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ABSTRACT

Graph Convolutional Networks (GCNs) which aggregate information from neigh-
bors to learn node representation, have shown excellent ability in processing
graph-structured data. However, it is inaccurate that the notable performance of
GCNs tends to depend on strong homophily assumption of networks, since GCNs
can also perform well over some heterophilous graphs. Thus the impact of ho-
mophily on GCNs needs to be reconsidered. In this paper, we study what influ-
ences the aggregation of GCNs from the perspective of neighborhood distribution.
Theoretical and empirical analysis is provided to reveal that the distinguishabil-
ity of neighborhood distribution plays a more important role in the performance
of GCN than homophily. Furthermore, we address that neighborhood structure
and neighborhood range are two key factors for GCNs to promote neighborhood
distinguishability. Based on the conclusion, we propose an improved graph convo-
lution network (GCN-PND) including updating graph topology based on the sim-
ilarity between local neighborhood distribution of nodes and designing extensible
aggregation from multi-hop neighbors. We did extensive experiments on graph
benchmark datasets to analyze the superiority of the proposed method. The ex-
perimental results demonstrate that GCN-PND is more effective on heterophilous
datasets than most of existing state-of-the-art GCN methods.

1 INTRODUCTION

Graph-structured data widely exists in real life, such as social networks, citation networks and bio-
logical networks. Since the relationship between nodes is complicated and irregular, graph represen-
tation learning has received extensive attention. Especially, Graph Convolutional Networks(GCNs)
(Bruna et al., 2014; Atwood & Towsley, 2016; Defferrard et al., 2016) are designed to learn expres-
sive graph representation by aggregating information from neighborhood, which have been effec-
tively applied to multiple tasks, such as node classification (Kipf & Welling, 2017; Li et al., 2016),
graph classification (Ying et al., 2018; Ma et al., 2019) and link prediction (Zhang & Chen, 2018;
You et al., 2019).

However, there is a critical weakness that restricts the expressive ability of most existing GCNs on
general graph-structured data. A prevalent assumption that most GCNs seem to be tailor-made to
work on homophilous graphs (McPherson et al., 2001), where nodes within the same classes tend to
form edges, is not rigorous enough. Actually, GCNs can perform well on some heterophilous graphs
with low homophily, which breaks the assumption. Further, heterophilous graphs, where nodes from
different classes are more likely to be connected to each other, are so ubiquitous in real-world that
we can’t ignore them. For example, a large number of people tend to connect with people within
the opposite gender in dating networks (Pandit et al., 2007), and amino acids from different classes
are more likely to be connected in numerous protein structures (Zhu et al., 2020). Unfortunately, the
performance of GCNs on most heterophilous graphs is poor. To solve the problem, many scholars
have studied GCNs from two aspects, i.e., exploring the influencing factors and designing improved
GCN methods for heterophilous graphs.

For exploring factors affecting the performance of GCNs, several existing works (Zhu et al., 2020;
Lim et al., 2021; Zhu et al., 2021) posit that many GCNs implicitly rely on strong homophily and
attempt to overcome the weakness of GCNs in heterophilous graphs. But recent work (Ma et al.,
2021) empirically finds that the graph convolutional network (GCN) (Kipf & Welling, 2017) is
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actually able to match or outperform heterophily-specific models on some heterophilous graphs
after fine hyperparameters tuning. It means that there exists a type of ”good” heterophily, which
have high distinguishability of neighborhood distribution. However, the definition of Cross-Class
Neighborhood Similarity (CCNS) in this paper overemphasizes the role of graph structure, which is
not applicable to all heterophilous graphs. Therefore, it is still worth thinking about what limits the
performance of GCNs on this type of graphs.

To enhance the performance of GCNs on heterophilous graphs, several improved methods have
been developed. For example, in Geom-GCN (Pei et al., 2020; Jin et al., 2021), neighbors are
selected from the whole graph using node feature itself for supplement to the original graph. (Zhu
et al., 2020) proposed that higher-order neighborhoods help in the heterophily settings However,
the reason why the methods were effective for partial heterophilous graphs is not deeply explored
and analyzed. Furthermore, we note that several methods (Zhu & Koniusz, 2021; Chien et al.,
2021; Sun et al., 2021) design deep graph convolutional networks to extract knowledge from high-
order neighbors, which have achieved good performance in homophilous graphs. However, these
methods typically do not perform well on heterophilous graphs. Besides, many experimental results
(Chen et al., 2020; Feng et al., 2020) demonstrate that it is not a key factor to promote accuracy by
blindly expanding the search scope of neighborhood, and an appropriate neighborhood range can
help improve performance. Therefore, it is an important issue to improve the performance of GCNs
from the perspective of related factors.

Despite the theoretical and practical advantages of the above-mentioned works, what affects the
performance of GCNs on heterophilous graphs is still unclear for them, which needs to be further
studied. Therefore, in this paper, we provide theoretical and experimental analysis to reveal that the
distinguishability of neighborhood distribution is a more important factor affecting performance than
homophily. Furthermore, we find that if neighborhood structure and neighborhood range around
nodes are improved, the distinguishability of neighborhood distribution can be enhanced. Based on
the conclusions, we propose an improved GCN model for promoting neighborhood distinguishabil-
ity (GCN-PND). Its core steps are the graph topology updating based on local neighborhood distri-
bution and adaptive neighborhood aggregation from multi-hop neighbors of each node. Extensive
experiments on graph benchmark datasets demonstrate the superiority of our method.

2 NOTATIONS AND PRELIMINARIES

Consider a graph G = (V,E) with n nodes and m edges. The nodes are described by the feature
matrix X ∈ Rn×f , where f is the dimension of node features. The label matrix Y ∈ Rn×c indi-
cates which class each node belongs to. Further, C denotes the set of classes generated from label
information so that the set of nodes with a label c can be denoted as Cc. Let A denote the adjacency
matrix and D is the diagonal degree matrix of A. Ã = A + I stands for the adjacency matrix with
self-loops in the graph and D̃ = D + I is degree matrix of Ã. And Â = D̃− 1

2 ÃD̃− 1
2 denotes the

symmetric normalized adjacency matrix with self-loops.

Graph Convolutional Network. GCN(Kipf & Welling, 2017) defines a common convolution op-
eration to aggregate direct neighbor information. A GCN layer can be described as follows:

H(l+1) = σ
(
ÂH(l)W

)
, (1)

where W is the trainable parameter matrix for feature transformation. σ is the ReLU operation for
nonlinear mapping. A two-layer GCN can capture neighborhood information within two hops.

Homophily. Homophily of edges in graphs is typically defined based on the probability of edge
connection between nodes within the same class. In accordance with intuition following (Zhu et al.,
2020), the homophily ratio of edges is the fraction of edges in a graph that connect nodes with the
same class label, described by:

h =
1

|E|
∑

(i,j)∈E

1 (yi = yj), (2)

where |E| is the number of edges. 1 (·) denotes the indicator function. A graph with high edge
homophily ratio means that nodes tend to connect within the same class (strong homophily), whereas
a graph with h close to 0 indicates nodes from different classes are more likely to connect edges
(strong heterophily).
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3 IMPACT OF NEIGHBORHOOD DISTRIBUTION

The aggregation in GCNs has been shown to be able to capture and discriminate some local graph
topological and structural information (Xu et al., 2019; Morris et al., 2019). Although a recent study
(Ma et al., 2021) shows that GCN can work well on some heterophilous graphs, the performance
of GCNs is lower than that of MLP in the face of most heterophilous networks. It shows that it
is hard for GCNs to recognize these local structure information. To make matters worse, graph
structure plays a negative role in the process of feature aggregation within these graphs. In order to
analyze the influence of graph topology on node feature distribution in neighborhood aggregation,
we propose to use neighborhood distribution including neighborhood structure distribution (NSD)
and node feature distribution (NFD). For example, given node i in Figure 1a, where different colors
signify nodes with different classes. It is obvious that aggregated feature of node i is decided by
the graph structure and range of neighborhood around node i, as well as the node feature obtained
from the original node feature distribution. Next, we define neighborhood distribution and study
how neighborhood distribution affects the performance of aggregated features.

Consider a graph G, where node i has label Yi and feature Xi. We define neighborhood distribution
of nodes consisting of neighborhood structure distribution and node feature distribution. The neigh-
borhood structure distribution around node i is expressed as Si (θ, J), where θ denotes the hidden
parameter of distribution and J is the range of neighborhood (within J-hop neighborhood). Obvi-
ously, there are two versions of neighborhood structure distribution according to whether it contains
a self-loop. However, it is hard to analyze neighborhood structure due to the complex graph struc-
ture of various types and sizes. Thus, we think about neighborhood distribution from the perspective
of edges. The edge distribution can be expressed as E . To facilitate analysis, we make assumptions
as follows: (1) The node features in class c obey the distribution Fc, and a single node contains in-
complete class feature, which is equivalent to sampling from class feature distribution i.e. xi ∼ Fc.
(2) There are several edge distributions in class c and edges around node i satisfy ei ∼ Ec where
Ec =

∑K
k=1 θkEck, θk is weighting coefficient, k ∈ [1,K] and K is the number of distributions.

Edges around node i in class c are sampled from the edge distribution Ec.

Based on these assumptions, we denote the neighborhood distribution of class c as Dc =
{{Fc, c ∈ C} , {Ec, c ∈ C}}. Since neighborhood distribution from social networks or protein
molecular is typically difficult to be expressed formally, we introduce an example of a simple graph
to analyze neighborhood distribution. Given a graph G with n classes where disjoint set Ck corre-
sponding to the class ck and k ∈ [1, n]. For the convenience of research, we define a unified edge
distribution in the same class, which corresponds to the assumption (2) that k = 1 and θk = 1. To
connect edges between nodes, the connection probability pkj between class ck and class cj are de-
fined with k ∈ [1, n] and j ∈ [1, n]. In this case, node features are sampled from Normal distribution
N (µk, Ik) where µk ∈ Rn×f and f is length of node feature.

According to process of graph convolution in GCN, the node feature containing neighborhood dis-
tribution information of node i can be expressed as hi =

1
deg(i)

∑
j∈N (i) xj where deg (i) is degree

of node i and N (i) denotes neighbors of node i . Moreover, based on the connection probability
between classes, the edge distributions of nodes in class ck can be expressed as Eck = { pkj∑n

j=1 pkj
},

where j ∈ [1, n] Therefore, node feature after GCN operation still follow Normal distributions,
described by:

hi ∼ N

(∑n
j=1 pkjµj∑n
j=1 pkj

,
I√

(deg (i))

)
, for i ∈ Ck and j ∈ [1, n]. (3)

We denote Eei∼Eck
,xi∼Fck

[xi] as the mathematical expectation of node i in class ck after graph
convolution. Based on the properties of Normal distributions, the expectation of node features in
class ck can be expressed as Eei∼Eck

,xi∼Fck
[xi] =

∑n
j=1 pkjµj∑n
j=1 pkj

where j ∈ [1, n]. Intuitively, we can
find that the variance of neighborhood distribution is related to the degree of nodes in this particular
distribution, where the variance decreases as the degree increases. In addition, the Monte Carlo
method is an effective method for estimation of mathematical expectation. Hence, when edges
are added for each node sampling from edge distribution according to the principle of independent
and identical distribution, nodes in class ck tend to converge to the expectation Eei∼Eck

,xi∼Fck
[xi]

following Law of large numbers as:
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i

(a) Graph topology
around node i

(b) Original NFD in
squirrel

(c) Aggregated NFD
using original graph
topology

(d) Aggregated NFD
using synthetic graph
topology.

Figure 1: Examples of neighborhood distribution. (a) shows an example of the neighborhood struc-
ture centered on node i. (b)(c)(d) are generated from t-SNE (Van der Maaten & Hinton, 2008) on
dataset Squirrel. Specifically, (b) is generated from original NFD using MLP, (c) shows aggregated
NFD using original graph topology (h=0.22) and (d) displays aggregated NFD using synthetic graph
topology by adding inter-class edges according to a certain distribution (h=0.1) using GCN.

1

deg (i)

∑
j∈N (i)

xj → Eei∼Eck
,xi∼Fck

[xi] , deg (i)→∞ and k ∈ {1, 2} . (4)

In this case, when we generate enough edges according to the distribution, if there is a large dis-
tance of mathematical expectation Eei∼Eck

,xi∼Fck
[xi] and Eem∼Ecj

,xm∼Fcj
[xm] between any two

classes ck and cj , the neighborhood distribution in each class is distinguishable so that node can be
classified correctly, even if the homophily of graph is low. Further, we denote a graph distribution
following assumptions (1)-(2) as G = {V, {Fc, c ∈ C} , {Ec, c ∈ C}} with node set V and analyze
the aggregated feature distribution using direct neighbors.
Theorem 3.1. Consider a graph G = {V, {Fc, c ∈ C} , {Ec, c ∈ C}} which follows Assump-
tions (1)(2). For node i ∈ Vc, aggregated feature obtained by direct neighbors is given by
hi = 1

deg(i)

∑
j∈N (i) xj , where the dimension of node feature is f and all elements of feature

are bounded in [a, b]. And expectation of nodes in Cc is described by E[hi] = Eei∼Ec,xi∼Fc
[xi].

For t > 0, the probability that the distance between the aggregated feature hi and its expectation is
larger than t is bounded by

P (∥hi − E[hi]∥p ≥ t) ≤ 2 · f · exp

(
− 2deg(i)t2

(b− a)
2
f

2
p

)
. (5)

The proof can be found in Appendix A. Theorem 3.1 indicates that the distance between aggregated
node feature and expectation is small with a high probability if the degree of nodes is high. As the
degree of nodes increases, node features are more likely to approach expectations. To ensure the
distinguishability of aggregated feature distribution for node classification, the distribution between
classes should be far away from each other.

Empirical investigation for neighborhood distribution To examine our assumptions and infer-
ences, we conduct a series of experiments using two-layer GCN on nine graphs (see Appendix B for
more details). Specially, for fast and effective convergence, we add inter-class edges sampling from
specific edge distribution i.e. generate one-way edges from class ck to ck+1. From Figure 2, we ob-
serve that with the increase of edge between classes, the homophily of each graph is declining, but
the accuracy is not always decreasing. It indicates that homophily may not the most important factor
affecting the accuracy of GCN. In details, the accuracy of GCN experiences a process of first decline
and then rise in most datasets including all homophilous datasets (Cora, Citeseer and Pubmed) and
partial heterophilous datasets (Chameleon, Squirrel and Wisconsin). The integration of the original
and newly added distribution will make the distinguishability of neighborhood distribution confused
at first. As the increasing neighborhood structure distribution dominates, the distinguishability in
different classes will continuously enhance, and the performance continues to improve. In other
datasets like Actor, Cornell and Texas, when a small number of edges are added according to the
edge distribution, the accuracy can be improved. It is likely that the aggregated feature using original
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(d) Accuracy in Chameleon
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(e) Accuracy in Squirrel
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(i) Accuracy in Texas

Figure 2: The performance of GCN while adding inter-class edges. The x-axis is homophily and the
y-axis is accuracy. Note that the red dotted line indicates the MLP prediction accuracy.

graph topology become difficult to distinguish. When adding edges according to edge distribution,
the chaos is broken so that neighborhood distribution become gradually distinguishable. The results
demonstrate that the performance of GCN is not determined by homophily, and graph structure af-
fects the distinguishability of neighborhood distribution and thus the performance of aggregation.
In addition, we conduct experiments about the impact of neighborhood range using SGC Wu et al.
(2019) in Appendix B.3. The results show that neighborhood expansion is more likely to play a role
in a ”good” graph structure. And local neighborhood information (within 2-hop neighborhood) can
be reliable for classification, especially in heterophilous graphs.

To intuitively study how neighborhood structure affects distinguishability, we perform a set of t-
SNE visualization on commonly used heterophilous graph datasets Squirrels, including using node
features without graph topology, using original graph structure for aggregation, and using synthetic
graph topology for aggregation. In Figure 1, experimental results show that a ”good” graph struc-
ture can improve the performance of GCN, even if the original features are difficult to distinguish
in Figure 1b (using MLP). Besides, the effect of the original graph structure may not be obvious on
some datasets like Squirrel (see Figure 1c). However, when we use the synthetic graph with low ho-
mophily (h=0.1) to aggregate neighbors, the distinguishability of aggregated node feature is greatly
improved (see Figure 1d). It also demonstrates that neighborhood structure affects the distinguisha-
bility of neighborhood distribution and then the performance of GCN. Therefore, how to update the
graph topology to get a ”good” neighborhood structure has become a key problem.

Furthermore, we note that some recent works start focusing on local neighborhood information
(Jin et al., 2021; Liu et al., 2022). LAGNN proposed that local neighborhood could enhance the
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(a) An example for similar nodes. (b) An example for similar neighborhoods.

Figure 3: Examples for finding neighbors. (a) shows an example that two nodes with different
neighborhoods but similar node feature. (b) shows that three nodes have different node features, but
two adjacent nodes in example have similar neighborhood information.

expressive power of existing GNNs. U-GCN proposed that 1-hop,2-hop and kNN neighbors could
be used in different types of networks respectively, including complete homophily, complete random
and complete heterophily. The findings also inspire us that not only the node itself but also local
neighborhood information can be used to find neighbors for better neighborhood structure.

For local neighborhood distribution, there are two main situations to be considered. The first is that
the similarity of nodes of the same class is much higher than that of nodes between classes. In
this case, the node itself can be used for similarity measurement even if two nodes have different
neighbors (Figure 3a). If the node feature fails, 0-hop, 1-hop and 2-hop neighbors can be combined
to find neighbors for constructing a new graph topology. For example, the three central nodes in
Figure 3b belong to the same class but differ from each other, so it is hard to directly use the node
feature to find new neighbors. However, their local neighborhood information may not change
dramatically, so it is possible to use local neighborhood information to determine neighbors for
aggregation. After finding more ”good” neighbors, more reliable neighbors are obtained to facilitate
the exploration of neighborhood range and supplement abundant feature information.

4 GCN-PND MODEL

Neighborhood structure influences the distinguishability of neighborhood distribution and then the
performance of GCNs. In neighborhood structure, there are mainly two aspects that need to be
considered, i.e., neighborhood structure around the central node and neighborhood range. So we
propose to design a graph convolutional operator from the two aspects.

In spectral graph theory, the normalized graph Laplacian matrix is defined as L = I − Â with
eigendecomposition L = UΛUT , where Λ is a diagonal matrix of the eigenvalues of L and U ∈
Rn×n is the matrix that consists of the eigenvectors of L. The graph convolution operation, a filter
gθ = diag (θ) with parameters θ acts on x is defined as gθ (L) ∗ x = Ugθ (Λ)U

Tx. Further, graph
convolution operation can be approximated by the K-th order polynomial of Laplacians (Defferrard
et al., 2016; Chen et al., 2020) as

Ugθ (Λ)U
Tx ≈ U

(
K∑

k=0

θkΛ
k

)
UTx =

(
K∑

k=0

θkL
k

)
x, (6)

where θ ∈ RK+1 corresponds to a vector of polynomial coefficients. Similarly, graph diffusion
(Klicpera et al., 2019) attempts to calculate weighting coefficients for multi-hop neighbors in the
form of polynomials. However, the difference between each node may be ignored if the same layer
uses a common coefficient. So we consider a node-level aggregation strategy. Further, the graph
diffusion or propagation should be not limited to common adjacency matrix forms. Therefore, the
generalized convolution operation on a node i can be described as:

gθ ∗ x =

(
K∑

k=0

θ(k,i)T
k

)
x, (7)

where θ(k,i) denotes weighting coefficients from k-hop neighbors of node i and T is a general transi-
tion matrix. Especially, T can be variant of initial adjacency matrix (such as random walk transition
matrix T = AD−1 and symmetric transition matrix T = D− 1

2AD− 1
2 ) or updated adjacency matrix
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by graph topology learning. Finally, we conclude the generalized convolution operation in GCNs
model including updating graph topology and designing extensible neighborhood aggregation.

Updating graph topology: Before updating graph topology, the node’s embedding need to be gen-
erated to measure the distance between different nodes. In our model, we use a simple and effective
way to aggregate local neighborhood as follows:

H(l+1) =
(
(1− α)Â+ αI

)
H(l), (8)

where H(0) = fθ (X), fθ (X) denotes the fully connected neural network with activation function
ReLU on the feature matrix X , and α is the teleport probability. The generated node embedding
contains local neighborhood information (within 2-hop neighbors) for further topology updating.

Then, we calculate the similarity matrix S ∈ Rn×n utilizing Cosine similarity, which adopts the
cosine value of the angle between two node embeddings to measure the similarity. Specifically, let
h(L) be node embedding after aggregation among L-hop (L ≤ 2) neighborhood, the similarity Sij

between node vi and node vj is: Sij = cos(h
(L)
i , h

(L)
j ). Then, a new adjacency matrix SkNN is

obtained by choosing top k similar node pairs. In addition, we set threshold ρ on Â for edge deletion
to obtain AD. The new graph topology is obtained by combining two adjacency matrices as:

AC = AD + λSkNN (9)

where λ is a hyperparameter for edges of kNN graph. Note that we reconstruct the original graph
topology by setting the threshold to 1 for all heterophilous graphs. For homophilous graphs, graph
topology just needs to be tuned by setting a low threshold. Further, let eij be weighting coefficient
of edge between node i and node j in AC where j ∈ Ni and Ni is direct neighbors of node i, we
normalize edges for stability of aggregation as:

eij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eij)

. (10)

Designing extensible neighborhood aggregation: Based on updated graph topology, the second
design involves how to aggregate from multi-hop neighbors of each node. Let Z(0) = H(0) ∈ Rn×f

′

denote the new feature matrix in latent space after feature transformation. Feature matrix Z(k) from
k-hop neighbors after feature propagation using combined adjacency matrix AC is described by:

Z(k) = ACZ
(k−1). (11)

Then we stack feature matrices
{
Z(0), · · · , Z(K)

}
to generate feature tensor T where T[:,j,:] = Z(j)

and T ∈ Rn×(K+1)×f
′

. Feature tensor T contains information from multi-hop neighbors of nodes,
the weight (importance) distribution of node neighborhood in T is calculated as:

wi,k =
exp

(
u⃗it⃗i,k

)∑K
k=0 exp

(
u⃗it⃗i,k

) , (12)

where U ∈ Rn×f
′

is the parameter matrix of the network and u⃗i is the learnable parameter vector
for node i. t⃗i,k = T[i,k,:] is a vector in T , which reflects the feature from k-hop neighborhood of
node i. wi,k denotes the weighting coefficient for the k-hop neighborhood of node i. Further, we
aggregate neighborhood information for each node according to weighting coefficients as:

z⃗i = σ(

K∑
k=0

wi,k t⃗i,k). (13)

The aggregated node features are input to MLP, the final layer of the network, to obtain the output
of nodes for prediction. The algorithm can be found in the Appendix C.

5 OTHER RELATED WORK

GCNs (Kipf & Welling, 2017; Vaswani et al., 2017; Hamilton et al., 2017) design graph convolu-
tion operators, which have aroused widespread concern. Many subsequent methods (Gilmer et al.,
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2017; Abu-El-Haija et al., 2019) attempt to improve the process of neighborhood aggregation, but in
essence, they are to enhance the distinguishability of neighborhood distribution in various classes.

Improve neighborhood structure distribution. There are two common ways to improve neigh-
borhood structure distribution for aggregation: updating graph topology and increasing propaga-
tion steps. LDS (Franceschi et al., 2019) adds numerous edges while learning graph structure by
bilevel framework (Franceschi et al., 2018). Geom-GCN (Pei et al., 2020) and U-GCN (Jin et al.,
2021) which find neighbors from high-order neighborhood achieve great performance in some het-
erophilous graphs. MixHop (Abu-El-Haija et al., 2019), JKNet (Xu et al., 2018) and H2GCN (Zhu
et al., 2020) utilize high-order information by concatenation. Moreover, graph diffusion and propa-
gation become popular due to simplicity and effectiveness. Especially, PageRank (Page et al., 1999;
Andersen et al., 2006; Klicpera et al., 2019) and heat kernel (Kondor & Lafferty, 2002; Kloster &
Gleich, 2014; Chamberlain et al., 2021; Zhao et al., 2021) are suitable choices for adjusting the
proportion of different hop neighbors during aggregation.

Design loss for distinguishability. It is likely to be consistent between the results generated by the
same node under different data augmentations, different models and different views. GRAND (Feng
et al., 2020) uses consistency loss to align predictions after multiple data enhancements. Graph con-
trastive learning (Hassani & Khasahmadi, 2020; Zhu et al., 2021; Xia et al., 2022) typically reduce
the distance between positive samples and increase the distance between negative samples or max-
imize mutual information between different views. In addition, the relationship between neighbors
can also constrain the neighborhood distribution. IDGL (Chen et al., 2020) sets smoothness loss to
keep node and mean value of neighbors consistence. Similarly, Propagation-regularization (Yang
et al., 2021) is also proposed to constrain the representation of nodes and their neighbors.

6 EXPERIMENTS

Datasets and settings. For semi-supervised node classification, we use three standard citation
network datasets including Cora, Citeseer and Pubmed (Sen et al., 2008), which have strong ho-
mophily. We apply the standard fixed split (Yang et al., 2016), which includes 20 nodes per class
for training, 500 nodes for validation and 1000 nodes for testing. For all benchmarks of full-
supervised node classification, we adopt 10 random splits (48%/32%/20%) of nodes per class for
training/validation/testing, which are provided by Geom-GCN (Pei et al., 2020). Statistics of the
datasets are summarized in Appendix D.1.

Baselines. We compare GCN-PND with seven semi-supervised baselines including GCN (Kipf &
Welling, 2017), GAT (Vaswani et al., 2017), MixHop (Abu-El-Haija et al., 2019), APPNP (Klicpera
et al., 2019), SGC (Wu et al., 2019), SSGC (Zhu & Koniusz, 2021) and GPRGNN (Chien et al.,
2021). For full-supervised node classification, we compare our model with 14 baselines: GCN,
GAT, GraphSAGE (Hamilton et al., 2017), JKNet (Xu et al., 2018) with concatenation, APPNP,
GCNII and its variant, Geom-GCN (Pei et al., 2020) with three variants, H2GCN (Zhu et al., 2020)
with two variants, GPRGNN (Chien et al., 2021) and MLP. See Appendix D.2 for more details.

Semi-supervised node classification. We report the classification accuracy with both mean and
standard deviation after 50 runs in Table 1. Note that we reprint the accuracy of the original paper
due to results reproduced by MixHop being far lower than the accuracy of the paper. As shown, the
accuracy of our GCN-PND significantly outperforms when compared to other models. In addition,
we observe that models which extend the range of neighborhood can achieve great accuracy on all
datasets, such as APPNP and GPRGNN. It indicates that properly expanding the neighborhood in the
homophilous graph is conducive to improving the distinguishability of neighborhood distribution.

Full-supervised node classification. We evaluate the performance of GCN-PND in the task of full-
supervised classification. In addition, we set up another form (GCN-PND∗) using adjacency matrix
without self-loops. From table 2, GCN-PND achieves the state-of-the-art performance on 7 out of 9
datasets compared with the other 14 baselines, except Geom-GCN-I on dataset Citeseer and GCNII∗
on dataset Pubmed. We think GCNII∗ and Geom-GCN-I are suitable for specific homophilous
datasets rather than heterophilous graphs. Significantly, GCN-PND outperforms other baselines
on heterophilous datasets, which indicates the strong ability in processing heterophilous graphs.
On heterophilous datasets Squirrel and Chameleon, the accuracy of our model is nearly 19% and
11% higher than the best baseline GPRGNN respectively, and the graph without self-loops is much

8
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Table 1: Summary of semi-supervised classification accuracy(%) on Cora, Citeseer and Pubmed.
We mark with daggers (†) the reprinted results from the respective papers. Boldface letters are used
to mark the best results.

Method Cora Citeseer Pubmed
GCN 81.4±0.7 70.8±0.7 79.1±0.3
GAT 83.1±0.6 72.4±0.7 77.6±0.8

MixHop† 81.9±0.4 71.4±0.8 80.8±0.6
SGC 80.8±0.0 71.4±0.0 78.9±0.0

SSGC 82.6±0.1 73.0±0.0 80.0±0.1
APPNP 83.2±0.6 71.0±0.8 80.0±0.5

GPRGNN 83.6±0.4 71.6±0.4 79.6±0.2
GCN-PND 85.0±0.7 73.6±0.4 81.0±0.5
w/o GTU 84.9±0.6 73.1±0.6 79.6±0.4
w/o MHA 84.2±0.5 72.2±0.5 80.1±0.6

Table 2: Mean classification accuracy(%) of full-supervised node classification using 10 random
splits. Note that boldface letters are used to mark the best results.

Method Chameleon Squirrel Actor Cornell Wisconsin Texas Cora Citeseer Pubmed
GCN 59.98 38.75 27.16 61.35 49.41 55.95 87.12 76.40 87.03
GAT 55.75 35.24 27.18 60.54 50.00 56.22 87.67 76.09 85.48

GraphSAGE 62.24 44.25 34.1 62.24 77.25 71.89 86.88 76.72 88.71
JKNet 60.39 45.38 25.91 58.92 48.63 58.38 84.79 71.79 85.92

APPNP 54.39 35.11 26.53 58.65 45.69 58.92 87.36 75.29 86.64
GPRGNN 66.48 48.86 35.27 84.71 83.53 83.53 87.78 76.62 87.85

GCNII 58.99 38.87 33.76 72.43 72.75 71.62 88.21 76.96 89.38
GCNII∗ 63.20 41.46 34.88 77.03 81.18 76.22 88.01 76.94 90.27

Geom-GCN-I 60.37 33.14 29.10 56.75 58.63 57.57 85.25 78.05 89.99
Geom-GCN-P 60.92 38.09 31.65 59.45 64.51 68.38 84.83 75.40 88.08
Geom-GCN-S 60.19 36.14 30.32 55.67 56.86 60.26 85.27 74.90 84.70

H2GCN-1 52.96 36.42 34.31 79.46 83.14 83.24 86.21 77.11 89.43
H2GCN-2 58.38 32.33 34.49 78.11 84.31 80.00 87.93 77.06 89.55

MLP 45.33 28.98 34.20 79.19 85.49 81.08 75.49 73.23 86.17
GCN-PND 71.34 64.45 35.31 86.76 85.69 84.32 88.39 77.95 89.52
GCN-PND∗ 77.63 68.02 35.01 84.32 85.29 85.68 87.91 77.30 89.46

w/o GTU 56.18 40.27 30.02 61.89 63.33 64.86 87.95 76.80 89.21
w/o MHA 71.24 65.17 31.45 83.24 86.49 83.24 87.20 77.75 88.73

better due to the neighborhood distribution without central node being more distinguishable. In
datasets Cornell, Wisconsin and Texas, node features are distinguishable between classes. Hence,
we use local neighborhood distribution with α = 1 for graph topology updating. In Actor, low
distinguishability of neighborhood distribution results in low performance for all models.

Ablation study. To examine the contributions of different components in GCN-PND, we conduct an
ablation study as follows: We use the original graph for aggregation from multi-hop neighbors adap-
tively without graph topology updating (w/o GTU). We use updated graph topology in GCN model
without multi-hop aggregation(w/o MHA). In the task of semi-supervised and full-supervised node
classification, we observe that GCN with updated graph topology, i.e. w/o MHA, improves perfor-
mance of GCN on all datasets, especially heterophilous graphs. In addition, the average performance
of GCN-PND will decline with any component removed, which demonstrates the significance of the
designed component. Further, the impact of neighborhood range can be found in Appendix D.3.

7 CONCLUSION

We study and analyze the impact of neighborhood distribution in graph convolutional networks,
and find that an important factor affecting the performance of graph convolution neural networks
is the distinguishability of neighborhood distribution. According to the factors affecting the neigh-
borhood distribution, we propose the graph convolution operator including updating graph topology
and designing extensible neighborhood aggregation. Further, we design GCN-PND based on our
convolution operator. Experimental results demonstrate the effectiveness of our model.
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A PROOF OF THEOREM 3.1

Before proving Theorem 3.1, we introduce Hoeffding’s inequality as follow: Let X1, . . . , Xn be
independent bounded random variables with Xi ∈ [a, b], where i ∈ [1, n] and −∞ < a ≤ b < ∞.
For all t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t

)
≤ 2 · exp

(
− 2nt2

(b− a)
2

)
. (14)

Proof. Let xi[k], k = 1, . . . , f denote the k-th element of node xi. For dimension k, {xj [k], j ∈
N (i)} is a set of independent bounded random variables. Utilizing Hoeffding’s Inequality, for any
t1 ≥ 0, we have the bound as following:

P (|hi[k]− E[hi[k]]| ≥ t1) = P

∣∣∣∣∣∣ 1

deg (i)

∑
j∈N (i)

(Xj [k]− E[Xj [k]])

∣∣∣∣∣∣ ≥ t1


≤ 2 · exp

(
−2deg(i)t21

(b− a)
2

)
.

(15)

Hence, for all elements in k = 1, . . . , f , we have

P
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∥hi − E[hi]∥p ≥ f

1
p t1

)
≤ P
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 1
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Let t = f
1
p t1, i.e. t1 = t

f
1
p

, then we have

P (∥hi − E[hi]∥p ≥ t) ≤ 2 · f · exp

(
− 2deg(i)t2

(b− a)
2
f

2
p

)
, (17)

which completes the proof.

B ADDITIONAL DETAILS IN SECTION 3.3.1

We present details of the GCN model and the algorithm for changing edges in graphs. GCN uses
two layers with nonlinear activation function ReLU after the first layer and the hidden units are set to
64. We adopt the dropout rate as 0.5 for node features. The early stopping criterion uses a patience
of p = 100 and a maximum of n = 1500. Further, we use the Adam optimizer with a learning
rate of l = 0.01 and cross-entropy loss. The L2 regularization parameter is set as 5 × 10−4 on all
datasets.

B.1 ADD EDGES ACCORDING TO DISTRIBUTION.

The algorithm of adding edges according to distribution is presented in Algorithm 1. To prevent
the generated edges from concentrating on a few classes whereas classes with few nodes have no
chance to add new edges, we recalculate the distribution according to the number of edges in each
class. Specifically, the proportion of the number of edges between two classes in the total number
of edges is taken as the initial edge distribution, and the edge distribution is updated by both initial
edge distribution and specific edge distribution as shown in Algorithm 1. And then, the edge is
generated by new obtained edge distribution. In the datasets Texas and Cornell, the algorithm is

13



Under review as a conference paper at ICLR 2023

slightly different. Due to the condition that there is a class that contains only one node has no edges
(isolated node), our default class distribution sampling number is at least 1.

Algorithm 1: Adding edges sampling from distribution
Input: A, D, r
Output: new adjacency matrix A′

1 Calculate number of edges m.
2 Calculate proportion of edges between classes P .
3 Calculate specific distribution of class c: Dc = Dc ∗ Pc.
4 Calculate adding numbers n = m ∗ r.
5 Initialize k=1.
6 while k ≤ n do
7 Sample node i ∼ Uniform(V).
8 Obtain the label c of node i.
9 Sample a set Vc from Dc.

10 Sample a node j ∼ Uniform(Vc).
11 Update edge set E .
12 k ← k + 1.
13 end
14 Update A using edge set E .
15 return updated adjacency matrix A′

The details of adding inter-class edges according to the distribution are summarized in Table 3. Each
dataset contains two rows of data, the first row is the ratio of added edges (r) compared with the
number of original edges, and the second row is the homophily (h) after adding edges. For instance,
at the beginning, the homophily of the Cora graph is 0.81 (h = 0.81 and r = 0), and the homophily
is about 0.27 after increasing inter-class edges by 2 times (h = 0.27 and r = 2).

Table 3: Details of adding inter-class edges in different datasets, where the first row is the ratio of
adding edges, and the second row is the homophily after adding edges.

Cora 0
0.81

0.4
0.58

0.8
0.45

1.2
0.37

1.6
0.31

2
0.27

2.4
0.24

Citeseer 0
0.74

0.4
0.53

0.8
0.41

1.2
0.34

1.6
0.28

2
0.25

2.4
0.22

Pubmed 0
0.8

0.4
0.57

0.8
0.45

1.2
0.36

1.6
0.31

2
0.27

2.4
0.24

Chameleon 0
0.24

0.1
0.21

0.2
0.2

0.3
0.18

0.4
0.17

0.5
0.16

0.6
0.15

Squirrel 0
0.22

0.2
0.19

0.4
0.16

0.6
0.14

0.8
0.13

1
0.11

1.2
0.1

Actor 0
0.22

0.4
0.16

0.8
0.12

1.2
0.1

1.6
0.08

2
0.07

2.4
0.06

Cornell 0
0.3

0.5
0.21

1
0.16

1.5
0.14

2
0.11

2.5
0.1

3
0.09

Wisconsin 0
0.2

0.5
0.13

1
0.1

1.5
0.08

2
0.07

2.5
0.06

3
0.05

Texas 0
0.11

0.5
0.07

1
0.06

1.5
0.05

2
0.04

3
0.03

5
0.02

B.2 RANDOM ADDITION AND DELETION OF EDGES

To further study the influence of neighborhood structure distribution on feature aggregation, we ran-
domly add or delete edges on 9 datasets. Then, a two-layer GCN is used to aggregate neighborhood
features. The experimental results under different datasets are shown in Figure 4. For homophilous
datasets, adding edges randomly makes it difficult to distinguish the features between classes, so
the performance drops rapidly, even lower than the node classification without graph topology (only
MLP is used). In the process of randomly deleting edges, we find that only the Cora dataset is
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Figure 4: The performance of GCN while adding or deleting edges randomly. The x-axis is the ratio
of changing edges compared original graph and the y-axis is accuracy. The blue line indicates the
prediction accuracy of GCN after randomly deleting edges, and the red line indicates the prediction
accuracy of GCN after randomly adding edges.

greatly affected, while the citeseer and PubMed datasets have little performance change. The results
also show that when classifying nodes without graph structure, homophilous datasets can typically
perform well, and the original graph structure plays the role of icing on the cake.

For heterophilous datasets, adding edges randomly will lead to a decline in performance. Specifi-
cally, the original graph structure of some datasets like Actor, Wisconsin and Texas is poor, which
makes the neighborhood feature distribution difficult to distinguish, and the performance change
is small after random addition of edges. In contrast, the performance of GCN on Squirrel and
Chameleon decreases rapidly. When randomly deleting edges, the situation becomes complicated.
The performance will degrade on some heterophilous datasets like Chameleon and Squirrel, whereas
performance is on the rise on Actor, Cornell, Wisconsin and Texas. The experimental results demon-
strate that there are ”good” and ”bad” graph structures in heterophilous graphs. ”Good” graph struc-
tures can improve the distinguishability of the aggregated feature distribution, while ”bad” graph
structures make it difficult to distinguish the feature distribution after aggregation.

B.3 THE IMPACT OF NEIGHBORHOOD RANGE IN SGC

In order to study the impact of neighborhood range on aggregation, we conducted experiments on
9 datasets using SGC in Figure 5. The specific parameters of SGC used in the experiment are as
follows. We set a single-layer MLP for mapping. The dropout rate and L2 regularization parameter
are set to 0. Further, the maximum epoch is 1000 and the patience of early stopping is set to 100.
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Figure 5: The impact of neighborhood range in SGC on 9 datasets.

The results show that with the expansion of the neighborhood range, the performance of SGC in
homophilous graphs becomes stable after the 2-hop neighborhood. In heterophilous graphs, there
are two situations that need to be further analyzed. In Chameleon and Squirrel, the accuracy of SGC
rises first and then falls, which means local neighborhood is distinguishable in some heterophilous
datasets. However, with the further expansion of the neighborhood, a large amount of useless in-
formation makes it difficult to distinguish the aggregated features so the accuracy drops rapidly. In
other heterophilous graphs, performance degrades as the scope of aggregation expands, which in-
dicates that graph topology plays a negative role in neighborhood aggregation. Therefore, we draw
a conclusion that whether neighborhood expansion can improve performance depends on the graph
structure. Further, we observe that in both homophilous and heterophilous graphs, good perfor-
mance can be achieved by using local neighborhood information (within 2-hop neighborhood). It
indicates that it is possible to find neighbors with local neighborhood information.

C ALGORITHM OF GCN-PND

To understand the content of the GCN-PND conveniently, we have sorted out the algorithm
of the GCN-PND, as shown in Algorithm 2. Specifically, the algorithm mainly includes two
parts, i.e. updating graph topology (Eq.(8), Eq.(9) and Eq.(10)) and designing extensible neigh-
borhood aggregation (Eq.(11), Eq.(12) and Eq.(13)). Finally, the prediction is output by MLP.

Algorithm 2: The framework of GCN-PND
Input: Feature matrix X , adjacent matrix A, neighborhood range hops of K, local

neighborhood range L, parameter λ, node pairs of top k, threshold ρ.
Output: Prediction P

1 while not convergence do
2 Map X using the fully connected network fθ (X)
3 for l = 0 to L do
4 Aggregate local neighborhood from l-hop using Eq.(8)
5 end
6 Calculate Cosine similarity between nodes and choose top k node pairs to add edges
7 Set threshold ρ on Â to delete edges and get combined graph using Eq.(9)
8 Normalize weighting coefficient of edge by softmax function using Eq.(10)
9 for k = 0 to K do

10 Feature propagation to extend neighborhood range using Eq.11.
11 end
12 Stack feature matrices

{
Z(0), · · · , Z(K)

}
to generate feature tensor T .

13 Compute weighting coefficient of each hop using Eq.(12).
14 Aggregate neighborhood according to weighting coefficients using Eq.(13).
15 end
16 Output prediction P using MLP: P = fmlp(Z)
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D EXPERIMENTAL DETAILS

D.1 DETAILS OF DATASETS

The dataset statistics are summarized in Table 4 including nodes, edges, features, classes and ho-
mophily.

Table 4: Dataset statistics.

Dataset Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Wisconsin Texas
#Nodes 2708 3327 19171 2277 5201 7600 183 183 251
#Edges 5429 4732 44338 36101 217073 33544 295 309 499

#Features 1433 3703 500 2325 2089 931 1703 1703 1703
#Classes 7 6 3 4 4 4 5 5 5

homophily(h) 0.81 0.74 0.8 0.24 0.22 0.22 0.31 0.21 0.11

D.2 DETAILS OF BASELINES

For semi-supervised node classification, GCN, GAT and SGC use the original settings as paper,
where GAT uses a sparse version. The propagation step K is set to 10 for APPNP and GPRGNN,
and 16 for SSGC. α is set to 0.1 in APPNP and GPRGNN, and 0.05 in SSGC. In our model, we
set the weight decay parameter as 5 × 10−4 and learning rate of 0.01. The early stopping criterion
uses patience of p = 100 and the maximum is set to 1500 for all datasets. α is set as 0.1 for
aggregation and the hidden layer has 64 hidden units, with dropout d = 0.5 on both edges and
feature tensor. For updating graph, we set λ = 0.1 for all datasets and use 1, 2, and 2 propagation
steps for neighborhood aggregation. For aggregation from multi-hop neighbors, we adopt 8, 4, and
8 propagation steps in Cora, Citeseer and Pubmed separately. After fine-tuning, we set dropout rate
as 0.5 and 0.8 on input layer and hidden layer in Cora and Pubmed, 0.2 and 0.2 in Citeseer.

For full-supervised node classification, all models adopt 64 hidden units in hidden layer, patience of
p = 100. MLP, GCN, GAT, GraphSAGE and JKNet use weight decay parameter as 5× 10−4. Spe-
cially, GraphSAGE is reproduced using algorithm of original paper without node sampling. JKNet
use concatenation for aggregation layers (5 layers). The hyperparameters are set following original
papers in GPRGNN, GCNII, Geom-GCN and H2GCN. In our model, we use two adjacency matri-
ces, where difference is whether there exists self-loop. After the line search on hyper-parameters,
we tune parameters from the following options:

• weight decay: {5× 10−5, 10−4, 5× 10−4}
• range of local neighborhood: {0, 1, 2}
• α: {0, 0.1, 0.5, 1}
• hops: {2, 4, 5, 6}
• dropout rate: {0, 0.2, 0.5}
• λ : {0.2, 0.3, 0.4, 1}
• top k edges: {2}
• threshold: {0.5, 0.7, 1}

D.3 THE IMPACT OF NEIGHBORHOOD RANGE IN GCN-PND.

Figure 6 shows that aggregated features typically have higher performance than those before aggre-
gation (0-hop) in both Semi-supervised node classification (SSNC) and full-supervised node classi-
fication (FSNC). It shows the effectiveness of updating graph topology. Specifically, the expansion
of the neighborhood on updated graph does not introduce a lot of noise and useless information.
Further, GCN-PND can effectively expand the range of neighborhood aggregation. From Figure
6, it is obvious that the performance of the model becomes stable with the increase of the range
of neighborhood aggregation. In addition, the results show that our model can reach the peak of
accuracy within 10-hop neighborhood. We think since new neighbors are added to each node when
the graph topology is updated, the convergence speed of aggregation is accelerated. The results
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Figure 6: Figure (a) shows the impact of neighborhood range in semi-supervised node classification
(SSNC). Figure (b) shows the impact of neighborhood range in full-supervised node classification
(FSNC). The x-axis is the number of hops for aggregation and the y-axis is accuracy.

also show that an appropriate neighborhood range is conducive to improving the distinguishability
of neighborhood distribution. Besides, the influence of neighborhood range on different datasets is
different. For example, Squirrel is more easily affected by the neighborhood range, while Citeseer
is less affected by the neighborhood range. We will study it in future work.
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