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Abstract

A fully Bayesian treatment of complicated predictive models (such as deep neural1

networks) would enable rigorous uncertainty quantification and the automation2

of higher-level tasks including model selection. However, the intractability of3

sampling Bayesian posteriors over many parameters inhibits the use of Bayesian4

methods where they are most needed. Thermodynamic computing has emerged as5

a paradigm for accelerating operations used in machine learning, such as matrix6

inversion, and is based on the mapping of Langevin equations to the dynamics7

of noisy physical systems. Hence, it is natural to consider the implementation8

of Langevin sampling algorithms on thermodynamic devices. In this work we9

propose electronic analog devices that sample from Bayesian posteriors by real-10

izing Langevin dynamics physically. Circuit designs are given for sampling the11

posterior of a Gaussian-Gaussian model and for Bayesian logistic regression, and12

are validated by simulations. It is shown, under reasonable assumptions, that the13

time-complexity of sampling the Gaussian-Gaussian posterior is sublinear in di-14

mension. These results highlight the potential to accelerate Bayesian inference15

with thermodynamic computing.16

1 Introduction17

Bayesian statistics has proved an effective framework for making predictions under uncertainty [1,18

2, 3, 4, 5, 6], and it is central to proposals for automating machine learning [7]. Bayesian methods19

enable uncertainty quantification by incorporating prior knowledge and modeling a distribution over20

the parameters of interest. Popular machine learning methods that employ this approach include21

Bayesian linear and non-linear regression [8], Kalman filters [9], Thompson sampling [2], continual22

learning [10, 11], and Bayesian neural networks [3, 12].23

Unfortunately, computing the posterior distribution in these settings is often intractable [13]. Meth-24

ods such as the Laplace approximation [14] and variational inference [15] may be used to approxi-25

mate the posterior in these cases, however their accuracy struggles for complicated posteriors, such26

as those of a Bayesian neural network [13]. Regardless, sampling accurately from such posteriors27

requires enormous computing resources [13].28

Computational bottlenecks in Bayesian inference motivate the need for novel hardware accelera-29

tors. Physics-based sampling hardware has been proposed for this purpose, including Ising ma-30

chines [16, 17, 18, 19, 20], probabilistic bit computers [21, 22, 23], and thermodynamic com-31

puters [24, 25, 26, 27, 28, 29]. Continuous-variable hardware is particularly suited to Bayesian32

inference since continuous distributions are typically used in probabilistic machine learning [30].33

However, a rigorous treatment of how such hardware can perform Bayesian inference with scalable34

circuits has not yet been given.35
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The most computationally tractable algorithms for exact Bayesian inference are Monte Carlo sam-36

pling algorithms. The Langevin sampling algorithm [31, 32] is an elegant example inspired by37

statistical physics, based on the dynamics of a damped system in contact with a heat bath. What we38

propose in this work is to build a physical realization of the system that is simulated by the Langevin39

algorithm. The system must be designed to have a potential energy such that the Gibbs distribution40

p(x) ∝ e−βU(x) is the desired posterior distribution which is reached at thermodynamic equilib-41

rium. We present circuit schematics for electronic implementations of such devices for Bayesian42

inference for two special cases. The first is a Gaussian-Gaussian model (where the prior and the43

likelihood are both multivariate normal, as found in linear regression and Kalman filtering), and the44

second is logistic regression (where the prior is Gaussian and the likelihood is Bernoulli parameter-45

ized by a logistic function). In each case, the parameters of the prior and likelihood are encoded in46

the values of components of the circuit, and then voltages or currents are measured to sample the47

random variable.48

While thermodynamic algorithms have been proposed for linear algebra [27] and neural network49

training [33], our work can be viewed as the first thermodynamic algorithm for sampling from50

Bayesian posteriors. Moreover, our work provides the first concrete proposal for non-Gaussian sam-51

pling with thermodynamic hardware. Overall, our work opens up a new field of rigorous Bayesian52

inference with thermodynamic computers and lays the groundwork for scalable CMOS-based chips53

for probabilistic machine learning.54

We show that in theory the device proposed for sampling the Gaussian-Gaussian model posterior can55

obtain N samples in d dimensions in time scaling with O(N ln d). This is a significant speedup over56

typical methods used digitally for the same problem, which involve matrix inversions taking time57

scaling with O(dω) where 2 < ω < 3. This speedup is larger than the polynomial speedups found58

in previous work on thermodynamic algorithms for linear algebra primitives [27] (where speedups59

were found to scale linearly with dimension).60

2 Results61

Suppose that we have samples of a random vector y, and would like to estimate a random vector θ62

on which y depends somehow. The Bayesian approach is to assume a prior distribution on θ given63

by a density function pθ(θ), and a likelihood function py|θ(y|θ). The posterior distribution for θ is64

then given by Bayes’s theorem pθ|y(θ|y) = py|θ(y|θ)pθ(θ)/py(y). To sample from the posterior65

using the Langevin algorithm, one first computes the score66

∇θ ln pθ|y(θ|y) = ∇θ ln py|θ(y|θ) +∇θ ln pθ(θ). (1)

Then the score is used as the drift term in the following stochastic differential equation (SDE)67

dθ = ∇θ ln pθ|y(θ|y) dt+N [0, 2 dt]. (2)

After this SDE is evolved for a sufficient time T , the value of θ will be a sample from pθ|y . This68

algorithm is equivalent to the equilibration of an overdamped system, as we will now describe. First69

let r be a vector of the same dimension as θ describing the state of a physical system, and satisfying70

r = θr̃ for some constant r̃ (this factor is necessary because θ is unitless while the physical quantity r71

has units). Now we define the potential energy function βU(r) = − ln pθ|y(r/r̃ | y). The dynamics72

of an overdamped system with potential energy U in contact with a heat bath at inverse temperature73

β can be modeled by the overdamped Langevin equation74

dr = −γ−1∇rU(r) dt+N [0, 2γ−1β−1 dt], (3)

where γ is a damping constant. Note that his implies that γ has dimensions of energy · time/[r]2. If75

we introduce a constant τ = γβr̃2, Eq. (3) can be written76

dθ = ∇θ ln pθ|y(θ|y)τ−1 dt+N [0, 2 τ−1dt], (4)

which has the same form as Eq. (2), except with the time constant τ . It is clear that if Eq. (2)77

must be run for a dimensionless duration T to achieve convergence, then the physical system must78

be allowed to evolve for a physical time duration τT to achieve the same result. While we have79

addressed the case of conditioning on a single sample y above, the generalization of these ideas to80

the case of conditioning on multiple I.I.D. samples is given in Appendix D. In what follows we will81

present designs for circuits whose potential energy results in an overdamped Langevin equation that82

yields samples from Bayesian posteriors.83
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2.1 Gaussian-Gaussian model84

A particularly simple special case of Bayesian inference is a when both the prior and the likelihood85

are multivariate normal, and we address this simple model first in order to illustrate our approach86

more clearly. Specifically, let θ ∈ Rd have prior distribution pθ(θ) = N [µ,Σ], and let the likelihood87

be py|θ(y|θ) = N [θ,Σy|θ], where y ∈ Rd is an observed sample. In this case the posterior pθ|y is88

also multivariate normal, with parameters [12]89

µθ|y = µ+Σ
(
Σ+ Σy|θ

)−1
(y − µ), (5)

90

Σθ|y = Σ− Σ(Σ + Σθ|y)
−1Σ. (6)

For this model, the posterior is tractable and can be computed on digital computers relatively effi-91

ciently, however for very large dimensions the necessary matrix inversion and matrix-matrix mul-92

tiplications can still create a costly computational bottleneck. As we will see, the thermodynamic93

approach provides a means to avoid the costly inversion and matrix products in the computation,94

and therefore to accelerate Bayesian inference for this model.95

We begin by deriving the Langevin equation for sampling this posterior. For this prior and likelihood,96

the score of the posterior Eq. (1) is97

∇θ ln pθ|y(θ|y) = −Σ−1(θ − µ)− Σ−1
y|θ(θ − y), (7)

and so Eq. (4) becomes98

dθ = −Σ−1(θ − µ)τ−1dt− Σ−1
y|θ(θ − y)τ−1dt+N [0, 2Iτ−1dt]. (8)

In fact, this SDE can be implemented by a circuit consisting of two resistor networks coupled by99

inductors, shown in Fig. 1 for the two-dimensional case.100
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Figure 1: Circuit schematic for the Gaussian-Gaussian model posterior sampling device.

The full analysis of the circuit in Fig. 1 is given in Appendix A, but a few remarks are made here to101

explain its operation. First, we define the conductance matrices G as102

G =

(
R−1

11 +R−1
12 −R−1

12

−R−1
12 R22 +R−1

12

)
, (9)

and G′ is defined in the same way for the primed resistors R′
1, R′

2, and R′
12. By applying Kirchoff’s103

current law (KCL), the voltages across the resistors can be eliminated. Then the equation V = Lİ104

is used to derive the following stochastic differential equation for the currents through the inductors105

dIL = −L−1G−1(IL − I) dt− L−1G′−1(IL − I ′) dt+ L−1
√
SN [0, I dt], (10)

where IL = (IL1 IL2)
⊺ and S is the power spectral density of each noise source. This equation106

has the same form as Eq. (8), so it is only necessary to determine an appropriate mapping of107

distributional parameters to physical properties of the circuit’s components (see Appendix A). By108
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including more inductors and coupling resistors (as well as current and voltage sources), the design109

can be generalized to arbitrary dimension.110

To verify that the proposed circuit does indeed evolve according to the correct SDE, we ran SPICE111

circuit simulations. Figure 2 shows the results of such a simulation where a 2-dimensional Gaussian112

prior and a 2-dimensional Gaussian likelihood are encoded into the conductances while the current113

in each inductor is measured to determine the resulting posterior.114
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Figure 2: SPICE simulations of proposed Gaussian-Gaussian circuit in Fig. 1. The grey points rep-
resent the simulated circuit’s induct currents. The dashed black and solid blue ellipses represent the
empirical sample covariance and the target posterior covariance from a Gaussian Bayesian update,
respectively. The red and green ellipses represent the prior and likelihood.

As shown in Appendix C, the asymptotic runtime complexity for this algorithm is115

t = O(Nκτ ln(κ3/2d1/2W−1
0 )), (11)

where κ is the condition number of the posterior covariance, τ = L/R̃, d is the dimension, and W0 is116

the Wasserstein distance between the true posterior and the distribution sampled by the device. The117

assumptions used to derive this result can also be found in Appendix C. Remarkably, the required118

time is sublinear in dimension, a large improvement over digital algorithms where complexity of119

constructing and sampling from the Gaussian-Gaussian posterior (67 - 68) is O(dω) where ω is the120

matrix multiplication constant (or more practically O(d3) via common implementations of Cholesky121

factorization). In Figure 3(a), we report the convergence of simulated thermodynamic samples for122

the Gaussian-Gaussian model with zero prior mean and covariances Σ,Σy|θ randomly sampled from123

a Wishart distribution with 2d degrees of freedom. We see fast convergence in Wasserstein distance124

to the true posterior, supporting our theoretical claims.125

2.2 Bayesian linear regression and Kalman filtering126

A generalization of the Gaussian-Gaussian model is that of Bayesian linear regression [8] (or equiv-127

alently a Kalman filter update step [9, 12]). In full generality we have128

pθ(θ) = N [µ,Σ], (12)
py|θ(y | θ) = N [Hθ,Σy|θ], (13)

Then the overdamped Langevin SDE becomes129

dθ = −Σ−1(θ − µ)τ−1 dt−H⊺Σ−1
y|θ(y −Hθ)τ−1 dt+N [0, 2Iτ−1dt],

= −(Aθ − b)τ−1 +N [0, 2Iτ−1dt], for A = Σ−1 +H⊺Σ−1
y|θH and b = µ+H⊺Σ−1

y|θy. (14)

The form of the SDE (Ornstein-Unhlenbeck process) in 14 is exactly that of the thermodynamic130

device in [27] which if given input A and b above will produce samples from the Gaussian Bayesian131

posterior pθ|y(θ | y). Compared to the simpler Gaussian-Gaussian model above, a disadvantage of132

this approach is thathe covariances Σ and Σy|θ have to be inverted prior to input as A. However,133

for linear regression, these matrices are often assumed to be diagonal and otherwise they can be134
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Figure 3: Convergence in Wasserstein distance between simulated thermodynamic samples and the
true Gaussian posterior as a function of the number of samples (sampling time). All results are sim-
ulated exactly with thermox [35] and averaged over 10 random seeds with one standard deviation
shown. Panel (a): Gaussian-Gaussian model with zero prior mean and covariances sampled from a
Wishart distribution. Panel (b): Bayesian linear regression on the diabetes dataset [36] with dimen-
sion (number of features) varied by including higher-order cross terms of the 10 input data features.

efficiently inverted using the thermodynamic procedures in [27] as preprocessing. Additionally, the135

formulation of A requires matrix-matrix multiplications which can be costly (even in the case of136

diagonal covariances). Although, this can be accelerated with parallelization.137

On the other hand, the generality of (12-13) makes the approach highly practical. Encompassing138

Bayesian linear regression [34] and the update step of the Kalman filter [9]. Moreover in the setting139

of Kalman filtering, the matrices Σ and Σy|θ are typically shared across time points and thus only140

need to be inverted once in comparison to the Bayesian posterior update which is applied at every141

time step (and typically represents the computation bottleneck due to the required matrix inversion).142

In Figure 3(b), we simulate the evaluation of the thermodynamic linear algebra device [27] for a143

Bayesian linear regression task. We use the diabetes dataset [36] which has N = 442 continuous144

response variables y and 10 input features. We vary the number of features and therefore posterior145

dimension for the linear regression by extending to include the first d cross terms in the Taylor146

expansion over the input features. These input features are loaded as rows in the matrix H ∈ RN×d.147

Both covariances are set to diagonal, Σ = I and Σy|θ = 0.1I. We observe that the Wasserstein148

distance converges quickly as more samples are collected and scales reasonably with dimension,149

indicating a sublinear scaling similar to the Gaussian-Gaussian model.150

2.3 Bayesian logistic regression151

Logistic regression is a method for classification tasks (both binary and multiclass) that models the152

dependence of class probabilities on independent variables using a logistic function. In the Bayesian153

setting, a prior can be assumed on the parameters of a logistic regression model, for example it is154

common to assume a Gaussian prior. However, after conditioning on observed data a posterior dis-155

tribution is produced that has no analytical closed form, making Bayesian logistic regression far156

less efficient than obtaining a point estimate of the parameters. In this section we present a ther-157

modynamic hardware architecture capable of sampling the posterior for binary logistic regression,158

and show some preliminary evidence that this architecture can do so more efficiently than existing159

methods.160

Given a parameter vector θ ∈ Rd and an independent variable vector x ∈ Rd, binary logis-161

tic regression outputs a class probability py|θ,x(y|θ, x), where y ∈ {−1, 1} (often y ∈ {0, 1}162

is written instead but we choose this notation to simplify the presentation). The likelihood is163

py|θ,x(y|θ, x) = L(yθ⊺x) where L(z) = 1/(1 + e−z) is the standard logistic function [37]. Note164

that we will first consider the case of conditioning on a single sample, and in this case the likelihood165

will be denoted py|θ(y|θ) as x is constant. Additionally, a multivariate normal prior is assumed for166

the parameters θ ∼ N [µ,Σ]. The Langevin equation for sampling the posterior is therefore:167

dθ = −Σ−1(θ − µ)τ−1dt+ L(−yθ⊺x)yxτ−1dt+N [0, 2Iτ−1dt]. (15)
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Figure 4: Panel (a): Probability surface to belong to class 1 (blue points). The dataset is also shown,
where class 0 (blue points) and class 2 (orange points) are arranged in two intersecting moons. Panel
(b): Kernel Stein discrepancy (KSD) of the collected samples with an ideal thermodynamic sampler,
for varying sampling times. The sampling time is given in units of 10−3τ . The KSD is averaged
over five sets of random samples and τ = 1.

A circuit implementing Eq. (15) is shown in Fig. 7, and the detailed analysis of this circuit is given168

in Appendix B. Equation (15) is valid for a single data sample, however, as mentioned, in practice169

we generally take gradients over a larger number of examples such that the gradients are less noisy.170

This can be done by enlarging the hardware, resulting in the second term of Eq. (15) being replaced171

by a sum
∑N

i=1 L(−yiθ
⊺xi)yixidt, with N the number of data points. One may also consider172

minibatches, and the sum is only over a batch of size b. This is achievable by summing currents,173

which is detailed in the circuit implementation in Appendix B. At a high-level, implementing this174

protocol in hardware is very simple in the case of a full batch, since the data only needs to be sent175

once onto the hardware. The following steps are taken to collect the samples: (1) Map the data176

labels to {+1,−1}. (2) Map the data (X,Y ) onto the hardware (full batch setting). (3) Initialize the177

state of the system, set the mean and the covariance matrix of the prior. (4) At every interval ts (the178

sampling time), measure the state of the system θ(t) to collect samples.179

In Fig. 4, we present results for a Bayesian logistic regression on a two-moons dataset, made of180

points separated in two classes that are arranged in intersecting moons in the 2D planes, as shown in181

Fig. 4(a). These results are obtained by running the SDE of Eq. (15), hence corresponds to an ideal182

simulation of the thermodynamic hardware. In this scenario, there are 3 parameters to sample, and183

N = 100 points are considered. In Fig. 4(a), we see that even for such a simple model, only a few184

points are missclassified. As mentioned, previously, this setting also gives access to better methods185

to estimate uncertainty in predictions. In Fig. 4(b), the Kernel Stein discrepancy (KSD) [38] is186

shown as a function of the number of collected samples for varying sampling rates. These results187

indicate that the number of samples to reach a low KSD (close to convergence) can be reduced by188

increasing the sampling time, indicating correlated samples, as is often the case.189

3 Conclusion190

In this work, we proposed the first thermodynamic algorithms for sampling from Bayesian poste-191

riors. We provided explicit constructions of CMOS-compatible analog circuits to implement these192

algorithms with scalable silicon chips. Our circuit for performing logistic regression represents the193

first concrete proposal for non-Gaussian sampling with a thermodynamic computer. In the case of194

Gaussian Bayesian inference (Gaussian prior, Gaussian likelihood), our analysis showed a sublinear195

complexity in d, leading to a speedup over standard digital methods that is greater than linear. This196

is an even larger speedup than those previously observed for thermodynamic linear algebra [27],197

suggesting that Bayesian inference is an ideal application for thermodynamic computers. Our work198

lays the foundation for accelerating Bayesian inference, a key component of probabilistic machine199

learning, with physics-based hardware.200
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Figure 5: Circuit schematic for the Gaussian-Gaussian model posterior sampling device.

In Figure 5, positive current goes up through the two inductors, left to right through R12 and R′
12,305

and towards ground in the other resistors. The two inductors have the same inductance L. KCL306

gives307

IL1 − I1 = IR1 + I12 (16)
308

IL2 − I2 = IR2 − I12 (17)
309

−IL1 + I ′1 = I ′R1 + I ′12 (18)
310

−IL2 + I ′2 = I ′R2 − I ′12. (19)
Using Ohm’s law,311

IL1 − I1 = R−1
1 V1 +R−1

12 (V1 − V2) = (R−1
1 +R−1

12 )V1 −R−1
12 V2 (20)

312

IL2 − I2 = R−1
2 V2 −R−1

12 (V1 − V2) = (R−1
2 +R−1

12 )V2 −R−1
12 V1. (21)

These can be written as a single vector equation as follows313

IL − I = GV, (22)

where IL = (IL1 IL2)
⊺, I = (I1 I2)

⊺, and314

G =

(
R−1

1 +R−1
12 −R−1

12

−R−1
12 R−1

2 +R−1
12

)
. (23)

Similarly, for the lower subcircuit we have315

−IL + I ′ = G′V ′. (24)

The inductors obey the equations316

L1İL1 = V ′
1 − (V1 − Vn1) (25)

317

L2İL2 = V ′
2 − (V2 − Vn2), (26)

or in vector notation318

LİL = V ′ − V + Vn. (27)
Substituting in the expressions for V and V ′ derived before, we have319

LİL = G′−1(I ′ − IL)− G−1(IL − I) + Vn, (28)

or320

İL = −L−1G−1(IL − I)− L−1G′−1(IL − I ′) + L−1Vn. (29)

dIL = −L−1G−1(IL − I) dt− L−1G′−1(IL − I ′) dt+ L−1
√
SN [0, I dt]. (30)
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We now proceed to non-dimensionalize the above equation. G = R̃−1A.321

Ĩdθ = −ĨR̃L−1A−1(θ − µ) dt− ĨR̃L−1A′−1(θ − µ′) dt+ L−1
√
SN [0, I dt]. (31)

Define τ = L/R̃, giving322

dθ = −A−1(θ − µ)τ−1 dt−A′−1(θ − µ′)τ−1 dt+ Ĩ−1L−1
√
SN [0, I dt]. (32)

If we set S = 2Ĩ2LR̃, then we have323

dθ = −A−1(θ − µ)τ−1 dt−A′−1(θ − µ′)τ−1 dt+N [0, 2Iτ−1 dt]. (33)

B Analysis of Bayesian Logistic Regression Circuit324

We now analyze the circuit in Figure 7. The boxes labeled Diff. Pair represent differential pairs of325

NPN bipolar junction transistors (BJTs), as shown in Fig. 6. To achieve a working implementation,326

additional circuitry is needed to support the differential pair and assure that it is appropriately biased,327

including a power source and possibly current mirrors.328

The following conventions for current flow will be used329

• IC is the current into the collector of a transistor. IB is the current into the base of a330

transistor. IE is the current out of the emitter of a transistor.331

• The output current Io of a differential pair is the current that flows into the collector of the332

BJT labeled Qa.333

• Positive current flows in the direction of the arrow through all current sources.334

• Positive current flows downwards through C1 and C2 and from left to right through R12.335

• Through resistors RA11, RB11, etc. positive current always flows towards the base of the336

transistor.337

B.1 Analysis of the BJT differential pair338
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Figure 6: Circuit schematic for the BJT differential pair.

We first consider the behavior of differential pair subcircuit, which can be explained using the Ebers-339

Moll model. The Ebers-Moll model describes the BJT in active mode, meaning when VE < VB <340

VC , and the circuit must be appropriately biased at all times to ensure the device is always in active341

mode. According to this model, in active mode the following relations are satisfied342

IC = IS

(
e(VB−VE)/VT − 1

)
, (34)

343
IC = αIE , (35)
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where IS is the saturation current, VT the thermal voltage, and α is the common-base current gain.344

IS is typically on the order of 10−15 to 10−12 Amps, and at room temperature VT = 25.3mV.345

The parameter α is between 0.98 and 1. It follows from Kirchoff’s current law (KCL) that IB =346

(1− α)IE . For these typical values of the parameters appearing in Eq. (34) the subtraction of unity347

in parentheses can safely be ignored, which we will do in what follows. In order for the Ebers-Moll348

model to be valid, the voltage V0 should be determined such that VC > VB > VE for all transistors349

at all times, but the value of V0 is otherwise unimportant.350

To analyze the differential pair of transistors Qa and Qb, observe that (by KCL)351

IEa + IEb = IE . (36)

We must distinguish between the two base voltages Va and Vb, but the two emitter voltages are the352

same, so we write VE = VEa = VEb. Using Eqs. (34) and (35) then,353

IE =
IS
α
e−VE/VT

(
eVa/VT + eVb/VT

)
, (37)

where we have dropped the −1 as explained earlier. Now the emitter current IEa can be written as354

IEa =
IS
α
e(Va−VE)/VT (38)

=
IEe

Va/VT

eVa/VT + eVBb/VT
(39)

=
IE

1 + e−(Va−Vb)/VT
, (40)

and similarly355

IEb =
IE

1 + e(Va−Vb)/VT
. (41)

Equation (35) is then used to find the collector currents356

ICa =
αIE

1 + e−(Va−Vb)/VT
, (42)

357

ICb =
αIE

1 + e(Va−Vb)/VT
. (43)

The base voltages Va and Vb are still undetermined. However, we will assume the limit α → 1,358

where the base current goes to zero. In this limit, the two transistor bases may be connected to359

nodes in an external circuit to set their voltages. As there is no base current, these connections do360

not affect the voltages in the external circuit. In what follows, we will consider ICa the output of the361

differential pair, and label this current Io. Again taking the limit α → 1, we have362

Io =
IE

1 + e(Va−Vb)/VT
= IEL(−(Va − Vb)/VT ), (44)

where L(z) = 1/(1 + e−z) is the standard logistic function. Note that the support circuitry may363

include a current mirror that inverts the sign of the output current. As this formally has the same364

effect as a negative value of IE , we will allow IE to be negative in what follows.365

B.2 Analysis of the logistic regression circuit366

As the BJT bases draw negligible current, the voltages Va1, Vb1, Va2, and Vb2 in the circuit can be367

determined by considering the circuit in the absence of the differential pairs. In this case, we see368

that (by KCL)369

R−1
a11(VC1 − Va1) +R−1

a12(VC2 − Va1)−R−1
a10Va1 = 0, (45)

and solving for Va1 gives370

Va1 =
Ra11VC1 +Ra12VC2

Ra11 +Ra12 +Ra11Ra12R
−1
a10

=
R−1

a11VC1 +R−1
a12VC2

R−1
a10 +R−1

a11 +R−1
a12

. (46)
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Figure 7: Circuit schematic for the logistic regression posterior sampling device.

The same reasoning applies for Vb1, resulting in371

Vb1 =
R−1

b11VC1 +R−1
b12VC2

R−1
b10 +R−1

b11 +R−1
b12

, (47)

so372

Va1 − Vb1 =
ga11VC1 + ga12VC2

ga10 + ga11 + ga12
− gb11VC1 + gb12VC2

gb10 + gb11 + gb12
, (48)

where we have written the previous results in terms of the conductance g = R−1. The above can be373

written more conveniently by defining the vectors ĝa1 = (ga10 + ga11 + ga12)
−1(ga11, ga12)

⊺ and374

ĝb1 = (gb10 + gb11 + gb12)
−1(gb11, gb12)

⊺, in terms of which we have375

Va1 − Vb1 = (ĝa − ĝb)
⊺VC . (49)

or, defining ĝ1 = ĝa1 − ĝb1, we simply have376

Va1 − Vb1 = ĝ⊺1VC . (50)

The latter result can be plugged into Eq. (44) to get Io1,377

Io1 = IE1L(−ĝ⊺1VC/VT ), (51)

where, as before, L(z) = 1/(1 + e−z) is the standard logistic function. By an identical derivation378

to the one above, a similar relation holds for the lower subcircuit379

Io2 = IE2L(−ĝ⊺2VC/VT ). (52)

We also assume that all resistors Raij , Rbij are very large compared to R12 so the current flowing380

through these resistors can be treated as negligible. This assumption does not affect the function381

of resistors Raij , Rbij because only the ratios of these resistances determine the voltages Vai, Vbi.382

Next, we apply KCL to the nodes at the top of capacitors C1 and C2383

−IC1 + I1 −R−1
1 VC1 +R−1

12 (VC2 − VC1)− Io1 = 0, (53)

Similarly, KCL for the node above capacitor C2 reads384

−IC2 + I2 −R−1
2 VC2 +R−1

12 (VC1 − VC2)− Io2 = 0. (54)

Substituting in the expressions derived for the collector currents, we then have385

−IC1 + I1 −R−1
1 VC1 +R−1

12 (VC2 − VC1)− IE1L(−ĝ⊺1VC/VT ) = 0, (55)
386

−IC2 + I2 −R−1
2 VC2 +R−1

12 (VC1 − VC2)− IE2L(−ĝ⊺2VC/VT ) = 0. (56)
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Next we define the conductance matrix387

G =

(
R−1

1 +R−1
12 −R−1

12

−R−1
12 R−1

2 +R−1
12 ,

)
, (57)

allowing us to write a single vector equation388

−IC + I − GVC − IEL(−ĝ⊺VC/VT ) = 0, (58)

where we have also set ĝ1 = ĝ2. Now using the fact that dVC/dt = C−1IC , we have the following389

vector differential equation390

C
dVC

dt
= −GVC − IEL(−ĝ⊺VC/VT ) + I. (59)

We assume the current vector I has a DC component IDC and a noise component Inoise. The noise391

component is assumed to be an ideal white noise process of infinite bandwidth and power spectral392

density S, which we write Inoise =
√
Sξ(t). Altogether, we get the stochastic differential equation393

dVC = −C−1GVC dt+ C−1IDC dt− C−1αIEL(ĝ
⊺VC/VT ) dt+ C−1

√
Sξ(t) dt. (60)

Using the identity ξ(t) dt = N [0, dt], this becomes394

dVC = −C−1GVC dt+ C−1IDC dt− C−1αIEL(ĝ
⊺VC/VT ) dt+ C−1

√
SN [0, dt]. (61)

At this point it is convenient to define dimensionless quantities which are mapped to the physical395

parameters of the circuit. Define θ = VC/Ṽ , Σ−1 = R̃G, Σ−1µ = IDC/Ĩ , and yx = −IE/Ĩ . Our396

equation now takes the form397

Ṽ dx = −Ṽ R̃−1C−1Σ−1x dt+ C−1ĨΣ−1µdt+ C−1ĨL(−ĝ⊺VC/VT )yx dt+ C−1
√
SN [0, I dt].

(62)
Next, let τ = R̃C, and set Ĩ = Ṽ C/τ and S = 2Ṽ 2C2/τ . In this case,398

dθ = −Σ−1θτ−1dt+Σ−1µτ−1dt+ L(−ĝ⊺VC/VT )yxτ
−1dt+N [0, 2Iτ−1dt]. (63)

Finally, we set ĝ = yxVT /Ṽ to obtain399

dθ = −Σ−1(θ − µ)τ−1dt+ L(−yθ⊺x)yxτ−1dt+N [0, 2Iτ−1dt], (64)

which is identical to Eq. (15)400

C Analysis of complexity of Gaussian-Gaussian posterior sampling401

In this section we analyze the time-complexity of sampling the Bayesian posterior of the Gaussian-402

Gaussian model using the device in Fig. 1. As shown in Appendix A, the SDE for this circuit403

is404

dθ = −Σ−1(θ − µ)τ−1 dt− Σ−1
y|θ(θ − y)τ−1 dt+N [0, 2Iτ−1dt], (65)

where τ = L/R̃. This SDE may also be written in terms of the posterior parameters,405

dθ = −Σ−1
θ|y(θ − µθ|y)τ

−1 dt+N [0, 2Iτ−1dt], (66)

where406

µθ|y = µ+Σ
(
Σ+ Σy|θ

)−1
(y − µ), (67)

407

Σθ|y = Σ− Σ(Σ + Σθ|y)
−1Σ. (68)

The above equation is in the form of a multivariate Ornstein-Uhlenbeck (OU) process [39].408

The squared Wasserstein distance between the distribution at time t and the target posterior distri-409

bution is [40]410

W (t)2 = ∥µ(t)− µθ|y∥22 +D(Σ(t),Σθ|y), (69)
where411

D(Σ1,Σ2) = tr
{
Σ1 +Σ2 − 2

(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2
}
. (70)
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Note that the second term in the squared Wasserstein distance is bounded above as [41]412

D(Σ1,Σ2) ≤
∥Σ1 − Σ2∥2F

(
√
λmin(Σ1)2 +

√
λmin(Σ2))2

≤ d∥Σ1 − Σ2∥2

(
√
λmin(Σ1)2 +

√
λmin(Σ2))2

(71)

Let αmin be the smallest eigenvalue of Σθ|y . At all times D(Σ(t),Σθ|y is bounded above as413

D(Σ(t),Σθ|y) ≤ α−1
mind∥Σ1 − Σ2∥2 (72)

For an OU process the mean behaves as µ(t)− µθ|y = e−Σθ|yt/τ (µ(0)− µθ|y) [39], so the distance414

between the mean and the target mean is bounded as415

∥µ(t)− µθ|y∥ =
∥∥∥e−Σθ|yt/τ (µ(0)− µθ|y)

∥∥∥ ≤ e−αmint/τ
∥∥(µ(0)− µθ|y)

∥∥ . (73)

We now bound the distance between the covariance Σ(t) and the target covariance. We use the416

formula [39]417

Σ(t) = Pt(Σ(0)) +

∫ t

0

dt′ Pt′(2τ
−1I). (74)

where Pt(X) = e−Σθ|yt/τXe−Σθ|yt/τ . As limt→∞ Σ(t) = Σθ|y , we have418

Σ(t)− Σθ|y = Pt(Σ(0)) +

∫ t

0

dt′ Pt′(2τ
−1I)−

∫ ∞

0

dt′ Pt′(2τ
−1I) (75)

= Pt(Σ(0))−
∫ ∞

t

dt′ Pt′(2τ
−1I). (76)

Taking the norm and using the triangle inequality gives419

∥Σ(t)− Σθ|y∥ ≤ ∥Pt(Σ(0))∥+
∫ ∞

t

dt′ ∥Pt′(2τ
−1I)∥. (77)

As the norm is submultiplicative ∥P(X)∥ ≤ e−2αmint/τ∥X∥, so420

∥Σ(t)− Σθ|y∥ ≤ e−2αmint/τ∥Σ(0)∥+ 2τ−1

∫ ∞

t

dt′ e−2αmint
′/τ (78)

= e−2αmint/τ
(
∥Σ(0)∥+ α−1

min

)
. (79)

If we would like to have W (t) ≤ W0, then we can demand that ∥µ(t) − µθ|y∥2 ≤ 1
2W

2
0 and421

D(Σ(t),Σθ|y) ≤ 1
2W

2
0 . The inequality involving the mean is satisfied when422

t ≥ α−1
minτ ln(

√
2∥µ(0)− µθ|y∥W−1

0 ). (80)

The inequality involving the covariance is satisfied when423

∥Σ(t)− Σθ|y∥ ≤ 1√
2
W0α

1/2
min d

−1/2 (81)

This, in turn, is satisfied if424

e−2αmint/τ
(
∥Σ(0)∥+ α−1

min

)
. ≤ 1√

2
W0α

1/2
min d

−1/2. (82)

The matrix Σ(0) can always be chosen to be zero, so the above inequality becomes425

e−2αmint/τ ≤ 1√
2
W0α

3/2
min d

−1/2. (83)

We arrive at the requirement426

t ≥ 1

2
α−1

minτ ln
[√

2α
−3/2
min d1/2W−1

0

]
. (84)

Therefore W (t) ≤ W0 if the following unified bound is satisfied427

t ≥ α−1
minτ max

(
ln
[√

2∥µ(0)− µθ|y∥W−1
0

]
,
1

2
ln
[√

2α
−3/2
min d1/2W−1

0

])
. (85)
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The quantity ∥µ(0)−µθ|y∥ may hide some dependence on dimension, which is discussed presently.428

It is assumed that the quantity c = ∥µθ|y∥/
√
αmax has an upper bound cmax which is independent429

of dimension, where αmax is the largest eigenvalue of Σθ|y . That is, the mean of the posterior may430

be at most cmax standard deviations away from the origin, independent of dimension. This choice431

represents a particular scaling regime, which we feel is a realistic representation of the accuracy432

requirements for many applications. We may also choose µ(0) = 0, and this leads to the requirement433

t ≥ maxα−1
minτ

(
ln
[√

2c
√
αmaxW

−1
0

]
,
1

2
ln

[√
2α

−3/2
min d1/2W−1

0

])
. (86)

In general, the problem may be rescaled in such a way that αmax ≤ 1, and some rescaling of this434

kind is realistic given that a particular device will have a specific signal range (that is, the range over435

which voltages and currents may vary). Redefining the problem this way will also cause the smallest436

eigenvalue of Σθ|y to be reduced by a factor of αmax, and in this case the bound would be437

t ≥ maxκτ

(
ln
[√

2c W−1
0

]
,
1

2
ln

[√
2κ3/2 d1/2W−1

0

])
, (87)

where κ = αmax/αmin is the condition number. Subject to these assumptions, we may express the438

asymptotic time complexity as439

t = O(κτ ln(κ3/2d1/2W−1
0 )) (88)

In order to collect N samples the same process is run N times, resulting in complexity440

t = O(Nκτ ln(κ3/2d1/2W−1
0 )). (89)

D Conditioning on multiple I.I.D. samples441

When conditioning on a single sample y, the energy U can be separated into two terms, one mapping442

to the prior and the other to the likelihood:443

U(r) = Uπ(r) + Uℓ(r), (90)

where βUπ(r) = − ln pθ(r/r̃) and βUℓ(r) = − ln py|θ(y|r/r̃). In general we may have a number444

of I.I.D. samples Y = (y1, . . . yN ), and would like to sample from pθ|Y (θ|Y ). Because the samples445

of y are I.I.D., we have446

pY |θ(Y |θ) =
N∏
i=1

py|θ(yi|θ). (91)

In this case the likelihood part of the potential energy takes the form447

βUℓ(r) = −
N∑
i=1

ln py|θ(yi|r/r̃), (92)

while the prior part is the same as in the single-sample case, βUπ(r) = − ln pθ(r/r̃). This form448

of the potential energy has a convenient physical interpretation: the function Uπ can be interpreted449

as the self-energy of the system in state r (that is when it is decoupled from an external system),450

while the function Uℓ(θ) can be viewed as an interaction energy between the state r and the state451

y of an external system. When there are multiple I.I.D. samples, this is analogous to the state r452

interacting with a collection of external systems in states Y = (y1 . . . yN ), and each such interaction453

contributes its own term to the interaction energy. This provides a framework for building a physical454

device to sample from the posterior conditioned on multiple I.I.D. samples; one must simply couple455

a collection of external systems in states Y = (y1 . . . yN ) to the system in such a way that each456

interaction contributes an energy of − ln py|θ(y|r/r̃).457

We will now describe another approach to building a physical device that samples from the posterior458

conditioned on multiple I.I.D. samples of y. We first observe that the Langevin equation for the459

device in this case must be460

dθ = ∇θ ln pθ(θ)τ
−1 dt+

N∑
i=1

∇θ ln py|θ(yi|θ) dt+N [0, 2τ−1dt], (93)
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As discussed above, if we have a device that can implement the N likelihood drift terms simultane-461

ously then the problem his solved. However, suppose that we have a device that is only capable of462

implementing a single likelihood term at a time, but y may be varied as a function of time. Addi-463

tionally, we make the interaction energy for this device larger by a factor of N for reasons that will464

become clear. That is, we have a device that implements an SDE of the form465

dθ = ∇θ ln pθ(θ)τ
−1 dt+N∇θ ln py|θ(y(t)|θ) dt+N [0, 2τ−1dt]. (94)

We may choose a short time duration ∆t, and set466

y(t) = y⌊t/∆t⌋ mod N+1. (95)

So for 0 ≤ t ≤ ∆t we set y(t) = y1, for ∆t < t ≤ 2∆t we set y(t) = y2, and so on. Once467

t > N∆t we start over at y1 and continue cycling over all of the I.I.D. samples. Suppose that ∆t is468

short enough that all of the samples are cycled over before the state θ changes significantly. We may469

then average drift term N∇θ ln py|θ over a period of time N∆t and consider θ constant within this470

average. Carrying out this time average, we find471

1

N∆t

N∑
i=1

∆tN∇θ ln py|θ(yi|θ) =
N∑
i=1

∇θpy|θ(yi|θ), (96)

resulting in the correct form of the Langevin equation.472

E Computational complexity of logistic regression473

The runtime complexity of digital Langevin sampling of a logistic regression model is O(nδtdN),474

with nδt the number of time steps, K the number of trainable parameters, and N the number of data475

points (in the case of minibatching b replaces N . Added to this, there can be some discretization476

error if the step size is chosen too large, which generally means the number of time steps is made477

quite large to avoid this (meaning that nδt ≫ ns). The memory complexity is that of storing the data478

and the samples, hence is O(dns +N). In contrast, running the thermodynamic logistic regression479

algorithm only includes two digital steps: i) pre-processing and sending over the data to the hardware480

and ii) initializing the system, which involves setting the prior distribution and the initial state. The481

gradient evaluations are all done in analog, which incurs a cost of O(t), with t the analog dynamics482

time. In the best case scenario, where we do not oversample correlated samples, we have t = nsτc,483

with τc the correlation time. The runtime complexity of the thermodynamic solver is therefore484

O(d+N +nsτc), which is a large improvement over the digital case since there is no discretization485

factor and less multiplicative factors. In addition, note that t can be made extremely small (of the486

order of the microsecond) in practice thanks to the value of the physical time constants of electronic487

systems.1488

1Since the system is nonlinear, similar bounds to those presented in [27] cannot be obtained.
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