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Abstract
We propose a novel class-aware weight initial-
ization technique for early exit large language
models with the purpose of accelerating pre-
training. Our design utilizes the neural collapse
phenomenon combined with a Gaussian mixture
model for the distribution of feature vectors at a
given layer. Specifically, we calculate the average
of token representations at the early exit point and
use the resulting vectors together with class prob-
abilities for initializing the early exit vectors. The
next token prediction accuracy of our class-aware
initialization technique is up to five times higher
than other baselines at epoch zero and matches
or surpasses them in later epochs throughout the
pre-training process.

1. Introduction
State-of-the-art large language models (LLMs) have a large
number of parameters, and generally, the higher the number
of parameters, the better the performance (Sutton, 2019;
Brown et al., 2020; Zhang et al., 2022; Touvron et al., 2023;
Jiang et al., 2024; Gemini Team, 2024; OpenAI, 2024; Meta,
2024). However, their large size and autoregressive design
results in high inference latency, which is not desirable for
low resource environments and time sensitive settings.

The vast majority of LLMs have a “tunnel-like” architecture:
The input to the model is processed by all of the layers
in a sequential manner, regardless of the input’s inherent
difficulty (Kaya et al., 2019; Görmez et al., 2022). On the
other hand, not all inputs have the same level of difficulty.
Early exit networks exploit this heterogeneous difficulty of
inputs. One or more intermediate classifiers are attached
to the model, allowing token-level conditional computation
(Panda et al., 2016; Teerapittayanon et al., 2016; Kaya et al.,
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2019; Görmez et al., 2022; Schuster et al., 2022; Del Corro
et al., 2023; Bae et al., 2023; Zhu et al., 2024). Easy tokens
can exit early from the LLM in order to save computation.

While the addition of early exits can reduce the inference
latency, initially they do not possess the optimal weights.
The early exit layers have to be trained first, before being
effective at inference time. Early exit layers are typically
trained together with the backbone model, with two pri-
mary approaches: Training only the early exit and the final
exit layers while freezing the non-exit layers, or training
the backbone and the exits together (Teerapittayanon et al.,
2016; Kaya et al., 2019). Generally, the latter performs bet-
ter since everything is optimized jointly, but the cross-talk
between the exits of the network may lead to suboptimal
learning and long training times (Kaya et al., 2019). Ideally,
we would like to initialize the weights of the early exit lay-
ers in such a way that the cross-talk is minimized, the joint
training is facilitated and training time is reduced.

The sizes of both the state-of-the-art LLMs and their train-
ing data lead to long training time and high costs. This
makes training an early exit LLM even more difficult and
costly. In this work, we propose a novel class-aware early
exit initialization technique for early exit LLMs to reduce
the pre-training costs. We make connections to the opti-
mal detection for the vector additive white Gaussian noise
(AWGN) channel from the digital communications domain
and utilize the neural collapse phenomenon (Papyan et al.,
2020). Specifically, we calculate the average of token repre-
sentations at the early exit point and use the resulting vectors
for the initialization. While calculating the average of vector
representations has been shown to work well as a decision
mechanism for early exit networks (Görmez et al., 2022;
Görmez & Koyuncu, 2024), our work is the first to apply it
to the initialization of early exit LLMs with the purpose of
accelerating pre-training.

We demonstrate the effectiveness of our novel weight initial-
ization technique on WikiText-2 (Merity et al., 2016) and
BookCorpus (Zhu et al., 2015) datasets using OPT (Zhang
et al., 2022) and TinyLlama (Zhang et al., 2024) models.
Notably, our class-aware initialization technique achieves
5× the performance of other baselines at epoch zero. More-
over, it can match or surpass the other baselines at later
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epochs throughout the pre-training.

The rest of the paper is organized as follows: In Section 2,
we provide a summary of the literature. Then, we establish
the notation used throughout the paper in Section 3 and
provide a background on the optimal detection problem
from the digital communications domain, which we will
make connections to later on. In Section 4, we describe our
class-aware early exit initialization technique. Finally, we
present the results of our experiments in Section 5.

2. Related Work
2.1. Early Exit LLMs

Numerous attempts have been made in the past to reduce
the inference latency of transformer (Vaswani et al., 2017)
based models in the past. Perhaps the most visited idea
has been adding early exits to BERT variants (Devlin et al.,
2018; Zhou et al., 2020; Xin et al., 2020; 2021; Zhu, 2021).
However, these models are primarily designed for classifi-
cation tasks such sentiment analysis, rather than language
modeling and text generation.

Developing early exit LLMs for text generation is more chal-
lenging, because token-level early exiting requires careful
consideration (Elbayad et al., 2019; Liu et al., 2021). Copy-
ing hidden states of tokens that exited early to the deeper
layers for KV-caching, which confidence measure to use and
batch inferencing have been tackled in the past (Schuster
et al., 2022; Bae et al., 2023; Del Corro et al., 2023).

2.2. Efficient LLM Training

As the number of parameters in an LLM grows, fine-tuning
it on datasets becomes more time-consuming and expen-
sive. To address this challenge, researchers have explored
parameter-efficient fine-tuning techniques such as adapter
approaches, often coupled with quantization (Hu et al., 2021;
Liu et al., 2022; Zhang et al., 2023; Dettmers et al., 2024).
These methods involve training only a subset of the model
parameters, effectively reducing the overall training cost.
Most recently, parameter-efficient fine-tuning of early exit
LLMs has been explored via data, tensor and pipeline paral-
lelism (Chen et al., 2023; Pan et al., 2024).

3. Preliminaries and Problem Formulation
In this section, we establish our notation and lay the founda-
tion for our method by describing the pre-training process
of a decoder-only LLM. We then provide background on the
problem of optimal detection for the vector AWGN channel
from the digital communications domain, which we will
make critical connections to later on.
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Figure 1. Feed-forward phase of pre-training a decoder-only lan-
guage model.

3.1. Pre-training

We focus on the pre-training phase of models belonging
to the family of decoder-only LLMs. The model consists
of an embedding layer, L decoder blocks and a language
modeling (LM) head. Let V , D, C denote the vocabulary
size, the embedding dimensionality, and the context length,
respectively.

During the pre-training process, the tokenizer breaks down
a text from the training set into C tokens, denoted as Ti ∈
{1, . . . , V }, where i ∈ {1, . . . , C}. Let Sv denote the set
of all training tokens Ti at any position i such that Ti = v.

The tokens are subsequently passed through the embedding
layer in parallel, resulting in corresponding vectors Ri,0 ∈
RD. These vectors are then fed into the first decoder block,
generating output vectors Ri,1 ∈ RD. This iterative process
continues sequentially, with the output Ri,l of decoder block
l being passed to decoder block l + 1 as the input, where l
ranges from 1 to L− 1.

In the final stage of the feed-forward process, the output
Ri,L of the last decoder block is fed to the LM head, which
is a linear layer with weight matrix W ∈ RD×V . The
output of the LM head is converted to probability vectors
Pi ∈ RV via the softmax operation. Suppose the index of
the maximum probability in Pi is T̂i. Since the primary
objective of the pre-training phase is next-token prediction,
the model is optimized with the cross-entropy loss to ensure
T̂i = Ti+1. This process is shown in Figure 1.

In order to accelerate inference, one or more early exit LM
heads can be integrated to the already pre-trained decoder-
only language model. However, the integration of the ad-
ditional layer(s) necessitates a separate pre-training, which
may incur substantial costs as discussed in Section 1. Here,
we assume that only one early exit LM head is added. Sup-
pose that this LM head appears after decoder block K where
K < L, and its weight matrix is W ∈ RD×V , sharing the
same dimensions with the backbone LM head. Our main
goal is to find a smart way of initializing W such that the
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pre-training phase for the early exit LM head will be accel-
erated, and therefore training costs associated with it will be
decreased. Our proposed solution relies on the problem of
optimal detection for the vector AWGN channel.

3.2. Optimal Detection for the Vector AWGN Channel

The vector AWGN channel can be modeled as

r = sm + n, m ∈ {1, . . . ,M}, (1)

where r, sm and n are N -dimensional vectors. A message
sm is sent to the receiver through the AWGN channel, which
adds a noise n to the message. The components of the noise
vector are independent and identically distributed Gaussian
random variables with zero mean and N0

2 variance. The
receiver observes r, and decides which message was sent
among {s1, . . . , sM}. The goal is to minimize the probabil-
ity of error. Using the Bayes rule, the optimal detection rule
can be written as

m̂ = argmax
1≤m≤M

[P (sm | r)]

= argmax
1≤m≤M

[
P (sm)P (r | sm)

P (r)

]
= argmax

1≤m≤M
[P (sm)P (r | sm)] .

(2)

As in Equation 4.2-15 from (Proakis & Salehi, 2008), the
equation above can be simplified further as follows:

m̂ = argmax
1≤m≤M

[P (sm)P (r | sm)]

= argmax
1≤m≤M

[P (sm)Pn(r − sm)]

= argmax
1≤m≤M

[
P (sm)

(
1√
πN0

)N

e−
∥r−sm∥2

N0

]

= argmax
1≤m≤M

[
P (sm)e−

∥r−sm∥2
N0

]
= argmax

1≤m≤M

[
lnP (sm)− ∥r − sm∥2

N0

]

= argmax
1≤m≤M

[
N0

2
lnP (sm)− 1

2
∥r − sm∥2

]
= argmax

1≤m≤M

[
N0

2
lnP (sm)− 1

2
∥sm∥2 + r · sm

]
= argmax

1≤m≤M
[ηm + r · sm] ,

(3)

where ηm = N0

2 lnP (sm) − 1
2 ∥sm∥2. The careful reader

will notice the striking similarity between the last line of
Equation (3) and the operational logic of a linear layer serv-
ing as a classification head. Given an input x, the linear layer
with weights w and biases b classifies the input according
to the maximum element of b+ x · w.

4. Method
Our aim is to initialize the early exit LM head in such a
way that it starts from a reasonably good point and achieve
a certain level of next-token prediction accuracy before
any pre-training, rather than starting from a random point
achieving a low next-token prediction accuracy.

We calculate the average of all output vectors after decoder
K that correspond to the tokens in Sv:

Mv =
1

|Sv|
∑

Ti∈Sv

Ri,K . (4)

Note that the backbone model is already pre-trained at this
point, therefore the intermediate representations are not bad
representations. The underlying idea behind Equation (4)
is the neural collapse phenomenon (Papyan et al., 2020):
The intermediate representation of an input belonging to a
certain class converges to its corresponding class mean in
the final layer of the network. Here, we carry this idea one
step further and postulate that, if the input token Ti satisfies
Ti ∈ Sv for some class/word v, then the corresponding
feature Ri,K at layer K is a Gaussian random vector with
mean Mv (i.e. the class mean in (4)), and covariance N0

2 I,
where N0 is a hyperparameter to be tuned experimentally.
Now suppose that the early exit LM head is the receiver we
mentioned in Section 3.2. In this context, we can write

Ri,K = Mv + ϵ, v ∈ {1, . . . , V }, (5)

where Ri,K , Mv, and ϵ are all the D-dimensional vector.
Also, ϵ, is a zero-mean noise vector with covariance N0

2 I.
The mean vector Mv is sent to the early exit LM head as the
message, and noise ϵ has been added during transmission.
The early exit LM head observes Ri,K , and decides which
mean vector was sent among {M1, . . . ,MV }.

Similar to Equation (3), the optimal decision equation for
the early exit LM head can be written as

T i = argmax
1≤v≤V

[ηv +Ri,K ·Mv] , i = 1, . . . , C

ηv =
N0

2
lnP (Mv)−

1

2
∥Mv∥2 ,

(6)

where N0 is a hyper-parameter and P (Mv) is the prior
probability for each token in the training set, determined
using the empirical frequencies in the training set.

As a result, the early exit LM head is initialized as

W = [M1, . . . ,MV ] ∈ RD×V , (7)

with a separate bias vector η = [η1, . . . , ηV ]. Our initializa-
tion method is shown in Figure 2.
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Figure 2. Our proposed method for initializing the early exit LM head using the mean representation vectors for each token in the
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Table 1. Summary of the models used in our experiments.
MODEL L D V

OPT-125M 12 768 50272
OPT-350M 24 1024 50272
OPT-1.3B 24 2048 50272
TINYLLAMA-1.1B 22 2048 32000

5. Experiments and Results
In this section we describe our experiments in detail and
present the numerical results.

5.1. Models

In our experiments, we used OPT-125M, OPT-350M, OPT-
1.3B models from the OPT model family (Zhang et al.,
2022); as well as TinyLlama-1.1B (Zhang et al., 2024).

The OPT model family is a series of open-sourced decoder-
only language models ranging from 125M to 175B parame-
ters. The largest OPT model performs similarly to GPT-3
(Brown et al., 2020) with approximately 1/7th of the train-
ing cost (Zhang et al., 2022).

The TinyLlama1.1B model is developed with the goal of pre-
training such a compact model on 3 trillion tokens (Zhang

et al., 2024). The model shares the same architecture with
Llama2 model family (Touvron et al., 2023).

The number of decoder layers (L), embedding dimensional-
ity (D) and vocabulary size (V ) of the models we used in
our experiments are shown in Table 1.

5.2. Datasets

In our experiments, we used the WikiText-2 (Merity et al.,
2016) and the BookCorpus (Zhu et al., 2015) datasets for
pre-training the models.

WikiText-2 is a collection of tokens extracted from the veri-
fied “Good” and “Featured” articles from Wikipedia (Merity
et al., 2016). For pre-training, we used the “wikitext-2-v1”
subset from HuggingFace, which contains 44.8K rows.

BookCorpus dataset is a large collection containing more
than 11K books and 74M rows (Zhu et al., 2015). Due to its
size, we used 1% of the dataset. We allocated 80% of the
1% for pre-training, and the remaining 20% for evaluation.

5.3. Experiment Settings

For a backbone model, we begin by downloading the most
recent checkpoint from HuggingFace. This checkpoint is the
result of training the model on a large and diverse collection
of datasets. However, since we are going to add an early
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exit layer and pre-train it on only one dataset, we fine-tune
the backbone model on our dataset for 3 epochs so the effect
of other datasets on the model is minimal. We found out
that fine-tuning for more than 3 epochs led to overfitting.

After the initial fine-tuning of the backbone model, we add
the early exit LM head after decoder K = L/2. Specifically,
K is 6, 12, 12 and 11 for OPT-125M, OPT-350M, OPT-
1.3B and TinyLlama-1.1B models respectively. The early
exit LM heads share the same architecture and number of
parameters with the backbone LM head, the only difference
is that we allow the early exit LM head to have a bias vector.

We train the resulting early exit LLM on two different set-
tings. In the first setting, called “no freezing,” all parameters
are trainable. In the second setting, called “freezing,” we
freeze the parameters of the model except the two LM heads.
These two settings are how early exit neural networks are
trained in the literature (Scardapane et al., 2020; Laskaridis
et al., 2021). The training is done on a single NVIDIA
A6000 with a batch size of 32. Due to limited hardware
memory, we used a context length of C = 128. We used
PyTorch (Paszke et al., 2019) in our experiments.

5.4. Results

We now present the results of our class-aware early exit
initialization method and compare it against two other ini-
tialization techniques:

1 Random initialization: This is the default weight
initialization technique for linear layers in PyTorch
(Paszke et al., 2019). The weights W ∈ RD×V are
initialized as W ∼ U

[
− 1√

D
, 1√

D

]
, where U is the

random uniform distribution.

2 Copy-from-backbone: Since the weights W of the
backbone LM head is already pre-trained and have the
same dimensions as W , copying W into W can serve
as a good starting point (Pan et al., 2024).

For our class-aware initialization, we use N0 = 0.25 and
we use the empirical frequencies of tokens in the training
set for P (Mv), i.e., the number of occurrences of the token
divided by the total number of tokens in the training set.

We report the next-token prediction accuracy throughout
the pre-training epochs for all initialization techniques. We
pre-trained the models for 10 epochs as performance started
to drop due to overfitting. The results on the WikiText-2
datasets are shown in Figure 3.

The most important takeaway from Figure 3 is that, our
class aware initialization technique achieves 25% next-token
prediction accuracy at epoch zero, without any training.
On the other hand, random initialization and copying from

backbone can achieve at most 5%. This shows that class-
aware initialization of early exits is a promising technique
for resource constrained devices and settings.

For the “no freezing” setting, although class-aware initial-
ization starts pretty well, it is surpassed by the copy-from-
backbone method easily. There are also some scenarios
where random initialization surpasses the class-aware ini-
tialization as in Figure 3c and Figure 3e. Here, we can easily
match the baselines via a convex combination:

W = αWCA + (1− α)WB , (8)

where WCA is the weights initialized in a class-aware man-
ner, and WB is either random initialized weights or the
copied weights from the backbone LM head. This con-
vex combination gets the best of both worlds: It helps
preserve the performance of class-aware initialization at
epoch zero, and it matches the copy-from-backbone perfor-
mance at later epochs. In our experiments we evaluated
α ∈ {0.2, 0.4, 0.6, 0.8}, and we show the best performing
α-curves in Figure 3.

In the “freezing” setting, only the LM heads are trainable,
therefore learning is more difficult. As it can be seen from
Figure 3b, Figure 3d, Figure 3f, Figure 3h; the random and
copy-from-backbone methods struggle heavily and cannot
achieve a good next-token prediction accuracy. On the other
hand, our class-aware initialization starts from a pretty good
point and keeps performing at the same level throughout
the pre-training. Only for the OPT-125M model, there is a
sharp drop at the first epoch of the pre-training as seen in
Figure 3b. This drop can be somewhat treated by the convex
combination equation given in Equation (8).

The same trends are observed for the BookCorpus dataset as
seen in Figure 4. Specifically, without any training, the class-
aware initialization starts from a high next-token prediction
accuracy and the convex combination allows preserving the
high performance throughout the pre-training. Notably, in
the “freezing” setting, class-aware initialization performs
the best

6. Conclusion
We developed a novel class-aware weight initialization tech-
nique for early exit LLMs based on mean representation
of tokens. We made connections to the optimal detection
problem for the vector AWGN channel from the digital
communications domain. Our method performs better than
baselines in both “no freezing” and “freezing” settings. We
showed the applicability of our method to various model
families and datasets, and its effectiveness on accelerating
the pre-training phase.
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Figure 3. Next-token prediction accuracies on WikiText-2 for the early exit LM head initialization techniques.
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Figure 4. Next-token prediction accuracies on BookCorpus for the early exit LM head initialization techniques.
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