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Abstract

We present Q-chunking, a simple yet effective recipe for improving reinforcement
learning (RL) algorithms for long-horizon, sparse-reward tasks. Our recipe is
designed for the offline-to-online RL setting, where the goal is to leverage an
offline prior dataset to maximize the sample-efficiency of online learning. Effective
exploration and sample-efficient learning remain central challenges in this setting,
as it is not obvious how the offline data should be utilized to acquire a good
exploratory policy. Our key insight is that action chunking, a technique popularized
in imitation learning where sequences of future actions are predicted rather than a
single action at each timestep, can be applied to temporal difference (TD)-based RL
methods to mitigate the exploration challenge. Q-chunking adopts action chunking
by directly running RL in a ‘chunked’ action space, enabling the agent to (1)
leverage temporally consistent behaviors from offline data for more effective online
exploration and (2) use unbiased n-step backups for more stable and efficient TD
learning. Our experimental results demonstrate that Q-chunking exhibits strong
offline performance and online sample efficiency, outperforming prior best offline-
to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
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Figure 1: Q-chunking uses action chunking to enable fast value backups and effective exploration with
temporally coherent actions. left: an overview of our approach: Q-chunking operates in a temporally extended
action space that allows for (1) efficient value backups and (2) effective exploration via temporally coherent
actions; right: Our method (QC) first pre-trains on an offline dataset for 1M steps (grey) and then updates
with online data for another 1M steps (white). Our method achieves strong aggregated performance over five
challenging long-horizon sparse-reward domains in OGBench. Code: github.com/ColinQiyangLi/qc
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1 Introduction

Reinforcement learning (RL) holds the promise of solving any given task based only on a reward
function. However, this simple and direct formulation of the RL problem is often impractical: in
complex environments, exploring entirely from scratch to learn an effective policy can be prohibitively
expensive, as it requires the agent to successfully solve the task through random chance before
learning a good policy. Indeed, even humans and animals rarely solve new tasks entirely from scratch,
instead leveraging prior knowledge and skills from past experience. Inspired by this, a number of
recent works have sought to incorporate prior offline data into online RL exploration [28, 39, 85].
But this poses a new set of challenges: the distribution of offline data might not match the policy that
the agent should follow online, introducing distributional shift, and it is not obvious how the offline
data should be leveraged to acquire a good online exploratory policy.

In the adjacent field of imitation learning (IL), a widely used approach in recent years has been to
employ action chunking, where instead of training policies to predict a single action based on the
state observation from prior data, the policy is instead trained to predict a short sequence of future
actions (an “action chunk”) [90, 11]. While a complete explanation for the effectiveness of action
chunking in IL remains an open question, its effectiveness can be at least partially ascribed to better
handling of non-Markovian behavior in the offline data, essentially providing a more powerful tool
for modeling the kinds of complex distributions that might occur in (for example) human-provided
demonstrations or mixtures of different behaviors [90]. Action chunking has not been used widely
in RL, perhaps because optimal policies in fully observed MDPs are Markovian [74], and therefore
chunking may appear unnecessary.

We make the observation that, though we might desire a final optimal Markovian policy, the explo-
ration problem can be better tackled with non-Markovian and temporally extended skills, and that
action chunking offers a very simple and convenient recipe for obtaining this. Furthermore, action
chunking provides a better way to leverage offline data (with a better handling of non-Markovian
behavior in the data), and even improves the stability and efficiency of TD-based RL, by enabling
unbiased n-step backups (where n matches the length of the chunk). Thus, in combination with pre-
training on offline data, action chunking offers a compelling and very simple way to mitigate the
exploration challenge in RL.

We present Q-learning with action chunking (or Q-chunking in short), a recipe for improving generic
TD-based actor-critic RL algorithms in the offline-to-online RL setting (Figure 1). The key idea is to
run RL at an action sequence level — (1) the policy predicts a sequence of actions for the next h steps
and executes them one-by-one open loop, and (2) the critic takes in the current state and a sequence
of actions and estimates the value of carrying out the whole sequence rather than a single action. The
benefits of operating RL on this extended action space are two-fold: (1) the policy can be optimized
to generate temporally coherent actions by regularizing it towards some prior behavior data that
exhibit such coherency, (2) the critic trained with a standard TD-backup loss is effectively performing
n-step backups, with no off-policy bias (that typically occurs in naïve n-step return methods), since
the critic takes the full action sequence into account.

Our main contribution is QC, a practical offline-to-online RL algorithm that is instantiated from
our Q-chunking recipe, essentially running RL with behavior regularization in the chunked action
space. QC is simple to implement, requiring only training (1) an action chunking behavior policy
using a standard flow-matching loss, and (2) a temporally extended critic with the standard TD-loss
(Algorithm 1). QC achieves strong performance on a range of six challenging long-horizon, sparse-
reward domains, outperforming prior offline-to-online methods. Moreover, Q-chunking is a generic
recipe that can be applied to existing offline-to-online algorithms with minimal modification. In
this work, we demonstrate one such instantiation by applying it to FQL [58], resulting in QC-FQL
(Algorithm 2), which shows significant improvements over the original method.

2 Related Work

Offline-to-online reinforcement learning methods focus on leveraging prior offline data to accelerate
reinforcement learning online [88, 71, 37, 1, 89, 91, 7, 51, 92, 39]. The simplest way to tackle offline-
to-online RL is to use an existing offline RL algorithm to first pretrain on the offline data and then
use the same offline optimization objective to continue training online using a growing dataset that
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combines the original offline data and the replay buffer data [50, 36, 33, 77, 58, 2, 42, 37]. While
straightforward, this naïve approach often result in overly pessimistic that hinders exploration and
consequently the online sample-efficiency. Several prior works have attempted to address this issue
by adjusting the degree of pessimism online [92, 51, 42, 37, 82]. However, these approaches can be
difficult to tune and sometimes stills fall short in online sample efficiency compared to a simple, well-
regularized online RL algorithm learning from scratch on both offline data and online replay buffer
data [7]. Our approach takes a step towards improving the sample efficiency of offline-to-online RL
methods via value backup acceleration and temporally coherent exploration.

Action chunking is a technique popularized by roboticists for imitation learning (IL), where the
policy predicts and executes a sequence of actions in an open-loop manner (“an action chunk”) [90].
Action chunking has been shown to improve policy robustness [90, 23, 8], and handle non-Markovian
behavior in offline data [90]. Existing RL methods that incorporate action chunking typically focus
on fine-tuning a policy pre-trained with imitation learning [61]. Tian et al. [78] propose to learn a
critic on action chunks by integrating n-step returns with a transformer. However, their method only
applies chunking to the critic, while still optimizing a single-step actor. Li et al. [38] also observe
that learning a critic over short action chunks removes the off-policy bias in n-step return backups,
leading to more stable and effective value learning. There are key differences between their work and
ours — Li et al. [38] operate in the online episodic RL setting [84, 31] and use Gaussian policies to
predict parameters of motion primitives (MP) [63, 54], which are then used to generate full action
sequences at the beginning of each episode. In contrast, we operate in the conventional offline-to-
online RL setting and leverage more expressive flow-matching-based policies (as we find Gaussian
policies to be ineffective as shown in Figure 2) to predict short action sequences directly in the
raw action space. Seo and Abbeel [65] also train critics on action chunks and impose a behavior
cloning loss that aligns with the principles behind Q-chunking. The key distinction from our work
lies in their use of a multi-level, factorized critic architecture [66], which generates and refines action
chunks from coarse to fine granularity via iterative discretization. At each level, the action space is
discretized into bins, and the Q-function is modeled independently for each action dimension and
timestep, conditioned on the whole action chunks predicted at the previous coarser level. While
this factorized critic design enables tractable value-maximizing action sampling, it imposes strong
structural assumptions on the action space, limiting policy expressiveness at each refinement level. In
contrast, we make no such assumptions in our recipe which allows us to derive two general algorithms
where both the critic and policy operate directly on action chunks without requiring factorization or
iterative discretization/refinement.

Exploration with temporally coherent actions. Existing methods either rely on temporally corre-
lated action noises [40] that are constructed through heuristics; hierarchically structured policies (see
the next paragraph), which are often tricky to stabilize during online training; or pre-trained frozen
skill policies [60, 85], which are not amendable for fine-grained online fine-tuning. Our method
uses a single network to represent the policy to generate temporally extended action chunk and it is
trained using a single objective function that is stable to optimize. There is also no frozen, pretrained
components in our approach, ensuring its online fine-tuning flexibility.

Hierarchical reinforcement learning, options framework. Learning temporally extended actions
have also been widely studied in the hierarchical reinforcement learning (HRL) literature [14, 16,
80, 13, 35, 81, 59, 62, 49, 3, 67, 60, 22, 87]. HRL methods typically train a space of low-level
policies that can directly interact with the environment along with a high-level policy that selects
among these low-level policies. These low-level policies can be hand-crafted [12], automatically
discovered online [16, 35, 80, 81, 49], or pretrained using offline skill discovery methods [54, 47,
67, 3, 70, 60, 79, 52, 28, 20, 9, 57]. The options framework provides a slightly more sophisticated
and more powerful formulation, where the low-level policy is additionally associated with learnable
initiation condition and termination condition that makes utilization of the low-level policy more
flexible [75, 46, 10, 44, 68, 69, 32, 13, 72, 53, 19, 4, 30, 5, 6, 15]. A long-lasting challenge in
HRL is its bi-level optimization problem: when both low-level and high-level policies are updated
during training, the high-level policies must optimize a moving objective function, which can lead
to instability [49]. To mitigate this, some methods keep the low-level policies frozen after initial
pretraining [3, 60, 85] to improve stability during online training. Our approach is a special case of
HRL where the low-level skill executes a sequence of actions open-loop. This design choice allows
us to collapse the bi-level optimization problem into a standard RL objective in a temporally extended
action space, while retaining many of the exploration benefits associated with HRL methods. While
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prior work in HRL has also explored such idea [45, 17], they often leverage a discrete set of action
sequences that is either heuristically extracted from the prior experience or given in advance. In
contrast, we use an expressive flow-matching based policy to directly parameterize a continuous
space of action sequences, and are directly trained and fine-tuned online with RL.

Multi-step latent space planning and search is a technique commonly used in model-based RL
methods where they use a learned model to optimize a short-horizon action sequence towards high-
return trajectories [53, 64]. These approaches work by training a dynamics model on an encoded
latent space, where the model takes in a latent state and an action to predict the next latent state and
the associated reward value. This latent dynamics model, along with a value network on the latent
state, can then provide an estimate of the Q-value on-the-fly for any given action sequence starting
from a given latent state by simply simulating the action sequence in the latent dynamics model. In
contrast, we do not learn a latent dynamics model and instead train a Q-network to directly estimate
the value of the action sequence. Lastly, these approaches operate in the purely online RL setting
whereas we focus on the offline-to-online RL setting.

3 Background

Offline-to-online RL. In this paper, we consider an infinite-horizon, fully observable Markov decision
process (MDP), (S,A, ρ, T, r, γ), where S is the state space, A is the action space, T (s′|s, a) :
S ×A 7→ ∆(S) is the transition kernel, r(s, a) : S ×A 7→ R is the reward function, ρ : ∆(S) is the
initial state distribution and γ ∈ [0, 1) is the discount factor. We also assume there is a prior offline
dataset D that consists of transitions rollouts {(s, a, s′, r)} fromM. The goal of offline-to-online RL
is to find a policy π(a|s) : S 7→ ∆(A) that maximizes the expected discounted cumulative reward
(or discounted return): η(π) := Est+1∼T (st,at),at∼π(·|st) [

∑∞
t=0 γ

tr(st, at)]. Oftentimes, offline-to-
online RL algorithms operate in two distinct phases: an offline phase where a policy is pretrained on
the offline data D and an online phase where the policy is further fine-tuned online with environment
interactions. Our approach follows the same regime.

Temporal difference and multi-step return. TD-based RL algorithms typically learn Qθ(s, a) to
approximate the maximum expected discounted cumulative reward that a policy can receive starting
from state s and action a by using a temporal difference (TD) loss [74]:

L(θ) =
[
Qθ(st, at)− V̂

]2
, (1)

where V̂ is an estimate of Q(st, at) that is commonly chosen as V̂1-step:

V̂1-step := rt + γQθ̄(st+1, at+1), at+1 ∼ πψ(·|st+1), (2)

and st, at, st+1, r are sampled from some off-policy trajectories and θ̄ is a delayed version of θ that
does not allow the gradient to pass through for learning stability. When the TD error is minimized,
the Qθ converges to the expected discounted value of the policy πψ. As the effective horizon
H̃ = 1/(1− γ) goes up, the learning slows down as the value only propagates 1 step backward (from
st+1 to st). To speed-up long-horizon value backup, a common strategy is to sample a length-n
trajectory segment, (st, at, st+1, · · · , at+n−1, st+n), and construct a n-step return from it [83, 74]:

V̂n-step :=

t+n−1∑
t′=t

[
γt

′−tr′t

]
+Qθ̄(st+n, at+n), at+n ∼ πψ(·|st+n), (3)

where again rt = r(st, at). This value estimate of Q(st, at) allows for a n times speed-up in terms
of the number of time steps that the value can propagate back across. This estimator is sometimes
referred to as the uncorrected n-step return estimator [18, 34] because it is biased when the data
collection policy is different from the current policy πψ. Nevertheless, due to the implementation
simplicity of n-step return, it has been commonly adopted in large-scale RL systems [48, 26, 29, 86].

4 Q-Chunking

In this section, we first describe two main design principles of Q-chunking: (1) Q-learning on a
temporally extended action space (the space of chunks of actions), and (2) behavior constraint in this
extended action space, followed by practical implementations of Q-chunking (QC, QC-FQL) as
effective TD-based offline-to-online RL algorithms.
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4.1 Q-learning on a temporally extended action space

The first design principle of Q-chunking is to apply Q-learning on the temporally extended action
space. Unlike normal 1-step TD-based actor-critic methods, which train a Q-function Q(st, at) and a
policy π(at|st), we instead train both the critic and the actor with a span of h consecutive actions: 1

Q-Chunking Policy: πψ(at:t+h|st) := πψ(at, at+1, · · · , at+h−1|st)
Q-Chunking Critic: Qθ(st,at:t+h) := Qθ(st, at, at+1, · · · , at+h−1)

In practice, this involves updating the critic and the actor on batches of transitions consisting of a
random state st, an action sequence at:t+h followed by the state, and the state h steps into the future,
st+h. Specifically, we train Qθ with the following TD loss,

L(θ) = Est,at:t+h,st+h∼D

(Qθ(st,at:t+h)− h∑
t′=1

γt
′
rt+t′ − γhQθ̄(st+h,at+h:t+2h)

)2
 (4)

with at+h:t+2h ∼ πψ(·|st+h), and θ̄ being the target network parameters that are often an exponential
moving average of θ [25].

The TD loss above shares striking similarity to the n-step return in Equation 3 (with n matches h)
but with a crucial difference — the Q-function used in the n-step return backup takes in only one
action (at time step t) whereas our Q-function takes in the whole action sequence. The implication of
this difference can be best explained after we write out the TD backup equations for standard 1-step
TD, n-step return, and Q-chunking:

Q(st, at)← rt + γQ(st+1, at+1) (standard 1-step TD) (5)

Q(st, at)←
t+h−1∑
t′=t

[
γt

′−trt′
]

︸ ︷︷ ︸
biased

+γhQ(st+h, at+h), (n-step return, n = h) (6)

Q(st,at:t+h)←
t+h−1∑
t′=t

[
γt

′−trt′
]

︸ ︷︷ ︸
unbiased

+γhQ(st+h,at+h:t+2h). (Q-chunking) (7)

For the standard 1-step TD, each backup step propagates the value back by only 1 time step. n-step
return propagates the value back h× faster, but can suffer from a biased value estimation issue when
st:t+h and at:t+h are off-policy [18]. This is because the discounted sum of the n-step rewards rt:t+h
from the dataset or replay buffer is no longer an unbiased estimate of the expected n-step rewards
under the current policy π. Q-chunking value backup is similar to the n-step return where each step
also propagates the value back by h time steps, but does not suffer from this biased estimation issue.
Unlike n-step return where we are propagating the value to a 1-step Q-function, Q-chunking backup
propagates the value back to a h-step Q-function that takes in the exact same actions that are taken to
obtain the n-step rewards rt:t+h, eliminating the biased value estimation. We formalize this argument
in Theorem A.1. As a result, Q-chunking value backup enjoys the value propagation speedup while
maintaining an unbiased value estimate.

4.2 Behavior constraints for temporally coherent exploration

The second design principle of Q-chunking addresses the action incoherency issues by leveraging a
behavior constraint in the objective for the πψ:

L(ψ) = −Est∼D,at:t+h∼πψ(·|st) [Qθ(st,at:t+h)] , s.t. D(πψ(at:t+h|st), πβ(at:t+h|st)) ≤ ε (8)

where we denote πβ(at:t+h|st) as the behavior distribution in the offline data D, and D as some
distance metric that measures how different the learned policy π deviates from πβ .

Intuitively, a behavior constraint on the temporally extended action sequence allows us to leverage
temporally coherent action sequences in the offline dataset. This is particularly advantageous in

1We use at:t+h (or simply at) to denote a concatenation of h consecutive actions:
[
at · · · at+h−1

]
∈

RAh for notation convenience. This is similar for st:t+h and rt:t+h.
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Figure 2: Naïvely using action chunking for online RL with Gaussian policies leads to poor performance.
(1) RLPD runs online RL on both offline data and online replay buffer [7]. (2) RLPD-AC is the same algorithm
as RLPD but operates in a temporally extended action space (action chunk size of 5). (3) QC-RLPD additionally
uses a behavior cloning loss on the actor (4 seeds).

the temporally extended action space compared to in the original action space because offline data
often exhibit non-Markovian structure (e.g., from scripted policies [56], human tele-operators [43],
or noisy expert policies for sub-tasks [56, 21]) that cannot be well captured by a Markovian behavior
constraint. Temporally coherent actions are desirable for online exploration because they resemble
temporally extended skills (e.g., moving in a certain direction for navigation, jumping motions for
going over obstacles) that help traverse the environment in a structured way rather than using random
actions that often result in data that is localized near the initial states. Imposing behavior constraint
for an action chunking policy is a very simple way to approximately extract skills without the need
of training policy with bi-level structure as often necessitated by skill-based methods (see more
discussion in Section 2). We observe that Q-chunking, with such behavior constraints, can explore
with temporally coherent actions (see Section 5.3), mitigating the exploration challenge.

4.3 Practical implementations

A key implementation challenge of Q-chunking is to enforce a good behavior constraint that captures
the non-Markovian behavior at the action sequence level. One prerequisites of imposing a good
behavior constraint is the ability of the policy to capture the complex behavior distribution (e.g., with
a flow/diffusion policy). A Gaussian policy, a default choice in online RL algorithms, does not suffice.
Indeed, if we naïvely take an off-the-shelf online algorithm, RLPD [7] for example, and apply Q-
chunking with a behavior cloning loss, we find that it often performs poorly (Figure 2).

To enforce a good behavior constraint, we start by using flow-matching objective [41] to train a
behavior cloning flow policy to capture the behavior distribution. The flow policy is parameterized
by a state-conditioned velocity field prediction model f(s,z, u) : S × RAh × [0, 1] 7→ RAh and
we denote fξ(·|s) as the action distribution that the flow policy parameterizes, which serves as an
approximation of the true behavior distribution in the offline data (fξ ≈ πβ). Now, we are ready to
present our main method:

QC: Q-chunking with implicit KL behavior constraint. We consider a KL constraint on our policy
through the learned behavior distribution:

DKL(πψ∥fξ(·|s)) ≤ ε (9)

While it is possible include the KL as part of the loss, estimating the KL divergence or log probability
for flow models is practically challenging. Instead, we use best-of-N sampling [73] to maximize Q-
value while imposing this KL constraint implicitly altogether. Practically, this involves first sampling
N action chunks from the learned behavior policy fξ(·|s),

{a1,a2, · · · ,aN} ∼ fξ(·|s),
and then picking the action chunk sample that maximizes the temporally extended Q-function:

a⋆ ← argmaxa∈{a1,a2,··· ,aN}Q(s,a)
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It has been shown in prior work that best-of-N sampling admits a closed-form upper-bound on the
KL divergence from the original distribution [27]:

DKL(a
⋆∥fξ(·|s)) ≤ logN − N − 1

N
, (10)

which approximately satisfies KL constraint implicitly (Equation 9). Tuning the value of N directly
corresponds to the strength of the constraint.

Since we approximate the policy optimization (Equation 8) with the best-of-N sampling, we can
completely avoid separately parameterizing a policy πψ and only sample from the behavioral policy
fξ(·|st). In particular, we use the best-of-N sampling to generate actions to both (1) interact with the
environment, and (2) provide the action samples in the TD backup following Ghasemipour et al. [24].
As a result, our algorithm has only one additional loss function:

L(θ) = E st,at∼D
{ait+h}

N
i=1∼fξ(·|st+h)

(Qθ(st,at)− h∑
t′=1

γt
′
rt+t′ − γhQθ̄(st+h,a⋆t+h)

)2
 (11)

where again a⋆t+h := argmaxa∈{ait+h}
Q(s,a).

While QC is simple and easy to implement, it does come with some additional computational costs
associated with best-of-N sampling. In our experiments, we experiment with two other variants (QC-
FQL and QC-IFQL) that leverage cheaper off-the-shelf offline/offline-to-online RL methods (FQL
and IFQL respectively [58]). We present the FQL-version below as it performs better empirically.

QC-FQL: Q-chunking with 2-Wasserstein distance behavior constraint. For this variant of
our method, we leverage the optimal transport framework to impose a Wasserstein distance (W2)
constraint, again, through the learned behavior policy fξ(·|s):

W2(πψ, fξ(·|s)) ≤ ε (12)

Following FQL [58], we parameterize the policy πψ with a noise-conditioned action prediction
model, µψ(s, z) : S × RAh 7→ RAh, which directly outputs an action from Gaussian noise in one
network forward pass. This noise-conditioned policy is trained to maximize the Q-chunking critic
Qθ(st,at:t+h) while being regularized to be close to the behavioral cloning flow-matching policy
via a BC loss that is shown to be an upper-bound on the squared 2-Wasserstein distance [58]:

L(ψ) = Est∼D,z0∼N (0,IAh)

[
α
∥∥z1 − µψ(st, z0)

∥∥2
2
−Q(st, µψ(st, z))

]
(13)

≥ Est∼D,z0∼N (0,IAh)

[
αW2(πψ(·|st), fξ(·|st))2 −Q(st, µψ(st, z))

]
, (14)

where z1 is the ODE solution from u = 0 to u = 1 following dzu = fξ(st, z
u, u)du (the initial

value z0 is sampled from the unit Gaussian). The real-valued hyperparameter α directly controls the
magnitude of the distillation loss. Finally, the TD loss remains the same as the previous section with
the only difference in how we parameterize the policy:

L(θ) = Est,at,st+h∼D,z

(Qθ(st,at)− h∑
t′=1

γt
′
rt+t′ − γhQθ̄(st+h, µψ(st+h, z))

)2
 (15)

where again z ∼ N (0, IAh).

Offline-to-online RL considerations. Since both variants of our methods use behavior constraint
(implicit KL for QC, explicit W2 for QC-FQL), we can also directly run them for offline RL pre-
training. For both offline and online training, we use the same behavior constraint strength (e.g., N
for QC and α for QC-FQL). We use the same algorithm for both offline and online training, and
the only difference is whether there is environment interactions. See Section C, Algorithm 1 and
Algorithm 2 for an overview of QC and QC-FQL during online training.

5 Experimental Results

We conduct extensive experiments to analyze the empirical effectiveness of our method on a range of
long-horizon, sparse-reward domains. In particular, we are going to answer the following questions:

7



puzzle-3x3-sparse scene-sparse cube-double cube-triple cube-quadruple overall
(5 tasks) (5 tasks) (5 tasks) (5 tasks) (5 tasks) (25 tasks)

RLPD – →
[100,100]

100 – →
[93,96]

94 – →
[98,99]

98 – →
[33,46]

41 – →
[0,1]

0 – →
[65,68]

67

RLPD-AC – →
[100,100]

100 – →
[88,94]

91 – →
[96,96]

96 – →
[2,21]

11 – →
[3,11]

7 – →
[59,64]

61From Scratch (1-step TD)

SUPE-GT – →
[100,100]

100 – →
[80,99]

92 – →
[57,76]

66 – →
[0,0]

0 – →
[0,0]

0 – →
[51,54]

52

IQL
[0,0]

0→
[19,20]

20
[0,0]

0→
[39,39]

39
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[12,12]

12
Gaussian (1-step TD)

ReBRAC
[47,65]

55→
[100,100]

100
[7,16]

11→
[99,99]

99
[2,3]

3→
[28,32]

30
[0,0]

0→
[0,0]

0
[0,2]

1→
[20,20]

20
[13,15]

14→
[49,50]

50

IFQL
[98,99]

98→
[94,99]

97
[66,71]

68→
[72,75]

73
[10,12]

11→
[55,62]

59
[0,1]

0→
[0,10]

3
[0,0]

0→
[0,0]

0
[35,37]

36→
[45,48]

47

FQL
[99,100]

100→
[100,100]

100
[55,60]

57→
[93,98]

95
[23,34]

28→
[75,76]

76
[1,2]

1→
[16,20]

18
[0,0]

0→
[0,6]

3
[36,38]

37→
[57,60]

58Flow (1-step TD)

BFN
[96,99]

98→
[100,100]

100
[82,87]

85→
[99,100]

99
[63,73]

68→
[78,81]

79
[3,5]

4→
[21,28]

23
[1,2]

1→
[12,13]

12
[50,52]

51→
[62,63]

63

IFQL-n
[93,96]

94→
[100,100]

100
[62,74]

68→
[86,96]

92
[4,7]

5→
[26,32]

29
[0,0]

0→
[0,0]

0
[0,1]

0→
[0,0]

0
[32,35]

34→
[43,46]

44

FQL-n
[95,100]

98→
[100,100]

100
[17,21]

18→
[64,76]

70
[7,13]

11→
[76,77]

77
[0,0]

0→
[0,1]

1
[6,8]

7→
[36,37]

37
[25,28]

27→
[56,58]

57Flow (n-step TD)

BFN-n
[55,61]

58→
[89,92]

90
[50,64]

57→
[95,99]

97
[10,13]

11→
[62,69]

65
[0,1]

0→
[0,1]

0
[0,0]

0→
[0,0]

0
[24,26]

25→
[48,52]

50

QC-IFQL
[99,100]

100→
[100,100]

100
[80,85]

83→
[96,99]

98
[10,16]

12→
[77,80]

78
[0,0]

0→
[0,0]

0
[0,2]

1→
[19,20]

19
[38,40]

39→
[59,59]

59

QC-FQL
[48,76]

63→
[100,100]

100
[81,87]

84→
[99,100]

99
[32,47]

39→
[100,100]

100
[3,5]

4→
[46,61]

53
[1,2]

1→
[76,77]

77
[35,41]

38→
[84,88]

86Q-chunking (Ours)

QC
[99,100]

100→
[100,100]

100
[79,89]

84→
[98,100]

99
[64,71]

67→
[96,99]

98
[3,10]

6→
[61,66]

64
[2,7]

4→
[72,75]

74
[50,53]

52→
[86,87]

86

Table 1: Summary table for OGBench offline-to-online RL results. For each cell, we report the offline
performance after 1M of training steps and then the online performance after 1M of additional online steps.
The best method(s) for each column is highlighted in bold and color. Q-chunking methods outperform all
prior methods at the end of the online training. See the full results in Table 6 (complete table) and Figure 10
(individual plot).

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00
lift

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00
can

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00
square

Steps (×106)

Su
cc

es
s R

at
e

QC BFN FQL RLPD RLPD-AC

Figure 3: Robomimic results. QC achieves strong performance across all three robomimic tasks. The first 1M
steps are offline and the next 1M steps are online with one environment step per training step (5 seeds).

(Q1) How well do Q-chunking methods perform compared to prior offline-to-online RL methods?

(Q2) Why does action chunking helps online learning?

(Q3) How does chunk length, critic ensemble size, and update-to-data ratio affect performance?

5.1 Environments and Datasets

We consider six sparse reward robotic manipulation domains with tasks of varying difficulties. This
includes 5 domains (5 tasks each) from OGBench [55], scene-sparse, puzzle-3x3-sparse,
cube-double/triple/quadruple and 3 tasks from robomimic [43]. For OGBench, we use the
default play-style datasets except for cube-quadruple where we use the larger 100M-size dataset.
For robomimic, we use the multi-human datasets. See more details in Appendix B.

5.2 Comparisons

We compare with prior methods that speedup value backup as well as the previous best offline-to-
online RL methods. We include a brief description of them below with more details in Section C.

BFN (best-of-N ) is a baseline that we propose to combine the expected-max Q operator [24] with
an expressive behavior flow policy. BFN operates in the original action space and uses best-of-N
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Figure 5: End-effector movements early in the training and temporal coherency analysis on
cube-triple-task3. Left: QC covers a more diverse set of states compared to BFN in the first 1000 environ-
ment steps. Right: QC exhibits a higher temporal coherency in end-effector compared to BFN.

sampling to pick the action (out of N ) that maximizes the current Q-value. This baseline is an
ablation to isolate the benefit of Q-chunking in QC.

FQL [58] is a recently proposed offline RL method that achieves strong offline and offline-to-online
RL performance. This baseline is an ablation to isolate the benefit of Q-chunking in QC-FQL.

BFN-n/FQL-n. These baselines are the same as BFN/FQL but uses n-step backup with n > 1
(Equation 3) instead of the standard 1-step TD backup. This baseline enjoys the benefits of value
backup speedup, but does not use chunked critic or actor, and potentially suffer from the bias issue.

RLPD [7], RLPD-AC. RLPD is a sample-efficient RL algorithm that treats offline data as additional
off-policy data and learn from scratch online. RLPD-AC is the same as RLPD but operates on the
temporally extended action space. Both of them do not use a behavior constraint.

We also compare with SUPE-GT [85], a recently proposed skill-based that is designed for offline-
to-online RL. The original method is designed to deal with unlabeled dataset by learning a reward
model with reward bonuses. We adapt it to our setting by directly using the ground truth rewards.

Finally, we compare with additional baselines: IQL [33], ReBRAC [76], IFQL (a baseline imple-
mented in Park et al. [58] that combines IQL with rejection sampling policy extraction), and IFQL-n
(IFQL with n-step return backup).

5.3 How well does our method compare to prior offline-to-online RL methods?
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1.0
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cc
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s R
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BFN-n
FQL-n

BFN
FQL

Figure 4: n-step return ablations on
robomimic. Both Q-chunking methods con-
sistently outperform their n-step and 1-step
TD counterparts (5 seeds).

We report the performance of all Q-chunking methods and
the baselines in Table 1 (OGBench) and a selective (strong)
subset in Figure 3 (robomimic). QC achieves compet-
itive performance offline, often matching or sometimes
outperforming best prior methods. In the online phase,
QC shows strong sample-efficiency, especially on the two
hardest OGBench domains (cube-triple/quadruple),
where it outperforms all prior methods (especially on
cube-quadruple) by a large margin. In addition, on OG-
Bench domains, all Q-chunking methods (QC, QC-FQL,
QC-IFQL) outperforms both their corresponding 1-step
TD counterpart (BFN, FQL, IFQL) and their correspdon-
ing n-step return counterpart (BFN-n, FQL-n, IFQL-n). A
similar trend continues on robomimic tasks as shown in
Figure 4. Across OGBench and robomimic, n-step return
baselines, which do not use chunked critics or policies,
perform significantly worse than Q-chunking methods.

5.4 Why does action chunking help exploration?

We hypothesize in Section 4.2 that action chunking policy produce more temporally coherent actions
and thus lead to better state coverage and exploration. In this section, we study to what degree that
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Figure 6: Sensitivity analysis: action chunk size (h), critic ensemble size (K), and update-to-data ratio
(UTD). Left: QC-FQL with different h on all 5 cube-triple tasks (5 seeds). QC-FQL with h = 1 is equivalent
to FQL. Center: Increasing the ensemble size to K = 10 improves performance of both QC and BFN on
cube-triple-task3 (5 seeds). Right: QC with UTD of 5 on cube-triple-task3 (5 seeds). We report only
the online phase results, as all methods achieve near-zero success rates during the offline phase.

holds empirically. We first visualize the end-effector movements early in the training for QC and
BFN (Figure 5, left). BFN’s trajectory contains many pauses (as indicated by a very big and dense
cluster near the center of the visualization), especially when the end-effector is being lowered to
pickup a cube. In contrast, QC has fewer pauses (fewer and shallower clusters) and a more diverse
state coverage in the end-effector space. We include additional examples in Appendix E, Figure 8
and Figure 9. To get a quantitative measure of the temporal coherency in actions, we record the 3-
D end-effector position throughout training every 5 time steps: {xeef

0 ,xeef
5 , · · · } and compute the

average L2 norm of the difference vector of two adjacent end-effector positions. This average norm
would be small if there are any pauses or jittery motions, making a good proxy for measuring the
temporal coherency in actions. As shown in Figure 5 (right), QC exhibits a higher action temporal
coherency throughout training compared to BFN. This suggests that Q-chunking improves temporal
coherency in actions, which explains the improved sample-efficiency that Q-chunking brings.

5.5 How does action chunk length, critic ensemble size, and UTD ratio affect performance?

In Figure 6 (left), we examine the performance of QC-FQL across different action chunk lengths
(h ∈ {1, 5, 10, 25, 50}) on the cube-triple domain. Increasing the chunk length helps up to
h = 10, after which the asymptotic performance starts to drop. Although h = 25 shows faster early
learning, it fails to achieve the same performance as h = 10 at the end of online fine-tuning. An even
larger chunk length (h = 50) fails to achieve any success. We suspect that overly large chunk sizes
either hurt policy reactivity too much or make policy learning too difficult, as the network must predict
a much longer action sequence at once. We use h = 5 in all our other experiments as h = 5 generally
performs well and is cheaper to run. We also include the individual task breakdown in Figure 14 and
additional ablation results on cube-quadruple in Figure 15. In Figure 6 (center), we study how the
critic ensemble size affects the performance of our method. Using 10 critics improves both QC and
BFN. We use K = 2 in our other experiments as it is cheap to run. Using K = 10 could potentially
make Q-chunking perform much better on the benchmark tasks we consider. Finally, increasing the
update-to-data ratio (UTD) does not improve the sample efficiency of QC (Figure 6, right).

6 Discussions

We demonstrate how action chunking can be integrated into an offline-to-online RL agent with a
simple recipe. Our approach speeds up value backup and explores more effectively online with
temporally coherent actions. As a result, it outperforms prior offline-to-online methods on a range of
challenging long-horizon tasks. Our work serves as a step towards training non-Markovian policy for
effective online exploration from prior offline data. Several challenges remain, opening promising
directions for future research. First, our approach use a fixed action chunk, but it is unclear how
to choose this size other than task-specific hyperparameter tuning. A natural next step would be
to develop mechanisms that automatically determine chunk boundaries. Second, action chunking
represents only a limited subclass of non-Markovian policies and may perform poorly in settings
where a high-frequency control feedback loop is essential. Developing practical techniques for
training more general non-Markovian policies for online exploration would further improve the online
sample efficiency of offline-to-online RL algorithms.
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experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide the algorithm in Algorithm 1 and Algorithm 2, and imple-
mentation details, including hyperparameter choices in Section C. We provide a public repo
(github.com/ColinQiyangLi/qc) of our code that reproduces results in Section 5.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have open-sourced our code at github.com/ColinQiyangLi/qc,
which also includes instructions to download the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: we provide the details on the design choices in Section 5 and the hyperparame-
ter values as well as the hyperparameter tuning process in Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results in the paper have confidence intervals, denoting 95% confidence
interval with four random seeds (five for robomimic results). We estimate the confidence
intervals with bootstrapped sampling.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide additional information on computer resources in Section D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on core reinforcement learning algorithm that has minimal societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all code packages and datasets are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release code as an asset and provide detailed documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM as an important component of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Justification

Proposition A.1 (Q-chunking performs unbiased n-step return backup). Let st, at, · · · , st+n be
a trajectory segment generated by following a data collection policy πβ(at, · · · , at+n|st) (i.e.,
st+k ∼ T (· | st+k−1, at+k−1), ∀k ∈ {1, · · · , n}, and rt, rt+1, · · · rt+n−1 be the reward received at
each corresponding time step (i.e., rt+k = r(st+k, at+k)). Let V π(st) be the value for an action
chunking policy π(at, · · · , at+n|st) starting from state st. Let Qπ(st, at, at+1, · · · , at+n−1) be the
Q-value for π starting from state st and executing the action sequence at, at+1, · · · , at+n−1.

The n-step return estimate V̂n-step :=
∑t+n−1
t′=t

[
γt

′−trt′
]
+ V̂ (st+n) under the trajectory segment

distribution described above is unbiased for Qπ(st, at, · · · , at+n−1) as long as V̂ (st+n) is unbiased
for V π(st+n).

Proof. From the definition of Qπ(st, at, at+1, · · · , at+n−1), we can write it as an expectation:

Qπ(st, at, at+1, · · · , at+n−1) = Est′∼T (·|st′ ,at′ )

[
t+n−1∑
t′=t

[
γt

′−tr(st′ , at′)
]
+ V π(st+n)

]
(16)

= Est+n,rt+1,rt+2,··· ,rt+n−1

[
t+n−1∑
t′=t

[
γt

′−trt′
]
+ V π(st+n)

]
(17)

= Est+n,rt+1,rt+2,··· ,rt+n−1

[
t+n−1∑
t′=t

[
γt

′−trt′
]
+ V̂ (st+n)

]
(18)

= E
[
V̂n-step

]
. (19)

The second line uses the fact that the rewards rt, rt+1, · · · , rt+h−1 are associated with the trajectory
segment st, at, · · · , st+n. The third line uses the fact that V̂ (st+n) is unbiased for V π(st+n). The
fourth line uses the definition of V̂n-step.

The implication of this theorem is that if we use the n-step return backup for the chunked Q-
function Q(st, at, at+1, · · · , at+n−1) (with a value estimate of V̂s ← Q(st, at, at+1, · · · , at+n−1)),
it converges to the ground truth Q-value under the same policy Qπ(st, at, at+1, · · · , at+n−1). In
contrast, using n-step return backup in the original action space does not converge to the correct
Q-value (i.e., Qπ(st, at, at+1, · · · , at+n−1)).

B Domain Details

See an overview of the six domains we use in our experiments in Figure 7. We also include the dataset
size, episode length and the action dimension in Table 2. In the following sections, we describe each
domain in details.

B.1 OGBench environments.

We consider five manipulation domains from OGBench [55] and take the publicly available single-
task versions of it in our experiments. For scene-sparse and puzzle-3x3-sparse, we sparsify
the reward function such that the reward values are −1 when the task is incomplete and 0 when
the task is completed. For cube-double/triple/quadruple, the RL agent needs to command an
UR-5 arm to pick and place two/three/four cubes to target locations. In particular, cube-triple
and cube-quadruple are extremely difficult to solve from offline data only, and often achieve zero
success rate. The RL agent must explore efficiently online in these domains to solve the tasks. The
cube-* domains provide a great test ground for sample-efficiency of offline-to-online RL algorithms
which we primarily focus on. For cube-quadruple, we use the 100M-size dataset. The dataset is
too big to fit our CPU memory, so we periodically (after every 1000 gradient steps) load in a 1M-
size chunk of the dataset for offline training. For online training of RLPD, QC-RLPD, we use the
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Tasks Dataset Size Episode Length Action Dimension (A)
scene-sparse-* 1M 750 5

puzzle-3x3-sparse-* 1M 500 5
cube-double-* 1M 500 5
cube-triple-* 3M 1000 5

cube-quadruple-100M-* 100M 1000 5
lift 31 127 500 7
can 62 756 500 7

square 80 731 500 7

Table 2: Domain metadata. Dataset size (number of transitions), episode length, and the action dimension. For
OGBench tasks, the action dimension is 5 (x position, y position, z position, gripper yaw and gripper opening).
For robomimic tasks, the action dimension is 7 for square to control one arm (3 degree of freedoms (DoF) for
translation, 3 DoF for rotation, and one final DoF for the gripper opening).

same strategy where we load in a 1M-size chunk of the dataset as the offline data and perform 50/50
sampling (e.g., 50% of the data comes from the 1M-chunk of the offline data, 50% of the data comes
from the online replay buffer). For online fine-tuning of QC-*, FQL, FQL-n, BFN, and BFN-n,
we keep a fixed 1M-size chunk of the offline dataset as the initialization of D and adds new data to
D directly. The remaining 99M transitions in the offline data are not being used online. We now
describe each of the five domains in details:

scene-sparse: This domain involves a drawer, a window, a cube and two button locks that control
whether the drawer and the window can be opened. These tasks typically involve a sequence of
actions. For example, scene-task2 requires the robotic arm to unlock both locks, move the drawer
and the window to the desired position, and then lock both locks. scene-task4 requires the robotic
arm to unlock the drawer, open the drawer, put the cube into the drawer, close the drawer. The reward
is binary: −1 if the desired configuration is not yet reached and 0 if the desired configuration is
reached (and the episode terminates).

puzzle-3x3-sparse: This domain contains a 3 × 3 grid of buttons. Each button has two states
represented by its color (blue or red). Pressing any button causes its color and the color of all
its adjacent buttons to flip (red → blue and blue → red). The goal is to achieve a pre-specified
configuration of colors. puzzle-3x3-task2 starts with all buttons to be blue, and the goal is to flip
exactly one button (the top-left one) to be red. puzzle-3x3-task4 starts with four buttons (top-
center, bottom-center, left-center, right-center) to be blue, and the goal is to turn all the buttons to be
blue. The reward is binary: −1 if the desired configuration is not yet reached and 0 if the desired
configuration is reached (and the episode terminates).

cube-double/triple/quadruple: These three domains contain 2/3/4 cubes respectively. The
tasks in the three domains all involve moving the cubes to their desired locations. The reward is
−nwrong where nwrong is the number of the cubes that are at the wrong position. The episode
terminates when all cubes are at the correct position (reward is 0).

B.2 Robomimic environments.

We use three challenging tasks from the robomimic domain [43]. We use the multi-human datasets
that were collected by six human operators. Each dataset contains 300 successful trajectories. The
three tasks are as described as follows.

• lift: This task requires the robot arm to pick a small cube. This is the simplest task of the
benchmark.

• can: This task requires the robot arm to pick up a coke can and place in a smaller container
bin.

• square: This task requires the robot arm to pick a square nut and place it on a rod. The nut
is slightly bigger than the rod and requires the arm to move precisely to complete the task
successfully.
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a) scene b) puzzle-3x3 c) cube-double d) cube-triple

e) cube-quadruple f) lift g) can h) square

Figure 7: We experiment on several challenging long-horizon, sparse-reward domains. See detailed task
description for each domain in Appendix B. The rendered images of the robomimic tasks above are taken from
Mandlekar et al. [43].

All of the three robomimic tasks use binary task completion rewards where the agent receives −1
reward when the task is not completed and 0 reward when the task is completed.

C Implementation Details

In this section, we provide more implementation details on both of our Q-chunking methods (QC,
QC-FQL) and our baselines used in our experiments. For IFQL, ReBRAC, IQL, we directly use the
implementation from Park et al. [58].

Algorithm 1 QC

Input: Behavior policy and critic: fξ(at:t+h|s)
and Qθ(st,at:t+h).
D ← offline prior data.
for every environment step t do

if t mod h ≡ 0 then
a1
t:t+h · · ·aNt:t+h ∼ fξ(·|st)

a⋆t:t+h ← argmaxai
t:t+h

Qθ(s,a
i
t:t+h)

Act with a⋆t and receive st+1, rt.
D ← D ∪ {(st, a⋆t , st+1, rt)}
Update fξ via flow-matching loss using D .
Update Qθ via Eq (11) using D.

Output: fξ, Qθ .

Algorithm 2 QC-FQL
Input: Behavior policy, critic, one-step policy:
fξ(at:t+h|s), Qθ(st,at:t+h), µψ(s,z).
D ← offline prior data.
for every environment step t do

if t mod h ≡ 0 then
z ∼ N (0, IAh)
at:t+h ← µψ(st,z)

Act with at and receive st+1, rt.
D ← D ∪ {(st, at, st+1, rt)}
Update fξ via flow-matching loss using D.
Update µψ and Qθ via Eq. (13, 15) using D.

Output: fξ, Qθ, µψ(s,z).

C.1 QC-FQL

We build the implementation of our method on top of FQL [58], a recently proposed offline RL/offline-
to-online RL method that uses TD3+BC-style objective. It is implemented with a one-step noise-
conditioned policy (instead of a Gaussian policy that is commonly used in RL) and it uses a distillation
loss from a behavior flow-matching policy as the BC loss. To adapt this method to use action chunking,
we simply apply FQL on the temporally extended action space – the behavior flow-matching policy
generates a sequence of actions, the one-step noise-conditioned policy predicts a sequence of actions,
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and the Q-network also takes in a state and a sequence of actions. More concretely, we train three
networks:

1. Qθ(s, a1, · · · ah) : S ×Ah 7→ R — the value function that takes in a state and a sequence
of actions (action chunk). In practice, we train an ensemble of Q networks. We denote the
weight of the ensemble element as θ = (θ1, · · · , θK).

2. µψ(s, z) : S × RAh 7→ RAh — the one-step noise-conditioned policy that takes in a state
and a noise, and outputs a sequence of actions conditioned on them.

3. fξ(s,m, u) : S ×RAh× [0, 1] 7→ RAh — the flow-matching behavior policy parameterized
by a velocity prediction network. The network predicts takes in a state, an intermediate
state of the flow and a time, and outputs the velocity direction that the intermediate action
sequence should move in at the specified time. See Algorithm 3 for more details on how
this velocity prediction network is used to generate an action from a noise vector.

We denote our policy as πψ(·|s). It is implemented by first sampling a Gaussian noise z ∼ N (0, IAh)
and run it through the one-step noise-conditioned policy [a1 · · · ah]← µψ(s, z). To train these
three networks, we sample a high-level transition, w = (st, at, at+1, · · · , at+h−1, st+h, r

h
t ) ∼ D

where rht =
∑h−1
t′=0 γ

t′rt+t′ , to construct the following losses:

(1) Critic loss:

L(θk, w) =

(
Qθk(st, at, · · · , at+h−1)− rht −

1

K

K∑
k′=1

Qθ̄k′ (st+h, at+h, · · · , at+2h−1)

)2

, (20)

where [at+h · · · at+2h−1] ∼ πψ(·|st+h), k ∈ {1, 2, · · · ,K}.
(2) Actor loss:

L(ψ,w) = −Qθ(st, µψ(st, zt)) + α
∥∥∥µψ(st, zt)− [aξt · · · aξt+h−1

]∥∥∥2
2
, (21)

where zt ∼ N (0, IAh) and
[
aξt · · · aξt+h−1

]
is the result of running the behavior policy fξ(s,m, t)

with Algorithm 3 from zt, and α ∈ R is a tunable parameter that controls the strength of the behavior
regularization (higher α leads to stronger behavior regularization).

(3) Flow-matching behavior policy loss:

L(ξ, w) = ∥fξ(st, u [at · · · at+h−1] + (1− u)zt, u)− ([at · · · at+h−1]− zt)∥22, (22)

where u ∼ U([0, 1]), zt ∼ N (0, IAh).

Practically, we sample a batch of transitions {w1, w2, · · · , wM} and optimize the average loss
for each network: L(θ) = 1

M

∑M
i=1

∑K
k=1 L(θk, wi),L(ψ) = 1

N

∑M
i=1 L(ψ,wi),L(ξ) =

1
N

∑M
i=1 L(ξ, wi).

C.2 FQL

FQL [58] is a recently proposed offline RL/offline-to-online RL method that uses TD3+BC-style
objective. It is equivalent to our method with h = 1. For completeness, we write out the objectives
for a transition sample w = (st, at, rt, st+1):

L(θk, w) =

(
Qθk(st, at)− rt −

1

K

K∑
k′=1

Qθ̄k′ (st+1, µψ(st+1, z
k′

t ))

)2

, zk
′

t ∼ N (0, IA), (23)

L(ψ,w) = −Qθ(st, µψ(st, zt)) + α
∥∥∥µψ(st, zt)− aξt∥∥∥2

2
, (24)

aξt ← FlowODE_Euler(st, zt, fξ, T ), zt ∼ N (0, IA), (25)

L(ξ, w) = ∥fξ(st, uat + (1− u)zt, u)− (at − zt)∥22, zt ∼ N (0, IA), u ∼ U([0, 1]). (26)

In practice, we sample a batch of transitions {w1, w2, · · · , wN} and optimize the average loss for each
network: L(θ) = 1

N

∑N
i=1

∑K
k=1 L(θk, wi),L(ψ) =

1
N

∑N
i=1 L(ψ,wi),L(ξ) =

1
N

∑N
i=1 L(ξ, wi).
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Algorithm 3 FlowODE_Euler(st, zt, fξ, T ): generate actions from the behavior flow policy
fξ(s,m, u) with Euler’s method.

Input: State st, noise zt and flow model fξ(s,m, u), number of flow steps T .
m0 ← zt
for i ∈ {1, · · · , T} do

mi ← fξ(st,m
i−1, (i− 1)/T )

Output: mT .

C.3 FQL-n

To implement the n-step return baseline, we take FQL and replace the 1-step TD update with the
h-step TD update:

L(θk, w) =

(
Qθk(st, at)−

h−1∑
t′=0

(γt
′
rt+t′)−

1

K

K∑
k′=1

Qθ̄k′ (st+h, µψ(st+h, z
k′

t ))

)2

, (27)

where zk
′

t ∼ N (0, IA) for all k′ ∈ {1, 2, · · · ,K}. The actor loss and flow-matching loss remain the
same as FQL.

C.4 QC

The flow-matching behavior policy is trained with the same loss as used in QC-FQL (Equation (22)).
On top of the flow-matching behavior policy, we simply parameterize the policy π implicitly by
sampling multiple action chunks from the behavior policy and pick the one that maximizes the Q-
value. Specifically, let {z1t , z2t , · · · , zNt } ∼ N (0, IAh) and[

ait · · · ait+h−1

]
= FlowODE_Euler(st, zit, fξ, T )

The policy outputs the one action chunk out of N that maximizes the Q-value,
[
ai
⋆

t · · · ai
⋆

t+h−1

]
,

where

i⋆ ← arg max
i∈[N ]

Q(s,
[
ait · · · ait+h−1

]
).

Finally, we directly use this implicitly parameterize policy to generate actions for computing the TD
target for our TD loss:

L(θk, w) =

(
Qθk(st, at, · · · , at+h−1)− rht −

1

K

K∑
k′=1

Qθ̄k′ (st+h, a
i⋆

t+h, · · · , ai
⋆

t+2h−1)

)2

(28)

where ai
⋆

t+h, · · · , ai
⋆

t+2h−1 ∼ π(·|st+h).
The baselines BFN-n and BFN are implemented similarly to FQL-n and FQL by operating in the
original action space.

C.5 RLPD, RLPD-AC, QC-RLPD

All the RLPD baseline results are obtained by running the official codebase (as linked in Ball et al.
[7]) with additional modification to incorporate action chunking and behavior cloning. This baseline
runs online RL from scratch using off-policy transitions where 50% of them come from the offline
dataset and the other 50% come from the online replay buffer. It essentially up-weights the online
data more, allowing the online RL agent to learn more quickly. This is different from how QC-*,
BFN, BFN-n, FQL, FQL-n samples off-policy transitions (where we sample from the dataset that
combines the offline dataset and online replay buffer data with no weighting). RLPD baselines all
use Gaussian policy. This is also different from our method as our method uses noise-conditioned
policy that can represent a wider range of distributions. For RLPD-AC, we change all the actor and
critic networks such that they work with an action chunk rather than a single action. The baseline is
exactly the same as our method except that actor and the critic are updated the same as how RLPD
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updates its actor and critic. For QC-RLPD, we add a behavior cloning loss in the actor loss as follows
(highlighted in red below):

L(ψ) = Ea′t∼πψ(·|st)

[
− 1

K

K∑
k=1

Qθk(st, a
′
t) −α log πψ(at|st)

]
. (29)

C.6 SUPE-GT

For this baseline, we adapt from a recently proposed skill-based offline-to-online RL method [85].
The original method has additional modules such reward models and random distillation networks to
deal with the problem setting where offline dataset is unlabeled (e.g., reward information is missing).
We remove these two modules as we have ground truth reward information in our offline dataset.
The method has two stages: (1) skill-pretraining and (2) online RL with skills. In the first stage, the
baseline uses a trajectory VAE to learn latent-conditioned skill policy. In the second stage, the baseline
uses RLPD to learn a high-level policy that outputs latent vector to command the latent-conditioned
skill policy after every h steps. Such a skill-based method in theory also allows temporally coherent
actions for exploration and value backup speedup.

D Experiment Details

D.1 Computational resources

We use NVIDIA RTX-A5000 GPU to run all our experiments. Each complete offline-to-online exper-
iment run takes around 4-7 hours. To reproduce all our results in Table 6, we estimate that it would
take around 6︸︷︷︸

hours per single run

× 15︸︷︷︸
# of methods

× 25︸︷︷︸
# of tasks

× 4︸︷︷︸
# of seeds

= 9 000 GPU hours. Each robomimic

experiment run takes longer (around 8-12 hours). While each single run takes longer, we only
run a subset of strong methods/baselines on robomimic tasks. We estimate it would take around

10︸︷︷︸
hours per single run

× 8︸︷︷︸
# of methods

× 3︸︷︷︸
# of tasks

× 5︸︷︷︸
# of seeds

= 1 350 GPU hours. In total, we estimate that it would

take around 10 350 GPU hours to reproduce all the main results in our paper.

D.2 Evaluation protocol

Unless specified otherwise, for all methods, we run 4 seeds on each OGBench task and 5 seeds on
each robomimic task. All plots use 95% confidence interval with stratified sampling (5000 samples).
The success rate is computed by running the policy in the environment for 50 episodes and record the
number of times that the policy succeeds at solving the task (and divide it by 50).

D.3 Hyperparameter tuning

QC, BFN, BFN-n. We tune the number of actions sampled, N , for the expected-max Q operator. On
OGBench domains, we sweep over {2, 4, 8, 16, 32, 64, 128} and select the best parameter for each
domain and for each method on task2. We report the performance of each method with the best α in
Table 1 and Figure 1 (on all tasks). Table 5 summarizes the α value we use for each task.

QC-FQL, FQL, FQL-n. We tune the behavior regularization coefficient α. On OGBench domains,
we take the default hyperparameter of FQL for each domain αdefault and tune all methods on
task2 of each domain with three choices of α: {αdefault/3, αdefault, 3αdefault} (our αdefault comes
from Table 6 in Park et al. [58]). On robomimic domain, we sweep over much large α values:
{100, 1000, 10000}. We report the performance of each method with the best α in in Table 1 and
Figure 1 (on all tasks). Table 4 summarizes the α value we use for each task.

RLPD, RLPD-AC, QC-RLPD. We sweep over (1) whether or not to use clipped double Q-learning
(CDQ), and (2) whether or not to use entropy backup. We find that not using CDQ and not using
entropy backup to perform the best for all of the RLPD baselines and use that across all domains.
Even though our method and the other FQL baselines useK = 2 critic ensemble size, we useK = 10
critic ensemble size for RLPD to keep it the same as the hyperparameter in the original paper [7].
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Parameter Value
Batch size (M ) 256

Discount factor (γ) 0.99
Optimizer Adam

Learning rate 3× 10−4

Target network update rate (τ ) 5× 10−3

Critic ensemble size (K) 10 for RLPD, RLPD-AC, QC-RLPD, and SUPE-GT
2 for QC-FQL, FQL, FQL-n, QC-BFN, BFN, BFN-n

UTD Ratio 1
Number of flow steps (T ) 10

Number of offline training steps 106 except RLPD-based approaches (0)
Number of online environment steps 1× 106

Network width 512
Network depth 4 hidden layers

Table 3: Common hyperparameters.

Environments FQL FQL-n QC-FQL ReBRAC
scene-sparse-* 300 100 300 0.1

puzzle-3x3-sparse-* 100 100 300 0.1
cube-double-* 300 100 300 0.1
cube-triple-* 300 100 100 0.1

cube-quadruple-100M-* 300 100 100 0.1
lift 10000 10000 10000 -
can 10000 10000 10000 -

square 10000 10000 10000 -

Table 4: Behavior regularization coefficient (α).

For QC-RLPD, we sweep over behavior regularization coefficient α ∈ {0.001, 0.01, 0.1} and pick
0.01 since it works the best.

SUPE-GT. We tune the KL coefficient for the VAE skill-pretraining from
{0.001, 0.003, 0.01, 0.03, 0.1} and pick 0.003 as it works the best.

ReBRAC. We tune the behavior regularization coefficient from {0.01, 0.03, 0.1, 0.3, 1.0} and pick
0.1 as it works the best.

IFQL. We directly use the default hyperparameter from Park et al. [58] (N = 32, τ = 0.9) for this
baseline. The first parameter, N = 32, means that for both online policy rollout and policy evaluation,
we sample 32 actions and pick the action that has the highest Q-value. The second parameter, τ = 0.9
is the expectile coefficient.

IQL. We directly use the default hyperparameter from Park et al. [58] for this baseline. For cube-*,
we use α = 0.3. For scene and puzzle-3x3, we use α = 10.0. For the expectile coefficient, we
use τ = 0.9.

E Full Results

E.1 End-effector visualization

We provide more examples of the trajectory rollouts from QC and BFN over the course of online
training on cube-triple-task3. In Figure 8, we show the first 9000 time steps (broken down into
9 subplots where each visualizes 1000 time steps). In Figure 9, we show another 9000 time steps but
late in the training (from environment step 9× 105). The first example is the same as the one used in
Figure 5.
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Environments BFN BFN-n QC-BFN

scene-sparse* 4 4 32
puzzle-3x3-sparse-* 4 4 64

cube-* 4 4 32
lift, can, square 4 4 16

Table 5: Number of actions sampled for the expected-max Q operator (N ) for BFN methods.

BFNQC BFNQC BFNQC

BFNQC BFNQC BFNQC

BFNQC BFNQC BFNQC

Figure 8: End-effector trajectory early in the training. Each subplot above shows the trajectory
for a consecutive of 1000 time steps. We include up to Step 9000.

BFNQC BFNQC BFNQC

BFNQC BFNQC BFNQC

BFNQC BFNQC BFNQC

Figure 9: End-effector trajectory visualization late in the training. Each subplot above shows the
trajectory for a consecutive of 1000 time steps (from Step 900000 to Step 909000).

E.2 OGBench results by individual task

Main results by task. Table 1 and Figure 10 shows the performance breakdown for all methods.
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RLPD RLPD-AC SUPE-GT IQL ReBRAC IFQL FQL BFN IFQL-n FQL-n BFN-n QC-RLPD QC-IFQL QC-FQL QC
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100
[96,99]

98→
[100,100]

100
[93,96]

94→
[100,100]

100
[95,100]

98→
[100,100]

100
[55,61]

58→
[89,92]

90 – →
[100,100]

100
[99,100]
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[100,100]

100
[48,76]

63→
[100,100]

100
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100→
[100,100]

100

task1 – →
[100,100]

100 – →
[100,100]

100 – →
[100,100]

100
[0,2]

1→
[96,99]

97
[0,9]

4→
[100,100]

100
[98,98]

98→
[100,100]

100
[55,79]

69→
[100,100]

100
[97,100]

99→
[100,100]

100
[79,93]

86→
[98,100]

99
[19,25]

22→
[100,100]

100
[52,74]

64→
[100,100]

100 – →
[100,100]

100
[90,98]

93→
[100,100]

100
[98,100]

99→
[100,100]

100
[100,100]

100→
[100,100]

100

task2 – →
[100,100]

100 – →
[100,100]

100 – →
[100,100]

100
[0,0]

0→
[94,100]

97
[30,78]

51→
[100,100]

100
[80,95]

89→
[85,100]

93
[41,64]

51→
[98,100]

99
[97,100]

99→
[98,100]

99
[34,70]

52→
[95,100]

97
[2,6]

4→
[33,51]

42
[7,23]

15→
[98,100]

98 – →
[100,100]

100
[63,76]

68→
[100,100]

100
[82,94]

88→
[100,100]

100
[96,100]

98→
[100,100]

100

task3 – →
[98,100]

99 – →
[98,100]

100 – →
[92,100]

97
[0,0]

0→
[0,0]

0
[0,2]

0→
[98,100]

99
[39,58]

49→
[84,93]

88
[48,83]

68→
[100,100]

100
[90,96]

93→
[100,100]

100
[33,43]

38→
[95,98]

97
[0,2]

1→
[9,40]

24
[21,47]

34→
[95,99]

97 – →
[100,100]

100
[58,72]

65→
[97,100]

99
[96,100]

98→
[100,100]

100
[83,96]

90→
[100,100]

100

task4 – →
[84,95]

89 – →
[84,97]

92 – →
[90,100]

95
[0,0]

0→
[0,0]

0
[0,0]

0→
[98,100]

98
[62,82]

73→
[83,89]

86
[69,81]

75→
[88,100]

96
[71,99]

86→
[96,99]

97
[68,89]

81→
[95,99]

97
[41,63]

50→
[86,99]

94
[85,96]

92→
[85,100]

94 – →
[92,100]

97
[92,94]

93→
[98,100]

98
[85,98]

92→
[95,100]

97
[87,96]

93→
[98,100]

99

task5 – →
[78,86]

82 – →
[60,81]

74 – →
[32,100]

75
[0,0]

0→
[0,0]

0
[0,0]

0→
[95,98]

97
[24,42]

32→
[0,3]

1
[18,32]

25→
[73,88]

81
[14,52]

38→
[98,100]

99
[77,92]

83→
[44,88]

72
[12,17]

14→
[78,98]

91
[56,82]

71→
[97,100]

98 – →
[79,85]

82
[92,94]

93→
[85,96]

91
[34,50]

41→
[98,100]

99
[14,70]

43→
[91,100]

95

scene

avg. (5 tasks) – →
[93,96]

94 – →
[88,94]

91 – →
[82,99]

92
[0,0]

0→
[39,39]

39
[7,16]

11→
[99,99]

99
[66,71]

68→
[72,75]

73
[55,60]

57→
[93,98]

95
[82,87]

85→
[99,100]

99
[62,74]

68→
[86,96]

93
[17,21]

18→
[64,76]

70
[50,64]

57→
[95,99]

97 – →
[95,97]

96
[80,85]

83→
[96,99]

98
[81,87]

84→
[99,100]

99
[79,89]

84→
[98,100]

99

task1 – →
[97,100]

99 – →
[98,100]

99 – →
[100,100]

100
[0,2]

1→
[0,0]

0
[8,16]

12→
[98,100]

99
[18,30]

24→
[96,100]

98
[50,76]

63→
[97,100]

99
[55,86]

70→
[94,100]

97
[3,20]

9→
[83,94]

89
[22,43]

33→
[97,100]

99
[22,24]

23→
[98,100]

100 – →
[98,100]

100
[8,25]

17→
[98,100]

100
[52,77]

66→
[100,100]

100
[79,90]

84→
[98,100]

99

task2 – →
[98,100]

99 – →
[97,100]

98 – →
[57,95]

77
[0,0]

0→
[0,0]

0
[0,0]

0→
[4,28]

16
[10,12]

11→
[55,69]

63
[24,45]

36→
[90,94]

92
[70,85]

79→
[85,92]

88
[4,7]

5→
[4,18]

12
[4,10]

8→
[94,97]

96
[6,9]

8→
[56,75]

65 – →
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99
[11,20]

15→
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100
[31,61]

43→
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100
[73,84]

79→
[100,100]

100
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[98,100]

99 – →
[98,100]

99 – →
[68,95]

83
[0,0]

0→
[0,0]

0
[0,0]

0→
[14,54]

34
[3,9]

6→
[51,75]

61
[10,34]

22→
[94,99]

96
[82,85]

83→
[84,91]

87
[5,6]

5→
[6,18]

10
[0,3]

1→
[88,96]

92
[4,10]

7→
[60,84]

73 – →
[97,100]

99
[5,12]

8→
[89,96]

92
[22,52]

38→
[98,100]

99
[56,80]

68→
[98,100]

99

task4 – →
[97,100]

99 – →
[96,98]

97 – →
[0,10]

5
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,2]

1→
[0,2]

1
[2,15]

9→
[0,2]

1
[14,29]

22→
[28,45]

38
[0,2]

1→
[0,0]

0
[0,0]

0→
[0,4]

2
[0,4]

1→
[0,0]

0 – →
[96,100]

98
[3,6]

5→
[0,6]

3
[8,15]

11→
[100,100]

100
[12,35]

22→
[85,99]

92

task5 – →
[94,98]

96 – →
[84,92]

88 – →
[68,98]

85
[0,0]

0→
[0,0]

0
[0,2]

1→
[0,2]

1
[12,16]

14→
[63,81]

72
[7,17]

12→
[90,94]

92
[78,87]

82→
[94,98]

96
[2,6]

4→
[18,53]

35
[5,20]

13→
[93,99]

96
[12,15]

13→
[65,88]

78 – →
[84,91]

88
[16,18]

17→
[96,100]

98
[32,46]

37→
[98,100]

99
[68,80]

74→
[97,100]

99

cube-double

avg. (5 tasks) – →
[98,99]

99 – →
[96,96]

96 – →
[57,76]

67
[0,0]

0→
[0,0]

0
[2,3]

3→
[28,32]

30
[10,12]

11→
[55,62]

59
[23,34]

29→
[75,76]

76
[63,73]

68→
[78,81]

80
[4,7]

5→
[26,32]

29
[7,13]

11→
[76,77]

77
[10,13]

11→
[62,69]

65 – →
[96,97]

96
[10,16]

12→
[77,80]

79
[32,47]

39→
[100,100]

100
[64,71]

67→
[96,99]

98

task1 – →
[98,100]

100 – →
[4,98]

51 – →
[0,0]

0
[0,0]

0→
[0,2]

1
[0,2]

1→
[0,2]

1
[0,3]

2→
[0,48]

16
[3,8]

5→
[78,96]

87
[11,23]

17→
[95,98]

97
[0,2]

1→
[0,0]

0
[0,0]

0→
[0,6]

3
[0,4]

2→
[0,3]

1 – →
[20,75]

45
[0,0]

0→
[0,0]

0
[13,26]

19→
[100,100]

100
[8,19]

13→
[100,100]

100

task2 – →
[22,87]

61 – →
[0,3]

1 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,2]

1→
[0,0]

0
[0,2]

1→
[0,26]

8
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0 – →
[3,12]

8
[0,0]

0→
[0,0]

0
[0,2]

1→
[84,93]

89
[0,2]

1→
[82,94]

89

task3 – →
[0,3]

1 – →
[0,6]

2 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,2]

0→
[0,12]

5
[0,3]

1→
[5,18]

11
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0 – →
[0,2]

1
[0,0]

0→
[0,0]

0
[0,0]

0→
[29,70]

51
[1,14]

7→
[70,78]

73

task4 – →
[29,53]

43 – →
[0,0]

0 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,2]

1
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0 – →
[0,2]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[10,52]

26
[0,0]

0→
[40,65]

54

task5 – →
[0,0]

0 – →
[0,0]

0 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0

cube-triple

avg. (5 tasks) – →
[33,46]

41 – →
[2,21]

11 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,1]

0→
[0,10]

3
[1,2]

1→
[16,20]

18
[3,5]

4→
[21,27]

23
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,1]

1
[0,1]

0→
[0,1]

0 – →
[6,17]

11
[0,0]

0→
[0,0]

0
[3,5]

4→
[46,61]

53
[3,10]

6→
[61,66]

64

task1 – →
[0,4]

2 – →
[3,15]

7 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[2,10]

7→
[97,100]

98
[0,0]

0→
[0,0]

0
[0,2]

1→
[2,31]

14
[5,10]

7→
[52,64]

56
[0,3]

1→
[0,0]

0
[23,33]

28→
[95,99]

97
[0,0]

0→
[0,0]

0 – →
[12,59]

37
[0,11]

4→
[94,98]

96
[3,10]

6→
[96,100]

98
[6,27]

16→
[98,100]

99

task2 – →
[0,0]

0 – →
[18,40]

26 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,8]

3
[0,0]

0→
[0,0]

0
[0,3]

2→
[39,59]

49
[0,0]

0→
[0,0]

0 – →
[11,24]

17
[0,0]

0→
[0,0]

0
[0,0]

0→
[96,99]

97
[0,0]

0→
[98,100]

98

task3 – →
[0,0]

0 – →
[1,5]

3 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,2]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,2]

0
[0,0]

0→
[0,0]

0
[4,7]

5→
[2,6]

4
[0,0]

0→
[0,0]

0 – →
[0,2]

1
[0,0]

0→
[0,0]

0
[0,0]

0→
[91,96]

94
[0,8]

3→
[74,82]

78

task4 – →
[0,0]

0 – →
[1,6]

4 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,3]

1→
[18,46]

32
[0,0]

0→
[0,0]

0 – →
[0,5]

2
[0,0]

0→
[0,0]

0
[0,0]

0→
[91,97]

94
[0,2]

1→
[82,95]

88

task5 – →
[0,0]

0 – →
[0,0]

0 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,0]

0

cube-quadruple-100M

avg. (5 tasks) – →
[0,1]

0 – →
[3,11]

7 – →
[0,0]

0
[0,0]

0→
[0,0]

0
[0,2]

1→
[20,20]

20
[0,0]

0→
[0,0]

0
[0,0]

0→
[0,6]

3
[1,2]

1→
[12,13]

12
[0,1]

0→
[0,0]

0
[6,8]

7→
[36,37]

36
[0,0]

0→
[0,0]

0 – →
[7,16]

11
[0,2]

1→
[19,20]

19
[1,2]

1→
[76,77]

77
[2,7]

4→
[72,75]

74

overall avg. (25 tasks) – →
[65,68]

67 – →
[59,64]

61 – →
[51,54]

52
[0,0]

0→
[12,12]

12
[13,15]

14→
[49,50]

50
[35,37]

36→
[45,48]

47
[36,38]

37→
[57,60]

58
[50,52]

51→
[62,63]

63
[32,35]

34→
[43,46]

44
[25,28]

27→
[56,58]

57
[24,26]

25→
[48,52]

50 – →
[61,65]

63
[38,40]

39→
[59,59]

59
[35,41]

38→
[84,88]

86
[50,53]

52→
[86,87]

86

Table 6: Complete OGBench offline-to-online RL results. 4 seeds. 95% confidence interval.
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Figure 10: Complete OGBench offline-to-online RL results by task. 4 seeds. 95% confidence
interval.
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Figure 11: Full OGBench results by task (selected baselines). Top: summary plots by domain;
Bottom: individual plots by task.

Selected baselines. Figure 11 shows the results for selected baselines (e.g., BFN, FQL, RLPD and
RLPD-AC).

n-step return ablation results by task. Figure 12 shows the performance breakdown for Figure 4.

Q-chunking with Gaussian policies. The following plot shows the performance breakdown for
Figure 2. In addition, we include a new method for comparison, QC-RLPD, where we add a behavior
cloning loss to RLPD-AC (RLPD with action chunking).
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Figure 12: Full OGBench results by task (selected baselines).
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Figure 13: Full RLPD results by task. QC-RLPD is RLPD-AC (RLPD on the temporally extended
action space) where we additionally add a fixed behavior cloning coefficient of 0.01.

Action chunking size ablations. Figure 14 includes individual task results for the action chunking
size ablation study. We also include results on the hardest cube-quadruple task in Figure 15.
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Figure 14: Action chunking size ablation on cube-triple-*. Increasing the action chunking size
generally helps until h = 25. Surprisingly, h = 25 is the only chunk size where QC-FQL achieves
non-trivial success on the hardest cube-triple-play-task5 (none of other methods can).
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Figure 15: Action chunking size ablation on cube-quadruple-play-task4. The n-step return
baselines (i.e., FQL-n) can achieve good initial success during online learning but quickly collapse.
In contrast, our method (i.e., QC-FQL) does not suffer from such collapse and solves the task
consistently across reasonably large chunk sizes (e.g., h ∈ {5, 7, 9}). The results are over 5 seeds.

E.3 Robomimic ablation results

Figure 16 shows the performance of QC, QC-FQL, BFN-n, FQL-n, BFN, FQL our three robomimic
tasks. This plot shows the performance breakdown for Figure 4 (right).
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Figure 16: Full robomimic ablation by task. For each method on each task, we use 5 seeds.

E.4 How resource efficient is Q-chunking?

In Figure 17, we report the runtime for our approach and our baselines on a representative task
cube-triple-task1. In general, QC-FQL has a comparable run-time as our baselines (e.g., FQL
and RLPD) for both offline and online. QC is slower for offline training as it requires sampling 32
actions for each training example for the agent update (BFN is faster because it only needs to sample
4 actions). For online training, we are doing one gradient update per environment step, and it makes
QC only around 50% more expensive than other methods.

Finally, we include the parameter count of each of these method on the representative domain
cube-triple-* in Table 7 below (assuming h = 5 for all Q-chunking methods).
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Methods Parameter Count (in millions)

QC ≈ 4.2
BFN ≈ 4.1

QC-FQL ≈ 5.0
FQL ≈ 4.9

RLPD ≈ 17.2

Table 7: Parameter count for each method. RLPD has a much larger parameter count because it uses K = 10
critic networks whereas all the other methods and baselines use only K = 2.
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Figure 17: How long does each method take for one step in milliseconds. Left: offline. Right: online (one
agent training step and an environment step). The runtime is measured using the default hyperparameters in our
paper on cube-triple-task1 on a single RTX-A5000.
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