
EARL-BO: Reinforcement Learning for Multi-Step Lookahead,
High-Dimensional Bayesian Optimization

Mujin Cheon 1 2 Jay H. Lee 3 Dong-Yeun Koh 2 Calvin Tsay 1

Abstract
To avoid myopic behavior, multi-step lookahead
Bayesian optimization (BO) algorithms consider
the sequential nature of BO and have demon-
strated promising results in recent years. How-
ever, owing to the curse of dimensionality, most
of these methods make significant approxima-
tions or suffer scalability issues. This paper
presents a novel reinforcement learning (RL)-
based framework for multi-step lookahead BO
in high-dimensional black-box optimization prob-
lems. The proposed method enhances the scala-
bility and decision-making quality of multi-step
lookahead BO by efficiently solving the sequen-
tial dynamic program of the BO process in a near-
optimal manner using RL. We first introduce an
Attention-DeepSets encoder to represent the state
of knowledge to the RL agent and subsequently
propose a multi-task, fine-tuning procedure based
on end-to-end (encoder-RL) on-policy learning.
We evaluate the proposed method, EARL-BO (En-
coder Augmented RL for BO), on synthetic bench-
mark functions and hyperparameter tuning prob-
lems, finding significantly improved performance
compared to existing multi-step lookahead and
high-dimensional BO methods.

1. Introduction
Optimization of an unobserved, “black-box” function un-
derlies engineering applications such as hyperparameter
tuning (Snoek et al., 2012), material discovery (Shahriari
et al., 2015), reaction chemistry (Folch et al., 2022), energy
systems (Thebelt et al., 2022), and robotics (Muratore et al.,

1Department of Computing, Imperial College London, UK
2Department of Chemical and Biomolecular Engineering, Korea
Advanced Institute of Science & Technology (KAIST), South
Korea 3Mork Family Department of Chemical Engineering and
Materials Science, University of Southern California, USA. Corre-
spondence to: Calvin Tsay <c.tsay@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2021). Many of these settings involve costly data acquisition
(i.e., experiments) and no information about the gradient.
Bayesian Optimization (BO) is popular in such problems
due to its ability to query data-efficient samples (Brochu
et al., 2010; Paulson & Tsay, 2024). BO leverages a sur-
rogate model with uncertainty quantification, typically a
Gaussian process, or GP (Williams & Rasmussen, 2006),
in conjunction with an acquisition function, which contains
the “philosophy” about how to balance exploration and ex-
ploitation, to identify and optimize the underlying function
in a sequential sampling process.

Traditional BO algorithms deploy acquisition functions such
as Expected Improvement (Jones et al., 1998), Probability
of Improvement (Kushner, 1964), and Upper Confidence
Bound (Srinivas et al., 2010) in one-step lookahead poli-
cies. In other words, these policies ignore the effect(s) of
the choice made at current iteration on future steps and in-
stead solely focus on the immediate maximization of the
acquisition function. Previous studies (Ao & Li, 2024; Lam
et al., 2016; Osborne et al., 2009; Wu & Frazier, 2019) have
demonstrated that these so-called myopic policies can result
in sub-optimal performance. Moreover, anticipating the se-
quential nature of BO can enable consideration of the path
of samples taken (Folch et al., 2022; Yang et al., 2024).

Along these lines, Ginsbourger & Le Riche (2010) observe
that the decision-making process of BO can be seen as a par-
tially observable Markov decision process (POMDP), and
therefore policies can be improved by multi-step lookahead
decisions. Several lookahead methods have since been pro-
posed. GLASSES (González et al., 2016) involves approx-
imating the ideal lookahead loss function in an open-loop
approach. Rollout-based strategies (Lam et al., 2016; Lee
et al., 2020; Osborne et al., 2009) approximate the POMDP
value function by “rolling-out” heuristic decision-making
policies (e.g., maximizing EI) over future time steps to ap-
proximate long-term gains. In this category, Wu & Frazier
(2019) suggest practical two-step lookahead methods using
an envelope-function estimator to improve computational
tractability. More recently, Cheon et al. (2024) introduce a
reinforcement learning (RL) strategy to solve the multi-step
lookahead POMDP of BO in a near-optimal way.

Multi-step lookahead methods generally face two critical

1

EARL-BO: RL for Multi-Step Lookahead BO

challenges: they must (1) simplify the Stochastic Dynamic
Programming (SDP) problem, leading to a sub-optimal pol-
icy, and/or (2) suffer from scalability issues that hinder
applicability to larger and higher-dimensional problems.

Given these challenges, this work introduces a novel frame-
work combining end-to-end encoder architectures with re-
inforcement learning to create a scalable, RL-based BO
framework tailored for multi-step lookahead optimization
in higher-dimensional, black-box optimization problems.
Our Encoder Augmented RL for BO (EARL-BO) frame-
work leverages the representational power of an Attention-
DeepSets-based encoder to parameterize the current knowl-
edge of the state within a latent space that is amenable to
RL. The RL agent learns in a model-based fashion, using a
GP virtual environment to receive rewards based on multi-
step performance, completing the end-to-end learning struc-
ture. The proposed integration enables the RL algorithm
to solve the SDP of the BO decision-making process in a
near-optimal, yet tractable way over an extended horizon.

In summary, our contributions include:

• An integrated and modular RL-based BO method that
efficiently solves the SDP inherent in multi-step BO.

• The introduction of an Attention-DeepSets based en-
coder, which provides a scalable representation of the
knowledge state in BO, enhancing the model’s ability
to handle high-dimensional spaces.

• An end-to-end, model-based learning procedure for the
combined encoder-RL pair using a GP-based virtual
environment.

• Comprehensive evaluations of EARL-BO across both
synthetic benchmark functions and real-world hyper-
parameter tuning, against other multi-step lookahead
and high-dimensional optimization methods.

Our work advances the state of the art in non-myopic BO by
addressing the limitations of existing approaches and provid-
ing a scalable and modular framework for high-dimensional
black-box optimization problems.

2. Background and Related Works
Consider the problem of globally maximizing a continu-
ous function f(x) defined over a compact domain Ω ⊂ Rd.
When evaluating f(x) is costly, it becomes crucial to min-
imize the number of function evaluations. BO uses a
Gaussian process (GP) to model the objective function
f(x). Based on the GP prior f(x) ∼ GP (µ,K), where
µ : Ω→ R is the mean function and K : Ω×Ω→ R is the
covariance (or kernel) function that encodes the correlation

between nearby points (e.g., assumptions about the smooth-
ness of the function), and a dataset Dk = {(xi, yi)}k(i=1),
the posterior distribution of the function value at a new query
point x is Gaussian, N (µk(x;Dk),K

k(x, x;Dk)), where:

µk(x;Dk) = µ(x) + k(x)T (K + σ2Ik)
−1(y − µ(x))

Kk(x, x;Dk)) = K(x, x)− k(x)T (K + σ2Ik)
−1k(x).

Here, Ik denotes the k × k identity matrix. The mean
µk(x;Dk) represents the posterior prediction of the function
at x, and Kk(x, x;Dk)) reflects the covariance.

The subsequent point xk+1 for evaluation is selected by
optimizing an acquisition function Λ(x|Dk), such that:

xk+1 = argmax
x∈Ω

Λ(x|Dk). (1)

For example, one popular acquisition function, Expected
Improvement (EI), is defined as:

ΛEI(x) = E
[
max(0, f(x)− f(x+))

]
, (2)

where f(x+) is the current best observation. The point x
that maximizes the acquisition function Λ(x) is selected as
the next evaluation point, noting that this optimization prob-
lem itself may be non-trivial to solve (Ament et al., 2023;
Xie et al., 2024). While this one-step lookahead strategy
can be effective in many scenarios, it is inherently myopic,
focusing only on the immediate benefits and neglecting the
long-term effects of decisions.

2.1. Multi-step Lookahead Approaches

To overcome the limitations of one-step lookahead meth-
ods, multi-step lookahead strategies seek to account for the
impacts of current decisions on subsequent evaluations.

Rollout-Based Bayesian Optimization. Rollout methods
are a class of multi-step lookahead strategy, where future
decisions are approximated using a base policy πb. This
base policy could involve applying a heuristic or a compu-
tationally simpler, sub-optimal strategy, such as a policy
that maximizes EI (2). The objective is to enhance the base
policy by maximizing the cumulative expected reward over
a user-defined horizon H:

Λrollout(x|Dk) = Eπ
yk+1,...,yk+H

[
H∑

n=1

r(xk+n, yk+n)

]
.

Here, r(xk+n, yk+n) is the reward at step (k+ n), which is
often defined as the improvement in the objective function,
and Eπ[·] denotes the expectation over possible future trajec-
tories given a policy xk+1 ∼ π(Dk), with yk+1 = f(xk+1).

The seminal work of Osborne et al. (2009) demonstrates
the possibility of computing this rollout acquisition function

2

EARL-BO: RL for Multi-Step Lookahead BO

for a 1-D optimization problem with a two-step lookahead
horizon (H=2). Later, Lam et al. (2016) reduce the com-
putational burden by approximating the expected future
rewards using Gauss-Hermite quadrature, enabling good
performance on 2-D synthetic functions with up to five-step
lookahead horizons. More recently, Lee et al. (2020) suggest
rollout-based BO with variance reduction, i.e., reducing the
uncertainty (variance) in the predictions made during each
rollout to produce more reliable estimates of future rewards.
The authors demonstrate this strategy on traditional BO
methods such as EI, UCB, KG in 2-D and 4-D benchmark
functions with up to six-step lookahead horizons.

Despite the benefits of rollout-based BO and the above
strategies, several challenges remain:

• Computational Complexity: Even with variance re-
duction, the computational cost of evaluating multi-
step lookahead strategies is substantial, particularly as
the dimensionality of the search space increases.

• Approximation Errors: The need to approximate
future decisions using a base (heuristic) policy will
inevitably lead rollout methods to sub-optimal policies.

To mitigate the latter approximation errors, Cheon et al.
(2024) use RL to make multi-step lookahead decisions,
showing improved performance compared to rollout-based
methods on 2-D benchmark functions. However, the algo-
rithm employs a latticized representation of a GP as the RL
agent input, which suffers from the curse of dimensionality.

Noting that the above works are limited to low-dimensional
(approx. ≤4-D) problems, this work focuses on multi-step
lookahead BO for higher-dimensional search spaces. Due to
the computational infeasibility of rollout methods for such
settings, we compare performance against rollout-based BO
for low-dimensional problems but against scalable (one-step
lookahead) BO methods for higher-dimensional problems.

2.2. High Dimensional Approaches

Several recent works address challenges posed by increas-
ing dimensionality in BO (Wang et al., 2023). Hoang
et al. (2018) propose the Decentralized High-dimensional
Bayesian Optimization (DEC-HBO) algorithm, which em-
ploys a sparse factor graph representation of the objective
function to exploit interdependent effects of input compo-
nents while maintaining scalability. The authors propose a
decentralized strategy for optimizing the acquisition func-
tion and demonstrate DEC-HBO’s performance on various
tasks, including synthetic functions of up to ten dimensions.

Another popular method is Trust Region Bayesian Optimiza-
tion, or TuRBO (Eriksson et al., 2019). TuRBO partitions
the search space into multiple local regions, each defined as

a trust region and modeled with GP. This approach has been
extensively evaluated on diverse high-dimensional synthetic
and real-world problems, such as the 200-dimensional Ack-
ley function and robot control tasks, where TuRBO outper-
forms traditional BO methods and alternative optimization
techniques, including evolutionary algorithms.

SAASBO (Eriksson & Jankowiak, 2021) introduces Sparse
Axis-Aligned Subspaces to effectively handle the curse of
dimensionality. By learning which dimensions are most rel-
evant to the optimization objective, SAASBO can focus on
the most influential parameters and scale to problems with
hundreds of dimensions. Given their relative popularity and
strong performance, we use TuRBO and SAASBO as bench-
marks for comparison in higher-dimensional problems.

In a similar vein, VAE-BO methods address high-
dimensional BO using Variational Autoencoders (VAEs)
to learn low-dimensional latent representations of the search
space (Gómez-Bombarelli et al., 2018). LBO (Tripp et al.,
2020) improves upon this by incorporating weighted re-
training of the VAE, assigning higher weights to better-
performing points and periodically updating the VAE. More
recently, Chen et al. (2024) propose PG-LBO, which intro-
duces pseudo-label training to leverage unlabeled data and
GP guidance to directly integrate labeled data.

2.3. Learning to Optimize (L2O)

This work falls within the broader framework of Learn-
ing to Optimize (L2O), an emerging paradigm that lever-
ages machine learning techniques to improve traditional
optimization methods. Specifically, instead of relying on
predefined heuristics, L2O approaches learn optimization
strategies from data, enabling them to adapt to different
problem classes and potentially discover superior optimiza-
tion behaviors (Chen et al., 2017; Ma et al., 2025).

Recent advances in L2O for black-box optimization include
RIBBO (Song et al., 2024), which employs transformer
architectures with regret-to-go tokens to learn end-to-end
algorithms from offline datasets, and POM (Li et al., 2024),
which combines population-based optimization with trans-
former encoders for zero-shot black-box optimization. A
more comprehensive review of L2O can be found in Ma et al.
(2025). While these methods demonstrate promising re-
sults, they again generally remain fundamentally limited to
single-step, myopic decision making (the above approaches
generate query points based solely on the current state).

3. Methodology
3.1. Preliminaries

Bayesian Optimization as MDP. Lam et al. (2016) con-
ceptualize the decision-making process of BO as a finite-

3

EARL-BO: RL for Multi-Step Lookahead BO

horizon dynamic program. The key idea is that, given a
set of observed data Dk, the data-acquisition order and pro-
cedure are irrelevant as long as the same data points are
obtained. Thus, the BO setting satisfies the Markov prop-
erty. Here, we express this framework using the equivalent
Markov Decision Process (MDP) formulation, adopting the
standard notation from Puterman (2014).

An MDP is defined by the tuple 〈T, S,A, P,R〉:

• T is the set of decision epochs, T = {0, 1, . . . , h− 1},
with h <∞ here representing a finite horizon.

• S is the state space comprising the information neces-
sary to describe the system at any given time t ∈ T .

• A is the action space of possible decisions.

• P (s′|s, a) is the transition probability, or the likeli-
hood of moving to s′ by taking action a at state s.

• R(s, a, s′) defines the reward received when transition-
ing from state s to state s′ by taking action a.

Following this notation, a decision rule πt : S → A maps
states to (a distribution of) actions at time step t. A policy
π = [π0, π1, ..., πh−1] is a sequence of decision rules, one
for each decision epoch. Given a policy π, an initial state
s0, and a horizon h, the expected total reward V π

h (s0) is:

V π
h (s0) = E

[
h−1∑
t=0

R (st, πt(st), st+1)

]
. (3)

In this MDP framework, the objective is to determine the
optimal policy π∗ that maximizes the expected total reward:

π∗ = argmax
π∈Π

V π
h (s0), (4)

where Π is the set of all possible policies. This formulation
allows us to view BO as a sequential decision-making prob-
lem, where the goal is to maximize the cumulative reward
over a finite horizon by selecting the best possible actions
at each step. Moreover, Paulson & Tsay (2024) observe that
choosing an acquisition function Λ can be mapped to a re-
ward function from the viewpoint of dynamic programming.

For the BO setting, 〈T, S,A, P,R〉 can be construed as T :
a user-intended lookahead horizon for BO, S: data acquired
in the BO process (Dt), A: the next query point of BO, P :
the change in state when a point xt+1 is queried, and R:
a user-defined reward, which, analogously to (2), is com-
monly chosen as R(Dt, xt+1,Dt+1) = max(0, yt+1 − y∗t)
for multi-step lookahead BO, where y∗t denotes the maxi-
mum value of y. Notice that directly using the obtained data
Dt as the state requires continually increasing the dimen-
sionality of the state vector as BO proceeds. We therefore

seek to represent data in a size- and permutation-invariant
way using a tailored encoder structure.

Reinforcement Learning (RL). RL is a paradigm in ma-
chine learning where an agent learns to make decisions by
interacting with an environment (Sutton & Barto, 2018). In
our context, we employ RL to learn an optimal policy for
selecting query points, i.e., solving the MDP formulation
of the BO problem. Several studies use RL to learn such
a policy, e.g., by meta-learning acquisition functions for
GPs (Hsieh et al., 2021; Volpp et al., 2019). Later, Shmakov
et al. (2023) integrate learning of deep kernels, and Maraval
et al. (2024) propose an end-to-end framework based on
meta-learning both a transformer and an RL policy. These
works are similar in spirit, but consider the L2O setting of
meta-learning across problems (Chen et al., 2017). On the
other hand, EARL-BO aims to learn to emulate multi-step
lookahead BO on the given task.

In this work, we focus on the general setting where data
from other tasks are not available for meta-learning, and
instead take a model-based RL approach. Our framework is
modular and agnostic to the specific choice of RL algorithm;
here we employ Proximal Policy Optimization (PPO), a
policy gradient algorithm that addresses the challenges of
step-size selection and sample efficiency (Schulman et al.,
2017). PPO uses a clipped surrogate objective to ensure that
policy updates are not overly large (which could otherwise
lead to performance collapse), defined as:

LPPO(θ) = Et

[
min

(
rt(θ)At,

clip(rt(θ), 1− ϵ, 1 + ϵ)At

)]
,

(5)

where:

• rt(θ) = πθ(at|st)
πθ,old(at|st) is the probability ratio between

the new and old policies,

• At is the estimated advantage at time t, and

• ϵ is a hyperparameter that controls the clip range.

The clipping in the objective function (often implemented
with ϵ = 0.2) ensures that the employed ratio between the
new and old policies does not deviate significantly from
unity, which helps to stabilize training in practice.

3.2. Overview of EARL-BO

EARL-BO is a modular framework comprising: (1) an en-
coder module that learns a representation of the state of data
acquisition and (2) an RL module that learns the lookahead
BO policy. An overview of EARL-BO is shown in Figure 1.
The framework is agnostic to the specific choice of encoder
and RL algorithm. Similarly, the off-policy learning step
described below can leverage any existing BO method.

4

EARL-BO: RL for Multi-Step Lookahead BO

Input

Attention Layer

Output

Input

Actor

Network

Critic

Network

Encoded State

Action State Value

GP interaction

(Virtual Environment)

Reward

Memory buffer

Loss Calculation

Output
Update Encoder,

Actor, Critic

networks

Encoder Actor-Critic

Back Propagation

Back Propagation

Environment
𝒟𝑡

Next query point 𝐱𝑘+1

DeepSets Layer

EARL-BO

Figure 1. An overview of the EARL-BO architecture.

Attention-Deepsets Encoder Module. Permutation invari-
ance is crucial in BO, as the order in which data points
is acquired should not affect the learning process (i.e., the
MDP). In other words, given a dataset Dk = {(xi, yi)}ki=1,
the order of the data pairs (xi, yi) should not influence the
agent’s decision-making process. While meta-learning stud-
ies have leveraged transformer models (Chen et al., 2022;
Maraval et al., 2024), we begin with the simpler DeepSets
architecture (Zaheer et al., 2017), which ensures that the
encoding function ϕ applied to the data is invariant under
permutations. Mathematically, this is expressed as:

ϕ(Dt) = ρ

 ∑
(xi,yi)∈Dt

ψ(xi, yi)

 , (6)

where ψ is a function that maps individual data points to
a latent space, and ρ is a function that aggregates these
representations into a fixed-size vector. This aggregation
achieves permutation invariance of the final representation.

Another requirement for the encoder is size invariance,
which refers to the ability to handle a growing dataset Dt

as samples are acquired. As new data points are added, the
encoder must adapt without being explicitly retrained or
altered. The DeepSets architecture inherently provides this
property by summing over the data representations, allow-
ing it to naturally handle datasets of varying sizes. Note
that the aggregation in (6) could be replaced with other
permutation-invariant functions, e.g., arithmetic mean.

While permutation and size invariance are important, data
points may not contribute equally to the decision-making
process in BO: some points may be more relevant than
others in determining the next query point. We therefore
incorporate an attention mechanism (Vaswani et al., 2017),
which assigns weights to each data point based on its learned
relevance, effectively allowing the model to “focus” on the
critical information. Note that attention-based architectures
have found success in encoding general datasets in other
applications (Gordon et al., 2020; Simpson et al., 2021).

Mathematically, the attention weights αi for each data point

(xi, yi) are computed as:

αi = softmax (fatt(ψ(xi, yi))) , (7)

where fatt is a scoring function that measures the relevance
of each data point. The final output is then computed as:

ϕatt(Dt) = ρ

 ∑
(xi,yi)∈Dt

αi · ψ(xi, yi)

 . (8)

By using an Attention-DeepSets based encoder, we ensure
that the state representation used in EARL-BO is permu-
tation invariant, size invariant, and capable of focusing on
the salient information in the dataset. This robust encod-
ing strategy is essential for effectively navigating the high-
dimensional search space in multi-step lookahead BO tasks.

PPO Actor-Critic Module. The core of EARL-BO’s
decision-making process is the RL module. We employ
PPO, which comprises two main components: the actor
network and the critic network.

The actor network, denoted as πθ(a|s) with parameters θ,
represents the policy that maps states to actions. In our case,
it outputs the next query point for the BO process. The
actor’s objective is to maximize the expected cumulative
reward, (3). The critic network, denoted as Vϕ(s) with pa-
rameters ϕ, estimates the value function of the current state
and helps reduce the variance of policy gradient estimates
by providing a baseline for advantage estimation:

A(st, at) = Q(st, at)− Vϕ(st). (9)

The PPO algorithm updates the actor network by maximiz-
ing the clipped surrogate objective: LPPO(θ) from (5). The
critic is updated to minimize the mean squared error be-
tween its predictions and the observed returns

LVF(ϕ) = Et

[
(Vϕ(st)−Rt)

2
]
. (10)

Initialization with Off-Policy Learning. To accelerate
the initial training of EARL-BO, we employ an off-policy
learning strategy to warm-start training of the RL module.
As noted above, this step can use samples generated by
any existing BO method. In this work, we specifically use
TuRBO due to its strong performance and popularity in high-
dimensional BO, though the framework could seamlessly
integrate the other benchmark methods such as SAASBO,
EI, etc. The off-policy learning process is as follows.

First, we generate a batch of initial training data using
the chosen baseline method (TuRBO in our implementa-
tion), Dbaseline = {(si, ai, ri, s′i)}Ni=1, based on the current
dataset Dk. We then use these trajectories to pre-train the
actor and critic networks using a modified loss function:

Lpretrain(θ, ϕ) = E(s,a,r,s′)∼Dbaseline

[
LPPO(θ)

+c1L
VF(ϕ)− c2H(πθ)

]
,

(11)

5

EARL-BO: RL for Multi-Step Lookahead BO

where H(πθ) is the entropy of the policy, encouraging ex-
ploration, and c1, c2 are tunable weights. We then freeze
the initial layers of both the actor and critic networks. This
step preserves some pre-training knowledge, while allowing
for fine-tuning in the subsequent on-policy learning phase.
Specifically, the parameters are partitioned as:

θfrozen = {θ1, ..., θk}; θtrainable = {θk+1, ..., θn}
ϕfrozen = {ϕ1, ..., ϕk}; ϕtrainable = {ϕk+1, ..., ϕn},

where only θtrainable and ϕtrainable contain parameters up-
dated in subsequent (on-policy) training. After the off-policy
pre-training phase, we switch to on-policy learning using
the chosen RL algorithm (PPO in our implementation).

The (optional) modular off-policy learning step provides
EARL-BO with flexible initialization options, leveraging
the strengths of existing BO methods while maintaining the
adaptability of RL. This design choice allows practitioners
to integrate EARL-BO with their existing BO infrastructure
and domain-specific acquisition functions.

Model-Based RL with GP Virtual Environment. Typical
RL algorithms learn policies through direct interaction with
the environment. However, in the context of BO, where sam-
pling is expensive, it is impractical and inefficient for an RL
agent to directly interact with the real environment to find
the optimal policy π∗. In these settings, it is advantageous
to incorporate a (known or learned) model rather than/in
addition to the environment directly, a paradigm known as
model-based RL (Moerland et al., 2023).

To address this challenge, we propose using the current
trained GP at each step as a ‘model’ for RL. Specifically,
we create a virtual environment based on a GP fitted to the
current dataset Dk = {(xi, yi)}ki=1 and learn the optimal
policy from interacting with this virtual environment as a
model rather than the original black-box function.

In other words, by taking this model-based approach, EARL-
BO assumes that the current GP posterior at each BO step
is a good approximation of the class of functions we seek
to optimize, cf. meta-learning strategies that require data
from given source domains (Maraval et al., 2024). The
RL algorithm is therefore provided with (multi-step looka-
head) rewards using samples from the GP posterior as the
underlying “black-box function” environment.

EARL-BO Summary (Algorithm 1). The EARL-BO al-
gorithm implements a hybrid model-based and model-free
RL approach, loosely following the Dyna framework (Silver
et al., 2008; Wu et al., 2023).

The algorithm maintains a GP that serves as the world model,
enabling virtual interactions for policy learning without re-
quiring expensive function evaluations from the “real-world”
environment. At each iteration, the Attention-DeepSets en-
coder module transforms the current state Dk into a latent-

Algorithm 1 EARL-BO
Input: data Dk, action bounds [lb, ub]
Parameters: lookahead horizon, max episodes, up-
date episodes, off policy episodes
Output: next query point xt+1

Initialize RL agent (PPO agent), encoder network, and
memory buffer
Fit GP to Dk

for k = 1 to max episodes do
Reset environment state s with Dk

for step = 1 to lookahead horizon do
Encode state s using encoder network
if k ≤ off policy episodes then

Select action a using TuRBO acquisition
else

Select action a using RL agent
end if
Sample ỹk+1 ∼ N

(
µk(x;Dk),K

k(x, x;Dk)
)

Compute reward r = R(Dk, xk+1,Dk+1) using
ỹk+1

Update environment state s′ = Dk+1

Store transition (s, a, s′, r) to memory buffer
s← s′

end for
if kmod update episodes = 0 then

if k ≤ off policy episodes then
Update RL agent with initial policy

else
Calculate PPO loss using memory buffer
Train actor, critic, and encoder networks

end if
end if
Clear memory buffer

end for
Encode state using final encoder network
Return xk+1 output from final actor network

space representation, capturing the complex relationships
between previously sampled points and their corresponding
values. The RL module then makes decisions based on this
encoded state, and interacts with the GP model to simulate
the outcomes of its actions by sampling ỹk+1 from the GP
posterior distribution.

This Dyna-style learning process allows the agent to learn
from both real data (as samples are collected along the BO
process) and simulated experiences (generated through GP
posterior sampling). The algorithm initially learns from
off-policy data generated by TuRBO (or another baseline
algorithm) to establish a reasonable starting policy, then
transitions to on-policy learning using PPO. As more BO
samples are collected, the approximation quality of the GP
model improves, and the simulated experiences become

6

EARL-BO: RL for Multi-Step Lookahead BO

Figure 2. Optimization performance of various BO methods on synthetic benchmarks.

increasingly reliable for policy learning. This approach
enables efficient exploration and policy improvement, while
maintaining the sample efficiency that is crucial for BO.

4. Results and Discussion
This section compares the performance of EARL-BO
against existing lookahead and high-dimensional BO al-
gorithms on both synthetic benchmark functions and real-
world hyperparameter optimization tasks. The details of the
implementation and experiment are given in Appendix A.
In particular, while PPO itself contains several hyperparam-
eters, we found EARL-BO to perform well consistently and
use standard/default values. The exception is the learning
rate, which can be linked to the learning rate of the encoder.
Appendix B contains an ablation study on learning rates.

4.1. Synthetic Benchmark Functions

We first evaluate EARL-BO on four popular synthetic
benchmark functions: Ackley, Levy, Rosenbrock, and Sum
Squares (Surjanovic & Bingham, 2013). These functions
were tested in 2-D, 5-D, 8-D, and 30-D configurations, with
a fixed search space of [−15, 15] for all dimensions. The

optimization objective was to minimize these functions. We
initialize the BO algorithms using 30 random points within
the search space and evaluate performance using simple re-
gret (yopt − y∗k). Each method is tested for ten replications
by resampling the initial dataset.

The results for 2-D, 5-D, and 8-D are shown in Figure 2,
where the solid lines represent the mean performance across
the ten runs, and the shaded area shows one standard devi-
ation. For all problems, we compare performance against
random search, standard one-step EI maximization, TuRBO,
and SAASBO. For the 2-D problems, we also compare
against rollout with variance reduction, denoted as ‘Roll-
out VR’ (Lee et al., 2020). This method was impractical to
run in higher dimensions (see Section 2.1). For Rollout VR
and EARL-BO, we select a lookahead horizon of H = 3.
To investigate the effects of the lookahead horizon, we fur-
ther test EARL-BO with a lookahead horizon of H = 5 on
the 8-D benchmark functions.

The results for the 30-D setting are presented in Figure
3, using the same experimental setup (search space of [-
15,15] for all dimensions, 30 initial data points) as the lower-
dimensional experiments. For a better visibility of the figure,
we excluded random search from the 30-D comparisons,

7

EARL-BO: RL for Multi-Step Lookahead BO

Figure 3. Optimization performance of various BO methods on 30-D synthetic benchmarks.

focusing on the more competitive BO methods.

Results. As shown in Figure 2, in the 2-D setting, EARL-
BO demonstrates competitive performance, often closely
matching, or slightly improving on, the performance of
Rollout VR. This alignment is intuitive, as both methods
implement multi-step lookahead strategies, suggesting that
EARL-BO is able to properly learn the three-step lookahead
policy. This is notable given the relative computational
scalability of EARL-BO, as described in Appendix C. For
most functions, the performance gap between EARL-BO
and single-step lookahead methods such as EI was not as
pronounced in this low-dimensional setting, likely due to the
relatively high information density provided by the 30 initial
points in a 2-D space, which may reduce the advantages
gained from extended exploration and lookahead strategies.
In other words, myopic policies are less detrimental since
fewer samples are required.

A notable pattern emerges with the Sum Squares func-
tion across all dimensionalities (2-D, 5-D, and 8-D), where
SAASBO consistently demonstrates superior performance
compared to all other methods, including EARL-BO. This
result is also intuitive, given the additive nature of the black-
box objective. The performance highlights SAASBO’s par-
ticular effectiveness on smooth, unimodal functions, where
its sparse axis-aligned approach can efficiently navigate the
search space. However, for functions with more compli-
cated landscapes featuring multiple local optima or irregular
surfaces, the relative performance changes significantly.

In the 5-D and 8-D settings, EARL-BO’s advantages be-
come increasingly evident on the more complex functions.
Across the Ackley, Levy, and Rosenbrock functions, EARL-
BO consistently outperforms baseline methods including EI,
Random Search, and TuRBO. This trend underscores the
effectiveness of our multi-step lookahead approach in navi-
gating more complicated functions and higher-dimensional
landscapes (relative to other lookahead methods).

The 30-D experimental results, shown in Figure 3,
demonstrate EARL-BO’s outstanding performance in high-
dimensional optimization settings. Across all four 30-D

benchmark functions, EARL-BO significantly outperforms
EI, TuRBO, and SAASBO, with performance gaps that are
substantially larger than those observed in lower dimensions.
This pronounced improvement supports our hypothesis that,
as problem dimensionality increases, the optimization land-
scape becomes more complex and challenging, making non-
myopic decision-making increasingly valuable. The ability
to plan multiple steps ahead becomes crucial for navigating
high-dimensional spaces effectively, where myopic policies
are more likely to become trapped in suboptimal regions or
fail to exploit promising areas of the search space efficiently.

Notably, even SAASBO, which performs competitively on
certain lower-dimensional problems such as Sum Squares, is
consistently outperformed by EARL-BO in the 30-D setting
across all benchmark functions. This suggests that the bene-
fits of multi-step lookahead planning become dominant over
specialized high-dimensional techniques as the complexity
of the optimization problem increases.

Regarding lookahead horizons, the three-step lookahead
variant of EARL-BO shows similar or slightly better per-
formance compared to its five-step counterpart in the 8-D
experiments. This finding aligns with empirical observa-
tions from previous multi-step lookahead studies (Lam et al.,
2016; Lee et al., 2020), which report optimal performance
at intermediate horizons of H = 3, 4 steps compared to
H = 5, 6. A more comprehensive study on more lookahead
horizon lengths can be found in Appendix B.

The enhanced performance of EARL-BO in higher dimen-
sions may be attributed to several factors:

• Increased exploration benefits: For complex and
higher-dimensional functions, the ability to plan mul-
tiple steps ahead becomes more valuable for effective
exploration and exploitation balance.

• Efficient use of information: EARL-BO’s Attention-
DeepSets encoder better captures and exploits relation-
ships between higher-dimensional samples, enabling
more informed decision-making.

8

EARL-BO: RL for Multi-Step Lookahead BO

Figure 4. Optimization performance of various BO methods on HPO problems.

In addition to the aforementioned heuristic observations,
the plateauing, or slight degradation in performance with
increased lookahead (from three to five in 8-D), may also be
attributed to errors in the GP model, a phenomenon we term
“planning delusion.” As EARL-BO does not interact with
the true objective function, but rather with samples from
the GP model (which then interacts with the true objective
function), looking many steps ahead may compound errors
in the predicted outcomes. In essence, the true objective
function may not correspond exactly to a GP posterior sam-
ple, reducing the effectiveness of model-based learning. The
three-step variant seemingly allows for meaningful planning
without excessive reliance on imperfect models.

We speculate that this “planning delusion” effect could be
more pronounced in EARL-BO compared to traditional
rollout-based methods. EARL-BO learns a policy that di-
rectly optimizes for multi-step performance, potentially
making it more susceptible to biases in long-term predic-
tions. In contrast, rollout methods typically use myopic
policies as base strategies, which may provide some inher-
ent robustness against long-horizon planning errors.

Further results on the synthetic benchmarks, including abla-
tion studies on learning rates, planning delusion, RL training
convergence, and permutation invariance, are given in Ap-
pendix B. Computational requirements and scalability are
discussed in Appendix C.

4.2. Hyperparameter Optimization Experiments

We next evaluate EARL-BO in real-world scenarios using
the Hyperparameter Optimization Benchmarks (HPO-B)
dataset (Arango et al., 2021). HPO-B contains datasets of
classification model hyperparameters and their correspond-
ing accuracies across multiple types and search spaces, pro-
viding a realistic testbed for optimization algorithms. We
focus on higher-dimensional optimization problems, and
select search space IDs 5889 (6-D), 5968 (8-D), and 7200
(19-D) as test problems. We initialize the BO algorithms
using five random points for 6- and 8-D and 50 for the 19-D
problem. We again evaluate performance using simple re-
gret (yopt−y∗k) and ten replications by resampling the initial

dataset. We compare performance against random search,
standard EI and PI maximization, TuRBO, and SAASBO.
For EARL-BO, we select a lookahead horizon of H = 3.

Results. As shown in Figure 4, EARL-BO consistently
outperforms the baseline methods on the HPO tasks. Ap-
pendix B visualizes these results with non-logarithmic scal-
ing and contains an ablation experiment for the 19-D prob-
lem starting from only five initial samples. For all problems,
EARL-BO performs equivalently (or worse than) competing
methods at early iterations, and then overtakes them quickly
later, including TuRBO and SAASBO. This suggests that
single-step methods are indeed overly myopic, and thus fo-
cused on initial rewards; the multi-step lookahead enables
EARL-BO to achieve the best long-term performance.

In the 19-D Search Space (ID 7200) setting with only five
initial points (Appendix B), EARL-BO performs similarly
to some of the baseline methods. In this case, the initial data
are extremely sparse, leading to a poor GP model initially,
and as a result, large variation in samples from the GP
posterior. In this scenario, EARL-BO suffers again from
model errors, and adopting its multi-step lookahead policy
may not provide the expected benefits and could potentially
lead to suboptimal decisions due to errors in long-term
predictions.

5. Conclusions
This paper introduces EARL-BO, a novel Bayesian Opti-
mization approach based on Encoder-Augmented Reinforce-
ment Learning for multi-step lookahead in high-dimensional
spaces. The approach combines an Attention-Deepsets en-
coder module with model-based, actor-critic RL to provide
an end-to-end solution for the sequential decision-making
process of BO. Our experiments on synthetic benchmarks
and hyperparameter optimization tasks demonstrate EARL-
BO’s superior performance in moderate to high-dimensional
spaces compared to traditional and state-of-the-art methods.
Overall, this study demonstrates the potential of reinforce-
ment learning in handling the sequential nature of BO.

9

EARL-BO: RL for Multi-Step Lookahead BO

Acknowledgements
The authors thank Dr Mark van der Wilk for discussions
and insightful feedback, especially in the conceptualization
of this project. CT gratefully acknowledges support from
a BASF/Royal Academy of Engineering Senior Research
Fellowship. This work was partially supported by the Basic
Science research program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence, ICT & Future Planning under the contract No.NRF-
2021R1C1C1012014 as well as USC ECET’s funding under
CYPRES award as part of the distribution of a settlement
relating to fuel economy for gasoline-powered vehicles.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning through improved Bayesian optimiza-
tion techniques. The potential societal consequences align
with those generally associated with advancing machine
learning methodologies.

References
Ament, S., Daulton, S., Eriksson, D., Balandat, M., and

Bakshy, E. Unexpected improvements to expected im-
provement for bayesian optimization. Advances in Neural
Information Processing Systems, 36:20577–20612, 2023.

Ao, Z. and Li, J. On estimating the gradient of the expected
information gain in Bayesian experimental design. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 20311–20319, 2024.

Arango, S. P., Jomaa, H. S., Wistuba, M., and Grabocka,
J. Hpo-b: A large-scale reproducible benchmark
for black-box hpo based on openml. arXiv preprint
arXiv:2106.06257, 2021.

Brochu, E., Cora, V. M., and De Freitas, N. A tutorial
on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599,
2010.

Chen, T., Duan, Y., Li, D., Qi, L., Shi, Y., and Gao, Y. PG-
LBO: Enhancing high-dimensional bayesian optimiza-
tion with pseudo-label and Gaussian process guidance.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pp. 11381–11389, 2024.

Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M.,
Lillicrap, T. P., Botvinick, M., and Freitas, N. Learning
to learn without gradient descent by gradient descent. In
International Conference on Machine Learning (ICML),
pp. 748–756. PMLR, 2017.

Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R., Dohan, D.,
Kawakami, K., Kochanski, G., Doucet, A., Ranzato, M.,
et al. Towards learning universal hyperparameter optimiz-
ers with transformers. Advances in Neural Information
Processing Systems, 35:32053–32068, 2022.

Cheon, M., Byun, H., and Lee, J. H. Non-myopic Bayesian
optimization using model-free reinforcement learning
and its application to optimization in electrochemistry.
Computers & Chemical Engineering, 184:108624, 2024.

Eriksson, D. and Jankowiak, M. High-dimensional bayesian
optimization with sparse axis-aligned subspaces. In Un-
certainty in Artificial Intelligence, pp. 493–503. PMLR,
2021.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and
Poloczek, M. Scalable global optimization via local
Bayesian optimization. Advances in Neural Information
Processing Systems, 32, 2019.

Folch, J. P., Zhang, S., Lee, R., Shafei, B., Walz, D., Tsay,
C., van der Wilk, M., and Misener, R. SnAKe: Bayesian
optimization with pathwise exploration. Advances in
Neural Information Processing Systems, 35, 2022.

Ginsbourger, D. and Le Riche, R. Towards Gaussian
process-based optimization with finite time horizon. In
International Workshop in Model-Oriented Design and
Analysis, pp. 89–96. Springer, 2010.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Central Science, 4(2):268–276, 2018.

González, J., Osborne, M., and Lawrence, N. GLASSES:
Relieving the myopia of Bayesian optimisation. In Ar-
tificial Intelligence and Statistics, pp. 790–799. PMLR,
2016.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. In International Conference on Learn-
ing Representations, 2020.

Hoang, T. N., Hoang, Q. M., Ouyang, R., and Low, K. H.
Decentralized high-dimensional Bayesian optimization
with factor graphs. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

Hsieh, B.-J., Hsieh, P.-C., and Liu, X. Reinforced few-shot
acquisition function learning for Bayesian optimization.
Advances in Neural Information Processing Systems, 34:
7718–7731, 2021.

10

EARL-BO: RL for Multi-Step Lookahead BO

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 13:455–492, 1998.

Kushner, H. A new method of locating the maximum point
of an arbitrary multipeak curve in the presence of noise.
Journal of Basic Engineering, 86(1):97–106, 1964.

Lam, R., Willcox, K., and Wolpert, D. H. Bayesian opti-
mization with a finite budget: An approximate dynamic
programming approach. Advances in Neural Information
Processing Systems, 29, 2016.

Lee, E., Eriksson, D., Bindel, D., Cheng, B., and Mccourt,
M. Efficient rollout strategies for Bayesian optimization.
In Conference on Uncertainty in Artificial Intelligence,
pp. 260–269. PMLR, 2020.

Li, X., Wu, K., Zhang, X., Wang, H., Liu, J., et al. Pretrained
optimization model for zero-shot black box optimization.
Advances in Neural Information Processing Systems, 37:
14283–14324, 2024.

Ma, Z., Guo, H., Gong, Y.-J., Zhang, J., and Tan, K. C. To-
ward automated algorithm design: A survey and practical
guide to meta-black-box-optimization. IEEE Transac-
tions on Evolutionary Computation, 2025.

Maraval, A., Zimmer, M., Grosnit, A., and Bou Ammar,
H. End-to-end meta-Bayesian optimisation with trans-
former neural processes. Advances in Neural Information
Processing Systems, 36, 2024.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning, 16(1):
1–118, 2023.

Muratore, F., Eilers, C., Gienger, M., and Peters, J. Data-
efficient domain randomization with Bayesian optimiza-
tion. IEEE Robotics and Automation Letters, 6(2):911–
918, 2021.

Osborne, M. A., Garnett, R., and Roberts, S. J. Gaussian
processes for global optimization. 2009.

Paulson, J. A. and Tsay, C. Bayesian optimization as a
flexible and efficient design framework for sustainable
process systems. Current Opinion in Green and Sustain-
able Chemistry, pp. 100983, 2024.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and
De Freitas, N. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2015.

Shmakov, A., Naug, A., Gundecha, V., Ghorbanpour, S.,
Gutierrez, R. L., Babu, A. R., Guillen, A., and Sarkar,
S. Rtdk-bo: High dimensional Bayesian optimization
with reinforced transformer deep kernels. In 2023 IEEE
19th International Conference on Automation Science
and Engineering (CASE), pp. 1–8. IEEE, 2023.

Silver, D., Sutton, R. S., and Müller, M. Sample-based
learning and search with permanent and transient memo-
ries. In International Conference on Machine Learning
(ICML), pp. 968–975, 2008.

Simpson, F., Davies, I., Lalchand, V., Vullo, A., Durrande,
N., and Rasmussen, C. E. Kernel identification through
transformers. Advances in Neural Information Processing
Systems, 34:10483–10495, 2021.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
Bayesian optimization of machine learning algorithms.
Advances in Neural Information Processing Systems, 25,
2012.

Song, L., Gao, C., Xue, K., Wu, C., Li, D., Hao, J., Zhang,
Z., and Qian, C. Reinforced in-context black-box opti-
mization. arXiv preprint arXiv:2402.17423, 2024.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: No regret
and experimental design. In International Conference on
Machine Learning (ICML), pp. 1015–1022, 2010.

Surjanovic, S. and Bingham, D. Virtual library of simulation
experiments: test functions and datasets. Simon Fraser
University, Burnaby, BC, Canada, accessed May, 13:
2015, 2013.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Thebelt, A., Tsay, C., Lee, R. M., Sudermann-Merx, N.,
Walz, D., Tranter, T., and Misener, R. Multi-objective
constrained optimization for energy applications via tree
ensembles. Applied Energy, 306:118061, 2022.

Tripp, A., Daxberger, E., and Hernández-Lobato, J. M.
Sample-efficient optimization in the latent space of deep
generative models via weighted retraining. Advances
in Neural Information Processing Systems, 33:11259–
11272, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30:5998–6008, 2017.

11

EARL-BO: RL for Multi-Step Lookahead BO

Volpp, M., Fröhlich, L. P., Fischer, K., Doerr, A., Falkner,
S., Hutter, F., and Daniel, C. Meta-learning acquisition
functions for transfer learning in Bayesian optimization.
In International Conference on Learning Representations,
2019.

Wang, X., Jin, Y., Schmitt, S., and Olhofer, M. Recent
advances in Bayesian optimization. ACM Computing
Surveys, 55(13s):1–36, 2023.

Williams, C. K. and Rasmussen, C. E. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

Wu, G., Fang, W., Wang, J., Ge, P., Cao, J., Ping, Y., and
Gou, P. Dyna-PPO reinforcement learning with gaus-
sian process for the continuous action decision-making in
autonomous driving. Applied Intelligence, 53(13):16893–
16907, 2023.

Wu, J. and Frazier, P. Practical two-step lookahead Bayesian
optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Xie, Y., Zhang, S., Paulson, J., and Tsay, C. Global opti-
mization of gaussian process acquisition functions using
a piecewise-linear kernel approximation. arXiv preprint
arXiv:2410.16893, 2024.

Yang, A. X., Aitchison, L., and Moss, H. MON-
GOOSE: Path-wise smooth bayesian optimisation via
meta-learning. In ICML 2024 Workshop on Structured
Probabilistic Inference & Generative Modeling, 2024.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in Neural Information Processing Systems, 30,
2017.

12

EARL-BO: RL for Multi-Step Lookahead BO

A. Experimental Setup
In this section, we provide details of the experimental setup, focusing on the dataset, its preprocessing, the hyperparameters
of RL, and the hardware used for experiments to aid in reproducibility.

A.1. Tasks

The real-world Hyperparameter Optimization dataset is sourced from the HPO-B dataset (Arango et al., 2021), a collection
of HPO datasets grouped by search space and tasks. Each search space ID refers to the set of hyperparameters for a specific
machine learning (ML) model, e.g. Ranger, XGBoost. Table 5 of (Arango et al., 2021) gives the details for each search space
ID, including number of evaluations, number of datasets, number of dimensions, and the name of search space (i.e., the name
of ML model). Depending on the number of combined datasets, some search spaces contain duplicate measurements (i.e.
multiple/different response recorded for the exact same input values). To mitigate this issue, (Arango et al., 2021) randomly
select one data sample for each input when duplicates exist; however, in this research, we only use search space IDs which
do not contain data duplication for cleaner BO comparisons. All in all, due to our research topic in ‘high-dimensional’
problems and for the clean-data, we have selected search space IDs of 5889 (6-D), 5968 (8-D), and 7200 (19-D).

A.2. Baselines

For baseline optimization performance on the synthetic benchmark functions, we compare against EI, Random, TuRBO,
and Rollout VR in this work. For EI, Random, and Rollout VR, we use implementations from (Lee et al., 2020) found at:
https://github.com/erichanslee/lookahead_release. For TuRBO, we use the current implementation
from the Uber research group: https://github.com/uber-research/TuRBO. To keep experiments consistent
and reproducible, optimization was performed in the same search space with same initial data for each problem repetition.
Note that we found TuRBO can give slightly different optimization performance even with the same set of initial data. Ten
sets of initial data were provided to optimization methods, and the average performance is reported in this paper.

A.3. EARL-BO

On top of the pseudo code (i.e., Algorithm 1) presented in the main text, EARL-BO contains one additional detail—namely
the stopping criterion for RL training. For this, if the PPO agent fails to learn policy over some episodes (e.g., average
reward becomes zero for 15 consecutive updates) or the final trained agent’s average reward is less than 1e-5, EARL-BO
aborts the learned policy and returns the off-policy suggestion provided by the TuRBO algorithm. We found this to happen
in practice only seldom, particularly when EARL-BO had already discovered the optimum point.

Hyperparameters. Table 1 displays a comprehensive list of hyperparameters for EARL-BO. We would like to underline that
none of these presented values for hyperparameters were tuned across problems. In other words, across various dimensions
and function forms, we have kept the same hyperparameters with most basic PPO and Encoder values. However, setting
learning rates for the RL and encoder modules (their relative magnitudes in particular) was a very important question. We
employed different learning rates for the RL agent (0.001) and the encoder (0.01). This design choice is justified by the
distinct roles and complexities of these components within the algorithm, allowing them to train in a dynamically decoupled
fashion. The RL agent, tasked with learning a policy and value function in a dynamic environment, benefits from a lower
learning rate to maintain stability and prevent performance collapse due to rapid policy changes. Conversely, the encoder,
which learns a static representation of the search space, can adapt more quickly with a higher learning rate, improving the
quality of state representations rapidly. As an ablation study below, we present EARL-BO with 4 different selections of
learning rates and compare the optimization performance.

A.4. Hardware

We conducted our experiments on a computing server with AMD EPYC 7742 processors equipped. The specific allocation
for each job was as follows: 16 CPUs and max memory of 100 GB. With this configuration, the average time required to
complete each experiment was approximately 25 hours. This configuration was chosen in order to parallelize the multiple
repetitions for each experiment. Notably, experiments could potentially be sped up using GPU acceleration.

13

https://github.com/erichanslee/lookahead_release
https://github.com/uber-research/TuRBO

EARL-BO: RL for Multi-Step Lookahead BO

Table 1. EARL-BO hyperparameter values.

PPO

Learning rate 0.001
epochs 100
Epsilon clip ϵ 0.2
β values for Adam (0.9, 0.999)
Discount factor γ 0.95
Value function coefficient 0.5
Entropy coefficient 0.1
layers frozen 2
Max episodes 4000
Update frequency 50
off-policy episodes 400
No-improvement threshold 15
Horizon 5

Encoder

Hidden dimension 64
Output dimension 16
Learning rate 0.01

GP

Kernel RBF + WhiteKernel
RBF length-scale bounds (1e-2, 1e2)
Noise bounds (1e-10, 1e1)

B. Additional Results
In this section, we describe several ablation studies to characterize the proposed EARL-BO algorithm. Specifically, should
the relative learning rate of RL be slower than that of the encoder? Does “planning delusion” occur only when the lookahead
horizon is long? How stable is the RL training across BO iterations? Is permutation invariance important?

What is the effect of different learning rates? Figure A1 shows two different cases for 8-D optimization of the Ackley
function: first, when the learning rates for the RL and encoder modules are, respectively, (0.001, 0.01). This configuration is
denoted as ‘standard.’ We also reverse the learning rates to be (0.01, 0.001), respectively, which is indicated as ‘reverse.’
Figure A1 shows that having a higher learning rate for the RL module leads to both unstable BO performance (as we can
observe the increasing standard deviation over time), but also lower optimization performance.

Figure A1. Optimization performance of EARL-BO with different relative learning rates.

When can planning delusion happen? In the Results and Discussion section of the main text, we discuss that “planning
delusion” may happen if the lookahead horizon for RL is large, due to high uncertainty of the GP virtual environment.
Astute readers will notice that, if the high-uncertainty of the GP is the source of this planning delusion, having extremely
scarce data for high-dimensional optimization might also cause the planning delusion even when the lookahead horizon

14

EARL-BO: RL for Multi-Step Lookahead BO

is small. Figure A2 repeats the HPO-B search space ID 7200 (19-D) problem with only five initial samples instead of 50.
The results confirm that, if we employ EARL-BO in high-dimensional search spaces with sparse initial data, it may indeed
underperform compared to other BO methods, suffering from planning delusion.

Figure A2. Optimization performance of methods on HPO-B search space ID 7200 with 5 initial samples.

Additional Figures. Figure 3 in the main text might suggest that the standard deviations of performance do not decline as
BO progresses for the HPO-B dataset. This can be attributed to the logarithmic y-axis scale in Figure 3. Thus, we include
here the same graph with a linear y-axis scale. Figure A3 more easily visualizes that the standard deviation of regrets in all
the BO methods are decreasing over as BO progresses. More specifically, in most of cases, EARL-BO displays the smallest
standard deviation after approximately eight iterations among all compared BO methods. This suggests that EARL-BO
exhibits relatively stable performance regardless of initial point distribution.

Figure A3. Performance of various BO methods on benchmark functions with non-logarithmic y-axis.

How stable is the RL training across BO iterations? Figure A4 presents the RL training curves at several BO steps
(1st, 11th, and 21st) during the optimization of the 8-D benchmark functions. It suggests two possible characteristics of
EARL-BO. First, the RL training appears stable across all BO iterations, as evidenced by the smooth convergence of the
loss function. Second, we observe that the RL training may become slightly easier as BO progresses–the loss functions
for the 11th and 21st BO steps start at and converge to lower values compared to the first step. This suggests that as
EARL-BO accumulates more information about the optimization landscape, the RL agent may more easily learn effective
decision-making policies, possibly also due to the improved quality of the learned encoded representations.

Figure A4. Convergence of RL training at various BO iterations.

15

EARL-BO: RL for Multi-Step Lookahead BO

Is permutation invariance important? Figure A5 presents an ablation study investigating the importance of permutation
invariance in the encoder design. We compare EARL-BO with two encoder architectures on the 8D Ackley function:

Figure A5. Performance of EARL-BO with different encoders.

The two tested architectures are both attention-based, but differ in that one includes the DeepSets architecture for permutation
invariance, while the other is ‘attention-only.’ We evaluate both designs using three- and five-step lookahead horizons.
The results show that EARL-BO with the Attention-DeepSets encoder consistently outperforms the attention-only variant
across both lookahead settings. This validates our architectural choice and confirms that explicit permutation invariance is
beneficial for BO decision-making, intuitive since the order of data acquisition should not affect the learning process.

Effect of different lookahead horizons Figure A6 shows the optimization performance of EARL-BO across different
lookahead horizons (1, 3, 5, and 7 steps) on the 8D Ackley function.

Figure A6. Performance of EARL-BO with different lookahead horizons.

The one-step lookahead variant demonstrates strong initial performance but exhibits the worst optimization results by
the end, consistent with the intuition that myopic behavior prioritizes immediate gains over long-term exploration. The
three-step and five-step lookahead variants achieve the best overall performance. The seven-step variant exhibits generally
poor performance throughout most iterations, though with some improvement toward the end. These results align with
empirical observations from previous multi-step lookahead studies (Lam et al., 2016; Lee et al., 2020), which report optimal
performance using intermediate lengths for lookahead horizon.

C. Computational Cost Analysis
While EARL-BO demonstrates superior optimization performance on most test problems, computational efficiency represents
an important practical consideration. In this section, we provide a detailed analysis of the computational overheads associated
with different BO methods.

C.1. Runtime Comparison on 8D Ackley Function

Table 2 presents the computational cost results for various BO methods on the 8D Ackley function. All given times represent
the average runtime (i.e., time to compute the next sample location) per BO iteration across 10 independent runs.

16

EARL-BO: RL for Multi-Step Lookahead BO

Table 2. Computational cost comparison on 8D Ackley function.

Method Average Runtime (s) Std Dev (s) Notes

EI 0.28 0.05 –
TuRBO 0.27 0.20 –
SAASBO 168.6 27.6 –
Rollout EI (3-step) >3600 – 1000 MC iterations
EARL-BO (3-step) 840 147 4000 episodes
EARL-BO (5-step) 1075 134 4000 episodes

These computational cost results reveal several important insights:

Myopic vs. non-myopic methods: As expected, myopic methods (EI, TuRBO) exhibit significantly faster per-iteration
computation times compared to multi-step lookahead approaches. However, SAASBO, despite being a myopic method,
requires substantially more computation time due to its sparse axis-aligned subspace optimization.

EARL-BO vs. rollout methods: EARL-BO achieves multi-step lookahead performance with considerably less compu-
tational overhead than traditional rollout-based methods. The rollout-based method with variance reduction exceeds our
3600-second timeout threshold even with only 1000 Monte Carlo iterations, while EARL-BO completes its 3-step lookahead
training in approximately 840 seconds. Note that significantly more MC iterations may be required for good performance in
higher dimensional settings or longer lookahead horizons.

Horizon effects: The computational cost scales moderately with increased lookahead horizon (cf. rollout), with 5-step
EARL-BO requiring only 28% more time than the 3-step variant.

C.2. Scalability to Higher Dimensions

The results on the 30-dimensional Ackley function further demonstrate the computational scalability of EARL-BO. In
particular, the computational costs here highlight the relative efficiency of our framework:

• Rollout methods would require exponentially more Monte Carlo iterations to handle the expanded search space,
making them computationally prohibitive.

• EARL-BO runs in ∼1600 seconds for 30D problems, representing only a 100% increase compared to 8D optimization.

• Myopic methods EI and TuRBO require 533% and 215% more CPU time, respectively, when scaling from 8D to 30D.

These results demonstrate that EARL-BO’s computational scaling is more favorable than both traditional rollout methods
and some myopic approaches when moving to higher-dimensional problems.

C.3. Practical Considerations

While multi-step lookahead methods inevitably require more computation time compared to myopic approaches, several
factors justify this overhead in practical BO applications:

Expensive function evaluations: BO is typically applied to problems where individual function evaluations are costly (e.g.,
materials discovery, hyperparameter tuning of large models, chemical laboratory experiments). In these settings, a single
point evaluation can require hours or days, making the BO overhead relatively insignificant.

Scalability advantages: Unlike rollout-based methods that become computationally intractable in higher dimensions,
EARL-BO maintains reasonable computational requirements while scaling to practically relevant dimensionalities.

The computational analysis confirms that while EARL-BO introduces additional overhead compared to myopic methods, its
superior optimization performance and favorable scaling properties make it particularly suitable for expensive black-box
optimization problems where the evaluation costs dominate the total optimization budget.

17

