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Abstract

We introduce FFN Fusion, an architectural optimization technique that reduces
sequential computation in large language models by identifying and exploiting
natural opportunities for parallelization. Our key insight is that sequences of
Feed-Forward Network (FFN) layers, particularly those remaining after the re-
moval of specific attention layers, can often be parallelized with minimal accuracy
impact. We develop a principled methodology for identifying and fusing such
sequences, transforming them into parallel operations that significantly reduce
inference latency while preserving model behavior. Applying these techniques
to Llama-3.1-405B-Instruct, we create Llama-Nemotron-Ultra-253B-Base (Ultra-
253B-Base), an efficient model that achieves a 1.71x speedup in inference latency
and 35x lower per token cost while maintaining strong performance across bench-
marks. Most intriguingly, we find that even full transformer blocks containing both
attention and FFN layers can sometimes be parallelized, suggesting new directions
for neural architecture design.

1 Introduction

Large language models (LLMs) have emerged as one of the most transformative technologies of
our time, revolutionizing how we approach artificial intelligence and computation. From powering
sophisticated virtual assistants [16] to enabling breakthrough scientific research [1},41]], these models
have evolved from academic curiosities [35] into indispensable tools that are reshaping entire
industries. This transformation has been driven by rapid scaling to hundreds of billions of parameters
[3312,19]], enabling unprecedented capabilities in reasoning, generation, and complex problem-solving
[S) [15]. However, this extraordinary growth in scale and capability comes at a critical cost: the
computational demands of running these models have become a fundamental bottleneck. As these
models push the boundaries of what is possible with artificial intelligence, their deployment costs and
resource requirements severely limit their accessibility, creating an urgent need for innovations that
can make their capabilities widely available.

Research in LLM runtime optimization explored diverse approaches to managing computational
demands. Traditional techniques like quantization [[7, 12} |8, 47]]—which reduce memory footprint and
accelerate inference through lower-precision arithmetic—and pruning [26} [18, [17, 28| [1 1]—which
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removes redundant parameters—have become standard tools. A more recent innovation, Mixture-
of-Experts (MoE) [38| 23]], has demonstrated remarkable potential by dynamically activating only
a small subset of model parameters during inference. The DeepSeek-V3 architecture [6] pushes
this approach to new extremes, employing 256 expert FFN modules at each layer while activating
only 8 experts per token (plus one shared expert), effectively achieving the capabilities of a much
larger model while maintaining reasonable computational costs through sparse activation. However,
each of these approaches faces distinct challenges: quantization encounters precision-accuracy trade-
offs at small bit numbers, pruning struggles to identify significant additional redundancy without
compromising accuracy performance (and pruning can be harnessed to efficiency mainly when it is
structured), and MoE architectures, while efficient for single-token inference or for very large batches,
do not provide optimal throughput at small and intermediate batch sizes due to under-utilization of
compute resources, as discussed in Appendix [E] Given the above limitations, there is an urgent need
for complementary approaches that can unlock new dimensions of efficiency improvement while
maintaining the simplicity and predictable scaling characteristics of dense architectures.

In this work, we introduce two major contributions that fundamentally advance the state of LLM
efficiency. First, we present FFN Fusion, a novel architectural optimization technique that challenges
the conventional sequential nature of transformer computation, and is illustrated in Figure [T} By iden-
tifying and exploiting patterns of computational independence in FFN layers, our approach enables
parallel execution across multiple GPUs while preserving model functionality. This parallelization
is particularly effective on modern GPU nodes, where tensor-parallel implementations often suffer
from synchronization delays between consecutive layers. By concentrating the computation into
fewer layers and reducing cross-device communication, our method significantly improves hardware
utilization. Our findings reveal that substantial portions of LLM computation can be parallelized
with minimal accuracy impact, complementing existing runtime optimization techniques like pruning
and quantization. Second, we demonstrate the practical impact of these insights through Ultra-253B-
Base, a state-of-the-art 253B parameter model derived from Llama-3.1-405B-Instruct (henceforth
Llama-405B), derived using FFN Fusion and attention pruning. This model not only showcases
the scalability of our approach, but also achieves remarkable efficiency gains while maintaining or
exceeding its parent model’s capabilities across a comprehensive suite of benchmarks.
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Figure 1: An overview of our FFN Fusion approach. Step 1: We apply Puzzle to partially remove
FFN layers and remove entire attention layers. Step 2: We fuse consecutive FFN layers into a single

wide FFN layer. Fusion is denoted using the bracket notation [FFN', ... FFN't¥].



The applicability of FFN Fusion rests on a fundamental insight about modern LLM architectures.
Recent work has shown that LLM display structural redundancy [43} 31,10l 149, 36,25, |14], particu-
larly attention mechanisms, which can be selectively removed with minimal accuracy impact [3}19],
often leaving models with extended sequences of consecutive FFN layers. We demonstrate that these
FFN sequences exhibit surprisingly low inter-layer dependencies, enabling a novel transformation:
multiple sequential FFN layers can be fused into a single, wider layer that enables simple parallel
execution. This transformation is particularly powerful, eliminating synchronization points while
allowing for more efficient hardware utilization without requiring architectural redesign (as visualized
in Figure[2). Through analysis and empirical validation, we argue for the conditions under which this
fusion preserves model behavior, showing that these conditions are commonly satisfied in practice,
especially in larger models where the potential efficiency gains are most significant. Most surprisingly,
our preliminary investigations suggest that even complete transformer blocks—containing both atten-
tion and FFN components—can sometimes be parallelized, pointing to potential new directions in
neural architecture design (see Appendix [B). Leveraging these insights, we develop Ultra-253B-Base,
derived from Llama-405B through a combination of attention pruning and FFN Fusion. This model
achieves remarkable efficiency gains while maintaining or exceeding its parent model’s capabilities:

* A 1.71x speedup in inference latency and 35x lower per-token cost at batch size 32.

* State-of-the-art performance on key benchmarks, including 84.92% on Arena Hard, 86.58%
on HumanEval, 87.54% on MMLU Instruct, 72.25% on MMLU-Pro, and 9.19 on MT-
Bench.

* Improving memory footprint with a 2x reduction in kv-cache memory, and reduced param-
eter count from 405B to 253B.

Our key contributions are:

* The discovery that some Feed-Forward Networks in transformer architectures can often
be parallelized with minimal accuracy loss, challenging the conventional wisdom that
sequential processing is necessary for these layers.

* The creation of Ultra-253B-Base, a powerful 253B parameter model that matches or exceeds
Llama-405B’s capabilities while offering substantially improved efficiency, to be publicly
released upon acceptance.

* Preliminary evidence that even complete transformer blocks—containing both attention and
FFN components—can sometimes be parallelized, opening new possibilities for architectural
innovations in large language models.

2 Preliminaries

Transformer-based LLMs. The structure of LLMs is typically based on the widely used trans-
former architecture [42]. It is generally composed of a series of sequential blocks, denoted as
fY, ..., f™, each containing an attention layer and an FFN layer. The attention layers capture the
contextual relationships between input tokens, while the FEN layers apply transformations indepen-
dently to each token. Given an input X € R"*?, where n represent the sequence length and d the
embedding dimension, a transformer block f : R"*¢ — R™*% is defined by the following equations:

g(X) = X + Attention(n (X)) e
f(X) = g(X) + FEN(n2(9(X))), 2)
where 7, is a token-level normalization module, defined by the equation 7 (x;) = ”f—l” ©® s with

x; € R? being the i-th token, s, € R being a learnable scale factor, and ® is the element-wise
product. The FFN layer used in the models we experiment with is the SwiGLU module [37], which is
defined as follows:

SWiGLU(X) = (o(XW) o XwhHwi, 3)
where o is the SiLU activation [20] function, W1, Wy € R%*de and W3 € R% X9 Here, d,
represents the embedding dimension, and dj; denotes the hidden dimension of the FFN. Other
components of the LLM include an embedding function at the model’s input, which maps tokens
to vectorized embeddings, an additional normalization function, and a linear function at the output,
which normalizes the final block outputs and projects them to the vocabulary dimension.



Puzzle. Puzzle [3]] is a neural architecture search (NAS) framework that optimizes a trained LLM
for inference efficiency. Starting with a pre-trained model, it prunes or reconfigures each transformer
block—often reducing or removing attention layers—while preserving model quality through a
distillation process. In particular, applications of Puzzle often show that many attention layers can
be removed with minimal accuracy loss, thus leaving sequences of FFNs uninterrupted by attention.
Additionally, certain FFN layers experience significant channel pruning, leading to a reduction in
their hidden dimension. Step 1 in Figure[T]illustrates a hypothetical outcome of this process.

3 FFN Fusion

Several optimization techniques reduce the number of attention layers to improve inference efficiency
[3L[19]. An attention-removed transformer block is defined by the equation

F(X) = X + FEN(12(X)). @
Given a consecutive sequence of attention-removed blocks f L f i+¢ we define the parallel version
of this sequence fl"*<l as
Firel(X) = X + ) T FFNH (ny( X)), ©)
§=0

where FFN® is the FEN layer of block 7 and 7, is taken from the last layer in the sequence. While in
the sequential form the input for every FFN depends on the output of the previous layers, in this form
all the FFN layers share the same input, which makes their computation independent and enables
execution in parallel across different GPUs. Another useful property of this formulation is that
equation [5is equivalent to equation 4] with a single wider FFN when the weights are concatenated.

Theorem 3.1. Let n € N, and let FFN', ... FFN" be a sequence of FFN functions, where the
weights of FEN* are W1, W3, W3. Then, the sum of these FFN functions (equation E]) is equivalent
to a single FFN function FFN™, with the weight matrices given by:

Wi = [(WhHT,...,wm"
Wy = [(WHT,....ov)T]"
Wy = [(W3),..., (W3],

where [-, ..., -] denotes the concatenation of matrices along the second axis and the dimensions of
the matrices are Wy, Wy € Rrdnxde Jyx ¢ Rdexndn,

The theorem (and proof in Appendix [A]) are written for the simple case where dj, is equal for all
the FFNs. The extension for the case where the hidden dimension is different for each layer is
straightforward. While written in the context of Equation 3] the theorem holds for other common
FEN variants [37,139]]. See a visualization in Figure

Efficiency motivation and analysis. LLMs are ubiquitously designed in sequential blocks, with
the block sizes and the number of blocks increasing as the models grow in size. For bigger models,
parallelization techniques such as tensor parallel (TP) are utilized to split work across GPUs and reach
acceptable inference latencies. However, this strategy does not result in linear latency improvements
with the number of GPUs applied. The first reason, is the communication time required for the
all-reduce that follows each TP block. The second reason is more subtle: GPUs are at their best for
very large operations. As each atomic General Matrix Multiplication (GEMM) operation becomes
smaller, low level overheads (GPU wave quantization) become more apparent and take a larger
portion of the latency budget. Therefore, increasing the computation per GPU (by increasing the
size of a block) while reducing the number of synchronizations needed (by using fewer blocks) is an
effective strategy for low latencies in a TP setting (see Figure [Z). Drawing from this motivation, we
attempt to fuse many sequential blocks/FFNs in LLMs into fewer, larger blocks/FFNs. Each single
reduction in the depth of the computational graph removes one unit of time spent on synchronization,
and the bigger fused blocks also enable operating at higher TP numbers with enough computation
assigned to each GPU. Figure [6] shows the effects described in this analysis using measurements of
different model architectures in the same TP setting.
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Figure 2: FFN Fusion helps reduce latency by increasing GPU utilization and by reducing syncs.

Pairwise block dependency. It is reasonable w0 @ m  w
to hypothesize that not every transformer block =
in a sequential model is equally dependent on *
all its predecessors. In particular, a given block
may depend only on a subset of the blocks that
precede it. To investigate this, we perform a
pairwise dependency analysis between blocks.
Let us define h(X) = f(X) — X as the con- N
tribution of f to X, and similarly, h’ as the
contribution of f7. We define i as the con-
tribution of block 7 when block ¢ is removed 0
from the model. We construct a dependency ma-

trix M € R™*™ by computing the following  Fjgure 3: Block-wise dependency heatmap of
cosine distance: Ultra-253B-Base before applying FFN Fusion (log-
M;; = CosineDist(h (X)), hi (X)). scale). Each coordinate (7, j) encodes how much

That is, M;; quantifies the dependency of block b.l OCIZ.] depexlljds on blz;k}z{, mezs}%;ec)l(by the co
7 on block 7. Thus, a small cosine distance in- sine distance between 7/ (X') an i (X).

dicates that dropping block 7 has little effect on block j, suggesting relative independence—a
characteristic that can be exploited for increasing parallel computation. Conversely, a large cosine
distance corresponds to a strong dependency, implying that sequential processing is more critical to
maintain performance. We illustrate this approach in Figure [3|by constructing a dependency matrix,
M, for Ultra-253B-Base (prior to FEN Fusion; see Sectiond). This matrix visually encodes the inter-
dependencies among the model’s layers: darker blue hues indicate weaker dependencies—signaling
promising opportunities for FFN Fusion—while darker red hues denote strong dependencies that
would hinder parallelization or fusion. For example, Figure 3| shows that all layers in the model de-
pend on layers 0 and 5, causing their entire rows to be colored in dark red hues. The dark blue region,
marked with a dashed square, shows a sequence of FFNs with low interdependency were selected for
FFN Fusion. Due to GPU memory constraints, we are unable to fuse them all at once, so we divide
them into fusion sequences based on the maximum size that fits within our devices. Additionally, we
applied this metric to explore block parallelization (Apendix [B]), aiming to parallelize general LLM
blocks rather than just FFNs. We constructed the dataset that was used for this evaluation following
Distillation Mix 3.
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4 Producing Large-Scale Models with FFN Fusion

In this section, we describe how FFN Fusion is applied at large scale to transform a 405B-parameter
Llama-based model into our more compact Ultra-253B-Base model. Specifically, we show how
identifying and fusing long sequential feed-forward blocks reduces depth without sacrificing accuracy.
We utilize a lightweight refinement KD and alignment phase to ensure the fused model retains or
even improves upon the performance of its larger predecessor. Finally, we present a comprehensive
evaluation of the resulting model, demonstrating significant speedups and strong results on standard
benchmarks. We first run the standard Puzzle search on Llama-405B, specifying that the derivative
model must obtain a 1.5x latency speedup and fit within a single NVIDIA 8 xH100 node (640 GB
total), and in a single B100 GPU (192 GB) . This yields a 253B-parameter model whose overall
configuration is shown in Appendix [D] Many attention layers were removed, resulting in 50 blocks
contiguously arranged without interleaved attention layers.
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Figure 4: Comparison of Ultra-253B-Base before and after applying an additional CPT.

FFN Fusion. Next, we apply FEN Fusion (§3)) to 49 of the 50 consecutive FFN layers (See Section
[5.3]for ablation on leaving the last layer). Due to per-GPU memory limits, we split the layers into
four sequences [66, 73], [74, 85], [86, 100], [101, 114], each fused into a single FFN. Before fusion,
the baseline model achieved 84.23 on MMLU and 8.83 on MT-Bench. Remarkably, after fusing all
49 layers—layers that, if removed entirely, would damage performance severely—the model still
maintains similar MMLU and MT-Bench scores of 82.76 and 8.35 before any additional training.

Additional Training. To recover performance, we Table 1: Comparison of Ultra-253B-Base and
used KD as described in [3]. This involved a multi- its parent Llama-405B after applying FFN
stage distillation process: 54B tokens at 8k context, Fusion, KD, and alignment.

followed by 5B tokens each at 16k and 32k, and

finally 0.8B K 198k. The KD N Metric Llama-405B  Ultra-253B-Base
nally 0.65 tokens at ’ e PrOCESS M=~y U Instruct 86.53 87.54
proved MMLU and MT-bench scores to 85.17 and  yMmLU-Pro 71.92 79.95
9.10, respectively. Further optimization was explored  Arena Hard 72.56 84.92

. . . . HumanEval 85.97 86.58
through two methods. First, inexpensive alignment ' (501 0.06 9,10

via RLHF [43]]. Table [T] demonstrated that Ultra-
253B-Base surpassed Llama-405B’s capabilities, par-
ticularly on the Arena Hard benchmark. We applied only a longer continual pretraining (CPT),
without alignment, following the initial KD. This involved 73B tokens at a context length of 8k and
another 15B tokens at a context length of 258k, and also yielded strong performance, even before
instruction-based tuning (Figure d). Even after removing nearly half of the model’s attention layers,
we still improved its long-context performance, outperforming Llama-405B on RULER-128K [22]].

Efficiency ~ Tmprovements. Ultra-253B-Base  Taple 2: User latency under Tensor Parallel
achieves a 1.71x speedup in user latency (Table 2)), (TP) 8 on a single H100 node. A higher to-

a 35x lower per-token cost at batch size 32, and  kens/second value indicates lower latency for
reduced memory footprint with half the attention 4 gingle user.

layers and 253B parameters (down from 405B).
Ultra-253B-Base breaks the efficient frontier on Model Tokens/Second
a single H100 node, offering a state-of-the-art

accuracy and latency under the similar hardware Llama-4058 41.44
constraints (see Figure [5). Table [2] details the user 253B PreFusion 63.38 (1.53x)
latency (tokens/second) achieved by Llama-405B, Ultra-253B-Base  70.92 (1.71x)

by 253B model (with and without FFN Fusion), Llama-3.3-70B 94.03

and by Llama-3.3-70B, all under identical tensor

parallel settings on a single 8xH100 node. Notably, Ultra-253B-Base is 1.71x faster than the
parent for single-user decoding. On NVIDIA H200, its rate increases to 90.05 tokens/second.
With speculative decoding [27]—using Llama-3.2-1B-Instruct as a draft model with no extra
training—Ultra-253B-Base reaches 202 tokens/s on H200. This speculative decoding latency is
averaged over all MT-Bench completions. Notably, as TP size increases, the efficiency of the fused
FFN layers will increase further, and thus ready to benefit from improving hardware designs, such as
GB200 NVLT72 nodes. Overall, Ultra-253B-Base demonstrates that FFN Fusion coupled with the
Puzzle algorithm can greatly reduce a model’s depth at large scale.
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5 Additional Empirical Studies

In this section, we present empirical study to validate our approach. In Section [5.1] we present results
for FFN Fusion on a 70B model. Next, in Section[5.2] we examine the consequences of removing FEN
layers rather than fusing them, demonstrating that these layers are vital to preserving model quality.
In Section[5.3] we investigate the sensitivity of certain FFNs to fusion. Section [5.4] demonstrates
that the FFN Fusion phenomenon is applicable to a variety of models, spanning different scales and
families. Finally, in Section[5.5|we provide a hypothesis as to why FFN Fusion works.

5.1 FFN Fusion in 70B scale

We consider a derivative of Table 3: Evaluation of FFN Fusion. The Fusion
Llama-3.1-70B-Instruct created using the column indicates how many FFN layers were re-
Puzzle algorithm [3], which reduces the model placed by the corresponding number of new layers.
to 49B parameters while matching the original
accuracy. The Puzzle process prunes attention Model Fusion MMLU MT-Bench Accuracy
in specific layers, leaving two main sequences Baseline - 80.73 8.87 84.71
of consecutive FFN layers: layers 42-51 (10 Step1 |26 — 12| 80.64 8.72 83.92
layers) and layers 53-70 (18 layers). We Step2 |26 — 6| 80.29 8.54 82.84
evaluate FFN Fusion at four progressively Step3 |26 — 3| 80.39 8.30 81.69
increasing levels of intensity, each reducing the ~Step4 | 26 — 2 | 79.98 8.25 81.24
number of FFN layers more than the previous:

* Step 1: Fuse adjacent pairs of FFNs within each sequence of consecutive FFNs.
» Step 2: Merge neighboring pairs from Step 1 to form longer fused blocks of length 4 or 5.

* Step 3: Fuse the entire first sequence (layers 42-50) into a single FFN, and split the second
sequence (53-69) into two fused blocks.

* Step 4: Fuse the entire second sequence (53-69) as well, reducing each main FFN run to a
single layer.

Similarly to the Ultra-253B-Base, we chose to exclude the last FFN in each sequence. We perform
no additional training when applying these fusions. Table [3|reports each variant’s performance on
MMLU and MT-Bench, as well as a combined score Accuracy = (MMLU + 10 x MT-Bench) /2.
We observe that step-1 fusion reduces depth with only a 1% overall accuracy drop, while step-4
fusion (collapsing each sequence to a single layer) sees roughly a 4% drop.
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Figure 6: Accuracy vs. Latency for FFN Removal vs. Fusion.

5.2 Removing FFNs vs. FFN Fusion

An intuitive alternative to fusing FFNs is to remove the same FFN layers outright. However, as
shown below, large-scale removal generally leads to significant accuracy degradation, whereas fusion
preserves representational capacity by retaining all parameters in a single, parallel module. To
determine which FFNs to drop, we rely on Puzzle’s block-importance scores and remove the least
important FFNs first. We restrict removal only to the FEN-fusion regions. For the 49B model, we
observe a clear advantage for fusion over removal. Figure [6] compares the accuracy-latency trade-off
for two removal levels (15 or 20 FFNs removed) versus the two fusion steps. As we gradually
remove more FFNs, we decrease latency but see larger accuracy drops. By contrast, fusing step 3
yields a 10% latency improvement with only a 3.5% accuracy drop. Removing 15 or 20 FFNs yields
comparable or slightly higher latency gains (7.5% or 11%), but at steeper accuracy declines (5%
or 8.7%). Moreover, a brief knowledge-distillation phase (25B tokens) on the step-3 fused model

actually surpasses the baseline (MMLU: 80.56, MT-Bench: 9.00).

5.3 The Final FFN in Each Sequence is Sensitive to Fusion

With the 49B model, we observe that fusing the final FFN
in a long sequence often degrades accuracy more than fus-
ing earlier FFNs. Below, we summarize an ablation study
to highlight this phenomenon. Table 4| examines various
ways of fusing the two main FFN sequences (layers 42-51
and 53-70) in the 49B model. The first part of the table
compares fusing the entire second sequence ([53, 69] vs.
[54,70]) and the entire first sequence ([42, 50] vs. [43, 51])
in isolation, indicating that layer 70 is especially sensitive.
In the second part, we fuse both sequences simultaneously.
When either layer 51 or layer 70 is included in these large
fused blocks, we see additional performance drops. No-
tably, skipping the final FEN (e.g. fusing [42, 50] , [53, 69)])
yields higher MT-Bench scores than including layer 51 or
70. The final FFN in each attention-removed sequence
appears uniquely important to the model’s representations.

While most layers can be safely fused, incorporating the last FEN often triggers a significant accuracy
drop. Consequently, omitting this final FFN from the fused groups is typically a more reliable choice

for efficient fusion with minimal performance loss.

Table 4: Evaluating the impact of fusing
the final FFN in 49B scale. Fusing these
final layers often causes more accuracy

loss.
Sequence | MMLU MT-Bench
No Fusion 80.73 8.87
53,69 80.57 8.49
54,70 79.89 8.12
42,50 80.49 8.39
43,51 80.46 8.42
42, 50], [53, 69] 79.98 8.25
42,51],[53,60]  80.05 7.64
43,51),[54,70]  79.92 7.38
42,51],[53,70]  79.89 7.30




5.4 Additional Models

This section explores FFN Fusion on additional mod- Table 5: FFN Fusion impact on Mistral
els, evaluating its effectiveness across different scales Large 2 and Llama 3.1 8B Instruct.

and model families. @~ We applied FFN Fusion to
Llama-3.1-8B-Instruct [13] and Mistral Large 2 follow-  Fusion MMLU MT-Bench

ing a similar procedure as with our 253B and 49B models. Mistral Large 2
Specifically, we used the Puzzle algorithm on both models X 30.56 716
to remove a portion of their attention layers. Following v 80' 06 6‘76

this, we fused consecutive sequences of FFNs. For Mistral
Large 2, we removed 27 attention layers that resulted in 2 Llama 3.1 8B Instruct
sequences of 14 and 13 consecutive FFN layers. We fused X 68.91 8.28
each sequence (excluding the last FFN) to a single FFN v/ 68.22 7.99
layer. For Llama-3.1-8B-Instruct (32 layers), we removed
8 consecutive attention layers. We fused the sequence (excluding the last FFN) to a single FFN layer.
We also conducted a short KD training on the 8B model over 20B tokens and compared the results to
the original model. Table[5|provides a clear demonstration of FFN Fusion’s generalizability, showing
its effectiveness across additional models.

5.5 Fusion Explainability

In this section, we aim to further explain the phenomenon Table 6: Reverse order vs Fusion experi-
of FFN Fusion. We examine the functional structure of ment on Puzzle-49B.
LLMs that allows for the fusing of layers, specifically

84.00 83.88

focusing on the consecutive FFN layers after attention S Fusion Reverse
removal. First, we rewrite the token-level normalization equence Accuracy Accuracy
equation in an alternative form: ny(x;) = Ds,z;/||zs||, — [42,49] 83.74 83.52
where we replace the normalization parameters s, € R? [53, 60] 83.24 83.25
with a diagonal matrix D, € R4*?, with s, on the diago- {63, 67} 84.22 84.10

nal. This reformulation allows us to “push” the matrix into 63,70
its corresponding module—either attention or FFN—and
consider equations [1|and [4] as functions of the token direction T, = x; /|||, while ignoring the mag-
nitude. Figure@] (aand b), Similar to the measurements in [30], shows the cosine distance between X
and f (X)) for each layer of both models. The plot reveals that the FFN fusing areas—[42, 51] , [53, 70]
for the 49B model and [66, 115] for the 253B model—exhibit lower cosine distance compared to
other regions in the model. Assuming that small changes in the input to an FFN layer lead to small
changes in its output, we can conclude that fusing the FFNs with low cosine distance (except for
the last one) will not cause significant changes to the model. Specifically, by fusing the FFN layers,
we are altering the input for each layer, but the directional difference between the original input
(according to the original model’s structure) and the new input (resulting from fusion) remains small,
and the outputs should remain similar under the smoothness assumption. Another experiment (Table
[6) that strengthens this claim shows that even if we reverse the FFNs order instead of fusing them,
we get similar performances. The results in Figure |l 1| (c and d) present the relationship between
the layer input X and h(X) = f(X) — X. The small change in token directions may be linked to
the low cosine distance between h(X ) and X, but they are nearly orthogonal (with a distance of
around 0.95 for both models across all layers). However, a more suitable explanation comes from
the ratio |h(X)|| / || X ||, which is smaller in the fused regions. This suggests that h(X) is small
compared to X that it does not significantly affect the direction of X . Although this section can
also serves as motivation for FFN removal, we demonstrated in Figure [6|that removing these layers
significantly harms the model’s performance, to a much greater extent than fusion does. Both metrics
were evaluated using the Distillation Mix dataset.

6 Concluding Remarks

This work introduces FFN Fusion, a novel optimization technique that demonstrates how sequential
computation in large language models can be effectively parallelized. Through comprehensive
experiments at scales from 49B to 253B parameters, we showed that sequences of FFN layers can be
fused with minimal impact on model capabilities. Our work revealed couple of key insights: (1) FFN
layers in attention-removed regions exhibit remarkably low inter-layer dependencies, suggesting these



computations may be more independent than the sequential architecture implies; and (2) empirically,
final FFN layers in parallelizable sequences show higher sensitivity to fusion—an observation that
points to potentially meaningful structural patterns in how these models process information.

The practical impact of our work is demonstrated through Ultra-253B-Base, which achieves a
1.71x speedup in inference latency compared to its parent Llama-405B model, while requiring
35x lower per-token cost at batch size 32. Most remarkably, these efficiency gains come with
minimal degradation in model capability—in fact, Ultra-253B-Base matches or exceeds its parent’s
performance across key benchmarks despite using only 253B parameters compared to the original
405B.

Our findings open several promising research directions. First, the clear patterns in inter-layer
dependencies we observed could provide a new lens for model interpretability research. The ability to
identify which FFN layers operate independently versus those that require sequential processing may
offer insights into how these models structure and transform their internal representations. Second,
our preliminary finding that even full transformer blocks can sometimes be parallelized suggests
possibilities for new architectural designs explicitly optimized for parallel execution. Third, future
work could extend FFN Fusion to models incorporating Mixture-of-Experts (MoE) layers. Finding
a way to fuse MoE layers while maintaining sparse activation patterns and efficient expert routing
could lead to efficiency improvements. Finally, the strong performance of FFN Fusion at larger scales
raises intriguing questions about the relationship between model size and natural parallelization.

7 Societal Impact

The inference efficiency achieved through FFN Fusion, as demonstrated by its impact on operational
costs in Section ] significantly improves the accessibility of large language models. By reducing
these costs, a wider array of users and organizations can now better afford to deploy and leverage
these powerful technologies, effectively dismantling economic barriers.
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A Proof of Theorem 3.1]

Proof. The proof will proceed by induction. For the base case, we consider two FEN layers, FEN'
and FFN?. We will demonstrate that FFN* = FFN! + FFN?. The induction step follows naturally
from the associative property of addition.

(FFN'(X) + FFN*(X)) =(o(X(W3)") 0 X(WHT)Y(WHT + (e(X(WHT) 0 X(WH)T)(WH)T
=[o(X(W)T) o X(WHT, (X (WHT) o X (WHT] (Wi)"
=([o(X(W3)T), o (XWHD)] © [XWHT, X(WE)TH(W3)T
=(a(X(W3)") o X (W) ") (Wi)"
=FFN*(X)

where [+, -] is the concatenation of matrices along the second dimension. O

g

B Block Parallelization

In all previous experiments, we focused on fusing sequences of FFNs in attention-removed layers (see
Section[3). In that setting, the homogeneous structure of FFN-only layers permits straightforward
weight concatenation and fusion. However, when considering full block parallelization—where entire
Transformer blocks, each comprising both an attention module and an FFN, are run in parallel—such
fusion is not possible. This is because each full block consists of two distinct components, with
the attention output explicitly directed to its paired FFN. Running entire blocks completely in
parallel is not currently natively supported by heavily optimized inference frameworks such as
TensorRT-LLM or vLLM [24]]. Nevertheless, one can envision assigning each full block to a different
GPU, thereby maximizing parallelism and potentially achieving significant speedups. We use our
block-wise dependency analysis to examine the dependency structure between blocks and identify
candidate groups whose outputs are relatively independent. Such groups are ideal for parallelization
with minimal accuracy loss and could enable higher degrees of tensor parallelism—each full block
operating on its own set of GPUs—thereby improving inference throughput. In our experiments,
we implement these full block parallelization strategies using a more flexible environment (e.g.,
HuggingFace Transformers [46]), albeit with reduced optimization for large-scale deployments. A
thorough investigation of the actual speedups in specialized frameworks is left for future work.
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Figure 7: A visualization of FFN Fusion applied to SwiGLU. Two FFNs (left) are fused into a single
FFN (right).

Method. We first compute the block-wise dependency matrix exactly as in Section [3] We then
search for candidate sequences of 4 consecutive blocks to fuse. The choice of this number of blocks
is mostly related to hardware constraints. Arbitrary sizes will be considered in our future work. For
each such sequence [i,i + 3], i € [m — 4], we extract the corresponding M ["+3] € R*** submatrix
from the block dependency matrix and compute two statistics:

ML i+3] — max M[Z 2+3]7 ’L L+3] M 1,i+3]
™ kel M k;m

A lower M ,«, and My, indicates weaker dependencies among those blocks, suggesting they may
be more amenable to parallelization. We exclude any blocks that lack attention (shaded regions in
Figure [8b) because our focus here is on full Transformer blocks that contain both attention and FFN
modules. We employ a simple greedy algorithm to choose the best subsequences:

1. Choose the length-4 sequence starting index ¢* = arg min, MIE;?FS] .

2. If the argmin is not unique, break the tie using " = arg min, Ms[ﬁ}frg] (restricted to the set
from step 1).

3. Parallelize the blocks according to the chose sequence [i*,i* + 3].
4. Remove any overlapping sequences.

5. Repeat until no valid sequences remain.
The motivation behind this algorithm is to avoid choosing sequences with high
dependency pairs. The sum tie breaking is due to step-like characteristic of

M, statistic (see Figure [80). Table reports the downstream performance
(MMLU and MT-Bench) after fusing the sequences chosen by 4 algorithm steps.
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Results. From Table [/} we observe that par- Table 7: Comparison of MMLU and MT-Bench

allelizing the first and second sequence of four scores across different parallelization strategies .
blocks leads to only a modest drop in MMLU,

but once the third sequence is added, the de- Model Name MMLU MT-Bench

cline becomes much more pronounced. This .
suggests that full block parallelization is more cPlE) modlell (o iwsion) S0 =

challenging than FFN Fusion. These observa- Parallel Sequences

tions are supported by the block-wise depen- [38,41] 80.51 8.67

dency heatmap and the submatrix statistics (Fig- [38,41], [71, 74] 80.04 8.67

ure [§), both of which indicate stronger inter- [38,41],[71,74], [32, 35] 77.86 8.20
[38,41],

block dependencies and higher M, and Mo [38,41], [71,74] , [32, 35] ,[26,29] 56.12 6.62

values in full block sequences compared to at-
tention removed sequences. In addition, Figure [TT] shows that the full transformer blocks alter
significantly the tokens directions.
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Figure 8: (a) Block-wise Dependency Heatmap of the 49B model (log-scale). Darker blue hues
indicate weaker dependencies, darker red hues indicate stronger dependencies. (b) M,x and Mgy,
values for 4-Block Sequences of the 49B model. Lower values indicating more promising candidates
for parallelization.

C Datasets

For applying Puzzle throughout our experiments, we used the same dataset mixture used in [3]],
termed Distillation Mix. This mixture includes source code repositories, Wikipedia articles, books,
news websites, and several other domains. The dataset comprises 224 billion tokens collected from
three public datasets: FineWeb [34]], Dolma [40], and Buzz-V1.2 [21]. For Ultra-253B-Base KD
training we used the same data reinforced with synthetic data generated with Llama-405B, following
the [48] approach, to help further align Ultra-253B-Base with its parent model.

D Ultra-253B-Base and 49B Architecture Overview

In this section, we detail the configuration of each block in the Ultra-253B-Base model and highlight
several unique design choices introduced by the Puzzle framework on top of Llama-405B. Notably,
the model employs variable FFN widths, with scaling multipliers ranging from 0.4875 up to 4.875
across its 126 blocks. This variability allows the model to dynamically adjust capacity at different
depths, balancing performance with computational efficiency. Furthermore, it includes a sequence
of 50 consecutive layers that bypass the attention mechanism (denoted by no_op), dedicating these
layers entirely to FFN processing and creating an ideal region for FFN Fusion.

We observe a similar pruning pattern in the 49B model, which is derived from the Llama-3.1 — 70B
model using the Puzzle framework. Like its larger counterpart, the 49B model also features variable
FFN multipliers and blocks where attention is removed, although at a smaller scale. Figure[0lcompares
both architectures.
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Figure 9: A 2 x 2 overview of Ultra-253B-Base (top row) and 49B model (bottom row). Subfigures @)
and (b) illustrate the attention and FFN configurations, respectively, for the 253B model. Subfigures
and (d) show the corresponding layouts for the 49B model. Both architectures feature variable FFN
widths and regions where attention has been removed, although at different scales.

E MokE Inference Performance

MokEs show great promise in reducing inference costs and are currently spearheaded by DeepSeek-V3
[6]], a highly sparse MoE with a great performance. However, MoEs have their own problems in
inference.

E.1 Problems with Small Blocks

An underlying problem for MoEs paradoxically arises from the small size of their sub-modules.
Smaller layers incur large latency than expected for two reasons:

* GPU utilization - low level GPU overheads such as wave quantization produce latency
problems that become stronger as the module becomes smaller.

* Communication overhead - The All-Reduce operation that is typical for tensor parallelism
creates an overhead for communication. For small modules this overhead increases in
proportion.

MoE’s experts are smaller than dense MLPs and hence suffer more strongly from the above effects.
In addition the routing mechanism of MoEs is another small module that suffers accordingly. As a
result, dense models scale better with the number of GPUs while MoEs reach an early saturation.
It is worth to notice that this is in complete contrast to our FFN Fusing method that creates larger
modules that parallelize better, as visualized in Figure
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E.2 Batch Size Effects

MoEs behave very well for very large batch sizes. For such large workloads load balancing issues
are less dominant and low level overheads become negligible. However, smaller batch sizes are not
as efficient. Concretely, we define an efficient size of a batch through the perspective of analyzing
a linear layer. The performance of linear layers varies significantly with batch size. For small
batches, performance is limited by the time needed to read weights from DRAM (I/O bottleneck). For
large batches, performance becomes compute-bound, limited by the hardware’s maximal FLOPs/sec.
Notably, the latency of a linear layer remains the same for batch sizes 1 and 64, as both are dominated
by weight loading time. This makes small batches extremely inefficient. While other factors exist,
we consider a linear layer to operate efficiently once the number of tokens in the batch approaches 64,
and inefficient otherwise. MoEs require all experts to be fully utilized for high throughput. in practice,
the total batch is split across experts, significantly reducing the effective number of tokens each expert
sees. For example, with a sparsity factor of 1/32 (as in [3] 6]), a batch of 2048 tokens (64 x 32)
is needed to ensure each expert processes around 64 tokens. The case is more extreme in Llama 4
Maverick, where a 1/128 sparsity factor requires a batch of 8192 tokens (64 x 128) to reach this
threshold. These batch sizes are often impractical—especially in generation mode—leaving MoEs
to operate in a low-efficiency regime, where linear layers are under-utilized. We can thus conclude
that MoEs only really live up to their promise for very large batch sizes. For more commonly used
intermediate batch sizes they suffer from bad scaling with the number of tokens, larger low level
overheads, and worse parallelization scaling than dense models.

F Further Pairwise Block Dependency Analysis
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Figure 10: Replication of the block-wise dependency heatmap for Ultra-253B-Base PreFusion,
shown here for convenience. Each coordinate (i, j) represents the cosine distance between h/ (X))
and i) (X), quantifying how much block j depends on block i. Darker blue indicates weaker
dependencies, while darker red indicates stronger dependencies. The dotted box marks an attention-
removed region with generally low dependency values, suggesting high parallelization potential.

Figure [I0] offers a more detailed view of the block-wise dependency structure in Ultra-253B-Base
PreFusion. Below, we highlight several notable observations:

* Overall Color Scale. Each entry (i, j) in the heatmap corresponds to the cosine distance
between the outputs of block 7 when block ¢ is dropped versus when the model is intact.
A dark red hue signifies a strong dependency, meaning that omitting block ¢ substantially
alters block j. Conversely, dark blue indicates a weak dependency, suggesting that dropping
block ¢ does not notably affect block j.
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* Attention-Removed Region (Dotted Box). The dotted box highlights a region of consis-
tently low dependency values, where most blocks exhibit minimal mutual influence. This
area arises from attention pruning in those layers and is particularly well-suited for FFN
Fusion, since layers here can be more easily parallelized without significantly harming
accuracy.

* Crucial Early Blocks. Some blocks in the upper rows of the matrix (toward the top of
the y-axis) display consistently red cells across many columns. This indicates that certain
early layers have a strong influence on a wide range of subsequent blocks, making them less
amenable to parallelization.

* Sub-region with Sequential Reliance. A noticeable diagonal band of higher values appears
in some sub-regions, implying that each block in that band strongly depends on its immediate
predecessor. Such sequential reliance reduces the potential for parallelization in those areas,
since omitting any single block significantly affects the next one.

* Global Sinks at Later Layers. As we move toward deeper layers (near the bottom-right
corner), some blocks again show stronger dependencies, acting as “global sinks” that
consolidate information from many earlier blocks. Although the importance of certain
blocks may wane in mid-network regions, it can resurface in the final layers.

In summary, the dependency matrix reveals both strongly and weakly coupled sub-regions. High-
dependency zones require careful consideration to avoid accuracy loss if parallelization is attempted.

Conversely, low-dependency zones, such as the attention-removed region, offer a promising avenue
for efficient FFN Fusion.

G Fusion Explainability
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Figure 11: Per-layer metrics. Upper row is the cosine distance between f(X) and X for the (a) The
49B model and (b) Ultra-253B-Base model. Bottom row represents the ratio between h(X) and X
for the (c) The 49B model and (d) Ultra-253B-Base model.
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper describes all the details regarding the main method (FFN Fusion).
Training methods were based on previous work.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Error bars are irrelevant for the experiments in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

24



9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

26


paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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