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Abstract

Global seismic tomography, taking advantage of seismic waves from natural earth-
quakes, provides essential insights into the earth’s internal dynamics. Advanced
Full-Waveform Inversion (FWI) techniques, whose aim is to meticulously inter-
pret every detail in seismograms, confront formidable computational demands in
forward modeling and adjoint simulations on a global scale. Recent advance-
ments in Machine Learning (ML) offer a transformative potential for accelerat-
ing the computational efficiency of FWI and extending its applicability to larger
scales. This work presents the first 3D global synthetic dataset tailored for seis-
mic wavefield modeling and full-waveform tomography, referred to as the Global
Tomography (GlobalTomo) dataset. This dataset is comprehensive, incorporating
explicit wave physics and robust geophysical parameterization at realistic global
scales, generated through state-of-the-art forward simulations optimized for 3D
global wavefield calculations. Through extensive analysis and the establishment
of ML baselines, we illustrate that ML approaches are particularly suitable for
global FWI, overcoming its limitations with rapid forward modeling and flexible
inversion strategies. This work represents a cross-disciplinary effort to enhance
our understanding of the earth’s interior through physics-ML modeling.

1 Introduction

Global seismic tomography is a crucial yet intricate field within the earth sciences that facilitates
understanding the earth’s internal structure and dynamics. This discipline has wide-ranging applica-
tions, from the discovery of natural resources [69] and the assessment of seismic hazards [75] to the
exploration of our planet’s evolutionary history [11]. It utilizes seismic signals–earthquake-induced
ground vibrations–recorded at surface stations to invert and map the earth’s interior. The fundamen-
tal challenge in this field lies in the integration of forward modeling of seismic wave propagation
with FWI, both of which are essential for accurately correlating seismic data with velocity struc-
tures [55, 16]. However, accurately simulating seismic waves through the earth’s complex structures
and inverting this data is challenging due to the heterogeneous nature of terrestrial media and the
inherently ill-posed characteristics of FWI [65, 41].
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Figure 1: Overview of GlobalTomo. GlobalTomo is meticulously designed to tackle the pressing challenges
associated with global seismic wavefield modeling and full-waveform inversion via cutting-edge physics-ML
methodologies. In the forward modeling process, given specific source and velocity structures, the goal is
to predict the wavefield at various time steps and the resulting seismograms at surface stations. The inversion
process utilizes these seismograms as observational data to deduce the underlying velocity structures. Advanced
ML techniques enhance these processes through neural operator learning and rapid automatic differentiation,
substantially improving the efficiency of both forward modeling and inversion tasks.

Modern numerical simulation methods, such as finite difference methods [23], finite element meth-
ods [78, 43], and spectral element methods [24, 25, 27], are fundamental in the forward modeling
of seismic waves. Although these methods have proven effective, they impose significant compu-
tational demands, particularly when deploying higher-resolution models necessary for detailed geo-
physical interpretation. High-resolution imaging requires the simulation of high-frequency waves,
which in turn necessitates smaller time steps and finer spatial discretization. This is essential to pre-
vent numerical dispersion and maintain the stability of the simulations, as mandated by the Courant-
Friedrichs-Lewy condition [9]. Consequently, as the desired resolution increases, so does the com-
putational burden, exponentially escalating the required computational resources and time, thereby
introducing a substantial bottleneck [37].

The computational intensity of forward modeling significantly constrains the efficiency of FWI.
FWI aims to iteratively refine a model of the earth’s structure by minimizing the discrepancies be-
tween observed and simulated seismic data [48]. The prolonged computation times required for
forward modeling restrict the exploration of the model parameter space and limit the number of fea-
sible iterations [3, 29]. This limitation is particularly problematic when attempting high-resolution
inversions over extensive areas. Consequently, this situation highlights the critical need for more
efficient methodologies in both seismic forward modeling [45] and inversion strategies [1].

Recent advances in ML have shown significant promise in mitigating the aforementioned com-
putational challenges in seismic tomography. Techniques such as Physics-Informed Neural Net-
work (PINN) [7] and Neural Operator Learning [39, 35, 70] efficiently model complex physical
systems by approximating solutions to the underlying Partial Differential Equations (PDEs). These
methods have been successfully applied in fields including fluid dynamics prediction [4], new ma-
terial discovery [68], climate change modeling [46, 47], and enhancing biomedical treatments [38].
By significantly reducing computational time compared to traditional numerical simulations, these
ML techniques enable more efficient high-resolution seismic modeling and inversion. Furthermore,
modern ML approaches can generalize beyond trained scenarios, facilitating the exploration of pre-
viously uncharted earth’s interior.
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However, the efficacy of ML methods in geophysical applications is heavily contingent upon the
availability of extensive, high-quality training data. Currently, there is a significant lack of bench-
mark synthetic datasets specifically designed for global seismic tomography and the ML commu-
nity. Although datasets to support FWI [10, 15] have been introduced, they are mostly limited to
subsurface exploration scenarios and do not fully represent the earth’s entire scale, which is cru-
cial for high-resolution wave propagation modeling. This deficiency highlights a critical gap in the
resources needed to advance ML applications in this area.

In response to these challenges, we introduce GlobalTomo, the first comprehensive 3D global full-
waveform dataset specifically crafted for the ML community. Designed to support both forward
modeling and inverse problem studies, GlobalTomo includes high-resolution seismic simulations
that extend from the earth’s surface to its core. It features three data tiers and integrates acoustic
and elastic wave equations to cater to diverse seismic phenomena, enabling both data-driven and
physics-informed training. The dataset’s scope varies from a local scale of a 1-km radius simulated
at 20Hz to a global scale encompassing the entire earth’s radius of 6,371 km at a 30-second period.

GlobalTomo’s design is grounded in well-established geological studies [13, 18, 65] that provide
a credible distribution of earth’s internal properties, ensuring our model is adhering to recognized
physical and structural characteristics. For the specific application of earth tomography, we avoid
out-of-distribution scenarios, as they involve hypothetical or artificially generated distributions that
may lack geological relevance. We employ spherical harmonics to effectively parameterize veloc-
ity structures and account for variable seismic sources. Extensive benchmark analyses demonstrate
GlobalTomo’s capabilities in fostering generalization, accelerating forward modeling, and address-
ing the inherent ill-posedness of seismic inversion tasks. By providing GlobalTomo, we aim to
bridge the existing gap between geophysical sciences and the ML community, thereby enabling
more precise and efficient seismic modeling and inversion processes through ML-driven innova-
tions [44].

1.1 Related Work

Full-Waveform Inversion FWI has been extensively applied across a variety of domains, includ-
ing shallow crustal imaging [62, 20], continental tomography [5, 77], medical imaging [56, 71], and
nondestructive testing [50]. In seismology, classical FWI employs numerical simulations to derive
seismograms from an initial earth model and iteratively optimizes this model using the adjoint-
state method [63, 66]. While it has achieved significant success in both local and global inversions
[17, 19], FWI still confronts substantial challenges such as susceptibility to local minima [65] and
high computational demands especially when Bayesian methods are applied [73]. Emerging ML ap-
proaches, bolstered by comprehensive global seismic datasets, present promising avenues to address
these challenges, potentially leading to more efficient and precise FWI solutions.

Neural Operator Learning Neural operator learning has garnered significant attention for solv-
ing parametric PDEs, as evidenced by a range of pioneering studies [26, 36, 35, 70, 39]. Among
these, DeepONet stands out for its flexibility in modeling mesh-free spaces and producing continu-
ous solutions [39, 70]. Conversely, the Fourier Operator Learning (FNO) operates with mesh-based
inputs and outputs yet efficiently models the frequency domain and demonstrates rapid convergence
during training [35, 40]. Once trained, neural operators can swiftly predict solutions for new pa-
rameter sets with just a single forward pass. This capability is particularly advantageous in seismic
applications, enabling the instant modeling of wave propagation under various velocity structures
during inference. Such efficiency significantly streamlines the inversion process when compared to
PINN methods [57, 51].

2 Dataset Construction

2.1 Problem Definition

The primary goal of forward modeling here is to solve the 3D acoustic and elastic wave equations
governed by interior PDEs and boundary conditions detailed in Appendix B.1. The objective is
to predict the wavefield ϕc,s(p, t) at any spatial location p = (x, y, z) and time t across various
velocity structures c and source configurations s. This requires constructing and learning a nonlinear
operator G, which maps velocity and source information into a wavefield output function, G(c, s).
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The velocity structure c is captured by sensor measurements at predetermined points, expressed as
c = [c(p1), c(p2), ..., c(pm)]. The source s includes spatial locations and moment tensors. Given
inputs p and t, the function G(c, s) computes the wavefield ϕc,s(p, t). This approach models wave
propagation dynamics, aiding in accurate simulations and deeper geophysical understanding.

In particular, we monitor the displacements received by surface stations, known as seismograms, to
infer the earth’s underlying structures. The inversion problem can be formulated as:

c∗ = argmin
c

J(d,Φ(c, s)) + λF (c, s). (1)

Here, d represents the observed seismogram data. The function Φ(c, s) computes the seismograms
based on the velocity structure c and the source s. The term F (c, s) is a regularization function
that integrates prior knowledge and assumptions about the structure, while λ is a coefficient that
modulates the influence of the regularization term. The notation J denotes the L1 or L2 norm, used
here to measure the misfit between the observed data and the predictions.

Traditional FWI relies on numerical simulations to compute Φ(c, s) and uses adjoint methods for
optimizing c. Due to the intensive computational demand of simulations, the optimization process is
typically limited to a small number of iterations. We view ML methods as a potent tool to expedite
the forward simulation process and enable more flexible optimization strategies. The solutions of
modern ML approaches in addressing inversion problems are further discussed in Appendix G.1.

2.2 Model Configuration

For generating global wavefield and seismogram data for our dataset, we employ AxiSEM3D [32],
a forward simulator renowned for its efficiency in simulating global seismic wave propagation.
AxiSEM3D is exceptionally adaptable, allowing customization to various model complexities [31].
This simulator effectively utilizes the axisymmetry of global wavefields in a source-centered frame
and extends calculations into the azimuthal Fourier domain. Further details are discussed in Ap-
pendix B.2.

Our dataset comprises three tiers of increasing complexity, each supporting different training scales
and applications. The first tier simulates acoustic wave propagation through a 1-km radius fluid
sphere using a 20Hz mesh, providing a foundation in basic wave physics. The second tier extends
simulations to elastic wave propagation through an isotropic solid medium of the same scale, with
source variations. This scale is comparable to 600 km continental simulations at a 30-second period,
allowing exploration of complex P/S converted interactions. The third tier targets real-world earth
applications, integrating acoustic and elastic simulations from the earth’s surface to its core over a
30-second period, addressing planetary-scale wave propagation for detailed geophysical analyses.

Each model’s 3D structure within these tiers is developed by introducing perturbations ranging from
-10% to 10% to a 1D background model. These perturbations are meticulously designed to mir-
ror the subtle yet significant 3D heterogeneity of the earth’s interior, as uncovered by global tomo-
graphic studies [13, 18, 64]; even earth’s most extreme features, such as subduction zones and mantle
plumes, show velocity variations of less than 10% [54, 64]. Such adjustments are crucial for demon-
strating the impact of tomographic features on earth’s geochemical and geodynamical processes,
including mantle convection [67], subduction of tectonic plates [60], and deep mantle heterogeneity
such as the large low-shear-velocity provinces [6]. Further details on the configurations of each
model are provided in Appendix C.

Parameterization Perturbations within each defined layer are parameterized using real spherical
harmonics [8] up to degree 8, with radial values interpolated linearly between layers. Spherical
harmonics, employed as the basis for parameterization, are mathematical functions that define a set
of orthogonal functions on the sphere. These functions are particularly advantageous in geophysical
applications because they can naturally represent the spherical geometry of the earth. Although some
current mantle tomographic models offer higher resolution [53], spectrum analysis indicates that the
significant power predominantly resides at lower degrees [42, 54]. Consequently, our choice to limit
structural parameterization to degree 8 in the published dataset effectively captures the predominant
long-wavelength heterogeneity of the earth’s interior [59]. This approach reduces the number of
parameters and enhances the solvability of this inverse problem.
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Table 1: Simulation input and output size across three dataset tiers. The upper section of the table provides
basic information about the three data tiers, including specific parameters and configurations. The lower section
of the table details the dimensions of time, spatial elements, and predicted seismic data for each tier.

Category Variables Acoustic Elastic Real Earth

Input

Sample number 10,000 30,000 10,000
Background Uniform Uniform PREM
Time range 0-3 s 0-3 s 0-6000 s
Source 0 6 9
Structure 405 1215 5427

Dimension Time Element Seis Time Element Seis Time Element Seis

Output

Wavefield 15 58,368 1 15 58,368 3 20 263,520 3
Fourier 15 3,648 16 15 3,648 48 20 16,470 48
Seismogram 150 1,369 1 150 1,369 3 6,000 703 3
Storage 88.54 GB 657.28 GB 1795.24 GB

2.3 Data Generation

Table 1 details simulation inputs and outputs. Using Latin Hypercube Sampling (LHS), we gener-
ated a set of random velocity structures and source configurations for extensive parameter coverage
in the area of interest. Simulations were performed on a Dell PowerEdge R740 cluster with In-
tel Xeon Scalable processors (2,336 cores, up to 2.9GHz, 13,056GB RAM). Forward modeling for
Acoustic and Elastic tiers required about 2,800 and 8,400 CPU hours respectively, while seismic
simulations for the Real Earth tier needed about 100,000 CPU hours. Despite the high computa-
tional demands, this method is more cost-effective than traditional ones [64].

Our dataset comprises two types of output data. The first type is surface seismogram data, which
includes one-dimensional time series recordings of ground displacement at each surface station.
These seismograms are observable globally and are crucial for the inversion of the earth’s internal
structure. The second type is seismic wavefield data, capturing the propagating seismic wavefield
within the earth’s interior. Although this spatially dense wavefield cannot be directly measured
and used for traditional inversion, it reveals complex interactions between seismic waves and the
earth’s three-dimensional structure. The intricacies of the wavefield, which contain rich details, have
recently gained attention in global wavefield studies [30] but are often too challenging to identify
manually. We provide this intermediate wavefield data to facilitate the training of neural networks.
For detailed configurations and distribution of each type of output data, please refer to Appendix C.
We compare the related dataset with GlobalTomo from various aspects in Appendix E.

3 Experiments

We experiment with several ML baselines as the general solution operator for the 3D acoustic and
elastic wave equations to accompany GlobalTomo. These baselines, trained on the Acoustic and
Elastic tiers, serve as practical workflows for forward modeling tasks, predicting wavefields and
seismograms based on given velocity structures and source parameters. Wavefield predictions in-
clude 7 timesteps from 0 to 3 seconds, with each timestep consisting of 16 slices and 3,648 points per
slice. Seismogram predictions cover a series of time series of length 150 for 1,369 stations. These
forward modeling baselines are not only utilized to simulate data but also employed in inversion
tasks to refine the velocity structures based on their predictions. See Appendix D for pipelines.

3.1 Baselines

We implement our baselines using NVIDIA Modulus Sym [22], a framework designed for high-
performance scientific computing.

Mean Model (MM) The MM baseline calculates the average results from the training data and
uses these averages as predictions for the test data. Although this method does not capture complex
data patterns, it serves as a useful benchmark for assessing the performance of more sophisticated
models. Additionally, it provides insights into the overall distribution of the data.
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Table 2: Quantitative results of baselines. Performance of baseline models in forward modeling is evaluated
on the test set using RL2 and R. Results include both mean and standard deviation values. The average
inference time for each model is also presented.

Wave Model Representation Wavefield Seismogram Time
(ms)RL2 ↓ R ↑ RL2 ↓ R ↑

Acoustic

MM Vector 0.495±0.048 0.871±0.026 0.597±0.069 0.802±0.053 -
MLP Vector 0.356±0.035 0.937±0.012 0.446±0.051 0.896±0.026 1.771

H-Fourier Vector 0.397±0.054 0.917±0.066 0.594± 0.073 0.820±0.068 2.604
DeepONet Point 0.368±0.050 0.927±0.066 0.503±0.061 0.862±0.067 2.898

GNOT Point 0.300±0.014 0.954±0.004 0.564±0.041 0.829±0.026 2.985

Elastic

MM Vector 1.000±0.001 -0.006±0.113 1.000±0.001 0.001±0.116 -
MLP Vector 0.617±0.038 0.790±0.027 0.534±0.068 0.848±0.039 1.773

H-Fourier Vector 0.735± 0.061 0.689±0.048 0.613±0.067 0.790±0.049 2.397
DeepONet Point 0.682±0.035 0.734±0.031 0.565±0.065 0.826±0.043 2.775

GNOT Point 0.665±0.032 0.752±0.035 0.621±0.062 0.769±0.079 2.875

Multilayer Perceptron (MLP) The MLP baseline consists of a 6-layer fully connected neural
network, each layer having a hidden size of 500 and utilizing SiLU activation functions. This model
takes velocity structures as inputs and predicts both wavefields and seismograms.

Highway Fourier Net (H-Fourier) Considering the tendency of neural networks to favor low-
frequency solutions [49], we explore the use of a H-Fourier. This model combines the gating mecha-
nisms of Highway Networks [58] with the frequency domain learning capabilities of Fourier Neural
Networks [61]. The H-Fourier is designed to handle deep learning tasks requiring both complex
layer-to-layer transformations and frequency-specific learning, potentially more adept at managing
intricate patterns in seismic data.

DeepONet Instead of directly mapping velocity structures to fixed output grids, this approach
involves building a framework that models both wave propagation and seismogram generation on a
continuous spatial-temporal domain. We utilize the DeepONet [39], where the trunk net processes
inputs of positions and times, and the branch net handles velocity structures. The outputs from both
nets are combined through a dot product before passing through a linear output layer to produce
the final prediction. To improve training efficiency, we developed an optimized method for parallel
multiplication of the trunk and branch net outputs; see Appendix F.2.

Physics-Informed DeepONet (PIDO) While DeepONet is trained using standard supervised
learning, which might limit its generalization in high-resolution domains, we explore additional
capabilities with PIDO [70]. This model enforces physically consistent representations by incor-
porating interior and free-surface constraints during training. These constraints are integrated by
calculating the derivatives within the PDEs using automatic differentiation.

General Neural Operator Transformer (GNOT) The GNOT [21] leverages the strengths of both
neural operators and transformer architectures to effectively capture intricate spatial and temporal
dependencies in data. By utilizing a self-attention mechanism, GNOT can efficiently model long-
range interactions and handle high-dimensional inputs, enabling accurate predictions of dynamic
systems like seismic wave propagation.

3.2 Results

3.2.1 Forward Modeling

Generalization to unseen structures To investigate the ability of the baseline models to general-
ize across unseen seismic structures, we trained them using the last 90% of the velocity structures
available in our dataset. The first 10% of the structures were used as a test set to evaluate the models’
performance. Quantitative assessments were carried out using Relative L2 Loss (RL2) and Person
Correlation Coefficient (R) metrics.

Differences in baseline performance highlight the strengths of various modeling approaches. As
detailed in Table 2, MLP achieves high correlation coefficients and low RL2 values due to its effi-
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Figure 2: Qualitative forward modeling prediction by MLP in the Acoustic tier. A single slice is displayed.
The source is located at x = 0.00 and z = 0.80. The background illustrates the velocity structure. The
seismogram depicts the time series received by stations around the surface of this slice.
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Figure 3: Meta-analysis of forward modeling. (a) RL2, used to quantify error in wavefield prediction, shows
increasing trends over time across baseline models. (b) Once trained, ML emulation significantly outpaces
numerical simulations in speed, facilitating more iterations in inversion processes. (c) DeepONet, when trained
on timesteps 1, 3, 5, and 7, struggles to generalize to intermediate timesteps such as 2, 4, 6, and 8. Incorporating
physical constraints during training improves model performance on these denser timesteps.

cacy in capturing global patterns from vector-based representations even when the seismic signals
are sparse. Observations from training indicate that the H-Fourier model reaches low training errors
quickly, suggesting its proficiency in capturing frequency-based signals; however, it tends to overfit
the periodic details, resulting in limited generalization capabilities compared to the MLP. While
vector-based methods excel with structured data, they face challenges in predicting arbitrary coor-
dinates and time steps. In contrast, the point-based DeepONet and GNOT offer greater flexibility in
generalizing across different coordinates and time steps, supporting mesh-free predictions. Nonethe-
less, it requires more computational resources during training to achieve comparable performance
to the MLP. With similar width and depth, the model parameters of MLPs are 20 times (104.31M
v.s. 5.06M) larger than those in the point-based models. Further training details are available in
Appendix F. Qualitative evaluations, illustrated in Figure 2, corroborate these findings. The ML
baselines closely match the actual data across several time steps, capturing the complex dynamics
of wave propagation on unseen structures. As time advances, emulation errors tend to increase,
reflecting the growing complexity of wave dynamics over periods, as depicted in Figure 3a.

Complexity analysis The complexity of the acoustic and elastic waves comes from the intrinsic
mechanical properties and mathematical formulation. For instance, the acoustic wavefield only has
compressional (P) waves, while the elastic wavefield contains complex P/S converted energy. The
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performance of MM can serve as an indicator to reflect the dataset’s complexity and distribution
characteristics. Smaller error margins suggest more consistent patterns across velocity structures.
The Elastic tier, evidenced by the poorer performance of MM, exhibits greater complexity than the
Acoustic tier due to the intrinsic properties of the elastic wave equation and variations in source
dynamics. This trend is also corroborated by the performance observed across ML baselines.

Forward modeling speed A single round of forward simulation using a numerical solver requires
120 seconds with 24 CPU cores. In contrast, ML approaches achieve forward modeling speeds typi-
cally ranging from 1 to 3 milliseconds on a single GPU, making them about 60,000 times faster than
traditional methods. Note that the acceleration rate may vary with the degree of parallelism. While
most computational costs for ML seismic modeling are incurred during the generation of training
data, once trained, the neural operator can predict all wavefields in a single inference step. This
underscores the potential of ML approaches for real-time seismic modeling and extensive forward
modeling applications. For a comparative visualization, see Figure 3b.

Generalization to higher temporal resolution To evaluate the flexibility of FWI in real-world
scenarios through continuous wavefield prediction across the entire temporal domain, we tested
the generalizability of a trained neural operator to higher resolution snapshots. Specifically, we
utilized DeepONet, which accommodates mesh-free inputs. DeepONet was trained on a uniform
velocity structure using acoustic waves at timesteps 1, 3, 5, and 7, and subsequently evaluated on
a denser sequence from timesteps 1 to 8, within the same temporal range. The findings, illustrated
in Figure 3c, show that DeepONet, being purely data-driven, initially struggled with adapting to
this higher-resolution domain. To enhance its generalization capabilities, we incorporated physical
constraints (detailed in Appendix B.1) into its training process. This integration of physical prin-
ciples significantly improved DeepONet’s predictions on previously unseen timesteps, reducing its
dependency on extensive labeled training datasets for developing a super-resolution model.

3.2.2 Inversion

In this section, we explore how the generalization and acceleration capabilities of ML methods in
forward modeling can significantly improve the inversion process. We present three strategies to
address the challenges inherent in traditional FWI and enhance the efficiency of inversion.
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Figure 4: The inversion optimization
process. Performance improves through
optimization across 200 iterations. Higher
degrees capture increasingly shorter-
wavelength structures, enhancing model
fidelity.

Gradient-based optimization Following traditional
FWI methods, we initially set fixed parameters for estab-
lished baselines and iteratively refine the velocity model
to minimize the L1 misfit between the predicted and ac-
tual seismograms. Our optimization strategy employs
200 iterations of gradient descent using the LBFGS al-
gorithm, with a learning rate of 0.08 and a history size
of 30. A regularization term is integrated to promote sta-
ble convergence. We explore the effectiveness of gradient
information from ML forward models in aiding the inver-
sion optimization process. For each test structure, five
initial points are randomly selected, and optimization is
performed using the forward models pre-trained on the
acoustic tier. The inversion performance is assessed us-
ing R across various structural scales with 80, 245, and
405 free parameters corresponding to degrees 4, 6, and
8, respectively. We show the optimization process of the
best-performing model in Figure 4. The correlation be-
tween the inverted structure and the ground truth strength-
ens with each iteration step, confirming that ML-derived
gradients can effectively guide the inversion within 200
steps.

Sampling with multiple starting points The initial conditions significantly influence the perfor-
mance of inversion. To enhance inversion, we experimented with starting the optimization from
multiple initial points. Specifically, we used ML forward modeling to generate 1,000 random start-
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ing points for each structure in the test set using LHS. Each starting point underwent optimization
with the chosen algorithm, and the best result was selected for analysis. As illustrated in Figure 5,
performance consistently improves with an increase in the number of starting points across vari-
ous structural scales. This suggests that using more starting models could further boost inversion
efficacy.
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Figure 5: Inversion with increasing start-
ing points. Correlation between the inverted
models and the ground truth strengthens as
the number of starting points increases. Per-
formance on different degrees shows a con-
sistent trend.

In summary, both increasing the number of optimization
steps and using more starting models significantly en-
hance inversion performance. This underscores the abil-
ity of ML emulation to effectively tackle the challenges
of ill-posedness and local minima—issues that are often
problematic in traditional numerical solvers due to the
high computational demands of extensive forward mod-
eling. The ML methods allow for a more comprehen-
sive exploration of solution spaces, thus achieving accu-
rate and robust inversion.

Direct inversion mapping An alternative inversion
strategy is to directly map observed seismograms to ve-
locity structures. This method bypasses the conventional
requirement for a forward ML model, potentially ad-
dressing the optimization challenges inherent in tradi-
tional FWI. We evaluated this approach by training the
InversionNet-3D [10] with a 3D CNN backbone and an
InversionMLP with 6 fully connected layers and 1000
hidden units, designed to input acoustic wave seismogram
data and output velocity structures. Post-training, these
models predicted reasonable velocity structures across various degrees in an unseen test set.

Table 3: Quantitative inversion results. The OI strat-
egy uses pre-trained forward models. The DI strategy
predicts velocity structures directly.

Model R ↑ MAE ↓ RMSE ↓
MLP+L-BFGS 0.415 0.437 0.528
DeepONet+L-BFGS 0.225 0.482 0.569
H-Fourier+L-BFGS 0.161 0.618 0.750
InversionNet-3D 0.794 0.272 0.356
InversionMLP 0.826 0.253 0.335

The InversionMLP achieved the best average
R of 0.826, MAE of 0.253, and RMSE of
0.335. Visualization of these results is pro-
vided in Figure 6. This direct inversion map-
ping approach offers promising insights into
solving ML-based inversion problems more ef-
ficiently. The quantitative inversion results for
both optimization-based inversion and direct
inversion can be found in Table 3. A check-
board test in Appendix I.3 further validates the
robustness of the direct inversion method.
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3.2.3 Discussion and Future Work

• Uniqueness of GlobalTomo. The universality and representativeness of the dataset are critical for
ensuring robust performance when applying the trained network to real-world data. In the realm of
earth science, we benefit from concentrating on a single, unique object–the earth–from its surface
to its core. Unlike datasets from localized explorational sites, which can vary significantly, our
dataset is crafted to encapsulate the global attributes of the earth’s interior. This focus enhances the
dataset’s applicability as all simulations and models are framed within a consistent setup. Future
work could expand by directly incorporating more degrees of spherical harmonics to explore the
earth’s interior with greater detail.

• Broader interest of GlobalTomo. Beyond application in earth, our dataset is also crucial for
advancing planetary sciences, especially for celestial bodies like Mars and the Moon. Seismic
data for these planets are rare and costly to obtain. A pre-trained model that simulates seismic
activity on these bodies can significantly improve our understanding of their interior.

• Potential of ML. ML presents an efficient approach to addressing long-standing scientific chal-
lenges. Utilizing a finite set of simulated data that incorporates physics-inspired efficient repre-
sentations, ML can perform global forward modeling and inversion across various structures and
scales with minimal time investment. The accuracy of these methods could be further enhanced by
increasing dataset size and adopting more advanced models. Furthermore, ML can be developed
to reconcile gaps between synthetic simulation outcomes and real-world data.

4 Conclusion

In this work, we introduce GlobalTomo, a comprehensive 3D global full waveform dataset for
physics-ML research in forward modeling and FWI. By synthesizing high-fidelity seismic data
across a range of scales and complexities with efficient spherical parameterization, GlobalTomo fa-
cilitates the advanced training and evaluation of ML models in the realm of seismic tomography. Our
extensive evaluations confirm that ML-based approaches, supported by GlobalTomo, substantially
enhance the efficiency and scalability of seismic wavefield modeling and FWI processes. Moreover,
this dataset offers new possibilities for integrating machine learning with physics-based modeling.
Through this cross-disciplinary endeavor, we anticipate that the convergence of advanced machine
learning techniques and traditional geophysical methods will accelerate discoveries in earth science,
promoting a deeper understanding of the earth’s interior dynamics and supporting critical applica-
tions such as resource discovery and hazard assessment.
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A deeper understanding of the earth’s internal structure brings numerous societal benefits, including
improved disaster preparedness and mitigation, safer urban planning and infrastructure development,
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have stated the two problems in geophysics and
the advantages and contributions of using ML approaches to tackle the challenges.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 3.2.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 3.2.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly mentioned the license of AxiSEM3D in Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [Yes]

Justification: We provided a dataset on Hugging Face with data structure, license, and code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Data and Code Access

We have released our dataset on our website https://global-tomo.github.io/. The data can also
be directly accessed in Hugging Face https://huggingface.co/datasets/lishiqianhugh/globaltomo/.
The code for data loading, training, and evaluation has been documented and published on
https://github.com/lishiqianhugh/GlobalTomo/. We will continuously update and maintain both the
code and data to ensure they reflect the latest advancements.

B Physical Representations

B.1 Physical Constraints

We describe the physical constraints of the seismic wave propagation that can be used in the training
process of neural networks. For the acoustic dataset tier, the wave propagation follows the acoustic
wave equation in the fluid domain Ωf :

∂2
t χ

κ
= ∇ · (∇χ

ρ
), in Ωf . (A1)

The output displacement u = ∇χ/ρ, χ denotes the wave potential, ρ represents the fluid density,
and κ represents the bulk modulus. The acoustic dataset has a pressure-free boundary condition that
can be stated by:

χ = 0, on ∂Ωf . (A2)

The elastic wave propagation in the solid domain Ωs follows:

ρ∂2
t u−∇ · (C : ∇u) = 0, in Ωs. (A3)

where C represents the elasticity tensor. The elastic dataset has a traction-free surface boundary
condition:

n̂ · (C : ∇u) = 0, on ∂Ωs. (A4)
The Real Earth tier is a combination of these two scenarios. The seismic wave propagation in the
fluid outer core follows Equation (A1) while in the resting solid places follows Equation (A3). This
tier still has a traction-free boundary condition same as Equation (A4). The solid-fluid coupling is
controlled by the displacement- and stress-continuity condition on the fluid-solid interface Σ:

n̂ · u = χr/ρ , n̂ · (C : ∇u) = ∂2
t χn̂ on Σ. (A5)

B.2 Expansion to Azimuthal Fourier Domain

Describing the 3D earth is memory-consuming. Inspired by the smoothness and symmetry found in
the physical properties of the earth, representing the wavefield in the Fourier domain can achieve a
more efficient description. If the time-dependent equations of motion can be generalized in compu-
tational domain Ω as:

L u = f (A6)
The displacement u, operator L , and external forces f will be characterized to the required azimuth
resolution defined by nu:

u(r, θ, ϕ; t) =
∑

|α|≤nu

uα(r, θ; t) exp(iαϕ) (A7)

L (r, θ, ϕ; t) =
∑

|β|≤nu

L β(r, θ; t) exp(iβϕ) (A8)

f(r, θ, ϕ; t) =
∑

|γ|≤nu

fγ(r, θ; t) exp(iγϕ) (A9)

Thus this method reduces the dimension of azimuth that is needed to solve a true 3D problem and
saves huge computation costs while also ensuring the accuracy of the solution. If we apply the
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structural parameterization of spherical harmonics and determine the highest degree of the model,
AxiSEM3D currently has the best theoretical efficiency for calculating their global wavefields,
which only need 2nu times the computation of a 2D problem. In GlobalTomo, we provide the
Fourier series of the wavefield for building more robust forward models with efficient representation
in the future.

B.3 Weak Formulation and Dimension-Reduced Form

The weak formulation of the elastic equation can be obtained by taking dot product with an arbitrary
test function w and integrating by parts over the volume Ωs:∫

Ωs

(
ρ∂2

t u ·w +∇u : C : ∇w
)

dx3 =

∫
Ωs

f ·wdx3 (A10)

The stress-free boundary condition is thus naturally merged into the weak formulation of the con-
straint.

Its corresponding dimension-reduced form in a 2D domain D can be written down as:∑
|α|≤nu

[⟨ρ−(α+β)∂2
t u

α,wβ⟩D + a
−(α+β)
D (uα,wβ)] = ⟨f−β ,wβ⟩D

∀wβ inD, ∀β ∈ {−nu, ..., nu}
(A11)

⟨uα,wβ⟩D :=

∫
D

uα
i w

β
i sdsdz (A12)

aγD(uα,wβ) :=

∫
D

uα
i,jC

γ
ijklw

β
k,lsdsdz (A13)

where the azimuthal expansion of u, f , ρ, and C follows:

u =
∑

|α|≤nu

uα(s, z; t)Ψα(ϕ) (A14)

f =
∑

|α|≤nu

fα(s, z; t)Ψα(ϕ) (A15)

ρ =
∑

|α|≤nu

ρα(s, z; t)Ψα(ϕ) (A16)

Cijkl =
∑

|α|≤nu

Cα
ijkl(s, z; t)Ψ

α(ϕ) (A17)

Here, Ψα(ϕ), α ∈ {−nu, ..., nu} denote the azimuthal Fourier modes,

Ψα(ϕ) := exp(iαϕ), i =
√
−1. (A18)

C Earth Configuration Details

C.1 Concept Illustration

• Source: Described by location and moment tensor, a source of seismic energy can be either natural
or artificial.

• Velocity Structure: Refers to the distribution of seismic wave velocities within the earth’s inte-
rior, determined by the physical and chemical properties of the materials.

• Wavefield: The spatial pattern of wave propagation within the earth.
• Seismogram: The recordings of ground motions received by stations on the surface.
• Forward Modeling: The process of computing numerical solutions of the wave propagation from

a defined model of the earth’s interior.
• Full Waveform Inversion (FWI): An advanced seismic inversion technique that leverages the

entire seismic waveform signals to develop high-resolution models of the earth’s interior.
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C.2 Three Dataset Tiers

We introduce the details of the three tiers generated by AxiSEM3D. The simulator is licensed under
the MIT license at https://github.com/AxiSEMunity/AxiSEM3D.

Our dataset includes three tiers of synthetic seismic data. The first tier models acoustic wave prop-
agation through a fluid sphere with a 1-km radius using a 20 Hz mesh. The second tier models
elastic wave propagation through an isotropic solid medium of the same scale, with variations in
the source. The third tier is designed for real-world earth applications, integrating both acoustic and
elastic simulations over a 30-second period.

We export the 3D velocity perturbations in Cartesian coordinates to facilitate rapid interpolation
and retain the original spherical harmonics coefficients for use in network training. To ensure the
adherence to physical constraints, we disable attenuation.

Acoustic Ball The acoustic ball model is designed on a 1000 m radius ball with pure fluid medium
and a mesh accurate to 20 Hz. This set of models has a pressure-free boundary condition. The wave
propagation in the model obeys the acoustic wave equation. The medium only has the P-wave
velocity (vp) attribute. The 1D background model has a uniform vp value of 1.0 km/s across the
ball. The 3D superimposed velocity perturbation is parameterized by spherical harmonics up to
degree 8, leading to 81 spherical parameters per layer, multiplied by 5 layers, resulting in 405 free
parameters in total.

The source is located at a fixed 200 m depth at the north pole with a fixed fluid pressure source.

Elastic Ball The elastic ball model is also designed on a 1000 m radius ball with pure elastic
medium and a mesh accurate to 20 Hz. This set of models has a stress-free boundary condition.
The wave propagation in the model obeys the elastic wave equation. The isotropic medium only has
three independent attributes: P-wave velocity (vp), S-wave velocity (vs), and density (rho). The 1D
background model has a uniform vp value of 1.5 km/s, vs value of 1.0 km/s, and rho of 1.0g/cm3

across the ball. The 3D superimposed velocity perturbation is parameterized by spherical harmonics
up to degree 8, leading to 81 spherical parameters per layer, multiplied by 5 layers and 3 medium
attributes, resulting in 1215 free parameters in total.

The source is located at a fixed 200 m depth at the north pole with a variable moment tensor source
mechanism. This introduces 6 extra free parameters in source terms.

Real Earth This set of models is designed for the ultimate real-earth applications. We utilize the
isotropic PREM [12] background model and a global mesh with a period accurate to 30 seconds
that encompasses various earth’s layers including the crust, mantle, outer core, and inner core, each
characterized by their unique seismic attributes. The Real Earth tier has a stress-free boundary
condition. The 3D velocity perturbations are imposed on the earth’s internal 23 discontinuities,
resulting in a total of 5427 free parameters up to degree 8 across the whole earth.

The source is located at stochastic depths between 0 - 800 km at arbitrary geographical coordinates
with a variable moment tensor source mechanism. This introduces 9 extra free parameters in source
terms.

Surface Seismogram Output The seismogram data contains a one-dimensional time series
recording ground displacement at each surface station. Each trace is low-pass filtered to 30 seconds
to avoid numerical noise. We place such stations evenly along latitude and longitude to represent
a spatially abundant coverage. The actual station deployments limit the real seismic data coverage,
however, this issue can be considered by dumping part of the data during the application. The seis-
mogram data can be observed globally and be used in the inversion of the earth’s internal structure.

Seismic Wavefield Output The seismic wavefields are saved in discrete 15 or 20 time snapshots,
(total time = 3 s or 6,000 s), represented by 16 azimuthal slices with 3,648 or 16,470 (from surface
to the core) element points in each. Besides, we also saved the azimuthal Fourier coefficients of the
global wavefields for a continuous and compact representation in three dimensions. The wavefields
and the seismograms are saved as HDF5 files for fast loading.
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C.3 Data Distribution

We visualize the data distribution of three tiers in Figure A1, Figure A2, and Figure A3, respectively.
The spherical harmonics coefficients are sampled by LHS, which is finally used to construct velocity
perturbations. The exact representation of the spherical harmonics basis function is constructed by:

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ), eimϕ (A19)

where Pm
l are associated Legendre polynomials defined by

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x). (A20)

We realized this function in SciPy module. The velocity structure is given by:

F (θ, ϕ) =

8∑
l=0

l∑
m=−l

LHScoeff · Ylm(θ, ϕ) (A21)

Thus, the variability of the model is guaranteed by the LHS coefficient of spherical harmonics. The
final constructed velocity perturbation can also be viewed as a linear transformation based upon the
spherical basis function.
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Figure A1: Data distribution of the Acoustic tier. We visualize the data distribution using t-SNE (t-distributed
Stochastic Neighbor Embedding) in subfigures (a), (c), and (e), where the noise-like shape indicates the vari-
ability in our dataset. Additionally, we present the distribution of Cosine similarity to the mean in subfigures
(b), (d), and (f) to illustrate how the distribution of input spherical harmonics shifts towards those of the output
seismogram and wavefield. The low similarity of spherical harmonics, sampled from -0.025 to 0.025 in the
range of interest, further demonstrates the variability of velocity structures. Note that the high average similar-
ity in seismogram and wavefield data stems from the intrinsic simplicity of the acoustics waveform and doesn’t
indicate the input structures are not diverse.
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Figure A2: Data distribution of the Elastic tier. We visualize the data distribution using t-SNE in subfigures
(a), (c), and (e), where the noise-like shape indicates the variability in our dataset. Additionally, we present
the distribution of Cosine similarity to the mean in subfigures (b), (d), and (f) to illustrate how the distribution
of input spherical harmonics shifts towards those of the output seismogram and wavefield. The low average
similarity in seismogram and wavefield data stems from the intrinsic complexity of the elastic waveform and
its sensitivity to different velocity structures.
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Figure A3: Data distribution of the Earth tier (only 100 samples are shown due to memory cost). We
visualize the data distribution using t-SNE in subfigures (a), (c), and (e), where the noise-like shape indicates
the variability in our dataset. Additionally, we present the distribution of Cosine similarity to the mean in
subfigures (b), (d), and (f) to illustrate how the distribution of input spherical harmonics shifts towards those of
the output seismogram and wavefield.
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B: batch size
H: harmonics dim
T: time step
S: slice num
P: point num
NN: neural network

Learnable

Fixed

NN

(a) Forward modeling

NN

(b) Optimization-based inversion

(c) Direct inverse mapping

NN

Velocity structure
(B, H)

Seismogram
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Velocity structure
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Optimizing target: Velocity structure

Optimizing target: NN

Seismogram
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Velocity structure
(B, H)

Optimizing target: NN

Figure A4: The pipeline for forward modeling, optimization-based inversion, and direct inverse mapping.
(a) In forward modeling, the neural network (NN) is trained by using velocity structures as input and generating
the corresponding seismogram as output. Once trained, the model parameters are fixed. (b) In the optimization-
based inversion, the velocity structure is adjusted to match the observed seismogram. (c) In direct inverse
mapping, a neural network is trained to directly predict the velocity structure from the observed seismogram
input.

D Forward and Inversion Pipelines

We visualize the pipelines of forward modeling, optimization-based inversion, and direct inverse
mapping in our work in Figure A4. Specifically, the input, output, and optimizing target are high-
lighted in different processes.

E Comparison with Other Related Datasets

We contrasts the GlobalTomo dataset with prior works across several key aspects in Table A1. The
comparison highlights the differences in scale, data utilization, parameterization, and simulation
methods. GlobalTomo is first designed for global-scale inversion, incorporating the entire wave-
field and receiver data, utilizing spherical harmonics for structural parameterization, and employing
spectral element methods (SEM) for efficient simulation. In contrast, prior works (e.g., OpenFWI
[10], E-FWI [14]) typically focus on local-scale applications, use only receiver data, rely on mesh
representation, and often employ finite difference methods (FDM) for simulation. DiTing [76] and
SeisBench [72] are particularly designed for phase picking, denoising, and earthquake detection
instead of earth tomography.

F Baseline Model Details

F.1 Evaluation Metrics

The RL2 metric is particularly valuable in scenarios where it’s crucial to evaluate the performance
of predictive models across datasets of varying scales or inherent variability. By normalizing the
Mean Squared Error (MSE) with the variance of the actual values, this metric effectively renders the
error measurement scale-independent. The formulation is as follows:
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Table A1: Comparison with prior related datasets.

Category Perspective OpenFWI E-FWI DiTing SeisBench GlobalTomo

Scale Global ✓ ✓
Local ✓ ✓ ✓ ✓

Wave type Acoustic ✓ ✓
Elastic ✓ ✓ ✓ ✓

Data utilization Wavefield ✓
Receiver ✓ ✓ ✓ ✓ ✓

Structural
parameterization

Sph. harmonics ✓
Mesh ✓ ✓

Simulation method FDM ✓ ✓
SEM ✓

Relative L2 Loss =

√∑n
i=1(yi − ŷi)2∑n
i=1(yi − y)2

(A22)

where yi and ŷi denote the actual and predicted values of the i-th observation, respectively. y is the
mean of all actual values in the dataset, calculated as 1

n

∑n
i=1 yi.

We also use the Person Correlation Coefficient (R) to measure the similarity between the prediction
and ground truth. The R is given by:

R =

∑
(yi − y)(ŷi − ŷ)√∑

(yi − y)2
∑

(ŷi − ŷ)2
(A23)

F.2 Efficient DeepONet Design

The original DeepONet takes paired velocity structure and spatial-temporal points for the trunk
network and branch network. The output of DeepONet is calculated by combining the outputs from
the branch and trunk networks, typically through a multiplication operation. Specifically, if the
output from the trunk network is a = [a1, a2, . . . , ad] and the output from the branch network is
b = [b1, b2, . . . , bd], then the predicted value ϕ̂(p, t) at output position p and time t is given by:

ϕ̂(p, t) =

d∑
i=1

ai · bi(p, t) (A24)

Here, ai and bi(p, t) are the features obtained from the branch and trunk networks, respectively, and
their product followed by summation forms the estimate of the output function.

During training, this network is optimized to minimize the error between the true output ϕ(p, t) and
the predicted output ϕ̂(p.t), typically using the mean squared error as the loss function:

Loss =
1

n

n∑
j=1

(
ϕ(pj , tj)− ϕ̂(pj , tj)

)2

(A25)

where n is the number of output points.

However, this is memory-consuming since the velocity structures are duplicated for each point.
Indeed, one velocity structure can be paired with a group of spatial and temporal points P, T simul-
taneously. Inspired by [40], we employ a more efficient DeepONet that can predict the whole 3D
outputs just using one forward of branch net. The calculation of the output function now is given
by:
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Φ̂(P, T ) =

d∑
i=1

ai ·Bi(P, T ) (A26)

where Bi(P, T ) indicates a vector of the i-th latent feature from a batch of points in the same velocity
structure. Φ̂(P, T ) indicates a group of predicted output in the same structure. Suppose the input
dimensions of the velocity structure and the spatial-temporal point are m and 4, respectively, the
memory usage in the modified DeepONet can be 4+m

4+m/n times smaller than the original one. The
training speed is about 3 times faster.

F.3 Hyperparameters

For reproducibility, we present the training configuration of baselines in Table A2 and Table A3. We
employ the SiLu activation function and use the Adam optimizer for parameter tuning. The initial
learning rate is set at 0.0003, and it decreases exponentially by a factor of 0.95 every 1000 steps.
Both the MLP and H-Fourier models consist of six layers with 500 neurons each. The DeepONet
model features six layers of 600 neurons each, and includes trunk and branch projection layers, each
with 1000 neurons. The final output is computed via a dot product of the latent trunk and branch
vectors. The GNOT model has 4 attention layers with a hidden size of 256.

The MLP and H-Fourier models are trained on a single A800 SXM4 80GB GPU. In contrast, Deep-
ONet and GNOT require 8 A800 SXM4 80GB GPUs for training due to the substantial increase in
data size associated with point-based prediction.

Table A2: Wavefield model details.

Wave type Model Layer num Hidden size Training steps Input size Output size

Acoustic
MLP 6 500 10000 405 408576

H-Fourier 6 500 3000 405 408576
DeepONet 6 600 100000 405+3 1

GNOT 4 256 200000 405+3 1

Elastic
MLP 6 500 30000 1221 408576

H-Fourier 6 500 7000 1221 408576
DeepONet 6 600 40000 1221+3 1

GNOT 4 256 300000 1221+3 1

Table A3: Seismogram model details.

Wave type Model Layer num Hidden size Training steps Input size Output size

Acoustic
MLP 6 500 10000 405 205350

H-Fourier 6 500 3000 405 205350
DeepONet 6 600 100000 405+3 1

GNOT 4 256 200000 405+3 1

Elastic
MLP 6 500 10000 1221 205350

H-Fourier 6 500 4000 1221 205350
DeepONet 6 600 100000 1221+3 1

GNOT 4 256 300000 1221+3 1

G Discussion

G.1 Comparison of Modern ML-based Inversion

Here we discuss the difference between modern ML-based inversion approaches. The two most
dominant schools are PINN and neural operator learning.

We first recall the formulation of the inversion problem.

c∗ = argmin
c

J(d,Φ(c, s)) + λF (c, s). (A27)
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In comparing the inversion strategies of PINN and operator learning, we observe distinct paths of
optimization. The PINN-based approach seeks to optimize the model parameters c in conjunction
with the forward modeling function Φ [51]. Thus, the c and Φ are closely coupled and the inversion
of different structures requires training from scratch. This method limits the model’s ability to
generalize across different velocity structures.

In contrast, the operator learning approach addresses this limitation by initially learning a universal
operator to model forward problems across all c [74]. Subsequently, it fine-tunes the model param-
eters c for each specific case using the pre-trained Φ. Once trained, the neural operator can achieve
inversion on any structures in inference time.

Our study adopts the latter approach to achieve fast and flexible inversion. We study both the
sampling-based and optimization-based methods when using the pre-trained neural operator to solve
the inversion problem.

G.2 Is Predicting Wavefield Necessary for Inversion?

As shown in Section 3.2.2, direct inverse mapping demonstrates better inversion performance than
the optimization-based method. We want to discuss whether predicting wavefield is still necessary
from the aspects of complexity, interpretability, and flexibility.

Complexity Direct ML inversion methods offer an efficient alternative to traditional optimization-
based approaches by using neural networks to approximate the inverse mapping from data to subsur-
face properties directly. This method significantly cuts down on computational time and resources,
simplifying the traditional iterative inversion process into a single step. In contrast, splitting the
FWI process into two stages might increase complexity regarding the implementation and integra-
tion of different computational frameworks or software tools. Additionally, more stages could lead
to greater cumulative errors.

Interpretability Predicting the wavefield explicitly as part of the inversion process can enhance
the interpretability of the results. In FWI, the aim is to reconstruct the subsurface properties us-
ing wave propagation data. Although direct inverse mapping can produce a result of the inferred
structure, it doesn’t explicitly model the intermediate process and tends to lack transparency in its
operations. By decomposing the inversion into two distinct phases—predicting the forward wave-
field and then optimizing the subsurface model—researchers can trace the effects of specific inputs
or changes in model parameters on the outcomes. This division aligns closely with traditional FWI
methods where each step of the process can be examined and understood separately. Furthermore,
explicitly modeling the wavefield allows for a more detailed examination of the physical accuracy
and stability of the inversion process, enabling researchers to validate and refine the underlying
physical models being used.

Flexibility Predicting the wavefield explicitly provides opportunities to apply a broader range of
optimization strategies tailored to specific challenges or characteristics of the data. For example, if
the predicted wavefield is treated as a separable component, researchers can implement advanced
gradient methods such as adaptive step-sizing or preconditioning. These techniques can address
specific dynamics of wave propagation in different geological settings, potentially enhancing the
accuracy and efficiency of the inversion. Preconditioning, in particular, can help tackle issues like
the ill-posed nature of the inversion problem or the presence of sharp local minima by altering the
optimization landscape.

G.3 Connection with Other Fields

Similar to the challenges of interpreting the human mind in the field of intuitive physics, the task of
inverting earth’s structure involves comparable approaches and discussions.

Both seismic inversion and intuitive physics deal with inverse problems—inferring causes from
effects. Seismic inversion back-calculates to infer the earth’s interior from surface measurements
[65]. Similarly, intuitive physics tries to deduce the cognitive rules or mental models that people use
to predict physical outcomes from their observed behavior in experimental settings [28].
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Regarding methodologies, both fields heavily utilize computational models. In seismic studies, nu-
merical methods and statistical models predict how geological features influence seismic waveforms
[63, 66]. Similarly, in intuitive physics, physics engines simulate how humans might predict physi-
cal interactions in their surroundings [2, 34]. Machine learning, particularly neural networks, plays
a significant role in both areas. In seismic inversion, neural networks can be trained to recognize
patterns in seismic data that correlate with specific subsurface structures [74]. In intuitive physics,
neural networks model human prediction and reasoning processes about physical laws, learning to
mimic human judgment [33].

Uncertainty management is crucial in both domains. In seismic inversion, uncertainties arise from
limited sensor coverage and noise in data. In intuitive physics, uncertainties stem from the variabil-
ity in human perception and cognitive biases. Both fields develop methodologies to handle these
uncertainties, often through probabilistic models [65, 2].

H Datasheet

H.1 Motivation

• For what purpose was the dataset created? GlobalTomo was created to promote the
physics-ML research on solving seismic full waveform modeling and earth structure inver-
sion.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The dataset was created by a group of
geophysical scientists and ML researchers.

H.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? GlobalTomo contains many simulated wavefield sequences and seis-
mogram time series documented as arrays in HDF5 files.

• How many instances are there in total (of each type, if appropriate)? The acoustic tier
has 10,000 cases of simulation results. The elastic tier has 30,000 cases and the real elastic
tier has 10,000 cases.

• Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? Yes, the dataset contains all possible instances for
training and evaluation.

• What data does each instance consist of? Each instance consists of inputs and outputs.
The inputs have velocity structures and source parameters. The outputs contains three
types of features including the wavefield, the Fourier wavefield, and the seismogram. The
wavefield includes a sequence of snapshots and each snapshot consists of 16 slices, together
with the 3D coordinates and timesteps. The Fourier wavefield resembles the wavefield but
presents each 3D snapshot in terms of 16 Fourier series. The seismogram consists of time
series data from multiple stations, which also provide the 3D coordinates of each station
and corresponding timesteps.

• Is there a label or target associated with each instance? Yes, each instance has clearly
defined input and output variables.

• Is any information missing from individual instances? No.

• Are there recommended data splits (e.g., training, development/validation, testing)?
We recommend using 90% of the data for training/validation and the remaining 10% for
testing.

• Are there any errors, sources of noise, or redundancies in the dataset? The veloc-
ity structures are replicated across various features to facilitate data loading and training.
Given the small size of these structures, the redundancy in storage can be considered neg-
ligible.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.
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• Does the dataset contain data that might be considered confidential No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

H.3 Collection Process

• How was the data associated with each instance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? The data was collected from a set of simulations using a 3D global
seismic model named AxiSEM3D.

• What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? We utilized
a cluster of CPUs to run the AxiSEM3D.

• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Geophysics researchers in the author list were involved in the data collection process and
no crowdworkers were involved.

H.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values)? We examine the failure cases in simulation and
remove them from training and evaluation. The data is processed into HDF5 files with
labeled variables for easy loading.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? Yes, the raw data is saved in our cluster.

• Is the software that was used to preprocess/clean/label the data available? Yes, we
uploaded the code on GitHub.

H.5 Uses

• Has the dataset been used for any tasks already? No.

• What (other) tasks could the dataset be used for? The dataset could be used for seismic
forward modeling, earth structure inversion, and source inversion.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? No.

H.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? The dataset is
open to the public.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset
will be distributed on Google Drive and the code will be published on GitHub.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? The dataset will be distributed
under the CC BY-NC-SA license.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No.
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H.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset? The GlobalTomo group will
support, host, and maintain the dataset.

• Is there an erratum? No.
• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances)? Yes, the dataset will be continuously updated if there is a necessity to improve
accuracy and other related information. The updates will be released on the website.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? The dataset is not related
to people.

• Will older versions of the dataset continue to be supported/hosted/maintained? Yes,
older versions of the dataset will continue to be supported, maintained, and hosted.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? Yes, the contributor can contact us through email.

I More Visualization

I.1 Forward Modeling

We further present the visualization of forward modeling on four novel velocity structures to demon-
strate that the ML baselines are capable of discerning differences in wave propagation. We display
snapshots at timesteps 5, 7, 9, 11, and 13, illustrating that the variance in wavefields grows over
time. Refer to Figures A5 to A9 for detailed visualizations. We also show how our model predicts
elastic wave propagation in Figure A10.
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Figure A5: Snapshot 5 of forward modeling. We show the ground truth and predicted wavefield snapshot
within four velocity structures: A, B, C, and D.
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Figure A6: Snapshot 7 of forward modeling. We show the ground truth and predicted wavefield snapshot
within four velocity structures: A, B, C, and D.
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Figure A7: Snapshot 9 of forward modeling. We show the ground truth and predicted wavefield snapshot
within four velocity structures: A, B, C, and D.

G
ro

un
d 

tru
th

Pr
ed

ic
tio

n

Structure A Structure B Structure C Structure D

Figure A8: Snapshot 11 of forward modeling. We show the ground truth and predicted wavefield snapshot
within four velocity structures: A, B, C, and D.
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Figure A9: Snapshot 13 of forward modeling. We show the ground truth and predicted wavefield snapshot
within four velocity structures: A, B, C, and D.
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Figure A10: Qualitative forward modeling prediction by MLP in the Elastic tier. A single slice is dis-
played. The source is located at x = 0.00 and z = 0.80. The background illustrates the velocity structure. The
seismogram depicts the time series received by stations around the surface of this slice.

I.2 Inversion

We present additional visualization of inversion results using various unseen seismogram data. The
figures display both the actual and the inverted velocity perturbations across five depths, along with
their correlations. Refer to Figures A11 to A20.
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Figure A11: Example 1 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A12: Example 2 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A13: Example 3 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A14: Example 4 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A15: Example 5 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A16: Example 6 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A17: Example 7 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A18: Example 8 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A19: Example 9 of acoustic inversion. The colors range from blue to red, representing velocity pertur-
bations from negative to positive. There are five rows, each depicting the velocity structure at different depths:
0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second column
shows the structure as derived from direct inverse mapping, and the third column illustrates the correlation
between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A20: Example 10 of acoustic inversion. The colors range from blue to red, representing velocity
perturbations from negative to positive. There are five rows, each depicting the velocity structure at different
depths: 0m, 200m, 400m, 600m, and 800m. The first column displays the actual velocity structure, the second
column shows the structure as derived from direct inverse mapping, and the third column illustrates the corre-
lation between the spherical harmonics of the actual structure and those of the inverted structure.
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Figure A21: A checkboard test on our ML-based inversion. This test demonstrates the robustness and
generalization of our inversion workflow.

I.3 A Checkboard Test

To validate the robustness of our inversion methods, we conducted a checkerboard test as a standard
diagnostic tool in geophysical tomography [52, 65]. The test involves simulating a known subsur-
face model with alternating high and low-velocity regions arranged in a checkerboard pattern, which
allows us to evaluate the algorithm’s ability to recover fine-scale variations in the subsurface. We
evaluate the checkboard inversion using our pre-trained InversionMLP. The inversion results demon-
strated a high correlation of 0.89 with the ground truth structures, with the algorithm successfully
resolving the checkerboard structure and accurately recovering the modeled velocity contrasts; see
Figure A21 for visualization. This robust performance indicates that our approach is capable of han-
dling complex geophysical inversion tasks and offers significant potential for real-world applications
in seismic tomography and other geophysical imaging techniques.
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