
Team17-Engineering Copilot using LLMs augmented
with Public and Proprietary Documentation

Aswin Ba,b, Karthik Subburaja,b, Sanuj Kulshresthaa,b, Shivam Kumara,b and Shreya Guptaa,b

aEngineer, Texas Instruments
bDept. of EECS, Indian Institute of Science

Abstract. This paper presents a chat-bot application that is capa-
ble of answering engineering queries in the field of semiconduc-
tor devices. It is targeted as a replacement to traditional engineer-
to-engineer interactions for addressing customer queries on specific
Integrated Circuits (ICs) by referring to company proprietary docu-
mentation such as IC datasheets, application notes, and user manu-
als, as well as publicly available information. This application is built
using publicly available Large Language Models (LLMs), software
based on Retrieval Augmented Generation (RAG) and LangChain
framework. Performance comparisons of multiple RAG approaches
are published based on a test dataset of questions and answers.

1 Introduction

In semiconductor industries, queries related to products from the cus-
tomers are typically answered directly by design engineers though
there are sufficient documentations already present. The challenge
here is for these simple queries we need not spend engineer’s time.
To sole this issue we propose a system where we use LLM to answer
these queries based on the technical documentations (publicly avail-
able documents like datasheets, application notes, user manuals, and
engineering guides and also internal documents like implementation
documents*)

The system retrieves precise, contextually relevant answers from
athese documents, thereby reducing manual effort and improving
turnaround time.

This paper presents the implementation and evaluation of mul-
tiple Retrieval-Augmented Generation (RAG) strategies for such a
system. We compare retrieval approaches, post-retrieval processing
techniques—such as semantic re-ranking and contextual compres-
sion—and analyze their effect on LLM-only answer quality. Using
a representative dataset of engineering queries, we evaluate output
quality across configurations.

Such a solution is necessary now to address the growing challenge
of technical support automation in the semiconductor domain.

2 RAG processing chain

The chatbot system is architected using the LangChain framework,
which provides a modular and extensible pipeline for Retrieval-
Augmented Generation (RAG). The system is designed to answer
technical queries based on the 22 engineering documents, including
datasheets, application notes, user manuals, and product guides. The
entire RAG chain comprises multiple stages: document embedding,

retrieval, post-retrieval processing, and LLM-based answer genera-
tion and creating an interactive user interface.

Figure 1. System architecture of the RAG-based engineering copilot

2.1 Document Embedding and Storage

The embedding process converts document chunks into dense vec-
tor representations using LLaMA v2 and multilingual-e5-large.
These vectors are indexed and stored using Pinecone, a high-
performance vector database, allowing low-latency similarity-based
retrieval across large document corpora.

2.2 Retrieval Strategies

We employed multiple Retrieval-Augmented Generation (RAG)
strategies leveraging vectorized document storage in Pinecone to en-
hance the accuracy of user query responses. These strategies, im-
plemented using LangChain’s retriever modules, can be dynamically
configured via the user interface. The evaluated retrieval methods in-
clude:

• Simple RAG: Performs direct vector similarity-based retrieval of
relevant document chunks to ground answers in technical docu-
mentation.

• Multi-query Retrieval: Generates and retrieves multiple query
variants to address phrasing differences, enhancing coverage.

• RAG-Fusion: Combines results from multiple sub-queries using
Reciprocal Rank Fusion (RRF) for multi-faceted query resolution.

• Query Decomposition: Splits complex queries into atomic parts,
retrieves context for each, and combines results for improved pre-
cision.

• Step-back Prompting: Reformulates queries at a higher abstrac-
tion level to retrieve broader and more general context.

https://techdocsgptiisc-8r3eb2algcfscgszk7rnnm.streamlit.app
https://techdocsgptiisc-8r3eb2algcfscgszk7rnnm.streamlit.app


• HyDE: Uses an LLM-generated hypothetical document for re-
trieval when the original phrasing lacks direct matches in the cor-
pus.

• LLM-only: Skips retrieval entirely and generates answers based
solely on the model’s internal knowledge which is used as a base-
line.

2.3 Post-Retrieval Processing

To enhance answer precision, we apply refinement techniques after
the initial top-10 retrieval from Pinecone:

• Semantic Re-Ranking: Uses the cross-encoder or ms-marco-
MiniLM-L-6-v2 to re-score and rank retrieved chunks, selecting
the top-3 or 5 based on semantic relevance.

• Contextual Compression: Utilizes an LLM to extract only the
most query-relevant sentences, reducing noise and providing ap-
propriate information to the final LLM.

• Semantic Re-Ranking + Contextual Compression: Applies re-
ranking followed by compression to maximize contextual quality
passed to the LLM.

2.4 Prompting Strategies for Answer Generation

Answer generation is performed using LLMs such as GPT-4.0-mini,
GPT-4.1-nano, and Flan-T5, guided by two prompting strategies:

• Strict Context: Restricts LLM to use only the retrieved docu-
ments for answering, ensuring factual accuracy and traceability.

• Permissive Context: Allows use of both retrieved context and the
LLM’s prior knowledge.

2.5 User Interface and Integration

The user interface is developed using Streamlit, a interactive
Python framework enabling real-time interaction with the back-
end Retrieval-Augmented Generation (RAG) pipeline. This ensures
smooth communication between user inputs and LLM-based re-
sponses.

The main panel of the application includes:

• A dropdown menu for selecting retrieval strategies such as Sim-
ple, Multi-query, RAG Fusion, and Decomposition.

• Selectors for post-retrieval processing (semantic re-ranking, con-
textual compression, or both).

• A toggle for choosing between strict and permissive prompting
modes.

Figure 2. User interface of the engineering copilot (Click on image)

The sidebar provides detailed usage instructions and quick access
to a curated bank of evaluation questions for user experimentation.
All user interface selections are dynamically relayed to the back-
end orchestration layer, which invokes the relevant LangChain com-
ponents and Pinecone retrievers. This modular and tightly cou-
pled UI-backend architecture ensures fast, transparent, and domain-
grounded response generation.

3 Evaluation and Inferences
To assess the performance and usability of the proposed chatbot, we
conducted an evaluation using a curated test set of 100 golden ques-
tions derived from 22 technical documents. The questions were
constructed with a balanced mix: 25% engineer-authored and 75%
LLM-generated (via Gemini 2.5 pro), ensuring both human rele-
vance and language model diversity.

3.1 Retrieval Strategy Comparison

Using GPT-4.1-nano as the answering LLM, we evaluated the ef-
fectiveness of various retrieval strategies on the evaluation dataset.
Results in Table 1 and Figure 3 show that RAG-based methods
achieve approximately a 3% improvement in both BERT F1 and
cosine similarity scores over the non-retrieval (LLM-only) base-
line, indicating a meaningful enhancement in answer relevance and
grounding.

Among the retrieval strategies, Decomposition yields the highest
BERT F1 score (0.8654) and cosine similarity (0.7903), followed
closely by HyDE, RAG Fusion, and Multi-query, all of which demon-
strate competitive performance.

RAG Strategy BERT Precision BERT Recall BERT F1 Cosine Similarity

Decomposition 0.8546 0.8773 0.8654 0.7903
HyDE 0.8530 0.8760 0.8640 0.7812
LLM Only 0.8085 0.8584 0.8324 0.7584
Multi-query 0.8531 0.8747 0.8634 0.7765
RAG Fusion 0.8532 0.8752 0.8637 0.7754
Simple 0.8540 0.8739 0.8635 0.7721
Step-back 0.8520 0.8734 0.8622 0.7608

Table 1. Performance Metrics Across retrieval Strategies

In Figure 3, Performance across the different RAG strategies is ob-
served to be fairly similar, with cosine similarity improving steadily
as we progress towards decomposition RAG on right extreme of the
graph. The standard deviation of scores remains practically same
across RAG strategies in our dataset and experiments.

Figure 3. Comparison of avg scores of different RAG strategies (with gpt-
4.1-nano)

The differences across strategies are subtle, suggesting that while
RAG enhances factual grounding, the marginal gains between ad-
vanced strategies are incremental. Nonetheless, semantic-rich meth-
ods like Decomposition and HyDE are slightly better than simpler
approaches, particularly in scenarios requiring multi-aspect reason-
ing.

https://techdocsgptiisc-8r3eb2algcfscgszk7rnnm.streamlit.app/


3.2 Post-Retrieval Processing Evaluation

To enhance answer quality, we evaluated post-retrieval refinement
techniques applied after an initial top-k = 10 vector retrieval from
Pinecone.

• Semantic Re-ranking using the cross-encoder
ms-marco-MiniLM-L-6-v2 to re-score top-10 candidates
and select top-k chunks.

• Contextual Compression, where only query-relevant sentences
are retained using an LLM-based extractor(gpt-4o-mini).

• The combined strategy (re-ranking + compression), with top_k
= 10 and reranking_top_n = 3 or 5.

Post-Retrieval Strategy BERT Precision BERT Recall BERT F1 Score Cosine Similarity

Contextual Compression 0.8427 0.8751 0.8583 0.7799
Semantic Re-ranking 0.8496 0.8705 0.8595 0.7723
Semantic Re-ranking + Contextual Compression 0.8495 0.8662 0.8574 0.7523

Table 2. Comparison of average scores for post-retrieval processing strate-
gies using GPT-4.1-nano as LLM.

Table 3.2 summarizes the results for contextual compression, se-
mantic re-ranking, and a combined approach. In our datasets and ex-
periments, no significant performance difference is observed across
these post retrieval processing strategies.

3.3 Prompt Strategy Analysis

Strict context—which constrains the LLM to generate answers us-
ing only retrieved documents—improves cosine similarity and BERT
precision by approximately 3-5% in our evaluations, promoting
slightly higher factual accuracy by avoiding reliance on the model’s
prior knowledge (Table 3).

Prompt Strategy BERT Precision BERT Recall BERT F1 Score Cosine Sim.

Permissive Context 0.8343 0.8761 0.8545 0.7952
Strict Context 0.8602 0.8697 0.8646 0.7533

Table 3. Comparison of average scores of RAG prompt strategies using
GPT-4.1-nano.

3.4 Embedding model Comparison

In our datasets and experiments, no significant performance
difference is observed across different embedding models
(multilingual-e5-large vs. llamav2), both of which
are high-performing transformer encoders (Table 4).

Embedding Strategy Precision Recall F1 Score Cosine Sim.

multilingual-e5-large + decomposition 0.8499 0.8745 0.8617 0.7778
multilingual-e5-large + rag_fusion 0.8497 0.8722 0.8605 0.7626
llamav2 + decomposition 0.8546 0.8773 0.8654 0.7903
llamav2 + rag_fusion 0.8532 0.8752 0.8637 0.7754

Table 4. Comparison of average scores across different embedding models.

3.5 Answering LLM Comparison

All the above analysis is based on high end LLM - GPT-4.1-nano.
To assess the influence of the language model on retrieval perfor-
mance, we compared GPT-4.1-nano to GPT-4o-mini (>40B
parameters) across two RAG configurations: multi-query and simple
retrieval with top-k = 10 (Table 5 - indicates no significant differ-
ences among them in our datasets).

Additionally, we compared them with smaller language
models (google/flan-t5-base (250M parameters) and
google/flan-t5-large (750M parameters), smaller in terms

of parameter) . We observed cosine similarity score to be signifi-
cantly poorer (20% , refer to Figure 3 for Large Language Model
and Figure 4 for Smaller Language Model), while BERT scores
are comparable. Even after RAG, the absolute cosine similarity
with golden answers remains relatively low with smaller language
models, indicating limited semantic alignment due to model capacity
constraints.

Configuration Precision Recall F1 Score Cosine Similarity

GPT-4.1-nano + Multi-query 0.8531 0.8747 0.8634 0.7765
GPT-4o-mini + Multi-query 0.8523 0.8711 0.8613 0.7715
GPT-4.1-nano + Simple 0.8540 0.8739 0.8635 0.7721
GPT-4o-mini + Simple 0.8575 0.8737 0.8652 0.7742

Table 5. Comparison of RAG strategies using GPT-4.1-nano vs.
GPT-4o-mini as the LLM.

For smaller language models, the use of retrieval methods yields
a modest but meaningful improvement of approximately 5–10% in
both BERT F1 and cosine similarity scores on our dataset (Figure
4) with top-k = 3.

Variation of top-k values were seen to provide very small differ-
ences for our dataset.

Figure 4. Score improvements due to RAG for smaller language models

4 Conclusions
We have implemented and evaluated aspects of retrieval augmentated
chain and have published the similarity scores. In general, we have
observed the cosine similarity to be a stricter comparison metric as
compared to BERT which appears to be more optimistic. We have
observed RAG-based strategies improve BERT F1 and cosine sim-
ilarity scores by 3-5% over the LLM-only baseline. Among them,
Decomposition and HyDE perform slightly better.

5 Contributions
Some common contributions include curating documents for creating
embedding, creating golden question and answers. Although every-
one was involved in all other aspects of the development, some lead
individual contributions are as follows:

Aswin - Created embeddings of the documents based on llamav2,
multilingual-e5-large using Pinecone, python script to extract images
and tables in the document, used LLM (Claude 3.5 Sonnet v2) to
describe the images and embedded to the db, so can be used with
LLM (text only input models). Also contributed in final running of
full chain

Karthik - Initial python code demonstrating basic RAG chain for
the project’s aim, framework for iterating over all LLMs and RAG
strategies, adding low end LLMs, analysing and generating compar-
isons and inferences, and report making.

Sanuj - Development of retrieval strategies, infrastructure setup of
pinecone vectorDB, custom retrieval class and langchain, generating
bert and cosine scores in validation, backend integration to UI, and
hosting application

Shivam - Developing python code using langchain framework for
multiple retrieval strategies, development of different post-retrieval
strategies and different prompting and setup of chain.



Shreya - Designed and implemented an interactive Streamlit-based
user interface featuring dynamic RAG strategy selection, real-time
query processing, and configurable post-retrieval options, backend
integration of UI to work with the implemented chain, report making

6 Online application
The application UI is available in the following link:

https://techdocsgptiisc-8r3eb2algcfscgszk7rnnm.streamlit.app
This UI uses Gemini based free model to avoid API cost (as we

have exhausted our paid model in evaluation).

7 Github Link
The link to github having code, reference documents and question-
naire is mentioned below -

TechDocs-GPT Github link

https://techdocsgptiisc-8r3eb2algcfscgszk7rnnm.streamlit.app
https://github.com/shivam-nz/TechDocs-GPT/tree/main

	Introduction
	RAG processing chain
	Document Embedding and Storage
	Retrieval Strategies
	Post-Retrieval Processing
	Prompting Strategies for Answer Generation
	User Interface and Integration

	Evaluation and Inferences
	Retrieval Strategy Comparison
	Post-Retrieval Processing Evaluation
	Prompt Strategy Analysis
	Embedding model Comparison
	Answering LLM Comparison

	Conclusions
	Contributions
	Online application
	Github Link

