
Generative Multimodal Decoding: Reconstructing
Images and Text from Human fMRI

Matteo Ferrante
Department of Biomedicine and Prevention

University of Rome, Tor Vergata
matteo.ferrante@uniroma2.it

Tommaso Boccato
Department of Biomedicine and Prevention

University of Rome, Tor Vergata

Furkan Ozcelik
CerCo, CNRS UMR5549, Toulouse, France

Universite de Toulouse, Toulouse, France
ANITI, Toulouse, France

Rufin VanRullen
CerCo, CNRS UMR5549, Toulouse, France

Universite de Toulouse, Toulouse, France
ANITI, Toulouse, France

Nicola Toschi
Department of Biomedicine and Prevention

University of Rome, Tor Vergata
Martinos Center For Biomedical Imaging
MGH and Harvard Medical School (USA)

Abstract

The human brain adeptly processes immense visual information using complex
neural mechanisms. Recent advances in functional MRI (fMRI) enable decoding
this visual information from recorded brain activity patterns. In this work, we
present an innovative approach for reconstructing meaningful images and captions
directly from fMRI data, with a focus on brain captioning due to its enhanced
flexibility over image decoding. We utilize the Natural Scenes fMRI dataset
containing brain recordings from subjects viewing images. Our method leverages
state-of-the-art image captioning and diffusion models for multimodal decoding.
We train regression models between fMRI data and textual/visual features and
incorporate depth estimation to guide image reconstruction. Our key innovation
is a multimodal framework aligning neural and deep learning representations to
generate both semantic captions and photorealistic images from brain activity.
We demonstrate quantitative improvements in captioning over prior art and in
image spatial relationships through our reconstruction pipeline. In conclusion,
this work significantly advances brain decoding capabilities through an integrated
vision-language approach. Our flexible decoding platform combining high-level
semantic text and low-level visual depth information provides new insights into
human visual cognition. The proposed methods could enable future applications in
brain-computer interfaces, neuroscience, and AI.

1 Introduction
Brain decoding involves reconstructing sensory stimuli from recorded brain activity patterns. Here,
we aim to decode visual information from fMRI recordings of brain activity during visual perception.
We introduce a multimodal transformer model to generate natural language image captions directly
from fMRI data. Predicting captions rather than images provides a higher-level interpretation of
visual processing in the brain. Our model is trained on aligned fMRI-text-image triplets to learn
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Figure 1: Our model utilizes fMRI measurements to extract features for GIT captioning and VDVAE initial
and depth image estimation using linear models. Image captions serve as the primary general result, used in the
second stage alongside other conditioning to generate plausible reconstructions with a latent diffusion model.
GIT and VDVAE models are pre-trained and frozen, while linear regressions are trained from fMRI to their
latent spaces.

multimodal representations. We propose a conditioned image reconstruction pipeline leveraging
predicted captions and depth maps from fMRI. The captions are used to control a state-of-the-art
text-to-image diffusion model, Stable Diffusion, to generate photorealistic images conditioned on
brain activity. Our main novelty is a multimodal framework exploiting alignments between fMRI,
text, and images to decode both semantic captions and photorealistic images from brain activity.
Figure 1 illustrates our full pipeline, while Figure 2 shows example generated captions and images
compared to prior image reconstruction methods. We introduce novel multimodal decoding methods
to predict higher-level textual scene descriptions and controlled photorealistic image reconstructions
from fMRI recordings of visual perception. Our work provides new insights into visual information
representation in the human brain.

2 Related Works
Several works have utilized variational autoencoders (VAEs) for decoding. VanRullen and Reddy
[2019] employed a VAE-GAN to reconstruct faces, while Horikawa and Kamitani [2017] used
sparse regression on fMRI data to predict CNN features. Other approaches have incorporated
adversarial training. Shen et al. [2019], Ren et al. [2019], Gaziv et al. [2022] proposed unsupervised
VAE-GANs for fMRI decoding. Donahue and Simonyan [2019], Casanova et al. [2021], Mozafari
et al. [2020], Ozcelik et al. [2022] optimized latent spaces of GANs like BigBiGAN and IC-GAN.
Recently, diffusion models have shown promise for improved image generation from fMRI [Takagi
and Nishimoto, 2023, Chen et al., 2022, Ferrante et al., 2023, Ozcelik and VanRullen, 2023]. For
caption generation, Takada et al., Matsuo et al. [2016], Qiao et al. [2018] combined CNNs and RNNs
to estimate convolutional features and generate captions from brain activity. Our work proposes
a neuroscience-inspired pipeline for multimodal brain decoding. We decode fMRI data into two
processing streams: A top-down semantic stream predicts textual captions, mimicking higher-level
semantic interpretation of visual scenes in the brain. A bottom-up stream decodes lower-level features
like shapes, colors, and depth maps, emulating bottom-up visual processing. These dual streams are
fused in a multimodal diffusion model aligning brain, text, and image representations. Our framework
integrates neuroscience principles of hierarchical visual processing with state-of-the-art deep learning
for multimodal decoding. The textual captions provide top-down conditioning, while the lower-
level reconstructions inform bottom-up image details. In summary, we develop a neuro-inspired
multimodal approach to reconstruct images by decoding both high-level semantic descriptions and
low-level visual features from fMRI recordings of brain activity during visual perception.

3 Methods
In this section, we describe the proposed method and the data we used. The data are publicly available
and can be requested at https://naturalscenesdataset.org/. All experiments and models
were trained on a server equipped with four A100 GPU cards and 2 TB of RAM. The entire analysis
took approximately 16 hours per subject. The pipelines are based on pre-trained versions of deep
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Figure 2: Comparison of our results (Columns 2-4) with the shown stimuli and reconstructions from other
works. The second column displays the caption computed from the brain activity, the third column presents the
initial guess image, the fourth column shows the depth estimated images, and the fifth column reports our final
reconstruction. The last two columns showcase reconstructions from two recent works. All results are from
subj01.

Figure 3: Examples of generated caption with our BrainCaptioner pipeline. Shown images are test set stimuli
used for subj01 and subj02 during the fmri experiment. COCO Caption column report the first annotations for
the original COCO image, while the other two columns are the output of our model for the two subjects.

learning models used as proxies for brain activity, generating latent representations that could be
similar (and thus linearly mapped) to brain activity and vice versa.

Data: We utilize the Natural Scenes fMRI dataset Allen et al. [2022] containing recordings from
subjects viewing COCO images. Our analysis focuses on 4 subjects, yielding ∼ 25k train and ∼ 3k
test trials. fMRI signals are masked and temporally reduced as in Allen et al. [2022].

Connecting Brain and deep learning models: Under the assumption that deep learning models
can approximate the way the brain processes information, we can map one representation into
another with a linear mapping. Specifically, we used a regularized linear regression between brain
representations and latent space of an image captioning model to produce image captions from neural
activity and a mapping to several layer representations of a variational autoencoder model to obtain
initial image and depth reconstruction. Then, to improve image quality and combine these multiple
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Model Low level metrics High level

PixCorr SSIM AlexNet (2) AlexNet (5) Inception CLIP

Lin et al (2022) - - - - 0.782 -
Takagi et al (2022) - - 0.83 0.83 0.76 0.77
Gu et al (2023) 0.15 0.325 - - - -
Ozcelik et al (2023) 0.30 0.28 0.89 0.98 0.92 0.94
Our Model 0.353 0.327 0.89 0.98 0.84 0.90

Table 1: Image Metrics Analysis: Metrics from Ozcelik et al were recomputed by requesting images from
subj01 and subj02 from the authors and averaging them to facilitate comparison with our results. Metrics from
other works are cited directly from the original articles.

outputs, we used a multimodal latent diffusion model (Stable Diffusion + ControlNet) to generate the
final image reconstruction.

Captioning: We employ the Generative Image-to-text Transformer (GIT) [Wang et al.] for captioning.
We train ridge regression between fMRI data and GIT image features, and renormalize predictions to
match the true distribution (Fig. A3). Generated captions are shown in Fig. 3.

Reconstruction: We propose a pipeline leveraging diffusion models conditioned on initial images
and depth maps estimated from fMRI (Fig. 1). Initial images are generated by decoding VDVAE
latents Child [2021] predicted from brain data. Depth is estimated using ControlNet Zhang and
Agrawala [2023] to enhance foreground-background alignment. The full pipeline (Fig. 1) decodes
fMRI to captions, initial images, and depth, then fuses these to reconstruct images via Stable Diffusion
Rombach et al. [2021].

Evaluation: We compare captioning to a CNN-LSTM approach Takada et al., using metrics like
METEOR and CLIP similarity. For image reconstruction, we evaluate on low-level high level image
metrics reported in previous work including PixCorr, SSIM and 2-way accuracy in various CNN
latent spaces.

4 Results
The table 1 reports image-based metrics, including PixCorr, SSIM, accuracy in various layers of
AlexNet and Inception, CLIP similarity, and FID score. Results show that the proposed approach
outperforms the previous works in low-level metrics, including PixCorr, SSIM and the lower layer
of AlexNet. High level metrics are on par or slightly lower than state-of-the-art methods, probably
due to a bottleneck in text predictions. If a word is predicted wrongly, this error is propagated in the
image reconstruction pipeline and impacts on high-level metrics. Overall, the results demonstrate
the effectiveness of the proposed approach in decoding brain activity into meaningful images and
captions, performing on par on even outperforming state-of-the-art in several metrics. Fig 2, A4, 3 and
figures in the supplementary material show some visual comparison with other works for a qualitative
comparison. Qualitatively, the captions represent plausible descriptions of images matching the
high-level semantic content in most of cases. Sometimes, captions are more general with descriptions
like "animals in the grass" instead of the specific type of animal. In other cases, only details are
missing (or wrong). For example, in Fig 3 for the surfer image for one subject, the model adds "on
a wave" while for the other the model specifies "on a beach". Similarly, in the first image of the
right part, the pastry in the man’s hand is changed to "a bowl of foods" or "slice of pizza". This
could support the hypothesis that our pipeline is able to capture the main characteristic of the images
from brain activity and the GIT decoder help in plausible sentence decoding. Also, the alignment
procedure between fMRI and text is based on human written short COCO caption descriptions. The
use of dense captions with lot of details maybe generated using state-of-the art multimodal image
captioning models could improve and stabilize the alignment procedure and outperform the current
limitations.

5 Discussion and Conclusions
Applications: Our multimodal decoding approach has potential for neural art and style transfer by
manipulating text prompts to guide image reconstruction from brain activity. This represents a new
form of AI/neuroscience art. Ethics: As brain decoding research advances, ethical considerations
must be addressed. For instance, the potential misuse of image reconstruction and generative models
to create misleading or harmful content raises concerns, given that decoded activity is related to the

4



mental and internal states of someone. It is crucial to develop guidelines and policies that ensure
responsible use and prevent the exploitation of this technology for malicious purposes. Additionally,
we must consider potential biases in the training data, as these can propagate and influence the
generated output, perpetuating stereotypes and unfair representations, unrelated to thoughts of
the specific subject. There are also possible concerns about privacy, given that brain decoding
models are able to decode language, thoughts, and perceptions [Schneider et al., Tang et al.]. From
early experiments, it seems that high-level performances are only achievable when subjects are
collaborating because the attention process can warp [Çukur et al., 2013] the semantic representation
in the brain, which is the primary target of these deep learning multimodal models used as a proxy for
brain activity [Choksi et al.]. Limitations: Key challenges include need for subject-specific models,
insufficient high-quality training data, SNR constraints, reliance on simple mapping techniques,
and involvement of multiple brain regions. Our captioning model also limits overall performance.
Conclusions: We demonstrate promising results in multimodal caption and image reconstruction
from brain activity. This work builds on neuroscience and AI concepts, furthering our understanding
of visual and language processing in the brain. Refining this approach could lead to novel insights at
the intersection of neuroscience and AI.
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6 Supplementary Material

In this section, more comparisons of captions and reconstructed images are provided, compared with
state-of-the-art brain decoding pipelines.

Figure A1: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruc-
tion works. The second column displays the caption derived from brain activity, the third column
presents the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth
column showcases our final reconstruction. The last column demonstrates reconstructions from the
recent BrainDiffuser work. All results are from subj01.

6.1 Ablation Study

To validate the contributions of our proposed extensions, we conducted ablation studies analyzing
the impact of the depth estimation component. As shown in the attached table, we compared three
model variations: 1) a baseline Stable Diffusion Img2Img pipeline using only the initial guess
image, 2) a Depth2Image pipeline using only the estimated depth map, and 3) our full approach
combining Stable Diffusion and ControlNet with both initial images and depth maps. Across low-
level metrics like PixelCOrr and SSIM, the addition of depth information provided a consistent boost
in performance. This aligns with the hypothesis that depth cues aid in capturing spatial relationships
between objects and foreground-background segmentation. The full model with both initial images
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Figure A2: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruc-
tion works. The second column displays the caption derived from brain activity, the third column
presents the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth
column showcases our final reconstruction. The last column demonstrates reconstructions from the
recent BrainDiffuser work. All results are from subj01.

and depth performed the best, indicating that the two components are complementary. Qualitatively,
the depth maps appeared to enhance object boundaries and 3D perspective. These results suggest that
incorporating depth estimates helps the model reconstruct more accurate and realistic representations
of the visual stimuli. The depth component specifically seems to benefit lower-level aspects like
shapes and spatial relationships, which are critical for humans to perceive two images as highly
similar Hermann et al. [2020]. By guiding the image reconstruction process with depth information
extracted from brain activity, our approach can generate images that better match human perceptual
judgments.

Captioning Performances

Table 3 presents the results of the evaluation of the proposed approach compared to the baseline
models and previous works. This table reports text-based metrics, including Meteor score, CLIP,
and SentenceTransformer similarity, computed for the reference captions, captions generated from
images by both models (baseline and proposed), and captions generated from brain activity using the
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Ablation study Low level metrics High level

Variant PixCorr SSIM AlexNet (2) AlexNet (5) Inception CLIP

Text + init 0.1204 0.1941 0.5815 0.7454 0.7974 0.8768
Stable Diffusion depth 0.3333 0.3106 0.8493 0.9654 0.8248 0.8778
ControlNet 0.3379 0.3178 0.8707 0.9674 0.8238 0.8788

Table 2: Ablation Study: Performance Metrics of Different Model Variants. Text + init is the plain
Stable Diffusion Img2Img pipeline with initial guess image and captions predicted by the brain.
Stable Diffusion depth is a variant pipeline that takes as input the initial guess image and captions and
internally tries to estimate a depth map from the initial guess. ControlNet is external conditioning
for the StableDiffusion Img2Img pipeline, so the inputs are the initial guess, the captions, and the
depth maps estimated from the brain. This latter method is the one used in the paper and values
(higher is better) show that this particular combination improves performance. Overall, this ablation
study shows that including information about depth improves performances, particularly on low-level
features.

Metric Baselines Ours
subj01 subj02 subj05 subj07 subj01 subj02 subj05 subj07

Meteor (image vs human) 0.176 0.174 0.177 0.175 0.404 0.404 0.404 0.404
Meteor (brain vs image) 0.163 0.166 0.166 0.166 0.305 0.298 0.303 0.291
Sentence (image vs human) 0.319 0.315 0.321 0.315 0.703 0.703 0.703 0.703
Sentence (brainvs image) 0.280 0.281 0.282 0.281 0.447 0.418 0.443 0.413
CLIP (image vs human) 0.672 0.673 0.676 0.673 0.831 0.831 0.831 0.831
CLIP (brain vs image) 0.624 0.627 0.626 0.627 0.705 0.688 0.702 0.693

Table 3: Text Metrics Comparison: This table reports the values of various metrics for each subject, both for
the baseline and our model (columns). Each row represents a different metric. Metrics labeled with "(image
captions and human captions)" evaluate the model-generated captions from images against the original COCO
captions, serving as a comparison of the model’s performance. Metrics labeled with "(brain captions and image
captions)" pertain to captions computed from brain activity.

proposed approach. Results show that our approach outperforms the baseline models on all metrics
and achieves significantly higher scores than previous works, indicating the effectiveness of the
approach in generating accurate and meaningful captions from brain activity.

l

Figure A3: Image captioning from brain activity pipeline: Gray dotted lines are only used during training, and
only orange boxes are used during inference, replacing their inputs with those estimated from brain activity.
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Figure A4: Comparison of our results (Columns 2-4) with the presented stimuli and other reconstruc-
tion works. The second column displays the caption derived from brain activity, the third column
presents the initial guess image, the fourth column exhibits the depth-estimated images, and the fifth
column showcases our final reconstruction. The last two columns demonstrate reconstructions from
two recent works. All results are from subj01.
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