
Under review as a conference paper at ICLR 2024

POLYAK PARAMETER ENSEMBLE:
EXPONENTIAL PARAMETER GROWTH LEADS TO
BETTER GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Building an ensemble model via prediction averaging often improves the general-
ization performance over a single model across challenging tasks. Yet, prediction
averaging comes with three well-known disadvantages: the computational over-
head of training multiple models, increased latency and memory requirements at
testing. Here, we propose a remedy for these disadvantages. Our approach (PPE)
constructs a parameter ensemble model to improve the generalization performance
with virtually no additional computational cost. During training, PPE maintains a
running weighted average of the model parameters at each epoch interval. There-
fore, PPE with uniform weights can be seen as applying the Polyak averaging
technique at each epoch interval. We show that a weight per epoch can be dy-
namically determined via the validation loss or pre-determined in an exponen-
tially increasing fashion. We conducted extensive experiments on 11 benchmark
datasets ranging from multi-hop reasoning to image classification task. Overall,
results suggest that PPE consistently leads to a more stable training and a better
generalization across models and datasets.

1 INTRODUCTION

Ensemble learning is one of the most effective techniques to improve the generalization of machine
learning algorithms (Dietterich, 2000). In its simple form, an ensemble model is constructed from a
set of K classifiers over the same training set. At testing time, a new data point is classified by taking
a (weighted) average of K predictions (Allen-Zhu & Li, 2023; Sagi & Rokach, 2018). Yet, this set-
ting incurs three disadvantages: the computational overhead of training K models and increased la-
tency and memory requirements at test time (Liu et al., 2022). Here, we address these disadvantages
by proposing PPE (Polyak Parameter Ensemble technique) that constructs a parameter ensemble by
maintaining a running weighted average of the model parameters obtained at each epoch interval.
Overall, our extensive experiments on benchmark datasets suggest that PPE consistently leads to a
more stable training and a better generalization across models and datasets, e.g., Figure 1 visualizes
these improvements on the CIFAR 10 dataset even with uniform ensemble weights.

The idea of averaging parameters of a machine learning model to accelerate stochastic approxi-
mation algorithms dates back to Polyak & Juditsky (1992). Averaging parameters obtained in the
trajectory of consecutive Stochastic Gradient Descent (SGD) achieves the minimax optimal statis-
tical risk faster than stochastic gradient descent (Jain et al., 2018). Using PPE with positive equal
ensemble weights can be seen as using the Polyak averaging technique at each epoch interval. We
show that ensemble weights can be either dynamically determined by leveraging the validation loss
in a fashion akin to the early stopping (Prechelt, 2002) or pre-determined in an exponentially in-
creasing fashion. Although decreasing the computational cost of using ensemble models at test time
has been extensively studied, (Buciluǎ et al., 2006; Garipov et al., 2018; Huang et al., 2017; Wen
et al., 2020; Liu et al., 2022), PPE differs from the existing works as PPE does not introduce train-
able parameters, does not require an extended training time, and has the same memory the memory
requirement of a single model at testing time. Hence, PPE is a cost-free ensemble technique in
training and testing time concerned. Overall, our extensive experiments suggest that PPE leads to
a more stable training performance (e.g. less zigzaging in the mini-batch losses) and increases the
generalizing performances across models, datasets and tasks at virtually no additional computa-

1

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Epochs

40

50

60

70

80

90

Ac
cu

ra
cy

Conv. Net CIFAR 10 Accuracy
Train
Test

0 100 200 300 400 500
Epochs

40

50

60

70

80

90

Ac
cu

ra
cy

Parameter Ensemble CIFAR 10 Accuracy
Train
Test

Figure 1: Visualization of train and test accuracy trajectories during the course of the training phase.
The figure on the right shows the training and test accuracy of the same network via PPE.

tional cost. The benefits of applying PPE becomes more tangible as the number of parameters of
a neural model increases, e.g., the embedding size d grows. Although such benefits dissipates at
the very low regime (d ≤ 4) on the benchmark datasets, PPE leads to a better generalization for
d ∈ {8, 16, 32, 128, 256}.

2 RELATED WORK & BACKGROUND

2.1 ENSEMBLE LEARNING

Ensemble learning have been extensively studied in the literature (Bishop & Nasrabadi, 2006; Mur-
phy, 2012; Huang et al., 2017; Izmailov et al., 2018). In its simplest form, an ensemble model is
constructed from a set of K learners by averaging K predictions (Breiman, 1996). K diverse yet
ideally accurate learners are obtained via injecting randomness in the learning process (Allen-Zhu &
Li, 2023), e.g., constructing K different training datasets having the same sizes from a given training
dataset by randomly sampling data points with replacements or the random initialization of the K
models (Goodfellow et al., 2016). At test time, a final prediction is obtained by averaging K predic-
tions. Although this technique introduces the computational overhead of training multiple models
and/or increases latency and memory requirements at test time, it often improves the generalization
performance in many different learning problems (Murphy, 2012; Goodfellow et al., 2016).

Attempts to alleviate the computational overhead of training multiple models have been extensively
studied. For instance, Xie et al. (2013) show that saving parameters of a neural network periodically
during training and composing an final prediction via an voting schema stabilizes final predictions.
Similarly, Huang et al. (2017) show that using a cosine cyclical learning rate to sample model pa-
rameters from different saddle-points improves the performance in multi-class image classification
problems. Moreover, the Dropout technique (Srivastava et al., 2014) can be also considered as a
form of ensemble learning technique. Dropout prevents the co-adaptation of parameters by stochas-
tically forcing parameters to be zero (Hinton et al., 2012; Srivastava et al., 2014). This technique is
regarded as a geometric averaging over the ensemble of possible subnetworks (Baldi & Sadowski,
2013). Applying the dropout technique on a single neural network can be interpreted as applying
the Bagging technique on many neural networks (Goodfellow et al., 2016), i.e., a training procedure
for an exponentially large ensemble of networks sharing parameters (Warde-Farley et al., 2013).
Monte Carlo Dropout can be seen as a variant of the Dropout that used to approximate model uncer-
tainty in deep learning without sacrificing either computational complexity or test accuracy (Gal &
Ghahramani, 2016).

Draxler et al. (2018) and Garipov et al. (2018) independently show that the optima of neural net-
works are connected by simple pathways having near constant training accuracy. They show that
constructing a ensemble model by averaging predictions of such neural networks is a promising
means to improve the generalization performance. Although the computational overhead of train-
ing multiple models can be alleviated by the aforementioned approaches, the increased latency and
memory requirement remain unchanged at test time. For instance, constructing an ensemble of

2

Under review as a conference paper at ICLR 2024

overparameterized neural models significantly increases the memory requirements (Xu et al., 2021;
Demir & Ngonga Ngomo, 2021).

2.2 KNOWLEDGE GRAPH EMBEDDING MODELS AND ENSEMBLE LEARNING

Most Knowledge Graph Embedding (KGE) models are designed to learn continuous vector repre-
sentations (embeddings) of entities and relations tailored towards link prediction/single-hop reason-
ing (Trouillon et al., 2016; Dettmers et al., 2018; Demir et al., 2021; Ren et al., 2022). They are
often formalized as parameterized scoring functions ϕw : E ×R×E 7→ R, where E denotes a set of
entities, and R stands for a set of relations. w often consists of a d-dimensional entity embedding
matrix E ∈ R|E|×d and a d-dimensional relation embedding matrix R ∈ R|R|×d. Table 1 provides
an overview of selected KGE models. Note that we focus on KGE models based on multiplicative
interactions, as Ruffinelli et al. (2020) suggest that these multiplicative KGE models often yield
state-of-the-art performance if they are optimized well. Moreover, multiplicative KGE models also
performs significantly well on multi-hop reasoning tasks (Ren et al., 2023).

Table 1: Overview of KGE models. e denotes an embedding vector, d is the embedding vector size,
e ∈ C corresponds to the complex conjugate of e.. ×n denotes the tensor product along the n-th
mode. ⊗, ◦, · stands for Hamilton, Hadamard and inner product, respectively.

Model Scoring Function VectorSpace Additional

RESCAL Nickel et al. (2011) eh · Wr · et eh, et ∈ Rd Wr ∈ Rd2

DistMult (Yang et al., 2015) eh ◦ er · et eh, er, et ∈ Rd -
ComplEx (Trouillon et al., 2016) Re(⟨eh, er, et⟩) eh, er, et ∈ Cd -
TuckER Balažević et al. (2019) W ×1 eh ×2 er ×3 et eh, er, et ∈ Rd W ∈ Rd3

QMult (Demir et al., 2021) eh ⊗ er · et eh, er, et ∈ Hd -

Recent results show that constructing an ensemble of KGE models often improves the link prediction
performance across datasets and KGE models (Demir et al., 2021; Demir & Ngonga Ngomo, 2021;
Xu et al., 2021). Yet, as |E| grows, leveraging prediction average becomes computational prohibitive
as it requires millions of entity embeddings at least twice in memory. KGE models are often trained
with one of the three training strategies elucidated below (Dettmers et al., 2018; Lacroix et al., 2018;
Ruffinelli et al., 2020).

3 POLYAK PARAMETER ENSEMBLE

An ensemble model suffers from expensive memory and computational costs as aforementioned.
Here, we introduce PPE, an efficient way to construct a parameter ensemble by maintaining a run-
ning weighted average of the model parameters obtained at each epoch interval. By leveraging noisy
approximations of the gradients during the the mini-batch training regime, we aim to alleviate the
necessity of decrease the learning rate to converge a minima as visualized in Figure 2.

By determining the ensemble weights of epochs, we aim to control the flatness of this converged
minima (Foret et al., 2021). The mini-batch SGD update can be defined as

Θt+1 = Θt − ηt
1

|Bt|
∑
b

∇Θℓb(Θt) = Θt − η∇ΘLBt
(Θt), (1)

where wt ∈ Rd, ηt > 0 denotes the learning rate, and Bt := {(xb, yb)}mb=1 is a set of randomly
sampled training data points from the training dataset B ⊂ D at a time t. ∇wℓb(wt) denotes
the gradient of the loss function on the bases of a single (xb, yb) w.r.t. wt. Let wt ≈ w∗ =
argminw LD(Θ) be given. Two consecutive mini-batch SGD updates can be defined as

Θt+1 = Θt − ηt∇ΘLBt
(Θt) (2)

Θt+2 = Θt+1 − ηt+1∇ΘLBt+1(Θt+1). (3)

A sequence of mini-batch updates leads Θt to hover/circle around Θ∗ provided that ∇ΘLB(Θt) ̸=
∇ΘLD(Θt) and ηt ̸→ 0 as t → +∞. Since the variance of the fluctuations around Θ∗ is propor-
tional to η, decreasing η is necessary (LeCun et al., 2012).

3

Under review as a conference paper at ICLR 2024

Figure 2: PPE with uniform weights around a minima. Θ denotes the all trainable parameters.

The former condition of the noisy gradient approximation often holds, since D does not consist of
copies of a single data point (LeCun et al., 2012). Using an optimizer (e.g. Adam) adapting ηt w.r.t.
∇ΘLB(Θt) or using a learning rate scheduling technique can often alleviate the issue in practice.
Yet, we conjecture that a parameter ensemble model can be constructed from a linear combination
of all parameter vectors obtained at each epoch interval. By this, (1) this circling issue can be
alleviated regardless of the optimizer and (2) a high performing parameter ensemble is constructed
with virtually no additional cost.

Here, we propose PPE (Polyak Parameter Ensemble) technique defined as

ΘPPE = PPE(ααα) =
N∑
i=1

αααi ⊙Θi, (4)

where Θi ∈ Rd stands for a parameter vector of a model at the end of the i-th epoch, and
αααi s.t.

∑N
i αααi = 1 denotes a scalar ensemble weight for the i-th epoch, respectively. ⊙ multiplies

every element of Θi with a scalar ensemble weight αααi. Therefore, wPPE is a linear combination of
all parameter vectors obtained at each epoch. At each epoch i, PPE updates the running weighted
average of parameters by a scalar matrix multiplication. Setting all ααα0:N−1 = 0 and αααN−1:N = 1
results in obtaining a parameter ensemble model that is only influenced by a parameter vector ob-
tained at the end of the final epoch. Using positive equal ensemble weights αααi =

1
N corresponds to

applying the Polyak averaging technique at each epoch interval. Next, we show that using such ααα
mitigates the issue of hovering around w∗. A parameter vector Θi+1 at the end of the i-th epoch can
derived as

Θi+1 = Θi −
T∑

t=1

η(i,t)∇ΘLB(i,t)

(
Θ(i,t)

)
, (5)

where T denotes the number of mini-batches to iterative over the training dataset. η(i,t) and
LB(i,t)

(Θ(i,t)) denote the learning rate and the incurred mini-batch loss for the t-th mini-batch step
in the i-th epoch, respectively. Assume that T = 2 and N = 2 with η, a parameter ensemble model
is obtained as follows

ΘPPE = ααα1

(
Θ0 − (η(0,1)∇ΘLB(0,1)

+ η∇ΘLB(0,2)
)
)
+

ααα2

(
Θ0 − (η(0,1)∇ΘLB(0,1)

+ η(0,2)∇ΘLB(0,2)
+

η(1,1)∇ΘLB(1,1)
+ η(1,2)∇ΘLB(1,2)

)
)
. (6)

where ∇wLB(i,j)
denotes the gradients of the loss on the bases of the random mini-batch w.r.t.

parameter vectors at the i-th epoch and j-th parameter update. Using positive equal ensemble weights
ααα1 = ααα2 = 1/2 results in the following parameter ensemble ensemble model

wPPE = Θ0 −
(
η(0,1)∇ΘLB(0,1)

+ η(0,2)∇ΘLB(0,2)
+

η(2,2)∇ΘLB(1,1)

2
+

η(2,2)∇ΘLB(2,2)

2

)
.

4

Under review as a conference paper at ICLR 2024

More generally, using PPE with equal ensemble weights ααα0:j = 0 and αααj+1:N = 1
N−j can be

rewritten as

ΘPPE = Θj −
(N∑

i=j+1

T∑
t

η(i,t)∇ΘLB(i,t)

i

)
. (7)

Therefore, using such ensemble weights (i.e. averaging parameters at each epoch interval) results
in deriving such wPPE that is more heavily influenced by the parameter vectors obtained at the early
stage of the training phase starting from wj . Consequently, selecting such j-th epoch, after LD(Θ)
stagnates, the circling issue around a minima can be alleviated. Yet, using positive equal ααα arguably
may not be optimal for all learning problems, since it is implicitly assumed that Θj ≈ w∗. In B, we
propose two techniques to determine ααα.

3.1 DETERMINING ENSEMBLE WEIGHTS ααα

Parameter ensemble weights ααα can be determined in various fashion. For instance, ααα can be dy-
namically determined in a fashion akin to the early stooping technique, i.e., tracking the trajectory
of the validation losses at each epoch (Prechelt, 2002). More specifically, initially ααα are initialized
with zeros. As the discrepancy between the validation and training loss exceeds a certain thresh-
old at the end of the j-th epoch, positive equal ensemble weights can be used, i.e., ααα0:j = 0 and
αααj+1:N = 1

N−j . Although this may alleviate possible overfitting, hence improve the generalization
performance, assigning equal weights for N − j epochs may not be ideal for all learning problems.
Instead, remaining parameter ensemble weights ααα can be determined in an exponentially increasing
manner, i.e.,αααj+1 = λαααj , where λ is a scalar value denoting the rate of increase. More details about
the ensemble weights with different growth rates can be found in the supplementary material.

4 EXPERIMENTS

4.1 TRAINING AND OPTIMIZATION

We followed the experimental setup used by Ruffinelli et al. (2020) for the link prediction task.
We trained DistMult, ComplEx, and QMult KGE models with the following hyperparameter con-
figuration: the number of epochs N ∈ {200, 250}, Adam optimizer with η = 0.1, batch size
1024, layer normalization on embedding vectors and an embedding vector size d ∈ {256, 128, 64},
and λ ∈ {1.0, 1.1}. Note that d = 256 corresponds to 256 real-valued embedding vector size,
hence 128 and 64 complex- and quaternion-valued embedding vector sizes respectively. We ensure
that all models have the same number of parameters, while exploring various d. Throughout our
experiments, we used KvsAll training strategy. For multi-hop query answering, we followed the
experimental setup used by Arakelyan et al. (2021). More specifically, we compute query scores
for entities via the beam search combinatorial optimization procedure, we keep the top 10 most
promising variable-to-entity substitutions.

On all datasets, we used the same the j-th epoch to determine ensemble weights ααα (see 7) We fixed
the j-th epoch as 200. Hence, in our experiments, we did not dynamically determined ααα by tracking
the validation loss. By doing this, we ensure that PPE does not benefit from any additional
information (e.g. the validation loss) during the training process, since tracking the validation
loss during training may implicitly leverages information about the generalization performance of a
parameter ensemble model.

4.2 DATASETS

We used the standard benchmark datasets (UMLS, KINSHIP, NELL-995 h25, NELL-995 h50,
NELL-995 h100, FB15K-237, YAGO3-10) for the link prediction and multi-hop query answer-
ing tasks. Overviews of the datasets and queries are provided in Table 2 and Table 3, respectively.
For the image classification task, we used the CIFAR-10 dataset (Krizhevsky et al., 2009). Further
details about the benchmark datasets are relegated to the appendix.

5

Under review as a conference paper at ICLR 2024

Table 2: An overview of datasets in terms of number of entities, number of relations, and node
degrees in the train split along with the number of triples in each split of the dataset.

Dataset |E| |R| |GTrain| |GValidation| |GTest|
Mutagenesis 14,250 8 55,023 - -
Carcinogenesis 22,540 9 63,382 - -
UMLS 135 46 5,216 652 661
KINSHIP 104 25 8,544 1,068 1,074
NELL-995 h100 22,411 43 50,314 3,763 3,746
NELL-995 h50 34,667 86 72,767 5,440 5,393
NELL-995 h25 70,145 172 122,618 9,194 9,187
FB15K-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 3: Overview of different query types. Query types are taken from Ren et al. (2020).

Multihop Queries
2p E? . ∃E1 : r1(e, E1) ∧ r2(E1, E?)
3p E? . ∃E1E2.r1(e, E1) ∧ r2(E1, E2) ∧ r3(E2, E?)
2i E? . r1(e1, E?) ∧ r2(e2, E?)
3i E? . r1(e1, E?) ∧ r2(e2, E?) ∧ r3(e3, E?)
ip E? . ∃E1.r1(e1, E1) ∧ r2(e2, E1) ∧ r3(E1, E?)
pi E? . ∃E1.r1(e1, E1) ∧ r2(E1, E?) ∧ r3(e2, E?)
2u E? . r1(e1, E?) ∨ r2(e2, E?)
up E? . ∃E1.[r1(e1, E1) ∨ r2(e2, E1)] ∧ r3(E1, E?)

4.3 EVALUATION

We evaluated the link prediction performance of DistMult, ComplEx, and QMult with and without
PPE. To this end, we used the Hits@N and MRR benchmark metrics (Ruffinelli et al., 2020). We
reported the Hits@N and MRR training, validation and test scores on each benchmark dataset for the
link prediction problem. By reporting the training and validation scores, we aim to detect possible
impacts on the training performance. Since the Mutagenesis and Carcinogenesis datasets do not
contain the validation and test splits, we applied 10-fold cross validated results and reported the
mean results.

5 RESULTS

Tables 4 to 6 report link prediction results on the link prediction benchmark datasets. We relegate the
experiments on UMLS and KINSHIP into the appendix. Overall, our experiments suggest that using
PPE consistently improves the link prediction performance of DistMult, ComplEx, and QMult on
all datasets. The results of our parameter analysis suggest that as the embedding size d increases,
the benefits of using PPE becomes more tangible. Throughout our experiments, we did not detect
any runtime overhead of using PPE.

Table 4 reports link prediction results on the FB15K-237 and YAGO3-10 benchmark datasets. Over-
all, results suggest that PPE improves the generalization performance of DistMult, ComplEx, and
QMult on both datasets. Our results also indicate that using PPE improves the link prediction per-
formance even on the training datasets. Despite all models being trained with the Adam optimizer,
PPE seems alleviate the circling behavior around a minimum further. Table 5 suggests that PPE
improves the generalization performance across models on NELL-995 h25 and NELL-995 h50.

Table 6 reports 10-fold cross validated link prediction results on bio-related benchmark datasets.
Since Mutagenesis and Carcinogenesis datasets do not contain a validation and test datasets for the
link prediction problem, we conducted experiments with 10-fold cross validation.

6

Under review as a conference paper at ICLR 2024

Table 4: Link prediction results on the train, validation and test splits of FB15K-237 and YAGO3-10.
Bold results indicate the best results.

FB15K-237 YAGO3-10

MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.991 0.985 0.999 1.000 0.980 0.962 0.998 1.000
With PPE 0.994 0.990 0.997 1.000 0.981 0.963 0.998 0.999

DistMult-val 0.124 0.074 0.132 0.222 0.400 0.337 0.433 0.520
With PPE 0.138 0.082 0.149 0.249 0.446 0.384 0.481 0.558

DistMult-test 0.122 0.071 0.129 0.223 0.393 0.330 0.425 0.512
With PPE 0.134 0.080 0.145 0.243 0.441 0.377 0.481 0.558

ComplEx-train 0.995 0.991 0.999 1.000 0.984 0.969 1.000 1.000
With PPE 0.996 0.993 1.000 1.000 0.984 0.969 1.000 1.000

ComplEx-val 0.128 0.075 0.138 0.233 0.408 0.344 0.439 0.530
With PPE 0.153 0.095 0.169 0.270 0.444 0.378 0.484 0.562

Complex-test 0.126 0.075 0.134 0.229 0.394 0.325 0.431 0.525
With PPE 0.150 0.094 0.165 0.264 0.433 0.366 0.473 0.554

QMult-train 0.989 0.981 0.997 0.999 0.821 0.790 0.841 0.877
With PPE 0.995 0.990 1.000 1.000 0.828 0.792 0.852 0.881

QMult-val 0.141 0.083 0.151 0.258 0.306 0.241 0.338 0.427
With PPE 0.172 0.108 0.188 0.302 0.341 0.283 0.367 0.346

QMult-test 0.138 0.082 0.146 0.253 0.300 0.232 0.334 0.424
With PPE 0.167 0.102 0.183 0.298 0.339 0.282 0.365 0.444

Table 5: Link prediction results on the train, validation and test splits of NELL-995 h25 and NELL-
995 h50 benchmark datasets. Bold results indicate the best results.

h25 h50

MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.995 0.991 0.998 1.000 0.955 0.934 0.974 0.990
With PPE 0.995 0.992 0.999 1.000 0.895 0.863 0.921 0.951

DistMult-val 0.151 0.107 0.164 0.235 0.162 0.114 0.178 0.258
With PPE 0.159 0.116 0.172 0.240 0.164 0.116 0.184 0.257

DistMult-test 0.154 0.111 0.168 0.238 0.164 0.116 0.116 0.257
With PPE 0.162 0.119 0.177 0.245 0.166 0.119 0.184 0.258

ComplEx-train 1.000 1.000 1.000 1.000 0.991 0.986 0.995 0.996
With PPE 1.000 1.000 1.000 1.000 0.995 0.991 0.999 1.000

ComplEx-val 0.105 0.069 0.110 0.175 0.079 0.048 0.082 0.143
With PPE 0.105 0.069 0.110 0.176 0.089 0.054 0.094 0.160

Complex-test 0.106 0.071 0.110 0.175 0.080 0.049 0.085 0.141
With PPE 0.105 0.069 0.110 0.178 0.093 0.058 0.097 0.160

QMult-train 0.977 0.967 0.986 0.994 0.917 0.890 0.934 0.962
With PPE 1.000 0.999 1.000 1.000 0.924 0.902 0.937 0.966

QMult-val 0.084 0.055 0.090 0.140 0.102 0.058 0.115 0.191
With PPE 0.090 0.059 0.096 0.150 0.114 0.068 0.127 0.206

QMult-test 0.081 0.052 0.086 0.138 0.105 0.061 0.114 0.191
With PPE 0.086 0.055 0.090 0.146 0.116 0.070 0.126 0.211

Table 7 reports the multi-hop queries answering results on the UMLS dataset. Due to the space
constraint, we relegate the results of ComplEx and QMult into appendix. Results suggest that PPE
on average increases the multi-hop query answering performance across query types.

7

Under review as a conference paper at ICLR 2024

Table 6: 10-fold cross validated link prediction results on Mutagenesis and Carcinogenesis datasets.
Bold results indicate the best results.

Mutagenesis Carcinogenesis

MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.150 0.121 0.151 0.204 0.045 0.025 0.047 0.085
With PPE 0.186 0.156 0.192 0.225 0.059 0.034 0.063 0.106

ComplEx 0.143 0.109 0.148 0.200 0.054 0.027 0.056 0.110
With PPE 0.203 0.158 0.220 0.286 0.056 0.027 0.059 0.117

QMult 0.136 0.104 0.137 0.190 0.033 0.014 0.029 0.065
With PPE 0.195 0.154 0.203 0.266 0.033 0.015 0.029 0.065

Table 7: Query answering results for 8 types of multi-hop queries. Average denotes the average
MRR, Hit@1 or Hit@3 scores across all types of queries.

Method Average 2p 3p 2i 3i ip pi 2u up

MRR

DistMult 0.378 0.238 0.194 0.642 0.659 0.332 0.467 0.349 0.140
With PPE 0.386 0.296 0.202 0.628 0.632 0.333 0.498 0.340 0.161

HITS@1

DistMult 0.259 0.106 0.101 0.539 0.549 0.200 0.321 0.236 0.020
With PPE 0.274 0.191 0.117 0.507 0.540 0.210 0.355 0.223 0.047

HITS@3

DistMult 0.415 0.278 0.214 0.686 0.726 0.380 0.512 0.375 0.148
With PPE 0.423 0.329 0.208 0.692 0.684 0.366 0.574 0.345 0.188

Figure 1 visualizes the stable training and testing accuracy achieved via PPE in image classification
on the Cifar 10 dataset. Table 8 reports the link prediction results with different embedding dimen-
sion sizes. Overall, results suggest that as d grows, the benefits of PPE becomes more tangible. For
instance, if d ≥ 32 DistMult with PPE reaches 81 higher Hit@N or MRR out of 96 scores, while
DistMult with PPE performed slightly worse at only 6 out of 96 scores. Using the 1.1 growth rate
leads to a slight improvement over no growth rate.

5.1 DISCUSSION

Our results indicate that constructing a parameter ensemble model by maintaining a weighted
average of parameters obtained at each epoch interval improves the generalization performance
across datasets and knowledge graph embedding models. We show that with our formulation,
weights/parameter ensemble weights can be determined in various forms, e.g., dynamically by track-
ing the validation loss or choosing an exponential function over weights. Overall, results suggest that
using exponentially increasing ensemble weights consistently improves the generalization results.
This may suggest that although Adam dynamically adapts the learning rate w.r.t. the gradients, our
weighted parameter averaging approach (PPE) accelerates the converge on a minima during train-
ing. Yet, our parameter analysis show that the benefits of applying PPE dissipates if the embedding
vector is very low (e.g. d < 16).

6 CONCLUSION

In this work, we investigated means to construct a parameter ensemble for knowledge graph embed-
ding models. By this, we aimed to alleviate the three computational disadvantages of constructing
an ensemble model based on the prediction averaging technique: the computational overhead of
training multiple models and increased latency and memory requirements at test time. We showed
that building a high performing parameter ensemble by maintaining a running weighted average

8

Under review as a conference paper at ICLR 2024

Table 8: Link prediction results of DistMult with different embedding dimensions d on the train,
validation and test splits of UMLS and KINSHIP benchmark datasets. PPE† denotes applying PPE
with λ = 1.1. Bold results indicate the best results.

d UMLS KINSHIP

MRR @1 @3 @10 MRR @1 @3 @10

DistMult-test 2 0.309 0.225 0.321 0.470 0.061 0.010 0.039 0.123
With PPE 0.310 0.226 0.318 0.469 0.054 0.010 0.033 0.106
With PPE† 0.309 0.225 0.316 0.469 0.055 0.010 0.031 0.107

DistMult-test 4 0.617 0.486 0.711 0.834 0.105 0.038 0.083 0.218
With PPE 0.627 0.490 0.724 0.837 0.099 0.028 0.083 0.220
With PPE† 0.626 0.489 0.723 0.840 0.102 0.033 0.082 0.221

DistMult-test 8 0.775 0.663 0.869 0.939 0.518 0.351 0.602 0.886
With PPE 0.763 0.643 0.865 0.935 0.533 0.373 0.616 0.883
With PPE† 0.764 0.644 0.865 0.935 0.534 0.376 0.614 0.883

DistMult-test 16 0.862 0.781 0.936 0.981 0.665 0.520 0.771 0.938
With PPE 0.863 0.785 0.932 0.982 0.669 0.523 0.779 0.932
With PPE† 0.865 0.788 0.934 0.983 0.676 0.534 0.783 0.934

DistMult-test 32 0.812 0.722 0.883 0.970 0.704 0.569 0.796 0.958
With PPE 0.839 0.760 0.896 0.974 0.713 0.584 0.801 0.957
With PPE† 0.837 0.759 0.898 0.974 0.714 0.585 0.803 0.959

DistMult-test 64 0.673 0.539 0.760 0.940 0.602 0.437 0.717 0.924
With PPE 0.680 0.551 0.759 0.939 0.632 0.483 0.724 0.932
With PPE† 0.686 0.554 0.777 0.946 0.629 0.475 0.724 0.932

DistMult-test 128 0.665 0.527 0.767 0.934 0.481 0.307 0.561 0.884
With PPE 0.667 0.532 0.766 0.933 0.507 0.338 0.591 0.889
With PPE† 0.669 0.531 0.766 0.933 0.520 0.351 0.600 0.890

DistMult-test 256 0.648 0.503 0.746 0.932 0.444 0.270 0.518 0.851
With PPE 0.651 0.506 0.746 0.933 0.464 0.291 0.539 0.861
With PPE† 0.659 0.511 0.765 0.936 0.475 0.309 0.541 0.868

of parameters is a promising means to improve the link prediction performance across models and
datasets. On each epoch interval, our approach (PPE) updates the parameter ensemble model via
ensemble weights with a running knowledge graph embedding model. Our experiments show that
PPE constructs a high performing parameter ensemble with virtually an expense of training a single
model.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Uuf2q9TfXGA.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query an-
swering with neural link predictors. In 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=Mos9F9kDwkz.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. arXiv preprint arXiv:1901.09590, 2019.

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information pro-
cessing systems, 26, 2013.

9

https://openreview.net/forum?id=Uuf2q9TfXGA
https://openreview.net/forum?id=Mos9F9kDwkz

Under review as a conference paper at ICLR 2024

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 535–541, 2006.

Caglar Demir and Axel-Cyrille Ngonga Ngomo. Convolutional complex knowledge graph em-
beddings. In Ruben Verborgh, Katja Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria
Maleshkova, Oscar Corcho, Petar Ristoski, and Mehwish Alam (eds.), The Semantic Web, pp.
409–424, Cham, 2021. Springer International Publishing. ISBN 978-3-030-77385-4.

Caglar Demir, Diego Moussallem, Stefan Heindorf, and Axel-Cyrille Ngonga Ngomo. Convolu-
tional hypercomplex embeddings for link prediction. In Vineeth N. Balasubramanian and Ivor
Tsang (eds.), Proceedings of The 13th Asian Conference on Machine Learning, volume 157
of Proceedings of Machine Learning Research, pp. 656–671. PMLR, 17–19 Nov 2021. URL
https://proceedings.mlr.press/v157/demir21a.html.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multi-
ple classifier systems, pp. 1–15. Springer, 2000.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Stefan Heindorf, Lukas Blübaum, Nick Düsterhus, Till Werner, Varun Nandkumar Golani, Caglar
Demir, and Axel-Cyrille Ngonga Ngomo. Evolearner: Learning description logics with evolu-
tionary algorithms. In Proceedings of the ACM Web Conference 2022, pp. 818–828, 2022.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get m for free. In International Conference on Learning Represen-
tations, 2017. URL https://openreview.net/forum?id=BJYwwY9ll.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
pp. 545–604. PMLR, 2018.

10

https://proceedings.mlr.press/v157/demir21a.html
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=BJYwwY9ll

Under review as a conference paper at ICLR 2024

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In International Conference on Machine Learning, pp. 2863–2872.
PMLR, 2018.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop.
Neural networks: Tricks of the trade: Second edition, pp. 9–48, 2012.

Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling with no over-
head for either training or testing: The all-round blessings of dynamic sparsity. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=RLtqs6pzj1-.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In Icml, 2011.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer, 2002.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In ICLR. OpenReview.net, 2020.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schu-
urmans. Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge
graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1472–1482, 2022.

Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. Neural
graph reasoning: Complex logical query answering meets graph databases. arXiv preprint
arXiv:2303.14617, 2023.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkxSmlBFvr.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 8(4):e1249, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and Guil-
laume Bouchard. Knowledge graph completion via complex tensor factorization. J. Mach. Learn.
Res., 18(1):4735–4772, jan 2017. ISSN 1532-4435.

David Warde-Farley, Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. An empirical analysis
of dropout in piecewise linear networks. arXiv preprint arXiv:1312.6197, 2013.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=Sklf1yrYDr.

11

https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=Sklf1yrYDr

Under review as a conference paper at ICLR 2024

Jingjing Xie, Bing Xu, and Zhang Chuang. Horizontal and vertical ensemble with deep representa-
tion for classification. arXiv preprint arXiv:1306.2759, 2013.

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690, 2017.

Chengjin Xu, Mojtaba Nayyeri, Sahar Vahdati, and Jens Lehmann. Multiple run ensemble learning
with low-dimensional knowledge graph embeddings. In 2021 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR, 2015.

A APPENDIX

B DETERMINING ENSEMBLE SEIGHTS

Figure 3 visualizes the ensemble weights with different growth rates. Using a growth rate of 1.0
implies that wPPE is constructed with positive equal weights.

0 20 40 60 80 100
Epochs N

0.00

0.02

0.04

0.06

0.08

Co
ef

fic
ie

nt
s

i

Ensemble coefficients with
i

i = 1

Growth rate 1.0
Growth rate 1.1
Growth rate 1.05
Growth rate 1.025
Growth rate 1.01

Figure 3: Ensemble weights with different growth rates.

B.1 IMPLEMENTATION DETAILS AND REPRODUCIBILITY

We open-source our code including training and evaluation scripts at an anonymous project page.1
Throughout our experiments, we used the same seed for the random number generator. All experi-
ments are conducted on the same hardware.

B.2 ADDITIONAL EXPERIMENTS

B.3 DATASETS

KINSHIP describes the 26 different kinship relations of the Alyawarra tribe and the unified medi-
cal language system (UMLS) describes 135 medical entities via 49 relations describing (Trouillon

1https://drive.google.com/drive/folders/1jQo6FJgObyVaEMmIxj7QrVMkX5Jd9NDk?
usp=share_link

12

https://drive.google.com/drive/folders/1jQo6FJgObyVaEMmIxj7QrVMkX5Jd9NDk?usp=share_link
https://drive.google.com/drive/folders/1jQo6FJgObyVaEMmIxj7QrVMkX5Jd9NDk?usp=share_link

Under review as a conference paper at ICLR 2024

Table 9: Link prediction results on the train, validation and test splits of UMLS and KINSHIP
benchmark datasets. Bold results indicate the best results.

UMLS KINSHIP

MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.992 0.987 0.997 1.000 0.847 0.781 0.893 0.977
With PPE 0.999 0.998 0.999 1.000 0.865 0.806 0.906 0.981

DistMult-val 0.458 0.325 0.500 0.753 0.399 0.256 0.432 0.741
With PPE 0.499 0.376 0.528 0.778 0.426 0.288 0.455 0.760

DistMult-test 0.450 0.321 0.491 0.755 0.404 0.260 0.442 0.755
With PPE 0.493 0.372 0.526 0.778 0.433 0.290 0.470 0.782

ComplEx-train 0.998 0.997 1.000 1.000 0.993 0.989 0.998 1.000
With PPE 1.000 1.000 1.000 1.000 0.996 0.993 0.999 1.000

ComplEx-val 0.442 0.285 0.521 0.766 0.521 0.378 0.595 0.829
With PPE 0.491 0.350 0.550 0.783 0.599 0.463 0.677 0.861

ComplEx-test 0.444 0.287 0.528 0.773 0.533 0.388 0.614 0.821
With PPE 0.502 0.361 0.573 0.787 0.603 0.479 0.675 0.842

QMult-train 0.998 0.998 0.999 0.999 0.990 0.983 0.996 0.999
With PPE 1.000 1.000 1.000 1.000 0.995 0.992 0.998 0.999

QMult-val 0.445 0.280 0.524 0.791 0.500 0.352 0.571 0.805
With PPE 0.485 0.326 0.578 0.803 0.598 0.468 0.675 0.852

QMult-test 0.426 0.272 0.498 0.757 0.502 0.355 0.580 0.801
With PPE 0.480 0.334 0.555 0.786 0.591 0.467 0.668 0.838

et al., 2017). FB15K-237 and YAGO3-10 are subsets of Freebase and YAGO (Dettmers et al., 2018),
Never-Ending Language Learning datasets are designed to multi-hop reasoning capabilities released
(NELL-995 h25, NELL-995 h50, NELL-995 h100) (Xiong et al., 2017). We were also interested to
evaluate PPE on other benchmark datasets. So, we include Mutagenesis and Carcinogenesis bench-
mark datasets that are often used to benchmark concept learning in description logics (Heindorf
et al., 2022).

13

	Introduction
	Related Work & Background
	Ensemble Learning
	Knowledge Graph Embedding Models and Ensemble Learning

	Polyak Parameter Ensemble
	Determining Ensemble Weights - .4

	Experiments
	Training and Optimization
	Datasets
	Evaluation

	Results
	Discussion

	Conclusion
	Appendix
	Determining Ensemble Seights
	Implementation Details and Reproducibility
	Additional Experiments
	Datasets

