CODESWIFT: Accelerating LLLM Inference for Efficient Code Generation

Anonymous ACL submission

Abstract

Code generation is a latency-sensitive task that
demands high timeliness, but the autoregres-
sive decoding mechanism of Large Language
Models (LLMs) leads to poor inference ef-
ficiency. Existing LLM inference accelera-
tion methods mainly focus on standalone func-
tions using only built-in components. More-
over, they treat code like natural language se-
quences, ignoring its unique syntax and seman-
tic characteristics. As a result, the effective-
ness of these approaches in code generation
tasks remains limited and fails to align with
real-world programming scenarios. To allevi-
ate this issue, we propose CODESWIFT, a sim-
ple yet highly efficient inference acceleration
approach specifically designed for code gen-
eration, without comprising the quality of the
output. CODESWIFT constructs a multi-source
datastore, providing access to both general and
project-specific knowledge, facilitating the re-
trieval of high-quality draft sequences. More-
over, CODESWIFT reduces retrieval cost by
controlling retrieval timing, and enhances effi-
ciency through parallel retrieval and a context-
and LLM preference-aware cache. Experimen-
tal results show that CODESWIFT can reach
up to 2.53x and 2.54 x speedup compared to
autoregressive decoding in repository-level and
standalone code generation tasks, respectively,
outperforming state-of-the-art inference accel-
eration approaches by up to 88%. Our code
and data are available at https://anonymous.
4open.science/r/CodeSwift.

1 Introduction

Large Language Models (LLMs) such as GPT-40
(Achiam et al., 2023) and DeepSeek-Coder (Guo
et al., 2024) have demonstrated impressive perfor-
mance in coding tasks, revolutionizing the land-
scape of software development (Github, 2021; Li
et al., 2023). These models excel in code comple-
tion and generation but face a challenge: the signif-
icant inference time. LLMs use the autoregressive

decoding mechanism, where each new token is
generated conditioned on the previously generated
tokens and the given context. However, developers
typically hold high expectations regarding the re-
sponsiveness of code recommendations (Liu et al.,
2024a). If LLMs fail to deliver precise and effi-
cient feedback, it may directly affect development
efficiency and user experience.

To accelerate the inference process of LLMs,
speculative decoding (Chen et al., 2023a; Leviathan
et al., 2023) is regarded as one of the effective so-
lutions, which employs a draft-verification frame-
work to minimize the number of forward steps.
Specifically, it utilizes a small language model as
a draft model to rapidly generate candidate output
tokens, which are then verified for acceptability by
the target LLM through a single forward step while
keeping the output consistent with that decoded
autoregressively by the target LLM itself. Based
on the draft-verification paradigm, many inference
acceleration approaches have emerged (Chen et al.,
2023b; Zhang et al., 2024; Zhao et al., 2024; Li
et al., 2024b; Miao et al., 2024), most of which rely
on an additional draft model, either selected from
the same model family or trained for specific use
cases. However, identifying a suitable draft model
remains challenging, as it requires striking a deli-
cate balance between maintaining a small model
size and ensuring high output quality. Additionally,
the draft model must align with the vocabulary of
the target LLM, further complicating the selection
process. More recently, researchers have explored
replacing the parametric draft model with a non-
parametric retrieval system (He et al., 2024; Yang
et al., 2023), which can easily be ported to any
LLM without introducing additional training costs
and have be applied to code generation task.

While some of the above approaches have
demonstrated promising performance in code gen-
eration task (He et al., 2024; Zhao et al., 2024),
they primarily focus on standalone code functions

https://anonymous.4open.science/r/CodeSwift
https://anonymous.4open.science/r/CodeSwift
https://anonymous.4open.science/r/CodeSwift

def has_close_elements(numbers, threshold):
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem -
if distance < threshold:
return True
return False

elem2)

(a) A standalone function

from lightweight_mmm.core import priors, core_utils
def sinusoidal_seasonality(...)-> jnp.ndarray:
number_periods = data.shape[0]
default_priors = priors.get_default_priors()
n_geos = core_utils.get_number_geos(data=data)
with numpyro.plate(f"{priors.GAMMA_SEASONALITY} sin_cos_plate", 2):
with numpyro.plate(f"{priors.GAMMA_SEASONALITY} plate", ...):
gamma_seasonality = numpyro.sample(
name=priors.GAMMA_SEASONALITY,
fn=custom_priors.get(
priors.GAMMA_SEASONALITY,
default_priors[priors.GAMMA_SEASONALITY]))

seasonality_values = [sinusoidal seasonality (
seasonality arange=seasonality_arange, ...)

return seasonality_values

(b) A repository-level function

Figure 1: Examples of standalone and repository-level
functions. Intra-file and cross-file dependencies are
highlighted in green and yellow, respectively.

that solely rely on built-in components. How-
ever, in real-world software development, it is
crucial for developers to be aware of other files
within the repository during programming (Zhang
et al., 2023), which gives rise to repository-level
code generation (more details in Appendix A). As
shown in Figure 1, complex dependencies that span
multiple levels can exist in repository-level func-
tions. Experimental results show that existing in-
ference acceleration approaches typically perform
worse on repository-level code generation under
the same settings than standalone ones. For exam-
ple, Self-speculative decoding (Zhang et al., 2024)
can achieve over 1.5x acceleration compared to
autoregressive decoding in standalone code gen-
eration (Figure 5), but falls short when applied to
repository-level tasks, offering virtually no speedup
in comparison to autoregressive inference (Table 1).
Moreover, existing approaches treat source code as
sequences similar to natural language, without ac-
counting for code’s unique syntactic and semantic
characteristics. As a result, the effects of existing
LLM inference acceleration approaches on code
generation tasks may be limited and fail to align
with real-world scenarios.

To alleviate this issue, in this paper, we primarily
focus on improving the inference speed of LLMs
on code generation task, covering both repository-
level and standalone code, without comprising the
quality of the output. We propose CODESWIFT,
a simple yet highly efficient approach to accel-
erate the inference of LLMs through an efficient
and effective retrieval strategy. Concretely, we first

construct a multi-source datastore, providing ac-
cess to both general and project-specific knowl-
edge and enhancing the quality of draft sequences.
Then, CODESWIFT reduces unnecessary retrieval
overhead by controlling the retrieval timing. Be-
sides, CODESWIFT improves retrieval efficiency
through parallel retrieval and the maintenance of
a context- and LLM preference-aware cache. Fi-
nally, tree attention is employed to avoid redun-
dant computation caused by verifying multiple
draft sequences. Experimental results show that
the decoding speed of CODESWIFT surpasses ex-
isting inference acceleration approaches substan-
tially on both repository-level and standalone code
generation tasks. For repository-level code genera-
tion, CODESWIFT achieves up to 2.30x and 2.53 x
speedup on DevEval (Li et al., 2024a) and RepoE-
val (Zhang et al., 2023), respectively. CODESWIFT
can also achieve up to 2.54 x acceleration on stan-
dalone code generation dataset, HumanEval (Chen
et al., 2021). It is worth noting that incorporat-
ing project-specific knowledge enables the genera-
tion of high-quality drafts, reducing the verification
time and, consequently, the inference time of our
model for repository-level code generation. How-
ever, this knowledge can be omitted in standalone
code generation where such context is unnecessary.

Our contributions can be summarized as follows:

* We identify limitations of current LLM infer-
ence acceleration approaches within the con-
text of real-world code generation and provide
insights for potential improvements.

* We propose CODESWIFT, a simple yet effi-
cient approach to accelerate LLM inference
for code generation by leveraging effective
retrieval and verification mechanisms.

* We conduct a comprehensive evaluation of
CODESWIFT and results show that it achieves
state-of-the-art results in both repository-level
and standalone code generation tasks.

2 Related Work

Autoregressive decoding generates tokens sequen-
tially, leading to slow and costly decoding. To ac-
celerate this process, draft-verification approaches
(Chen et al., 2023a; Miao et al., 2024; He et al.,
2024) have gained popularity recently as they en-
hance speed without compromising performance,
which fall into generation-based and retrieval-
based categories based on their draft generation
techniques (more information in Appendix B).

Generation-based approaches. Draft tokens can
be generated either by a smaller model or by the
target model itself. Speculative decoding (Chen
et al., 2023a; Leviathan et al., 2023) employs a
smaller model for drafting and uses the target LLM
for efficient parallel verification. Ouroboros (Zhao
et al., 2024) generates draft phrases to enhance par-
allelism and extend drafts. Alternatively, the target
LLM itself can be utilized to efficiently draft (Stern
etal., 2018; Li et al., 2024b; Fu et al., 2024), which
reduces system complexity and selection difficul-
ties. Medusa (Cai et al., 2024) introduces multiple
heads to predict multiple draft tokens in parallel.
Self-speculative decoding (Zhang et al., 2024) em-
ploys the target model with selectively certain in-
termediate layers skipped as the draft model.
Retrieval-based approaches. The retrieval-based
draft generation approach replaces the model gener-
ation with a search in a retrieval datastore to obtain
candidate sequences. These approaches avoid extra
training and can reduce computational overhead.
LLMA (Yang et al., 2023) is an inference-with-
reference decoding mechanism by exploiting the
overlap between the output and the reference of an
LLM. REST (He et al., 2024) replaces the para-
metric draft model with a non-parametric retrieval
datastore.

3 Preliminaries

3.1 Retrieval-based Speculative Decoding

Building upon the draft-verification framework
introduced by speculative decoding (Chen et al.,
2023a; Leviathan et al., 2023), retrieval-based de-
coding acceleration approaches leverage a retrieval
mechanism to generate draft tokens (He et al., 2024;
Yang et al., 2023), which can eliminate the chal-
lenge of selecting an appropriate draft model and
avoid additional training costs. A notable example
is Retrieval-Based Speculative Decoding (REST)
(He et al., 2024), which has proven to be effec-
tive in standalone function generation task (Chen
et al., 2021). Below is an explanation of how it
works. Pre-built from a code corpus, the datastore
of D = {(c;,t;)} serves as the source for the draft
token sequence, where c¢; represents a context and
t; represents the corresponding continuation of ¢;.
As an alternative to the draft model, the objective of
retrieval is to identify the most likely continuations
of the current context from the datastore D using
a suffix match (Manber and Myers, 1993). Specif-
ically, given a context s = (z1, ..., o¢), it aims to

def _get_user_id():

Get the user id from the user id file. If the user id file does
not exist or is older than 24 hours, generate a new user id and save
it to the user id file.

Input-Output Arguments

:return: String. The user id.

user_id_file_path| = os.path.join(config.get_config_dir(),

TELEMETRY_ID_FILE)

if _user_id_file_is_old(user_id_file_path): /| N . DY
- e — = == = S ° fail to retrieve
user_id = str(uuid.uuidd user_id_file_path
with open(user_id_file_path|, 'w') as f:W .

can only retrieve
f.write(user_id) L file_path
else:

with open(user_id_file_pathf, 'r') as f:
user_id = f.read()
return user_id

J

Figure 2: Localness of source code.

Retrieved Rate Whitespace Rate

Line Index
n o
ESoovwouswnro

Line Index
noe
EBoowvousuwnro

012345678 91011
Token Index

012345678 91011
Token Index

(@) (b)
Figure 3: Heatmaps of (a) retrieval performance and (b)
whitespace distribution with token positions in REST.
The maximum token index is selected based on the
average token number per line (12).

find contexts in D that match the longest suffix of
s. Starting from a pre-defined match length upper
limit 1,,,4; (measured in the number of tokens), for
each suffix length n, it extracts the suffix of s with
n tokens, denoted as ¢, and obtains all contexts c;
that match g as a suffix. If at least one context in D
matches ¢, the corresponding context continuation
pairs are returned as the retrieval result .S; other-
wise, the match length n is decreased by one to at-
tempt matching a shorter suffix. Subsequently, the
top k high-frequency prefixes in S are selected as
the draft sequences for later verification. Inspired
by REST, CODESWIFT also incorporates a similar
suffix-match-based retrieval algorithm, leveraging
its advantages in time and memory efficiency.

3.2 Motivating Examples

To identify the limitations of current inference ac-
celeration methods in code generation, we present
motivating examples that highlight the localness
of source code and the retrieval performance in
retrieval-based approaches.

Localness of source code. Human-written pro-
grams are typically localized (Tu et al., 2014), with
program entities (token sequences) defined or used
in the preceding snippets frequently being reused
in the subsequent code snippets within the same
code file. As shown in Figure 2, user_id_file_path
is a user-defined variable within the current code
segment, which does not exist in the datastore but

appears multiple times in subsequent code snip-
pets. Additionally, the blue-highlighted statements
demonstrate the repetition of token sequences. By
effectively leveraging these frequently occurring to-
ken sequences within the code file, such as storing
them in a cache for subsequent retrieval, the accep-
tance length for draft validation can be increased,
thereby enhancing the inference speed.

Retrieval is not always essential. Current work
performs retrieval operation at every position,
which may bring unnecessary cost. To investi-
gate the relationship between retrieval performance
and token position in code generation, we ran-
domly selected 200 samples from DevEval (Li
et al., 2024a), a repository-level code generation
benchmark, and employed DeepSeek-Coder-6.7B
(Guo et al., 2024) for evaluation. For each token,
we recorded whether it was: (a) retrieved from the
datastore rather than generated by the model, and
(b) a whitespace character (e.g., spaces or new-
line characters). Results are presented as heatmaps
in Figure 3. As seen from Figure 3(a), retrieval
failures are frequent, with a particularly notable
pattern: the second token in each line has the low-
est probability of being successfully retrieved. A
comparison with the whitespace rate heatmap sug-
gests that this phenomenon may stem from the
fact that the second token is typically the first non-
whitespace character at the beginning of a line. The
first non-whitespace token in each line dictates the
direction of the line, making it more variable and
consequently more challenging to retrieve. Thus,
skipping retrieval or reducing the retrieval proba-
bility at such positions may improve performance.

4 Method

The architecture of CODESWIFT is shown in Figure
4. In this section, we first describe the construction
of datastore and cache, and then provide a detailed
explanation of retrieval and verification process.

4.1 Multi-source Datastore Construction

The quality of the retrieval datastore, which serves
as the source of draft sequences, critically deter-
mines the acceleration potential. A larger data-
store may enhance the probability of result ac-
ceptance, but it also correspondingly increases re-
trieval time, making the trade-off between the two
critically important. To achieve optimal perfor-
mance with a compact datastore and facilitate effec-
tive retrieval, CODESWIFT incorporates a smaller

repository-related datastore D, and a larger com-
mon code datastore D, to construct a comprehen-
sive retrieval datastore D. This design supports par-
allel retrieval, providing access to both general and
project-specific knowledge. To enable fast retrieval
with minimal overhead, we organize the datastore
into context-continuation pairs, facilitating a rapid
exact-match method for context search.
Repository-related datastore D,. During soft-
ware development, developers often reference
cross-file elements such as classes and methods,
making intra-repository files highly relevant to the
generated code. Additionally, repository-specific
factors, including domain variations and coding
conventions, lead to distinct patterns of idiomatic
expressions. For instance, web development repos-
itories frequently involve HTTP request-response
handling, while data science repositories focus on
data processing and modeling tasks. To this end,
we collect the code files from current repository
(with the portions to be generated excluded) and
form repository-related datastore D,..

Common datastore D,.. To ensure that common
programming operations are also retrievable, a sub-
set of data from commonly used pre-trained code
datasets (Kocetkov et al., 2022) is used to form D,
which serves as another component of datastore D.
Datastore organization. For efficient retrieval, the
datastore is organized as contexts and the corre-
sponding continuations following He et al. (2024).
Specifically, for each code file utilized in construct-
ing the datastore, the content preceding every posi-
tion will constitute a context, whereas the content
subsequent to that position is the corresponding
continuation. The datastore D of CODESWIFT can
be summarized as:

D = (D,,D,) (1

(Dr De) = (et 125 (e t)125) - @
where ¢; (c;) represents the context, t; (¢;) rep-
resents the corresponding continuation of ¢; (¢;),
|Dy| (|D.]) is the number of samples in D, (D.).
For standalone code generation, D, can be omitted.

4.2 Context- and LLM Preference-aware
Caching

To reduce retrieval costs and improve the alignment
of retrieved results with LLM preferences—thereby
increasing both the accepted sequence length and
inference speed—we design a context- and LLM
preference-aware caching strategy to cache the ver-
ified retrieved sequences and LLM generated se-

l name = self.

from D, | X

imi flnd whether s in
Datastore \ glerre-?tgion QM
@ common - D »3/\ I _id=(from D, | X missing table
code = c / I . s ends with tokeng, ? 1o
- _id_file from D, | yes
a 2253 E D, / Q l construct weighted Trie yes __ With probability 1 — p o
(2 S no with probability p end retrieval
\ ‘
Cache R?triever Retriever &che s vallable, . coche
$= LLM output sequences)
= cache is not
if _user_id_) (file_is_old(\/ x available | no results @ | -
verified retrieved sequences I ‘t::’elsgrt‘t‘;tmlon l‘:q
= ngas imi "H
i= (user_id_file_path zmgﬁon $ sss parallel ED—R, =
PN autoregressive . search Y R
- update 1 decoding l verify = :
LLM : - SD— R] retrieved sequences
llall 2| |f _user_id_file_is_old (useJ] Datastore
context §> matched suffix

Figure 4: Architecture of CODESWIFT. The left part illustrates an overview, and the right part offers a detailed

depiction of timing selection and retrieval operation.

quences. Specifically, based on the observations in
Section 3.2, program entities (token sequences) de-
fined or used in preceding snippets are often reused
in the subsequent code snippets. Consequently, if
the draft sequence = (y1, ..., y;), retrieved by the
context s = (x1,..., o), is verified by the LLM,
we concatenate them as (21, ..., ¢, y1, ..., ¥j) and
add it into CACHE. Moreover, since the datastore
D is static, the draft sequences retrieved for the
identical context s remain consistent. However,
different LLMs exhibit distinct generation prefer-
ences, leading to varied decoding outputs after draft
verification. Additionally, earlier decoding outputs
must maintain contextual relevance and coherence
with subsequent outputs. Therefore, we also incor-
porate the verified decoding output sequence into
CACHE for future use.

To maintain the CACHE, we assess whether the
two aforementioned update conditions are satisfied
after each forward step of the LLM. If the number
of sequences inside the CACHE exceeds the pre-
defined threshold [, it is accessible and will remain
active throughout the entire inference process.

4.3 Dynamic and Efficient Retrieval Strategy

Algorithm 1 illustrates the complete retrieval pro-
cess of CODESWIFT. Before each forward step,
given current context s, CODESWIFT initially ver-
ifies the availability of CACHE. If the CACHE is
accessible, that is, the number of sequences inside
exceeds [, retrieval is prioritized from CACHE. If
CACHE is unavailable or fails to yield valid (non-
empty) results, CODESWIFT utilizes a dynamic and
efficient retrieval strategy to minimize unnecessary
retrieval cost. Specifically, CODESWIFT optimizes
retrieval timing by addressing two key considera-
tions as follows.

Algorithm 1: Retrieval Algorithm

Input: current context s, datastore D, retrieval cache
CACHE, minimum activation size [, missing
table M, skip token tokenip, retrieval
probability p

Output: Retrieved sequences R

1 if CACHE.size > [then

2 /I retrieval from cache
3 R < search(CACHE)
4 if CACHE.size < lor R = () then
5 /I retrieval timing selection
6 if s € M then
7 | pass
8 else if s ends with tokeng, then
if random number < p then
10 // parallel retrieval from datastore
11 Rr, R. < par_search(D,, D.)
12 R+ (Rr,Rc)

13 if R = () then

14 // update missing table
15 | M+ MuU{s}
16 else

17| update CACHE

18 return R;

Skip token. As mentioned in Section 3.2, the in-
trinsic characteristics of code lead to a low retrieval
success rate at the first non-whitespace character
of each line. Since obvious patterns are not found
in other positions, and the introduction of intricate
judgment processes may incur additional compu-
tational overhead, we set the first non-whitespace
character of each line as the skip token. We strategi-
cally reduce the retrieval probability of skip token
through a control parameter p, which refers to the
retrieval probability at these positions.

Missing table. When utilizing the current context
s to retrieve its continuations from datastore D, it
may fail to yield any valid results in some cases.
To prevent time wastage resulting from invalid re-

trieval, we maintain a missing table M = {s,,, }
that stores suffixes s;,;, for which no valid results
can be retrieved from the datastore D. Thus, when
Sm, 1s encountered again during the subsequent in-
ference, CODESWIFT will bypass the retrieval and
directly utilize the LLM to generate the next token.

If CODESWIFT decides to proceed with retrieval
according to the above strategy, parallel retrieval
is conducted from repository-related datastore D,
and common datastore D, to further boost the re-
trieval efficiency, and the results refer to R, and
R, separately. Specifically, if R, and R, are both
empty, s will be denoted as s,,, and added into the
missing table M. Otherwise, relevant sequences
are employed to update the CACHE.

4.4 Draft Construction and Verification with
Weighted Prefix Optimization

The retrieval results R = (R,, R.) contain poten-
tial continuations of the current context s, often
sharing the same prefix. To reduce the cost brought
by verification each r; € I? one by one, we con-
struct the draft sequences using a Trie, where the
unique path from a node to the root node corre-
sponds to a prefix of the retrieval results, aiming to
reduce the repeated verification of shared prefixes
in R. We use following equation to assign a weight
for each node:

Nweight =a- -t + B “te (3)
where ¢, and ¢, represents the times that the node
occurs in R, and R, respectively, and o and (8
refers to the corresponding coefficient. By control-
ling the values of « and j3, the preference of draft
sequences can be adjusted to accommodate differ-
ent scenarios. We select top-k sequences from the
Trie, ordered by their weights from highest to low-
est, as the draft sequences. Subsequently, the draft
sequences are verified by LLM using tree attention
(Spector and Re, 2023; Miao et al., 2024). As our
objective is to accelerate the inference without com-
promising model performance, all correct tokens
from the beginning will be accepted, while the draft
tokens following the first error will be rejected.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on both
repository-level and standalone code generation
benchmarks. For repository-level code generation,
we choose two widely-used benchmarks, DevEval
(Liet al., 2024a) and RepoEval (Zhang et al., 2023).

DevEval comprises 1,825 testing samples from 115
repositories, covering 10 popular domains. It aligns
with real-world repositories in code distributions
and dependency distributions. RepoEval is con-
structed using the high-quality repositories sourced
from GitHub. We use the function-level subset
for evaluation, which contains 455 testing samples.
For standalone code generation, we conduct experi-
ments on HumanEval (Chen et al., 2021), a widely-
used standalone code generation dataset including
164 human-written programming problems.
Backbone Models. We use the 1.3B and 6.7B
configurations of Deepseek-Coder-base (Guo et al.,
2024), as well as 7B and 13B configurations of
CodeLlama-Python (Roziere et al., 2023) for eval-
uation, which are popular and well-performing
LLMs in code generation.

Baselines. We compare CODESWIFT with vanilla
autoregressive decoding and several state-of-the-
art inference acceleration approaches that follow
the draft-verification framework and have demon-
strated effectiveness in code generation, includ-
ing Self-speculative decoding (Zhang et al., 2024),
Ouroboros (Zhao et al., 2024), and REST (He et al.,
2024). Self-speculative decoding requires several
hours to identify skipped layers in the target LLM
for draft model construction. Ouroboros demands
manual selection of a suitable draft model for the
target LLM. REST is draft model-free but suffers
from misalignment between retrieval sequences
and the LLM output.

Evaluation Metrics. We report the decoding speed
(ms/token) and the speedup ratio compared with
vanilla autoregressive decoding. We also compare
the average acceptance length, defined as the av-
erage number of tokens accepted per forward step
by the target LLM, which reflects the upper bound
of achievable acceleration. Since CODESWIFT and
baselines do not compromise model performance,
the correctness of the generated code is not evalu-
ated.

Implementation Details. To provide essential con-
textual information, we prepend preceding code
snippets from the same file as context for DevEval
and RepoEval. All results are obtained with a maxi-
mum input length of 2k and a maximum generation
length of 512 under greedy decoding. We focus on
greedy decoding results as baseline approaches per-
form optimally with greedy decoding and compara-
bly to other sampling strategies. D, is constructed
from a subset of Python pre-training code in The
Stack (Kocetkov et al., 2022), taking approximately

Table 1: Decoding speed and speedup ratio on repository-level code generation datasets.

Dataset Approach Deepseek-Coder-1.3B | Deepseek-Coder-6.7B CodeLlama-7B CodeLlama-13B
PP ms/token Speedup | ms/token Speedup | ms/token Speedup | ms/token Speedup
Autoregressive 20.00 1.00x 26.15 1.00x 26.29 1.00x 46.35 1.00x
Self-speculative 18.72 1.07x 22.55 1.16x 25.10 1.05x 42.74 1.08x
DevEval | Ouroboros - - 15.69 1.67x 29.14 0.90x 39.73 1.17x
REST 12.10 1.65% 15.28 1.71x 15.57 1.69 % 43.38 1.07x
CODESWIFT 8.71 2.30x 11.69 2.24x 12.17 2.16x 21.56 2.15x%
Autoregressive 19.91 1.00x 25.75 1.00x 26.21 1.00x 47.86 1.00x
Self-speculative 19.63 1.02x 22.48 1.16% 24.36 1.08 x 42.09 1.14x
RepoEval | Ouroboros - - 14.56 1.77x 33.12 0.79% 35.60 1.34x
REST 12.09 1.65% 15.46 1.67x 15.43 1.70x 44.59 1.04x
CODESWIFT 7.88 2.53x 10.83 2.38x 10.80 2.43x 19.02 2.52x
0
> M Autoregressive M Self-speculative B Ouroboros B REST M CodeSwift

ms/token
N W B
o O O

=
o

1.57x
I l 2.30x2:02X 45x

Deepseek-Coder-6.7B

l 1.51x 1'88x2.38x
B Em

Deepseek-Coder-1.3B

o

1.30x
1.55x
1.81x
I 2.54x

CodelLlama-13B

Lasx o
1.93x1.90%; 49y

CodelLlama-7B

Figure 5: Decoding speed and speedup ratio on HumanEval.

9 minutes and yielding a 0.9GB datastore. D,
ranges from 60KB and 289MB across repositories,
taking an average of 10 seconds. Hyper-parameters
include [= 50, p = 0.5, a = g = 1, with LLM
output truncated every 20 tokens and added to the
CACHE. Following He et al. (2024), for retrieval,
the starting context suffix length 1,4, = 16, and
a maximum of 64 draft tokens of the top-k se-
quences are selected in the Trie. Baseline imple-
mentation details are in Appendix C. Experiments
for Deepseep-Coder and Codel.lama-7B use a sin-
gle NVIDIA 4090 GPU and 28 CPU cores, and
CodeLlama-13B experiments use a single NVIDIA
A6000 GPU and 12 CPU cores.

5.2 Main Results

5.2.1 Repository-level Code Generation

The comparison results between CODESWIFT and
baselines are shown in Table 1. CODESWIFT
achieves up to 2.30x and 2.53x speedup on
DevEval and RepoEval, respectively, outper-
forming state-of-the-art approaches by up to
88%. CODESWIFT consistently maintains a sta-
ble speedup of more than 2x across a variety of
backbone models and datasets, and repositories
spanning various topics (Appendix D), demonstrat-
ing its robustness.

Compared to the substantial speedups gained
by CODESWIFT, baseline approaches achieve lim-
ited accelerations. As a retrieval-based approach,
the datastore utilized by REST is approximately 8
times the size of the one employed by CODESWIFT.
REST exhibits the optimal speedup of around 1.7 x

in most cases, but it performs poorly in experiments
of CodeLlama-13B. This may be attributed to the
fact that the significant CPU resource demands
posed by both the 13B model inference and the re-
trieval of data from a large datastore in REST, lead-
ing to decreased performance. Besides, Ouroboros
demonstrates comparable performance to REST
on Deepseek-Coder-6.7B, yet its generation speed
is even slower than autoregressive decoding on
CodeLlama-7B, indicating that its efficacy is sub-
ject to considerable fluctuations influenced by fac-
tors such as model selection. Self-speculative de-
coding consistently maintains a stable yet modest
acceleration. On the contrast, CODESWIFT does
not require a draft model or additional training,
yet it can maintain a stable speedup ratio even
under resource-constrained conditions.

5.2.2 Standalone Code Generation

For CODESWIFT, we remove D, from the datas-
tore and retain D., which is the same as the one
used in the previous experiments. The results are
shown in Figure 5. Even without the benefit of the
multi-source datastore, CODESWIFT still out-
performs the baselines, further demonstrating the
effectiveness of the retrieval strategy and caching
modules. Additionally, we observe that the base-
lines consistently perform better on HumanEval
compared to repository-level datasets. This may
be affected by the difficulty difference between
standalone and repository-level code generation
tasks. For instance, Deepseek-Coder-1.3B achieves
pass@1 scores of 34.8 on HumanEval and 18.2 on

Table 2: Ablation study results of CODESWIFT on De-
vEval using Deepseek-Coder-6.7B. Each component is
incrementally added. The baseline results are obtained
using REST with D, as the datastore. AccLen refers to
average acceptance length.

AccLen ms/token Speedup

Baseline 1.89 15.86 1.65x
+ multi-source datastore 2.28 14.82 1.76 x
+ retrieval strategy 2.28 14.19 1.84 %
+ CACHE 2.85 11.69 2.24 %

DevEval. Thus, for approaches such as Ouroboros
and Self-speculative which require a draft model,
the performance in repository-level code genera-
tion may be negatively affected by the poor perfor-
mance of the draft model. For REST, HumanEval
involves no project-specific knowledge, and the
common datastore may adequately satisfy retrieval
requirements. The performance differences of ex-
isting approaches on the two types of code gener-
ation tasks also highlight that evaluations based
solely on standalone datasets may fail to reflect
performance in real-world application scenarios.

5.3 Ablation Study

To analyze the effectiveness of each component
within CODESWIFT, we conduct an ablation study
with the results presented in Table 2. Each compo-
nent is found to contribute to a speedup gain. The
multi-source datastore provides richer and more
interrelated retrieval content, not only enhancing
the average acceptance length but also minimizing
the external retrieval cost through parallel search.
The retrieval strategy accelerates the inference by
reducing unnecessary retrieval operations (4.02%
of the total count of retrieval), with negligible im-
pact on the average acceptance length. The CACHE
is the most effective component, which provides
an additional increase in average acceptance length
of over 30% compared to the baseline. Statistical
analysis shows that, although the CACHE contains
only 174 sequences at most for DevEval, 33.13%
of all retrieval operations can successfully obtain
valid results directly from the CACHE. The average
retrieval time from the cache is 0.2ms, which is
approximately 15% of the retrieval time from the
datastore. A case study is shown in Appendix F.

5.4 Analysis of Acceptance Length

We compare the acceptance length between
CODESWIFT and REST (the best performing base-
line), which represents the upper bound of achiev-
able acceleration. The results is shown in Figure

6(a) (more results in Appendix E). CODESWIFT
exhibits a longer acceptance length across all
datasets, with an increase exceeding 50% com-
pared to REST on RepoEval. Although the size
of REST’s datastore is approximately 8 times that
of CODESWIFT, CODESWIFT achieves a higher
acceleration upper bound. As REST’s performance
improves with the increasing size of the datastore
when resources are sufficient (He et al., 2024),
we do not claim that CODESWIFT can outper-
form REST under all circumstances. Nonetheless,
CODESWIFT provides a more lightweight and effi-
cient inference acceleration approach.

35 = REST = CodeSwift
3.05 292

£ 3

®

c

Z2s

g 20008204 2.06 2.08}

5 2

&

g1s

<

@

2 1

Zos

0

&
é‘

@
o

DeepSeek Coder 1.3B DeepSeek- Coder 6.7B

(@) (b)
Figure 6: (a) Acceptance length of CODESWIFT and
REST; (b) Retrieval performance of CODESWIFT.

Retrieved Rate

1.0

Line Index

@Q
012345678 91011
Token Index

5.5 Heatmap of Retrieval Performance

To explicitly illustrate CODESWIFT’s effectiveness,
we depict its retrieval performance heatmap in Fig-
ure 6(b), with all settings aligned with Figure 3(a).
A clear observation is that the overall color inten-
sity of Figure 6(b) is markedly darker compared
to Figure 3(a), indicating a significant increase in
the probability of CODESWIFT retrieving valid re-
sults. This improvement underscores the enhanced
retrieval efficacy of CODESWIFT.

6 Conclusion

In this paper, we propose CODESWIFT, a sim-
ple and efficient LLM inference acceleration ap-
proach for code generation without compromis-
ing generation quality. CODESWIFT leverages a
multi-source datastore and a context- and LLM
preference- aware cache to improve the acceptance
length of the retrieved draft while minimizing re-
dundant retrieval operations through a dynamic and
efficient retrieval strategy. Experimental results
demonstrate that CODESWIFT outperforms state-
of-the-art inference approaches in decoding speed
for both standalone and repository-level code gener-
ation tasks. Requiring no draft model or additional
training, CODESWIFT provides a lightweight and
practical solution for LLM inference acceleration
in code generation.

Limitations

Although CODESWIFT offers advantages in accel-
erating LLM inference for code generation, it also
has limitations that need to be taken into account.
Firstly, we only present the experimental results
on code generation benchmarks written in Python.
Nevertheless, CODESWIFT is designed to be uni-
versally applicable and can be seamlessly extended
to other programming languages. Additionally, in
the process of integrating repository code into the
datastore, CODESWIFT directly utilizes the entire
code files. However, the development of an effec-
tive method for extracting high-frequency expres-
sions from repositories could potentially enhance
performance.

Ethical Considerations

We emphasize that the entirety of our research is
based on open-source datasets, models, and tools.
Our method has no potential risk since it is training-
free and has no impact on the generation results.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and et al. 2021. Evaluating large lan-
guage models trained on code.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,
Kevin Chen-Chuan Chang, and Jie Huang. 2023b.
Cascade speculative drafting for even faster llm infer-
ence. arXiv preprint arXiv:2312.11462.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan
Roth, et al. 2024. Crosscodeeval: A diverse and mul-
tilingual benchmark for cross-file code completion.
Advances in Neural Information Processing Systems,
36.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. In International
Conference on Machine Learning.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112—
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Github. 2021. Github copilot.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. Rest: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582—-1595.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muiioz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
et al. 2022. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu,
Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang,
Lanshen Wang, Jiazheng Ding, Xuanming Zhang,
Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei
Huang, Yongbin Li, Bin Gu, and Mengfei Yang.
2024a. Deveval: A manually-annotated code genera-
tion benchmark aligned with real-world code reposi-
tories. In ACL (Findings), pages 3603-3614. Associ-
ation for Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://github.com/features/copilot

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Con-
ference on Machine Learning.

Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin
Zheng, Peng Di, Hongwei Chen, Chengpeng Wang,
Gang Fan, et al. 2024. Repofuse: Repository-level
code completion with fused dual context. arXiv
preprint arXiv:2402.14323.

Fang Liu, Zhiyi Fu, Ge Li, Zhi Jin, Hui Liu, Yiyang Hao,
and Li Zhang. 2024a. Non-autoregressive line-level
code completion. ACM Transactions on Software
Engineering and Methodology.

Tianyang Liu, Canwen Xu, and Julian McAuley. 2024b.
Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth Interna-
tional Conference on Learning Representations.

Udi Manber and Gene Myers. 1993. Suffix arrays: a
new method for on-line string searches. siam Journal
on Computing, 22(5):935-948.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.
2024. Specinfer: Accelerating large language model
serving with tree-based speculative inference and
verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Vol-
ume 3, pages 932-949.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Benjamin Frederick Spector and Christopher Re. 2023.
Accelerating 1lm inference with staged speculative
decoding. In Workshop on Efficient Systems for Foun-
dation Models@ ICML2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
2014. On the localness of software. In Proceedings
of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 269—
280.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-
ishna Ramanathan, and Xiaofei Ma. 2024. Repo-
former: Selective retrieval for repository-level code
completion. In International Conference on Machine
Learning.

10

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, pages
1-12.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2024. Draft &
verify: Lossless large language model acceleration
via self-speculative decoding. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
11263 — 11282.

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu,
Chaojun Xiao, Xinrong Zhang, Yewei Fang, Kai-
huo Zhang, Zhiyuan Liu, and Maosong Sun. 2024.
Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 13378-13393.

https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf

A Repository-level Code Generation

Code generation refers to the generation of code
snippets that meet requirements based on natural
language requirements. Most previous researches,
such as the widely used datasets HumanEval(Chen
et al., 2021) and MBPP (Austin et al., 2021), focus
on standalone scenarios, which means the gener-
ated functions may invoke or access only built-in
functions and standard libraries.

Researches on standalone code generation of-
ten diverges from the complexities of real-world
programming tasks. In practical development set-
tings, developers typically work within project en-
vironments, where the code to be generated is fre-
quently intertwined with external contexts, such
as API calls. This code often relies on the meth-
ods and properties defined in other files. These
non-standalone functions constitute more than 70%
of the functions in popular open-source projects,
and evaluating models’ effectiveness on standalone
functions cannot reflect these models’ effectiveness
on pragmatic code generation scenarios (i.e., code
generation for real settings of open source or propri-
etary code) (Yu et al., 2024). Consequently, there
has been growing interest in repository-level code
generation (Liu et al., 2024b; Wu et al., 2024; Liang
et al., 2024), which refers to leveraging repository-
level context during code generation tasks, rather
than restricting the context to the file under devel-
opment. Code files within a repository are often
interdependent, featuring cross-module API calls,
shared global snippets, and other forms of linkage.
Researchers have introduced benchmark datasets
such as RepoEval (Zhang et al., 2023), CoderEval
(Yu et al., 2024), CrossCodeEval (Ding et al., 2024)
and DevEval (Li et al., 2024a). These datasets pro-
vide structured means for assessing the quality and
relevance of generated code in realistic scenarios.

B LLM inference acceleration
approaches

Autoregressive decoding generates tokens in a
step-by-step manner and results in a slow and
costly decoding process. In order to accelerate
decoding, non-autoregressive decoding approaches
(Ghazvininejad et al., 2019; Liu et al., 2024a) that
can generate multiple tokens in parallel have been
proposed. While improving decoding speed, these
approaches typically affect the model performance.
Therefore, draft-verification decoding acceleration
approaches (Chen et al., 2023a; Miao et al., 2024;

11

He et al., 2024) have been widely adopted recently,
which do not comprise the model performance.
These approaches can be further categorized into
generation-based and retrieval-based, depending
on the technique used for draft generation.

B.1 Generation-based Approaches

The draft token can be generated either by the target
LLM itself or by a small model. Using the target
LLM itself to directly generate the token may get a
higher acceptance rate, while using a small model
is more likely to have a faster generation speed.

Using a small model. Speculative decoding
(Chen et al., 2023a; Leviathan et al., 2023) is one
of the effective acceleration approaches that min-
imize the target LLM forward steps by using an
smaller model for drafting and then employing the
target LLM to verify the draft in a low-cost paral-
lel manner. Ouroboros (Zhao et al., 2024) gener-
ates draft phrases to parallelize the drafting process
and lengthen drafts. Specinfer (Miao et al., 2024)
uses many draft models obtained from distillation,
quantization, and pruning to conduct speculations
together.

Using the target LLM itself. Identifying an ap-
propriate draft model continues to pose significant
challenges, as it must align with the vocabulary of
the target LLM and achieve a delicate balance be-
tween keeping quick decoding speed and ensuring
output quality. Thus, researchers have investigated
utilizing the target LLM itself to generate efficient
draft sequences. Blockwise Decoding (Stern et al.,
2018) installs multiple heads on the transformer
decoder, enabling parallel generation of multiple
tokens per step. Medusa (Cai et al., 2024) intro-
duces multiple heads to predict multiple draft to-
kens in parallel. Lookahead decoding (Fu et al.,
2024) uses a n-gram pool to cache the historical
n-grams generated so far. Eagle (Li et al., 2024b)
conducts the drafting process at the more structured
feature level. Self-speculative decoding (Zhang
et al., 2024)) employs the target LLM with selec-
tively certain intermediate layers skipped as the
draft model.

B.2 Retrieval-based Approaches

The retrieval-based draft generation approach re-
places the model generation with a search in a
retrieval datastore to obtain candidate sequences.
These approaches can avoid extra training and
reduce computational overhead. LLMA (Yang

Table 3: The skipped layers utilized in draft models for Self-speculative decoding.

Index of Skipped Attention Layers

Index of Skipped MLP Layers

Deepseek-Coder-1.3B
Deepseek-Coder-6.7B
CodeLlama-7B
CodeLlama-13B

[3,6,8,9,10, 13, 14, 15, 16, 18, 21, 22]

[2,5,7,8,11, 12, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28]
[4,5,7,10, 11, 12, 13, 14, 18, 20, 21, 22, 27, 29,
[5,6,9,10, 11, 14, 15, 16, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37]

31]

[4,6,9, 10, 20]

[2,5,6,12, 15, 25, 26, 27, 28]

[8, 11, 13, 22, 23, 25, 27, 28, 31]

[10, 11, 12, 14, 15, 25, 26, 27, 30, 32, 33, 34]

et al., 2023) is an inference-with-reference decod-
ing mechanism by exploiting the overlap between
the output and the reference of an LLM. It pro-
vides generic speedup through speculative retrieval
and batched verification. REST (He et al., 2024)
replaces the parametric draft model with a non-
parametric retrieval datastore. As many subse-
quences during generation likely appear in the data-
store, it can frequently generate multiple correct
tokens per step.

C Implementation Details of Baselines

Self-speculative decoding. For the selection of
skipped layers, we adopt the results provided by
the authors (Zhang et al., 2024) for CodeLlama-
13B. As for DeepSeek-Coder and Codellama-7B,
for which the authors did not provide skipped layer
configurations, we utilize Bayesian optimization on
4 samples from The Stack (Kocetkov et al., 2022)
to determine the layers to skip during the drafting
stage. The results can be seen in Table 3. Other
settings remain consistent with the original paper.

Ouroboros. This approach requires a draft model
for the target LLM, and our selection is illustrated
in Table 4. We prioritize the selection of a smaller
model from the same series as the target LLM
to serve as the draft model. For Codel.lama-7B,
which is the smallest model in its series, we opt for
TinyLlama-1.1B as the draft model due to its shared
architecture and tokenizer compatibility. For the
configuration of hyper-parameters, we used v = 11
for DeepSeek-Coder and v = 4 for CodeLlama,
following the recommendations provided in the
original paper.

Table 4: Draft model selection for Ouroboros.

Target Model

Deepseek-Coder-base-6.7B
CodeLlama-Python-7B
CodeLlama-Python-13B

Draft Model

Deepseek-Coder-base-1.3B
TinyLlama-1.1B-v1_math_code
CodeLlama-Python-7B

REST. To construct the datastore, we select the
first 10 files out of the 145 files in The Stack dataset
(Kocetkov et al., 2022), resulting in a datastore
of approximately 8.7 GB in size. The results of
REST demonstrate that its performance on the Hu-

12

manEval dataset improves as the size of the data-
store increases (He et al., 2024). However, due to
hardware limitations, we have chosen the largest
feasible datastore that could be operated under the
given constraints. The values of the other hyper-
parameters are consistent with those in the original
paper. Specifically, when performing exact match
in the datastore, the starting context suffix length,
Nomaz» 18 set to 16. The maximum number of se-
lected draft tokens in the constructed Trie is set to
64.

D Performance on Different Code Topics

As DevEval includes code repositories spanning
10 distinct topics, we present the results of
CODESWIFT using Deepseek-Coder-6.7B for code
generation separately for each topic. As shown in
Figure 7, CODESWIFT demonstrates consistent and
substantial acceleration in code generation across
all topics, highlighting its robustness and effective-
ness in diverse contexts.

Communications 2.79 11.29
Utilities 2.78 11.43
Scientific-Engineering 2.81 11.65
Software-Development 2.80 11.65
Security 2,61 12.42
System 2.76 11.67
Multimedia 2.72 11.76
Database 2.72 11.90
Internet 2.80 11.43
Text-Processing 2.87 11.29

4 20 2 4 6 8 1012 14

Acceptance Length ms/token

Figure 7: Performance of CODESWIFT on different
code topics.

E Comparison of Acceptance Length

We compare the acceptance length between
CODESWIFT and REST on both DeepSeek-Coder
and CodeLlama. The results are shown in Table 5.
CODESWIFT exhibits a longer acceptance length
across all datasets and backbone models.

import functools

import
import
import
import
import
import

numpy as np

torch

torch.distributed as dist
torch.nn as nn
torch.nn.functional as F
transformers

try:

from opendelta import (
AdapterModel,
BitFitModel,
LoraModel,
PrefixModel,
SoftPromptModel,

)

HAS_OPENDELTA = True
except ModuleNotFoundError:
HAS_OPENDELTA = False

def make_head(n_embd: int, out: int, dtype: type =
"""Returns a generic sequential MLP head."""

from typing import Any, Dict, List, MutableMapping, Tuple, Union

torch.float32) -> nn.Sequential:

Prompt

return [nnl.Sequential(
nn.|Linearf(n_embd, n_embd, dtype=dtype),

nn.GELU(),

nn.(niembd, out, dtype=dtype),
def make_head_with_dropout (

return
n

nn.Sequential(

.Linear(n_embd, n_embd, dtype=dtype),
.GELU(),

nn.

Dropout(dropout),
nn.Linear (] bd,=dtype),

=)

= 5

def] make| head_with_dropout_and_layer_norm(

n_en [int, out: int, dropout: oat, ype: type = torch.floa
i i d fl d torch.float32

) -p nn.Sequential:
a generic sequ MLP head with dropout."""

n[mbd}: int,[out: int, dropput: float, dtypd: type] = torch.float32
) -p nn.Sequential:

=Y

r‘etur‘n.Sequential
nn.LayerNorm(n |empd, dt e‘Zl
.Linea embd] Jn_End,[dtypd=dtype),

”"" a generic[sequential MLP head with dropbut and layer norm.

LLM output

tokens retrieved from datastore
tokens retrieved from cache
:l tokens that cannot be retrieved by baseline

LGELU(),
nn.Dropout(dropout),
nn. Linear(n] [ferlod, [out],[dtypd=dtype),
Ch
Figure 8: Case study of CODESWIFT’s retrieval performance.
Table 5: Acceptance length comparison between those that can be retrieved by CODESWIFT but not

CODESWIFT and REST. DC and CL are abbreviations
for Deepseek-Coder and CodeLlama, respectively.

DevEval RepoEval HumanEval

REST CODESWIFT REST CODESWIFT REST CODESWIFT
DC-1.3B 2.04 297 2.04 3.21 2.38 2.87
DC-6.7B 2.06 2.85 2.08 3.05 2.38 2.92
CL-7B 2.05 2.71 2.07 3.06 227 279
CL-13B 2.06 2.75 2.06 2.99 225 2.63

F Case Study

To demonstrate the effectiveness of CODESWIFT,
we conduct a case study. As shown in Figure
8, we use different background colors to high-
light the sources of the accepted draft tokens. Ad-
ditionally, the tokens enclosed in red boxes are

13

by the baseline (REST with D, as the datastore).
When generating the earlier parts of the sequence,
the CACHE remains unavailable due to an insuf-
ficient accumulation of sequences. Nonetheless,
lots of repository-related tokens can be addition-
ally retrieved by CODESWIFT benefiting from the
multi-source datastore. When the CACHE is avail-
able, a larger number of consecutive tokens be-
comes retrievable, thereby enhancing the inference
speed through the extension of acceptable sequence
lengths and the reduction of retrieval overhead.

	Introduction
	Related Work
	Preliminaries
	Retrieval-based Speculative Decoding
	Motivating Examples

	Method
	Multi-source Datastore Construction
	Context- and LLM Preference-aware Caching
	Dynamic and Efficient Retrieval Strategy
	Draft Construction and Verification with Weighted Prefix Optimization

	Experiments
	Experimental Setup
	Main Results
	Repository-level Code Generation
	Standalone Code Generation

	Ablation Study
	Analysis of Acceptance Length
	Heatmap of Retrieval Performance

	Conclusion
	Repository-level Code Generation
	LLM inference acceleration approaches
	Generation-based Approaches
	Retrieval-based Approaches

	Implementation Details of Baselines
	Performance on Different Code Topics
	Comparison of Acceptance Length
	Case Study

