doi.org/10.1108/eb026526.

Su, H., Shi, W., Kasai, J., Wang, Y., Hu, Y., Ostendorf,
M., Yih, W.-t., Smith, N. A., Zettlemoyer, L., and Yu, T.
One embedder, any task: Instruction-finetuned text em-
beddings. 2022. URL https://arxiv.org/abs/
2212.09741.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

theblackcat102. The evolved code alpaca dataset.
https://huggingface.co/datasets/
theblackcat102/evol-codealpaca-v1,
2023.

Wang, X., Dillig, I., and Singh, R. Program synthesis using
abstraction refinement. Proc. ACM Program. Lang., 2
(POPL), dec 2017. doi: 10.1145/3158151. URL https:
//doi.org/10.1145/3158151.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. CodeT5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 8696–8708, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.685. URL https://
aclanthology.org/2021.emnlp-main.685.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language models with self-generated instructions. In
Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484–13508, Toronto, Canada, July 2023a. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.
org/2023.acl-long.754.

12

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://github.com/features/copilot
https://github.com/features/copilot
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openai.com/blog/chatgpt/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Wang, Y., Le, H., Gotmare, A. D., Bui, N. D. Q., Li, J., and
Hoi, S. C. H. Codet5+: Open code large language models
for code understanding and generation, 2023b.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners, 2022.

Wei, Y., Xia, C. S., and Zhang, L. Copiloting the copilots:
Fusing large language models with completion engines
for automated program repair, 2023.

Xia, C. S. and Zhang, L. Less training, more repairing
please: Revisiting automated program repair via zero-
shot learning, 2022.

Xia, C. S. and Zhang, L. Keep the conversation going:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt.
arXiv preprint arXiv:2304.00385, 2023.

Xia, C. S., Paltenghi, M., Tian, J. L., Pradel, M., and Zhang,
L. Universal fuzzing via large language models, 2023a.

Xia, C. S., Wei, Y., and Zhang, L. Automated program
repair in the era of large pre-trained language models.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1482–1494, 2023b. doi:
10.1109/ICSE48619.2023.00129.

Xia, C. S., Deng, Y., and Zhang, L. Top leaderboard ranking
= top coding proficiency, always? evoeval: Evolving
coding benchmarks via llm, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Yu, Y., Zhuang, Y., Zhang, J., Meng, Y., Ratner, A., Krishna,
R., Shen, J., and Zhang, C. Large language model as
attributed training data generator: A tale of diversity and
bias, 2023.

Yuan, Z., Lou, Y., Liu, M., Ding, S., Wang, K., Chen, Y.,
and Peng, X. No more manual tests? evaluating and
improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan,
D., Mao, Y., Lou, J.-G., and Chen, W. Repocoder:
Repository-level code completion through iterative re-
trieval and generation, 2023.

13

Magicoder: Empowering Code Generation with OSS-INSTRUCT

You are exceptionally skilled at crafting high-quality programming problems and
offering precise solutions.

Please gain inspiration from the following random code snippet to create a
high-quality programming problem. Present your output in two distinct sections:
[Problem Description] and [Solution].

Code snippet for inspiration:
```
{code}
```
Guidelines for each section:
1. [Problem Description]: This should be **completely self-contained**, providing

all the contextual information one needs to understand and solve the problem.
Assume common programming knowledge, but ensure that any specific context,
variables, or code snippets pertinent to this problem are explicitly included.

2. [Solution]: Offer a comprehensive, **correct** solution that accurately
addresses the [Problem Description] you provided.

Figure 4: The detailed prompt design for OSS-INSTRUCT

A. More Details of OSS-INSTRUCT

A.1. Prompt Design

Figure 4 illustrates the prompt template of OSS-INSTRUCT, where the first section presents a high-level description of the
task, the second section incorporates the code snippet, and the third section offers guidelines on the response.

A.2. Qualitative Examples

Figure 5 extends Figure 2 and shows more qualitative examples of OSS-INSTRUCT generation, including outputs that are
inspired by method definitions, shell scripts, library imports, class signatures, code statements, and code comments.

A.3. Breakdown of OSS-INSTRUCT Dataset

Categories To study the categories of OSS-INSTRUCT-generated data, we use INSTRUCTOR (Su et al., 2022), which is
one of the SOTA embedding models and can generate different text embeddings according to a task instruction. Inspired by
OctoPack (Muennighoff et al., 2023) and the topic tags on GitHub, we manually designed 10 categories specific to coding.
As shown in Figure 6, we calculate the cosine similarity between the embeddings of each sample in OSS-INSTRUCT and
the 10 categories to obtain the category breakdown. Overall, OSS-INSTRUCT exhibits diversity and balance across different
categories.

Length distribution We depict the length distribution for both generated problems and solutions in Figure 7. The x-axis
represents the number of tokens in each problem/solution, while the y-axis shows the correspondent number of samples.

B. Implementation Details
B.1. Data Generation

We use gpt-3.5-turbo-1106 as the foundation model to do OSS-INSTRUCT due to its high cost-effectiveness. We
randomly extract 1–15 lines from each selected code document from starcoderdata and let gpt-3.5-turbo-1106
imagine a self-contained coding problem and a correct solution. Given the numerous seed code snippets, we perform greedy
decoding to maximize the consistency between the generated problems and solutions.

14

Magicoder: Empowering Code Generation with OSS-INSTRUCT

 Seed: method definition
render() {

 Problem
Your task is to complete the `render` method to
generate the rendered shape as a string...

 Code
class ShapeRenderer {
 constructor(vertices) {
 this.vertices = vertices;
 }
 render() {
 let renderedShape = "";
 for (let i = 0; i < this.vertices.length; i++) {
 const vertex = this.vertices[i];
 renderedShape += `(${vertex.x}, ${vertex.y})`;
 if (i < this.vertices.length - 1) {
 renderedShape += " - ";
 }
 }
 return renderedShape;
 }
}

 Seed: library imports
import numpy as np
import gym_electric_motor as gem
import matplotlib.pyplot as plt

 Problem
Create a reinforcement learning agent to control an
electric motor using the OpenAI Gym environment...

 Code
import numpy as np
import gym_electric_motor as gem
...
env = gem.make("DcSeriesCont-v1")
class DQNAgent:
 def __init__(self, state_dim, action_dim): ...
 def build_model(self): ...
 def act(self, state): ...
 def train(self, state, action, reward, ...): ...
...
for episode in range(episodes):
 state = env.reset()
 state = np.reshape(state, [1, state_dim])
 ...

 Seed: class signature
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {
 public static void main(String[] args) {

 Problem
Create a simple Java Spring Boot application for a
banking system...

 Code
import org.axonframework.commandhandling.CommandBus;
import org.axonframework.config.Configuration;
...
@SpringBootApplication
@Import({ AxonConfig.class })
public class AxonbankApplication {...}
public class BankAccount {...}
public class CreateAccountCommand {...}
public class DepositFundsCommand {...}
public class WithdrawFundsCommand {...}
public class AccountCreatedEvent {...}
public class FundsDepositedEvent {...}
public class FundsWithdrawnEvent {...}

 Seed: code statements
cutoff_range = np.ptp(cutoffs)
if cutoff_range == 0: cutoff_range = 1
cutoff_colors = plt.get_cmap('plasma')(
 (cutoffs - np.min(cutoffs)) / cutoff_range
)

 Problem
Implement a function that calculates the color values
for a given set of cutoff values based on a specified
color map...

 Code
import numpy as np
import matplotlib.pyplot as plt

def calculate_cutoff_colors(cutoffs, cmap_name):
 cutoff_range = np.ptp(cutoffs)
 if cutoff_range == 0:
 cutoff_range = 1
 cmap = plt.get_cmap(cmap_name)
 normalized_cutoffs = ...
 cutoff_colors = ...
 return cutoff_colors

 Seed: shell script
python3 makeErrorFile.py data/test_dataset_14 14

 Problem
Create a Python program that generates an error file
based on a given dataset...

 Code
def generate_error_file(dataset_file, ...):
 error_lines = []
 with open(dataset_file, 'r') as file:
 for line in file:
 ...
 with open(error_file_name, 'w') as error_file:
 for error_line in error_lines:
 error_file.write(error_line + '\n')
if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("Usage: ...")
 else:
 dataset_file = sys.argv[1]
 dataset_number = sys.argv[2]
 generate_error_file(...)

 Seed: comments
Set degrees

 Problem
Implement a Python class that represents a
temperature in degrees...

 Code
class TemperatureConverter:
 def __init__(self): ...
 def set_celsius(self, degrees): ...
 def set_fahrenheit(self, degrees): ...
 def set_kelvin(self, degrees): ...
 def get_celsius(self): ...
 def get_fahrenheit(self): ...
 def get_kelvin(self): ...
 def convert_to(self, unit):
 if unit == 'C':
 return self.get_celsius()
 elif unit == 'F':
 return self.get_fahrenheit()
 elif unit == 'K':
 return self.get_kelvin()
 ...

Figure 5: More examples showing how OSS-INSTRUCT generates problems and solutions from seed code snippets. Detailed
problem requirements, implementations, and explanations are omitted for brevity.

15

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Figure 6: The category constitution of OSS-INSTRUCT

0 100 200 300 400 500 600 700

Number of Tokens

0

1

2

3

4

5

6

7

#
C

ou
nt

(T
ho

us
an

d)

problem

solution

Figure 7: Token count distribution of OSS-INSTRUCT-generated problems and solutions

B.2. Data Decontamination

We apply data decontamination before training our Magicoder and MagicoderS models. Following Li et al. (2023), we
decontaminate both our 75K OSS-INSTRUCT dataset and the evol-codealpaca-v1 (theblackcat102, 2023) dataset,
an open-source reproduction of Evol-Instruct generated by GPT-4 (OpenAI, 2023), by removing exact matches from
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), DS-1000 (Lai et al., 2022), and GSM8K (Cobbe et al., 2021).
Eventually, we filtered out 9 problems for OSS-INSTRUCT dataset and 89 for evol-codealpaca-v1.

B.3. Training

We employ CODELLAMA-PYTHON-7B and DeepSeek-Coder-Base 6.7B as the base LLMs. To obtain Magicoder series, we
first finetune the base models on about 75K synthetic data generated through OSS-INSTRUCT using the transformers
library from Hugging Face (Hugging Face, 2023). We finetune the base models for 2 epochs using two NVIDIA A100-80GB
GPUs through the Distributed Data Parallel (DDP) module from PyTorch. We set the initial learning rate at 5e-5 with 15
warmup steps and a linear scheduler. We use Adafactor (Shazeer & Stern, 2018) as our optimizer and choose a batch size of
512 with a sequence truncation length of 1216. To obtain MagicoderS , we continue to finetune Magicoder models with the
evol-codealpaca-v1 dataset, an open-source Evol-Instruct implementation containing about 110K samples. We use
the same hyperparameters except for 15 warmup steps and a 1024 maximum sequence length.

C. More Evaluation Results
C.1. Evaluation on APPS for Competitive Programming

We additionally evaluate Magicoder on APPS (Hendrycks et al., 2021), a benchmark suite of competitive programming
problems. Following Olausson et al. (2024), we select a subset of 300 problems from the APPS test set. From Table 8, we can
observe that the CODELLAMA-PYTHON-based Magicoder-CL significantly outperforms the base model and WizardCoder-
CL. MagicoderS-CL-7B is even better than WizardCoder-SC-15B despite having less than half the number of parameters.

16

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Meanwhile, DeepSeek-Coder-based MagicoderS-DS achieves the best result among all the evaluated baselines, substantially
outperforming the instruction-tuned DeepSeek-Coder-6.7B-Instruct.

Table 8: Pass@1 results on APPS evaluated using greedy decoding in a zero-shot setting.

Model Introductory (60) Interview (180) Competition (60) Overall (300)

WizardCoder-SC-15B 21.7 6.1 1.7 8.3
CODELLAMA-PYTHON-7B 3.3 2.8 0.0 2.3
WizardCoder-CL-7B 10.0 3.9 1.7 4.7
Magicoder-CL-7B 18.3 5.6 1.7 7.3
MagicoderS-CL-7B 23.3 6.1 1.7 8.7
DeepSeek-Coder-6.7B-Base 16.7 7.2 0.0 7.7
DeepSeek-Coder-6.7B-Instruct 23.3 9.4 0.0 10.3

Magicoder-DS-6.7B 20.0 8.9 1.7 9.7
MagicoderS-DS-6.7B 28.3 11.7 3.3 13.3

C.2. Fill-in-the-Middle Evaluation on DS-1000

Table 9 shows the evaluation results of Magicoder-DS and MagicoderS-DS on DS-1000 (Lai et al., 2022) (Insertion format),
assessing a model’s fill-in-the-middle capability. In this experiment, we use DeepSeek-Coder as the base model and exclude
CODELLAMA-PYTHON-based results, as CODELLAMA-PYTHON does not support the fill-in-the-middle format. The results
highlight Magicoder’s superior performance in fill-in-the-middle tasks compared to all other evaluated baselines. This
outstanding capability suggests that Magicoder can serve as a valuable copilot for developers.

Table 9: Pass@1 results on DS-1000 (Insertion format) with temperature = 0.2, top p = 0.5, max length = 1024,
and num samples = 40.

Model NumPy Pandas PyTorch SciPy Sklearn TensorFlow Overall

WizardCoder-SC-15B 35.1 20.4 30.4 28.9 32.3 37.8 28.6
DeepSeek-Coder-6.7B-Base 36.3 28.6 15.8 19.3 32.8 35.1 29.3
DeepSeek-Coder-6.7B-Instruct 44.1 27.3 38.2 30.8 38.4 29.6 34.6

Magicoder-DS-6.7B 39.7 31.2 27.4 23.7 44.6 30.2 33.9
MagicoderS-DS-6.7B 43.3 29.5 39.2 26.2 44.5 36.2 35.9

C.3. Impact of Removing Noisy Data

In §2.2, we highlight the benefits of preserving certain types of noise in instruction-tuning data. To support this argument, we
removed data samples with partially implemented code, such as those containing pass or NotImplemented tokens in
Python problems. Table 10 shows the pass@1 performance of CODELLAMA-PYTHON-7B on HumanEval+ when finetuned
for 2 epochs on the raw OSS-INSTRUCT dataset compared to the same dataset with noisy samples removed. We can observe
that retaining the noisy samples results in slightly better performance.

Table 10: Pass@1 on HumanEval+ when finetuning CODELLAMA-PYTHON-7B with and without noisy samples.

Setting Dataset Size HumanEval+

With noisy data 75K 55.5
Without noisy data 68K 54.9

17

Magicoder: Empowering Code Generation with OSS-INSTRUCT

D. Cases where OSS-INSTRUCT Improves Code Understanding
In this section, we compare the base model, DeepSeek-Coder-6.7B-Base, and its OSS-INSTRUCT-tuned version, Magicoder-
DS-6.7B, in both in-domain and out-of-domain scenarios and demonstrate how OSS-INSTRUCT helps improve the base
model’s instruction following capability. We provide the base model with an appropriate prompt prefix to make sure it can
produce a plausible output format.

D.1. More Precise Understanding of Requirements

The following example shows that after instruction tuning, the model can understand the requirement “Check whether the
input is valid” more precisely. DeepSeek-Coder-6.7B-Base only considers the integer case, while Magicoder-DS-6.7B
effectively checks if the parameter is of the correct type.

Prompt: Write a function that takes an integer a and returns True if this integer is a cube of some integer number. Note:
you should check whether the input is valid.

def is_cube(a):
if a <= 0:

return False
x = int(a ** (1/3))
return x**3 == a

DeepSeek-Coder-6.7B-Base

def is_cube(a):
if not isinstance(a, int) or a < 0:

return False # Invalid input

Check if the number is a perfect cube
x = int(a ** (1/3))
return x**3 == a

Magicoder-DS-6.7B

D.2. Handling Corner Cases

The example below indicates that Magicoder-DS-6.7B can correctly handle the corner case, where the input string has less
than or equal to 2 characters, even if this is not explicitly stated in the prompt. This is also an out-of-domain example since
the Scala programming language is not included in OSS-INSTRUCT dataset.

Prompt: Implement a Scala function that takes a string as input and returns a new string where all the characters are
reversed except the first and last characters. Reply only with the function.

def reverseExceptFirstLast(str: String):
String = {

val chars = str.toCharArray
val first = chars(0)
val last = chars(chars.length - 1)
val middle = chars.slice(1, chars.length

- 1).reverse
first + middle + last

}

DeepSeek-Coder-6.7B-Base

def reverseExceptFirstLast(input: String):
String = {

if (input.length <= 2) {
input

} else {
val reversedMiddle = input.substring(1,

input.length - 1).reverse
input.charAt(0) + reversedMiddle +

input.charAt(input.length - 1)
}

}

Magicoder-DS-6.7B

D.3. Generalizing to Unseen Tasks

We also show that after instruction tuning, Magicoder-DS-6.7B can respond plausibly to unseen requests during training.
This example asks the model to create an easy Python coding exercise, which the base model cannot interpret. Such kinds of
tasks are also not incorporated in the OSS-INSTRUCT dataset.

18

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Prompt: Create an easy Python coding exercise

def add_numbers(a, b):
return a + b

DeepSeek-Coder-6.7B-Base

Given a list of integers, return the sum
of all the positive integers in the

list.

def sum_positive_integers(nums):
return sum(num for num in nums if num >

0)

Test the function
numbers = [1, -2, 3, -4, 5, -6, 7, -8, 9,

-10]
print(sum_positive_integers(numbers)) #

Output: 25

Magicoder-DS-6.7B

E. Generating Complex Programs
In this section, we present the cases where the best performing MagicoderS-DS-6.7B is capable of generating real-world,
complex programs.

E.1. Implementing Snake Game in Python

Prompt: Write a snake game in Python using the turtle library (the game is created by Magicoder).
Response: Here is a simple snake game in Python using the turtle library. This game is a basic version and does not
include many features that a full-fledged snake game would have.

import turtle
import time
import random

delay = 0.1

Score
score = 0
high_score = 0

Set up the screen
wn = turtle.Screen()
wn.title("Snake Game by Magicoder")
wn.bgcolor("green")
wn.setup(width=600, height=600)
wn.tracer(0) # Turns off the screen updates

Snake head
head = turtle.Turtle()
head.speed(0)
head.shape("square")
head.color("black")
head.penup()
head.goto(0, 0)
head.direction = "stop"

Snake food
food = turtle.Turtle()
food.speed(0)
food.shape("circle")
food.color("red")
food.penup()
food.goto(0, 100)

segments = []

Pen
pen = turtle.Turtle()
pen.speed(0)
pen.shape("square")

19

Magicoder: Empowering Code Generation with OSS-INSTRUCT

pen.color("white")
pen.penup()
pen.hideturtle()
pen.goto(0, 260)
pen.write("Score: 0 High Score: 0", align="center", font=("Courier", 24, "normal"))

Functions
def go_up():

if head.direction!= "down":
head.direction = "up"

def go_down():
if head.direction!= "up":

head.direction = "down"

def go_left():
if head.direction!= "right":

head.direction = "left"

def go_right():
if head.direction!= "left":

head.direction = "right"

def move():
if head.direction == "up":

y = head.ycor()
head.sety(y + 20)

if head.direction == "down":
y = head.ycor()
head.sety(y - 20)

if head.direction == "left":
x = head.xcor()
head.setx(x - 20)

if head.direction == "right":
x = head.xcor()
head.setx(x + 20)

Keyboard bindings
wn.listen()
wn.onkeypress(go_up, "w")
wn.onkeypress(go_down, "s")
wn.onkeypress(go_left, "a")
wn.onkeypress(go_right, "d")

Main game loop
while True:

wn.update()

Check for a collision with the border
if head.xcor() > 290 or head.xcor() < -290 or head.ycor() > 290 or head.ycor() < -290:

time.sleep(1)
head.goto(0, 0)
head.direction = "stop"

Hide the segments
for segment in segments:

segment.goto(1000, 1000)

Clear the segments list
segments.clear()

Reset the score
score = 0

Reset the delay
delay = 0.1

Update the score display
pen.clear()
pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "

20

Magicoder: Empowering Code Generation with OSS-INSTRUCT

normal"))

Check for a collision with the food
if head.distance(food) < 20:

Move the food to a random spot
x = random.randint(-280, 280)
y = random.randint(-280, 280)
food.goto(x, y)

Add a segment
new_segment = turtle.Turtle()
new_segment.speed(0)
new_segment.shape("square")
new_segment.color("grey")
new_segment.penup()
segments.append(new_segment)

Shorten the delay
delay -= 0.001

Increase the score
score += 10

if score > high_score:
high_score = score

pen.clear()
pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "

normal"))

Move the end segments first in reverse order
for index in range(len(segments) - 1, 0, -1):

x = segments[index - 1].xcor()
y = segments[index - 1].ycor()
segments[index].goto(x, y)

Move segment 0 to where the head is
if len(segments) > 0:

x = head.xcor()
y = head.ycor()
segments[0].goto(x, y)

move()

Check for head collision with the body segments
for segment in segments:

if segment.distance(head) < 20:
time.sleep(1)
head.goto(0, 0)
head.direction = "stop"

Hide the segments
for segment in segments:

segment.goto(1000, 1000)

Clear the segments list
segments.clear()

Reset the score
score = 0

Reset the delay
delay = 0.1

Update the score display
pen.clear()
pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "

normal"))

time.sleep(delay)

wn.mainloop()

This game is a simple version of the classic snake game. The snake starts with a single segment and grows in size when it
eats food. The game ends when the snake hits the border or its own body. The score is increased by 10 points for each
piece of food eaten. The game speed increases as the snake grows.

21

Magicoder: Empowering Code Generation with OSS-INSTRUCT

E.2. Building Othello Game in Java

Prompt: Build a console-based Othello game in Java with row and column numbers shown on the board. The game
should end when there are no more valid moves for either player.
Response: Here is a simple console-based Othello game in Java. It does not include the graphical interface, but it does
include the row and column numbers on the board.

import java.util.Scanner;

public class Othello {
private static final int BOARD_SIZE = 8;
private static final char EMPTY = ’-’;
private static final char BLACK = ’B’;
private static final char WHITE = ’W’;
private static final char[][] board = new char[BOARD_SIZE][BOARD_SIZE];
private static char currentPlayer = BLACK;

public static void main(String[] args) {
initializeBoard();
printBoard();

while (true) {
System.out.println("Player " + currentPlayer + ", enter your move (row column):");
Scanner scanner = new Scanner(System.in);
int row = scanner.nextInt();
int col = scanner.nextInt();

if (isValidMove(row, col)) {
makeMove(row, col);
printBoard();
if (!hasValidMove()) {

System.out.println("Player " + currentPlayer + " has no valid moves. Game over!");
break;

}
currentPlayer = (currentPlayer == BLACK)? WHITE : BLACK;

} else {
System.out.println("Invalid move. Try again.");

}
}

}

private static void initializeBoard() {
for (int i = 0; i < BOARD_SIZE; i++) {

for (int j = 0; j < BOARD_SIZE; j++) {
board[i][j] = EMPTY;

}
}
board[3][3] = board[4][4] = BLACK;
board[3][4] = board[4][3] = WHITE;

}

private static void printBoard() {
System.out.print(" ");
for (int i = 0; i < BOARD_SIZE; i++) {

System.out.print(i + " ");
}
System.out.println();
for (int i = 0; i < BOARD_SIZE; i++) {

System.out.print(i + " ");
for (int j = 0; j < BOARD_SIZE; j++) {

System.out.print(board[i][j] + " ");
}
System.out.println();

}
}

private static boolean isValidMove(int row, int col) {
if (board[row][col]!= EMPTY) {

return false;
}
for (int i = -1; i <= 1; i++) {

for (int j = -1; j <= 1; j++) {
if (i!= 0 || j!= 0) {

if (isValidDirection(row, col, i, j)) {
return true;

}
}

22

Magicoder: Empowering Code Generation with OSS-INSTRUCT

}
}
return false;

}

private static boolean isValidDirection(int row, int col, int rowDir, int colDir) {
int newRow = row + rowDir;
int newCol = col + colDir;
while (newRow >= 0 && newRow < BOARD_SIZE && newCol >= 0 && newCol < BOARD_SIZE) {

if (board[newRow][newCol] == EMPTY) {
return false;

}
if (board[newRow][newCol] == currentPlayer) {

return true;
}
newRow += rowDir;
newCol += colDir;

}
return false;

}

private static void makeMove(int row, int col) {
board[row][col] = currentPlayer;
for (int i = -1; i <= 1; i++) {

for (int j = -1; j <= 1; j++) {
if (i!= 0 || j!= 0) {

flipDirection(row, col, i, j);
}

}
}

}

private static void flipDirection(int row, int col, int rowDir, int colDir) {
int newRow = row + rowDir;
int newCol = col + colDir;
while (newRow >= 0 && newRow < BOARD_SIZE && newCol >= 0 && newCol < BOARD_SIZE) {

if (board[newRow][newCol] == EMPTY) {
return;

}
if (board[newRow][newCol] == currentPlayer) {

while (true) {
newRow -= rowDir;
newCol -= colDir;
if (newRow == row && newCol == col) {

break;
}
board[newRow][newCol] = currentPlayer;

}
return;

}
newRow += rowDir;
newCol += colDir;

}
}

private static boolean hasValidMove() {
for (int i = 0; i < BOARD_SIZE; i++) {

for (int j = 0; j < BOARD_SIZE; j++) {
if (isValidMove(i, j)) {

return true;
}

}
}
return false;

}
}

This program starts with a 8x8 board with two pieces in the center of the board, one black and one white. The player who
goes first is black. The game ends when there are no more valid moves for either player. The player enters their move as
two numbers, the row and the column. If the move is valid, the game makes the move and switches the player. If the
move is not valid, the player is asked to enter a valid move.

E.3. Writing Specific Gradio Application

23

Magicoder: Empowering Code Generation with OSS-INSTRUCT

Prompt: Write a gradio (3.48.0) application for the following use case: Take an input image and return a 45 degree
clockwise rotated image. You should also add text description under the output showing the rotation degree.
Response: Here is a simple snake game in Python using the turtle library. This game is a basic version and does not
include many features that a full-fledged snake game would have.

import gradio as gr
import numpy as np
from PIL import Image

def rotate_image(img):
img = Image.fromarray(img)
rotated_img = img.rotate(-45)
return np.array(rotated_img), "45 degree clockwise rotation"

demo = gr.Interface(
fn=rotate_image,
inputs=gr.inputs.Image(type="numpy"),
outputs=[gr.outputs.Image(type="numpy"), "text"],
title="Image Rotation",
description="Upload an image and get a 45 degree clockwise rotated image",

)

demo.launch()

This script defines a function rotate_image that takes an image as input, rotates it 45 degrees clockwise using the PIL
library, and returns the rotated image and a text description. The gr.Interface function is then used to create a Gradio
interface for this function.

The gr.inputs.Image(type="numpy") line specifies that the input to the function should be an image, and the
gr.outputs.Image(type="numpy") line specifies that the output should be an image. The ”text” output type is
used to display the text description.

Finally, demo.launch() is used to launch the Gradio interface.

E.4. Developing Machine Learning Pipeline with PyTorch

Prompt: Build a simple neural network in Python using Pytorch to classify handwritten digits from the MNIST dataset.
You should use CNN as the model structure, train the model for 5 epochs, draw a chart of the training loss, and show the
final result.
Response: Here is a simple implementation of a Convolutional Neural Network (CNN) using PyTorch to classify
handwritten digits from the MNIST dataset.

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt

Device configuration
device = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

Hyper-parameters
num_epochs = 5
batch_size = 100
learning_rate = 0.001

MNIST dataset
train_dataset = torchvision.datasets.MNIST(root=’../../data’,

train=True,
transform=transforms.ToTensor(),
download=True)

test_dataset = torchvision.datasets.MNIST(root=’../../data’,
train=False,
transform=transforms.ToTensor())

Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,

batch_size=batch_size,

24

Magicoder: Empowering Code Generation with OSS-INSTRUCT

shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):

def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(

nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))

self.fc = nn.Linear(7*7*32, 10)

def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out

model = ConvNet().to(device)

Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Train the model
total_step = len(train_loader)
loss_list = []
for epoch in range(num_epochs):

for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)

Forward pass
outputs = model(images)
loss = criterion(outputs, labels)

Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print (’Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}’

.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
loss_list.append(loss.item())

Test the model
model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():

correct = 0
total = 0
for images, labels in test_loader:

images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print(’Test Accuracy of the model on the 10000 test images: {} %’.format(100 * correct / total))

Draw a chart of the training loss
plt.plot(loss_list)
plt.title(’Training Loss’)
plt.xlabel(’Epoch’)
plt.ylabel(’Loss’)
plt.show()

25

Magicoder: Empowering Code Generation with OSS-INSTRUCT

This script first loads the MNIST dataset and then defines a Convolutional Neural Network (CNN) with two convolutional
layers. The CNN is trained for 5 epochs using the Adam optimizer and the Cross Entropy Loss function. After training,
the model is tested on the test dataset and the accuracy is printed. Finally, a chart of the training loss is drawn.

F. Limitations
While Magicoders prove to be effective by being instruction-tuned with OSS-INSTRUCT and Evol-Instruct generated data,
we apply our techniques to models with no more than 7B parameters due to resource constraints. This limitation hinders our
ability to observe the method’s impact on larger models. Moreover, the OSS-INSTRUCT prompt is sophisticated and may
require a relatively strong model to comprehend the correct intent. Weaker models may fail to produce plausible instruction
data. Future research may explore applying OSS-INSTRUCT to models at different capacities in the context of self-training.

26

	Introduction
	OSS-Instruct: Instruction Tuning from Open Source
	Generating Coding Problems
	Data Cleaning and Decontamination
	Qualitative Examples of OSS-Instruct

	Evaluation
	Python Text-to-Code Generation
	Multilingual Code Generation
	Code Generation for Data Science
	Comparison with DeepSeek-Coder

	Ablations of Data Source
	Impact of the Language Distribution
	OSS-Instruct vs. Direct Finetuning
	OSS-Instruct with A Less Powerful Teacher

	Related Work
	Conclusion and Future Work
	More Details of OSS-Instruct
	Prompt Design
	Qualitative Examples
	Breakdown of OSS-Instruct Dataset

	Implementation Details
	Data Generation
	Data Decontamination
	Training

	More Evaluation Results
	Evaluation on APPS for Competitive Programming
	Fill-in-the-Middle Evaluation on DS-1000
	Impact of Removing Noisy Data

	Cases where OSS-Instruct Improves Code Understanding
	More Precise Understanding of Requirements
	Handling Corner Cases
	Generalizing to Unseen Tasks

	Generating Complex Programs
	Implementing Snake Game in Python
	Building Othello Game in Java
	Writing Specific Gradio Application
	Developing Machine Learning Pipeline with PyTorch

	Limitations

