
CODESWIFT: Accelerating LLM Inference for Efficient Code Generation

Anonymous ACL submission

Abstract001

Code generation is a latency-sensitive task that002
demands high timeliness, but the autoregres-003
sive decoding mechanism of Large Language004
Models (LLMs) leads to poor inference ef-005
ficiency. Existing LLM inference accelera-006
tion methods mainly focus on standalone func-007
tions using only built-in components. More-008
over, they treat code like natural language se-009
quences, ignoring its unique syntax and seman-010
tic characteristics. As a result, the effective-011
ness of these approaches in code generation012
tasks remains limited and fails to align with013
real-world programming scenarios. To allevi-014
ate this issue, we propose CODESWIFT, a sim-015
ple yet highly efficient inference acceleration016
approach specifically designed for code gen-017
eration, without comprising the quality of the018
output. CODESWIFT constructs a multi-source019
datastore, providing access to both general and020
project-specific knowledge, facilitating the re-021
trieval of high-quality draft sequences. More-022
over, CODESWIFT reduces retrieval cost by023
controlling retrieval timing, and enhances effi-024
ciency through parallel retrieval and a context-025
and LLM preference-aware cache. Experimen-026
tal results show that CODESWIFT can reach027
up to 2.53× and 2.54× speedup compared to028
autoregressive decoding in repository-level and029
standalone code generation tasks, respectively,030
outperforming state-of-the-art inference accel-031
eration approaches by up to 88%. Our code032
and data are available at https://anonymous.033
4open.science/r/CodeSwift.034

1 Introduction035

Large Language Models (LLMs) such as GPT-4o036

(Achiam et al., 2023) and DeepSeek-Coder (Guo037

et al., 2024) have demonstrated impressive perfor-038

mance in coding tasks, revolutionizing the land-039

scape of software development (Github, 2021; Li040

et al., 2023). These models excel in code comple-041

tion and generation but face a challenge: the signif-042

icant inference time. LLMs use the autoregressive043

decoding mechanism, where each new token is 044

generated conditioned on the previously generated 045

tokens and the given context. However, developers 046

typically hold high expectations regarding the re- 047

sponsiveness of code recommendations (Liu et al., 048

2024a). If LLMs fail to deliver precise and effi- 049

cient feedback, it may directly affect development 050

efficiency and user experience. 051

To accelerate the inference process of LLMs, 052

speculative decoding (Chen et al., 2023a; Leviathan 053

et al., 2023) is regarded as one of the effective so- 054

lutions, which employs a draft-verification frame- 055

work to minimize the number of forward steps. 056

Specifically, it utilizes a small language model as 057

a draft model to rapidly generate candidate output 058

tokens, which are then verified for acceptability by 059

the target LLM through a single forward step while 060

keeping the output consistent with that decoded 061

autoregressively by the target LLM itself. Based 062

on the draft-verification paradigm, many inference 063

acceleration approaches have emerged (Chen et al., 064

2023b; Zhang et al., 2024; Zhao et al., 2024; Li 065

et al., 2024b; Miao et al., 2024), most of which rely 066

on an additional draft model, either selected from 067

the same model family or trained for specific use 068

cases. However, identifying a suitable draft model 069

remains challenging, as it requires striking a deli- 070

cate balance between maintaining a small model 071

size and ensuring high output quality. Additionally, 072

the draft model must align with the vocabulary of 073

the target LLM, further complicating the selection 074

process. More recently, researchers have explored 075

replacing the parametric draft model with a non- 076

parametric retrieval system (He et al., 2024; Yang 077

et al., 2023), which can easily be ported to any 078

LLM without introducing additional training costs 079

and have be applied to code generation task. 080

While some of the above approaches have 081

demonstrated promising performance in code gen- 082

eration task (He et al., 2024; Zhao et al., 2024), 083

they primarily focus on standalone code functions 084

1

https://anonymous.4open.science/r/CodeSwift
https://anonymous.4open.science/r/CodeSwift
https://anonymous.4open.science/r/CodeSwift

(a) A standalone function

(b) A repository-level function

Figure 1: Examples of standalone and repository-level
functions. Intra-file and cross-file dependencies are
highlighted in green and yellow, respectively.

that solely rely on built-in components. How-085

ever, in real-world software development, it is086

crucial for developers to be aware of other files087

within the repository during programming (Zhang088

et al., 2023), which gives rise to repository-level089

code generation (more details in Appendix A). As090

shown in Figure 1, complex dependencies that span091

multiple levels can exist in repository-level func-092

tions. Experimental results show that existing in-093

ference acceleration approaches typically perform094

worse on repository-level code generation under095

the same settings than standalone ones. For exam-096

ple, Self-speculative decoding (Zhang et al., 2024)097

can achieve over 1.5× acceleration compared to098

autoregressive decoding in standalone code gen-099

eration (Figure 5), but falls short when applied to100

repository-level tasks, offering virtually no speedup101

in comparison to autoregressive inference (Table 1).102

Moreover, existing approaches treat source code as103

sequences similar to natural language, without ac-104

counting for code’s unique syntactic and semantic105

characteristics. As a result, the effects of existing106

LLM inference acceleration approaches on code107

generation tasks may be limited and fail to align108

with real-world scenarios.109

To alleviate this issue, in this paper, we primarily110

focus on improving the inference speed of LLMs111

on code generation task, covering both repository-112

level and standalone code, without comprising the113

quality of the output. We propose CODESWIFT,114

a simple yet highly efficient approach to accel-115

erate the inference of LLMs through an efficient116

and effective retrieval strategy. Concretely, we first117

construct a multi-source datastore, providing ac- 118

cess to both general and project-specific knowl- 119

edge and enhancing the quality of draft sequences. 120

Then, CODESWIFT reduces unnecessary retrieval 121

overhead by controlling the retrieval timing. Be- 122

sides, CODESWIFT improves retrieval efficiency 123

through parallel retrieval and the maintenance of 124

a context- and LLM preference-aware cache. Fi- 125

nally, tree attention is employed to avoid redun- 126

dant computation caused by verifying multiple 127

draft sequences. Experimental results show that 128

the decoding speed of CODESWIFT surpasses ex- 129

isting inference acceleration approaches substan- 130

tially on both repository-level and standalone code 131

generation tasks. For repository-level code genera- 132

tion, CODESWIFT achieves up to 2.30× and 2.53× 133

speedup on DevEval (Li et al., 2024a) and RepoE- 134

val (Zhang et al., 2023), respectively. CODESWIFT 135

can also achieve up to 2.54× acceleration on stan- 136

dalone code generation dataset, HumanEval (Chen 137

et al., 2021). It is worth noting that incorporat- 138

ing project-specific knowledge enables the genera- 139

tion of high-quality drafts, reducing the verification 140

time and, consequently, the inference time of our 141

model for repository-level code generation. How- 142

ever, this knowledge can be omitted in standalone 143

code generation where such context is unnecessary. 144

Our contributions can be summarized as follows: 145

• We identify limitations of current LLM infer- 146

ence acceleration approaches within the con- 147

text of real-world code generation and provide 148

insights for potential improvements. 149

• We propose CODESWIFT, a simple yet effi- 150

cient approach to accelerate LLM inference 151

for code generation by leveraging effective 152

retrieval and verification mechanisms. 153

• We conduct a comprehensive evaluation of 154

CODESWIFT and results show that it achieves 155

state-of-the-art results in both repository-level 156

and standalone code generation tasks. 157

2 Related Work 158

Autoregressive decoding generates tokens sequen- 159

tially, leading to slow and costly decoding. To ac- 160

celerate this process, draft-verification approaches 161

(Chen et al., 2023a; Miao et al., 2024; He et al., 162

2024) have gained popularity recently as they en- 163

hance speed without compromising performance, 164

which fall into generation-based and retrieval- 165

based categories based on their draft generation 166

techniques (more information in Appendix B). 167

2

Generation-based approaches. Draft tokens can168

be generated either by a smaller model or by the169

target model itself. Speculative decoding (Chen170

et al., 2023a; Leviathan et al., 2023) employs a171

smaller model for drafting and uses the target LLM172

for efficient parallel verification. Ouroboros (Zhao173

et al., 2024) generates draft phrases to enhance par-174

allelism and extend drafts. Alternatively, the target175

LLM itself can be utilized to efficiently draft (Stern176

et al., 2018; Li et al., 2024b; Fu et al., 2024), which177

reduces system complexity and selection difficul-178

ties. Medusa (Cai et al., 2024) introduces multiple179

heads to predict multiple draft tokens in parallel.180

Self-speculative decoding (Zhang et al., 2024) em-181

ploys the target model with selectively certain in-182

termediate layers skipped as the draft model.183

Retrieval-based approaches. The retrieval-based184

draft generation approach replaces the model gener-185

ation with a search in a retrieval datastore to obtain186

candidate sequences. These approaches avoid extra187

training and can reduce computational overhead.188

LLMA (Yang et al., 2023) is an inference-with-189

reference decoding mechanism by exploiting the190

overlap between the output and the reference of an191

LLM. REST (He et al., 2024) replaces the para-192

metric draft model with a non-parametric retrieval193

datastore.194

3 Preliminaries195

3.1 Retrieval-based Speculative Decoding196

Building upon the draft-verification framework197

introduced by speculative decoding (Chen et al.,198

2023a; Leviathan et al., 2023), retrieval-based de-199

coding acceleration approaches leverage a retrieval200

mechanism to generate draft tokens (He et al., 2024;201

Yang et al., 2023), which can eliminate the chal-202

lenge of selecting an appropriate draft model and203

avoid additional training costs. A notable example204

is Retrieval-Based Speculative Decoding (REST)205

(He et al., 2024), which has proven to be effec-206

tive in standalone function generation task (Chen207

et al., 2021). Below is an explanation of how it208

works. Pre-built from a code corpus, the datastore209

of D = {(ci, ti)} serves as the source for the draft210

token sequence, where ci represents a context and211

ti represents the corresponding continuation of ci.212

As an alternative to the draft model, the objective of213

retrieval is to identify the most likely continuations214

of the current context from the datastore D using215

a suffix match (Manber and Myers, 1993). Specif-216

ically, given a context s = (x1, ..., xt), it aims to217

Figure 2: Localness of source code.

(a) (b)

Figure 3: Heatmaps of (a) retrieval performance and (b)
whitespace distribution with token positions in REST.
The maximum token index is selected based on the
average token number per line (12).

find contexts in D that match the longest suffix of 218

s. Starting from a pre-defined match length upper 219

limit nmax (measured in the number of tokens), for 220

each suffix length n, it extracts the suffix of s with 221

n tokens, denoted as q, and obtains all contexts ci 222

that match q as a suffix. If at least one context in D 223

matches q, the corresponding context continuation 224

pairs are returned as the retrieval result S; other- 225

wise, the match length n is decreased by one to at- 226

tempt matching a shorter suffix. Subsequently, the 227

top k high-frequency prefixes in S are selected as 228

the draft sequences for later verification. Inspired 229

by REST, CODESWIFT also incorporates a similar 230

suffix-match-based retrieval algorithm, leveraging 231

its advantages in time and memory efficiency. 232

3.2 Motivating Examples 233

To identify the limitations of current inference ac- 234

celeration methods in code generation, we present 235

motivating examples that highlight the localness 236

of source code and the retrieval performance in 237

retrieval-based approaches. 238

Localness of source code. Human-written pro- 239

grams are typically localized (Tu et al., 2014), with 240

program entities (token sequences) defined or used 241

in the preceding snippets frequently being reused 242

in the subsequent code snippets within the same 243

code file. As shown in Figure 2, user_id_file_path 244

is a user-defined variable within the current code 245

segment, which does not exist in the datastore but 246

3

appears multiple times in subsequent code snip-247

pets. Additionally, the blue-highlighted statements248

demonstrate the repetition of token sequences. By249

effectively leveraging these frequently occurring to-250

ken sequences within the code file, such as storing251

them in a cache for subsequent retrieval, the accep-252

tance length for draft validation can be increased,253

thereby enhancing the inference speed.254

Retrieval is not always essential. Current work255

performs retrieval operation at every position,256

which may bring unnecessary cost. To investi-257

gate the relationship between retrieval performance258

and token position in code generation, we ran-259

domly selected 200 samples from DevEval (Li260

et al., 2024a), a repository-level code generation261

benchmark, and employed DeepSeek-Coder-6.7B262

(Guo et al., 2024) for evaluation. For each token,263

we recorded whether it was: (a) retrieved from the264

datastore rather than generated by the model, and265

(b) a whitespace character (e.g., spaces or new-266

line characters). Results are presented as heatmaps267

in Figure 3. As seen from Figure 3(a), retrieval268

failures are frequent, with a particularly notable269

pattern: the second token in each line has the low-270

est probability of being successfully retrieved. A271

comparison with the whitespace rate heatmap sug-272

gests that this phenomenon may stem from the273

fact that the second token is typically the first non-274

whitespace character at the beginning of a line. The275

first non-whitespace token in each line dictates the276

direction of the line, making it more variable and277

consequently more challenging to retrieve. Thus,278

skipping retrieval or reducing the retrieval proba-279

bility at such positions may improve performance.280

4 Method281

The architecture of CODESWIFT is shown in Figure282

4. In this section, we first describe the construction283

of datastore and cache, and then provide a detailed284

explanation of retrieval and verification process.285

4.1 Multi-source Datastore Construction286

The quality of the retrieval datastore, which serves287

as the source of draft sequences, critically deter-288

mines the acceleration potential. A larger data-289

store may enhance the probability of result ac-290

ceptance, but it also correspondingly increases re-291

trieval time, making the trade-off between the two292

critically important. To achieve optimal perfor-293

mance with a compact datastore and facilitate effec-294

tive retrieval, CODESWIFT incorporates a smaller295

repository-related datastore Dr and a larger com- 296

mon code datastore Dc to construct a comprehen- 297

sive retrieval datastore D. This design supports par- 298

allel retrieval, providing access to both general and 299

project-specific knowledge. To enable fast retrieval 300

with minimal overhead, we organize the datastore 301

into context-continuation pairs, facilitating a rapid 302

exact-match method for context search. 303

Repository-related datastore Dr. During soft- 304

ware development, developers often reference 305

cross-file elements such as classes and methods, 306

making intra-repository files highly relevant to the 307

generated code. Additionally, repository-specific 308

factors, including domain variations and coding 309

conventions, lead to distinct patterns of idiomatic 310

expressions. For instance, web development repos- 311

itories frequently involve HTTP request-response 312

handling, while data science repositories focus on 313

data processing and modeling tasks. To this end, 314

we collect the code files from current repository 315

(with the portions to be generated excluded) and 316

form repository-related datastore Dr. 317

Common datastore Dc. To ensure that common 318

programming operations are also retrievable, a sub- 319

set of data from commonly used pre-trained code 320

datasets (Kocetkov et al., 2022) is used to form Dc, 321

which serves as another component of datastore D. 322

Datastore organization. For efficient retrieval, the 323

datastore is organized as contexts and the corre- 324

sponding continuations following He et al. (2024). 325

Specifically, for each code file utilized in construct- 326

ing the datastore, the content preceding every posi- 327

tion will constitute a context, whereas the content 328

subsequent to that position is the corresponding 329

continuation. The datastore D of CODESWIFT can 330

be summarized as: 331

D = (Dr, Dc) (1) 332

(Dr, Dc) = ({(ci, ti)}|Dr|
i=1 , {(cj , tj)}

|Dc|
j=1) (2) 333

where ci (cj) represents the context, ti (tj) rep- 334

resents the corresponding continuation of ci (cj), 335

|Dr| (|Dc|) is the number of samples in Dr (Dc). 336

For standalone code generation, Dr can be omitted. 337

4.2 Context- and LLM Preference-aware 338

Caching 339

To reduce retrieval costs and improve the alignment 340

of retrieved results with LLM preferences—thereby 341

increasing both the accepted sequence length and 342

inference speed—we design a context- and LLM 343

preference-aware caching strategy to cache the ver- 344

ified retrieved sequences and LLM generated se- 345

4

pruning
i
n

rang
e

(

, it
e
mRO

OT
(

sorted

Datastore
common
code 𝐷c

Cache

repo
code 𝐷𝑟

Retriever

LLM
if _user_id_file_is_old (user_id_file_path

1

timing
selection

2

name = self. from 𝐷𝒓

_id = (from 𝐷𝒄

_id_file from 𝐷𝑟

×

×

√

3

LLM output sequences

verified retrieved sequences

if _user_id_ file_is_old(

user_id_file_path

construct weighted Trie

autoregressive
decoding

construct
tree attention

verify4 update

timing
selection

Retriever Cachecache is available

cache is not
available

Datastore
𝐷c

𝐷𝑟parallel
search 𝑹

retrieved sequences

no results

𝑅𝑟

𝑅𝑐

missing table
𝑴find whether 𝑠 in

end retrieval

yes
no𝑠 ends with 𝑡𝑜𝑘𝑒𝑛𝑠𝑘𝑖𝑝 ?

no

yes with probability 1 − 𝑝

with probability 𝑝

ROOT

_ id

_ file

= (

name = self .

context 𝒔 matched suffix

Figure 4: Architecture of CODESWIFT. The left part illustrates an overview, and the right part offers a detailed
depiction of timing selection and retrieval operation.

quences. Specifically, based on the observations in346

Section 3.2, program entities (token sequences) de-347

fined or used in preceding snippets are often reused348

in the subsequent code snippets. Consequently, if349

the draft sequence r = (y1, ..., yj), retrieved by the350

context s = (x1, ..., xt), is verified by the LLM,351

we concatenate them as (x1, ..., xt, y1, ..., yj) and352

add it into CACHE. Moreover, since the datastore353

D is static, the draft sequences retrieved for the354

identical context s remain consistent. However,355

different LLMs exhibit distinct generation prefer-356

ences, leading to varied decoding outputs after draft357

verification. Additionally, earlier decoding outputs358

must maintain contextual relevance and coherence359

with subsequent outputs. Therefore, we also incor-360

porate the verified decoding output sequence into361

CACHE for future use.362

To maintain the CACHE, we assess whether the363

two aforementioned update conditions are satisfied364

after each forward step of the LLM. If the number365

of sequences inside the CACHE exceeds the pre-366

defined threshold l, it is accessible and will remain367

active throughout the entire inference process.368

4.3 Dynamic and Efficient Retrieval Strategy369

Algorithm 1 illustrates the complete retrieval pro-370

cess of CODESWIFT. Before each forward step,371

given current context s, CODESWIFT initially ver-372

ifies the availability of CACHE. If the CACHE is373

accessible, that is, the number of sequences inside374

exceeds l, retrieval is prioritized from CACHE. If375

CACHE is unavailable or fails to yield valid (non-376

empty) results, CODESWIFT utilizes a dynamic and377

efficient retrieval strategy to minimize unnecessary378

retrieval cost. Specifically, CODESWIFT optimizes379

retrieval timing by addressing two key considera-380

tions as follows.381

Algorithm 1: Retrieval Algorithm
Input: current context s, datastore D, retrieval cache

CACHE, minimum activation size l, missing
table M , skip token tokenskip, retrieval
probability p

Output: Retrieved sequences R
1 if CACHE.size ≥ l then
2 // retrieval from cache
3 R← search(CACHE)

4 if CACHE.size < l or R = ∅ then
5 // retrieval timing selection
6 if s ∈M then
7 pass

8 else if s ends with tokenskip then
9 if random number < p then

10 // parallel retrieval from datastore
11 Rr, Rc ← par_search(Dr, Dc)
12 R← (Rr, Rc)

13 if R = ∅ then
14 // update missing table
15 M ←M ∪ {s}
16 else
17 update CACHE

18 return R;

Skip token. As mentioned in Section 3.2, the in- 382

trinsic characteristics of code lead to a low retrieval 383

success rate at the first non-whitespace character 384

of each line. Since obvious patterns are not found 385

in other positions, and the introduction of intricate 386

judgment processes may incur additional compu- 387

tational overhead, we set the first non-whitespace 388

character of each line as the skip token. We strategi- 389

cally reduce the retrieval probability of skip token 390

through a control parameter p, which refers to the 391

retrieval probability at these positions. 392

Missing table. When utilizing the current context 393

s to retrieve its continuations from datastore D, it 394

may fail to yield any valid results in some cases. 395

To prevent time wastage resulting from invalid re- 396

5

trieval, we maintain a missing table M = {smi}397

that stores suffixes smi for which no valid results398

can be retrieved from the datastore D. Thus, when399

smi is encountered again during the subsequent in-400

ference, CODESWIFT will bypass the retrieval and401

directly utilize the LLM to generate the next token.402

If CODESWIFT decides to proceed with retrieval403

according to the above strategy, parallel retrieval404

is conducted from repository-related datastore Dr405

and common datastore Dc to further boost the re-406

trieval efficiency, and the results refer to Rr and407

Rc, separately. Specifically, if Rr and Rc are both408

empty, s will be denoted as sm and added into the409

missing table M . Otherwise, relevant sequences410

are employed to update the CACHE.411

4.4 Draft Construction and Verification with412

Weighted Prefix Optimization413

The retrieval results R = (Rr, Rc) contain poten-414

tial continuations of the current context s, often415

sharing the same prefix. To reduce the cost brought416

by verification each ri ∈ R one by one, we con-417

struct the draft sequences using a Trie, where the418

unique path from a node to the root node corre-419

sponds to a prefix of the retrieval results, aiming to420

reduce the repeated verification of shared prefixes421

in R. We use following equation to assign a weight422

for each node:423

Nweight = α · tr + β · tc (3)424

where tr and tc represents the times that the node425

occurs in Rr and Rc respectively, and α and β426

refers to the corresponding coefficient. By control-427

ling the values of α and β, the preference of draft428

sequences can be adjusted to accommodate differ-429

ent scenarios. We select top-k sequences from the430

Trie, ordered by their weights from highest to low-431

est, as the draft sequences. Subsequently, the draft432

sequences are verified by LLM using tree attention433

(Spector and Re, 2023; Miao et al., 2024). As our434

objective is to accelerate the inference without com-435

promising model performance, all correct tokens436

from the beginning will be accepted, while the draft437

tokens following the first error will be rejected.438

5 Experiments439

5.1 Experimental Setup440

Datasets. We conduct experiments on both441

repository-level and standalone code generation442

benchmarks. For repository-level code generation,443

we choose two widely-used benchmarks, DevEval444

(Li et al., 2024a) and RepoEval (Zhang et al., 2023).445

DevEval comprises 1,825 testing samples from 115 446

repositories, covering 10 popular domains. It aligns 447

with real-world repositories in code distributions 448

and dependency distributions. RepoEval is con- 449

structed using the high-quality repositories sourced 450

from GitHub. We use the function-level subset 451

for evaluation, which contains 455 testing samples. 452

For standalone code generation, we conduct experi- 453

ments on HumanEval (Chen et al., 2021), a widely- 454

used standalone code generation dataset including 455

164 human-written programming problems. 456

Backbone Models. We use the 1.3B and 6.7B 457

configurations of Deepseek-Coder-base (Guo et al., 458

2024), as well as 7B and 13B configurations of 459

CodeLlama-Python (Roziere et al., 2023) for eval- 460

uation, which are popular and well-performing 461

LLMs in code generation. 462

Baselines. We compare CODESWIFT with vanilla 463

autoregressive decoding and several state-of-the- 464

art inference acceleration approaches that follow 465

the draft-verification framework and have demon- 466

strated effectiveness in code generation, includ- 467

ing Self-speculative decoding (Zhang et al., 2024), 468

Ouroboros (Zhao et al., 2024), and REST (He et al., 469

2024). Self-speculative decoding requires several 470

hours to identify skipped layers in the target LLM 471

for draft model construction. Ouroboros demands 472

manual selection of a suitable draft model for the 473

target LLM. REST is draft model-free but suffers 474

from misalignment between retrieval sequences 475

and the LLM output. 476

Evaluation Metrics. We report the decoding speed 477

(ms/token) and the speedup ratio compared with 478

vanilla autoregressive decoding. We also compare 479

the average acceptance length, defined as the av- 480

erage number of tokens accepted per forward step 481

by the target LLM, which reflects the upper bound 482

of achievable acceleration. Since CODESWIFT and 483

baselines do not compromise model performance, 484

the correctness of the generated code is not evalu- 485

ated. 486

Implementation Details. To provide essential con- 487

textual information, we prepend preceding code 488

snippets from the same file as context for DevEval 489

and RepoEval. All results are obtained with a maxi- 490

mum input length of 2k and a maximum generation 491

length of 512 under greedy decoding. We focus on 492

greedy decoding results as baseline approaches per- 493

form optimally with greedy decoding and compara- 494

bly to other sampling strategies. Dc is constructed 495

from a subset of Python pre-training code in The 496

Stack (Kocetkov et al., 2022), taking approximately 497

6

Table 1: Decoding speed and speedup ratio on repository-level code generation datasets.

Dataset Approach Deepseek-Coder-1.3B Deepseek-Coder-6.7B CodeLlama-7B CodeLlama-13B
ms/token Speedup ms/token Speedup ms/token Speedup ms/token Speedup

DevEval

Autoregressive 20.00 1.00× 26.15 1.00× 26.29 1.00× 46.35 1.00×
Self-speculative 18.72 1.07× 22.55 1.16× 25.10 1.05× 42.74 1.08×
Ouroboros - - 15.69 1.67× 29.14 0.90× 39.73 1.17×
REST 12.10 1.65× 15.28 1.71× 15.57 1.69× 43.38 1.07×
CODESWIFT 8.71 2.30× 11.69 2.24× 12.17 2.16× 21.56 2.15×

RepoEval

Autoregressive 19.91 1.00× 25.75 1.00× 26.21 1.00× 47.86 1.00×
Self-speculative 19.63 1.02× 22.48 1.16× 24.36 1.08× 42.09 1.14×
Ouroboros - - 14.56 1.77× 33.12 0.79× 35.60 1.34×
REST 12.09 1.65× 15.46 1.67× 15.43 1.70× 44.59 1.04×
CODESWIFT 7.88 2.53× 10.83 2.38× 10.80 2.43× 19.02 2.52×

1.51x
1.57x 1.43x

1.55x

2.30x 1.93x

1.81x

1.88x 2.02x 1.90x

1.30x

2.38x 2.45x 2.41x

2.54x

0

10

20

30

40

50

Deepseek-Coder-1.3B Deepseek-Coder-6.7B CodeLlama-7B CodeLlama-13B

m
s/

to
ke

n

Autoregressive Self-speculative Ouroboros REST CodeSwift

Figure 5: Decoding speed and speedup ratio on HumanEval.

9 minutes and yielding a 0.9GB datastore. Dr498

ranges from 60KB and 289MB across repositories,499

taking an average of 10 seconds. Hyper-parameters500

include l = 50, p = 0.5, α = β = 1, with LLM501

output truncated every 20 tokens and added to the502

CACHE. Following He et al. (2024), for retrieval,503

the starting context suffix length nmax = 16, and504

a maximum of 64 draft tokens of the top-k se-505

quences are selected in the Trie. Baseline imple-506

mentation details are in Appendix C. Experiments507

for Deepseep-Coder and CodeLlama-7B use a sin-508

gle NVIDIA 4090 GPU and 28 CPU cores, and509

CodeLlama-13B experiments use a single NVIDIA510

A6000 GPU and 12 CPU cores.511

5.2 Main Results512

5.2.1 Repository-level Code Generation513

The comparison results between CODESWIFT and514

baselines are shown in Table 1. CODESWIFT515

achieves up to 2.30× and 2.53× speedup on516

DevEval and RepoEval, respectively, outper-517

forming state-of-the-art approaches by up to518

88%. CODESWIFT consistently maintains a sta-519

ble speedup of more than 2× across a variety of520

backbone models and datasets, and repositories521

spanning various topics (Appendix D), demonstrat-522

ing its robustness.523

Compared to the substantial speedups gained524

by CODESWIFT, baseline approaches achieve lim-525

ited accelerations. As a retrieval-based approach,526

the datastore utilized by REST is approximately 8527

times the size of the one employed by CODESWIFT.528

REST exhibits the optimal speedup of around 1.7×529

in most cases, but it performs poorly in experiments 530

of CodeLlama-13B. This may be attributed to the 531

fact that the significant CPU resource demands 532

posed by both the 13B model inference and the re- 533

trieval of data from a large datastore in REST, lead- 534

ing to decreased performance. Besides, Ouroboros 535

demonstrates comparable performance to REST 536

on Deepseek-Coder-6.7B, yet its generation speed 537

is even slower than autoregressive decoding on 538

CodeLlama-7B, indicating that its efficacy is sub- 539

ject to considerable fluctuations influenced by fac- 540

tors such as model selection. Self-speculative de- 541

coding consistently maintains a stable yet modest 542

acceleration. On the contrast, CODESWIFT does 543

not require a draft model or additional training, 544

yet it can maintain a stable speedup ratio even 545

under resource-constrained conditions. 546

5.2.2 Standalone Code Generation 547

For CODESWIFT, we remove Dr from the datas- 548

tore and retain Dc, which is the same as the one 549

used in the previous experiments. The results are 550

shown in Figure 5. Even without the benefit of the 551

multi-source datastore, CODESWIFT still out- 552

performs the baselines, further demonstrating the 553

effectiveness of the retrieval strategy and caching 554

modules. Additionally, we observe that the base- 555

lines consistently perform better on HumanEval 556

compared to repository-level datasets. This may 557

be affected by the difficulty difference between 558

standalone and repository-level code generation 559

tasks. For instance, Deepseek-Coder-1.3B achieves 560

pass@1 scores of 34.8 on HumanEval and 18.2 on 561

7

Table 2: Ablation study results of CODESWIFT on De-
vEval using Deepseek-Coder-6.7B. Each component is
incrementally added. The baseline results are obtained
using REST with Dc as the datastore. AccLen refers to
average acceptance length.

AccLen ms/token Speedup

Baseline 1.89 15.86 1.65×
+ multi-source datastore 2.28 14.82 1.76×
+ retrieval strategy 2.28 14.19 1.84×
+ CACHE 2.85 11.69 2.24×

DevEval. Thus, for approaches such as Ouroboros562

and Self-speculative which require a draft model,563

the performance in repository-level code genera-564

tion may be negatively affected by the poor perfor-565

mance of the draft model. For REST, HumanEval566

involves no project-specific knowledge, and the567

common datastore may adequately satisfy retrieval568

requirements. The performance differences of ex-569

isting approaches on the two types of code gener-570

ation tasks also highlight that evaluations based571

solely on standalone datasets may fail to reflect572

performance in real-world application scenarios.573

5.3 Ablation Study574

To analyze the effectiveness of each component575

within CODESWIFT, we conduct an ablation study576

with the results presented in Table 2. Each compo-577

nent is found to contribute to a speedup gain. The578

multi-source datastore provides richer and more579

interrelated retrieval content, not only enhancing580

the average acceptance length but also minimizing581

the external retrieval cost through parallel search.582

The retrieval strategy accelerates the inference by583

reducing unnecessary retrieval operations (4.02%584

of the total count of retrieval), with negligible im-585

pact on the average acceptance length. The CACHE586

is the most effective component, which provides587

an additional increase in average acceptance length588

of over 30% compared to the baseline. Statistical589

analysis shows that, although the CACHE contains590

only 174 sequences at most for DevEval, 33.13%591

of all retrieval operations can successfully obtain592

valid results directly from the CACHE. The average593

retrieval time from the cache is 0.2ms, which is594

approximately 15% of the retrieval time from the595

datastore. A case study is shown in Appendix F.596

5.4 Analysis of Acceptance Length597

We compare the acceptance length between598

CODESWIFT and REST (the best performing base-599

line), which represents the upper bound of achiev-600

able acceleration. The results is shown in Figure601

6(a) (more results in Appendix E). CODESWIFT 602

exhibits a longer acceptance length across all 603

datasets, with an increase exceeding 50% com- 604

pared to REST on RepoEval. Although the size 605

of REST’s datastore is approximately 8 times that 606

of CODESWIFT, CODESWIFT achieves a higher 607

acceleration upper bound. As REST’s performance 608

improves with the increasing size of the datastore 609

when resources are sufficient (He et al., 2024), 610

we do not claim that CODESWIFT can outper- 611

form REST under all circumstances. Nonetheless, 612

CODESWIFT provides a more lightweight and effi- 613

cient inference acceleration approach. 614

2.04 2.04

2.38

2.97
3.21

2.87

0

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 A
cc

e
p

ta
n

ce
 L

e
n

gt
h

2.06 2.08
2.38

2.85
3.05

2.92

REST CodeSwift

DeepSeek-Coder-1.3B DeepSeek-Coder-6.7B

(a) (b)

Figure 6: (a) Acceptance length of CODESWIFT and
REST; (b) Retrieval performance of CODESWIFT.

5.5 Heatmap of Retrieval Performance 615

To explicitly illustrate CODESWIFT’s effectiveness, 616

we depict its retrieval performance heatmap in Fig- 617

ure 6(b), with all settings aligned with Figure 3(a). 618

A clear observation is that the overall color inten- 619

sity of Figure 6(b) is markedly darker compared 620

to Figure 3(a), indicating a significant increase in 621

the probability of CODESWIFT retrieving valid re- 622

sults. This improvement underscores the enhanced 623

retrieval efficacy of CODESWIFT. 624

6 Conclusion 625

In this paper, we propose CODESWIFT, a sim- 626

ple and efficient LLM inference acceleration ap- 627

proach for code generation without compromis- 628

ing generation quality. CODESWIFT leverages a 629

multi-source datastore and a context- and LLM 630

preference- aware cache to improve the acceptance 631

length of the retrieved draft while minimizing re- 632

dundant retrieval operations through a dynamic and 633

efficient retrieval strategy. Experimental results 634

demonstrate that CODESWIFT outperforms state- 635

of-the-art inference approaches in decoding speed 636

for both standalone and repository-level code gener- 637

ation tasks. Requiring no draft model or additional 638

training, CODESWIFT provides a lightweight and 639

practical solution for LLM inference acceleration 640

in code generation. 641

8

Limitations642

Although CODESWIFT offers advantages in accel-643

erating LLM inference for code generation, it also644

has limitations that need to be taken into account.645

Firstly, we only present the experimental results646

on code generation benchmarks written in Python.647

Nevertheless, CODESWIFT is designed to be uni-648

versally applicable and can be seamlessly extended649

to other programming languages. Additionally, in650

the process of integrating repository code into the651

datastore, CODESWIFT directly utilizes the entire652

code files. However, the development of an effec-653

tive method for extracting high-frequency expres-654

sions from repositories could potentially enhance655

performance.656

Ethical Considerations657

We emphasize that the entirety of our research is658

based on open-source datasets, models, and tools.659

Our method has no potential risk since it is training-660

free and has no impact on the generation results.661

References662

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama663
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,664
Diogo Almeida, Janko Altenschmidt, Sam Altman,665
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.666
arXiv preprint arXiv:2303.08774.667

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten668
Bosma, Henryk Michalewski, David Dohan, Ellen669
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.670
Program synthesis with large language models. arXiv671
preprint arXiv:2108.07732.672

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,673
Jason D Lee, Deming Chen, and Tri Dao. 2024.674
Medusa: Simple llm inference acceleration frame-675
work with multiple decoding heads. arXiv preprint676
arXiv:2401.10774.677

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,678
Jean-Baptiste Lespiau, Laurent Sifre, and John679
Jumper. 2023a. Accelerating large language model680
decoding with speculative sampling. arXiv preprint681
arXiv:2302.01318.682

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,683
Henrique Ponde de Oliveira Pinto, Jared Kaplan,684
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg685
Brockman, and et al. 2021. Evaluating large lan-686
guage models trained on code.687

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,688
Kevin Chen-Chuan Chang, and Jie Huang. 2023b.689
Cascade speculative drafting for even faster llm infer-690
ence. arXiv preprint arXiv:2312.11462.691

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian 692
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 693
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 694
Roth, et al. 2024. Crosscodeeval: A diverse and mul- 695
tilingual benchmark for cross-file code completion. 696
Advances in Neural Information Processing Systems, 697
36. 698

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 699
2024. Break the sequential dependency of llm in- 700
ference using lookahead decoding. In International 701
Conference on Machine Learning. 702

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 703
Luke Zettlemoyer. 2019. Mask-predict: Parallel de- 704
coding of conditional masked language models. In 705
Proceedings of the 2019 Conference on Empirical 706
Methods in Natural Language Processing and the 707
9th International Joint Conference on Natural Lan- 708
guage Processing (EMNLP-IJCNLP), pages 6112– 709
6121, Hong Kong, China. Association for Computa- 710
tional Linguistics. 711

Github. 2021. Github copilot. 712

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 713
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 714
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 715
When the large language model meets programming– 716
the rise of code intelligence. arXiv preprint 717
arXiv:2401.14196. 718

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and 719
Di He. 2024. Rest: Retrieval-based speculative de- 720
coding. In Proceedings of the 2024 Conference of 721
the North American Chapter of the Association for 722
Computational Linguistics: Human Language Tech- 723
nologies (Volume 1: Long Papers), pages 1582–1595. 724

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, 725
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer- 726
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf, 727
et al. 2022. The stack: 3 tb of permissively licensed 728
source code. arXiv preprint arXiv:2211.15533. 729

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 730
2023. Fast inference from transformers via spec- 731
ulative decoding. In International Conference on 732
Machine Learning, pages 19274–19286. PMLR. 733

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, 734
Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng Fang, 735
Lanshen Wang, Jiazheng Ding, Xuanming Zhang, 736
Yuqi Zhu, Yihong Dong, Zhi Jin, Binhua Li, Fei 737
Huang, Yongbin Li, Bin Gu, and Mengfei Yang. 738
2024a. Deveval: A manually-annotated code genera- 739
tion benchmark aligned with real-world code reposi- 740
tories. In ACL (Findings), pages 3603–3614. Associ- 741
ation for Computational Linguistics. 742

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 743
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 744
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 745
2023. Starcoder: may the source be with you! arXiv 746
preprint arXiv:2305.06161. 747

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://github.com/features/copilot

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang748
Zhang. 2024b. Eagle: Speculative sampling requires749
rethinking feature uncertainty. In International Con-750
ference on Machine Learning.751

Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin752
Zheng, Peng Di, Hongwei Chen, Chengpeng Wang,753
Gang Fan, et al. 2024. Repofuse: Repository-level754
code completion with fused dual context. arXiv755
preprint arXiv:2402.14323.756

Fang Liu, Zhiyi Fu, Ge Li, Zhi Jin, Hui Liu, Yiyang Hao,757
and Li Zhang. 2024a. Non-autoregressive line-level758
code completion. ACM Transactions on Software759
Engineering and Methodology.760

Tianyang Liu, Canwen Xu, and Julian McAuley. 2024b.761
Repobench: Benchmarking repository-level code762
auto-completion systems. In The Twelfth Interna-763
tional Conference on Learning Representations.764

Udi Manber and Gene Myers. 1993. Suffix arrays: a765
new method for on-line string searches. siam Journal766
on Computing, 22(5):935–948.767

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao768
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee769
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.770
2024. Specinfer: Accelerating large language model771
serving with tree-based speculative inference and772
verification. In Proceedings of the 29th ACM Interna-773
tional Conference on Architectural Support for Pro-774
gramming Languages and Operating Systems, Vol-775
ume 3, pages 932–949.776

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten777
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,778
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.779
Code llama: Open foundation models for code. arXiv780
preprint arXiv:2308.12950.781

Benjamin Frederick Spector and Christopher Re. 2023.782
Accelerating llm inference with staged speculative783
decoding. In Workshop on Efficient Systems for Foun-784
dation Models@ ICML2023.785

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.786
2018. Blockwise parallel decoding for deep autore-787
gressive models. In Advances in Neural Information788
Processing Systems, volume 31. Curran Associates,789
Inc.790

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.791
2014. On the localness of software. In Proceedings792
of the 22nd ACM SIGSOFT International Symposium793
on Foundations of Software Engineering, pages 269–794
280.795

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-796
ishna Ramanathan, and Xiaofei Ma. 2024. Repo-797
former: Selective retrieval for repository-level code798
completion. In International Conference on Machine799
Learning.800

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin 801
Jiang, Linjun Yang, Rangan Majumder, and Furu 802
Wei. 2023. Inference with reference: Lossless ac- 803
celeration of large language models. arXiv preprint 804
arXiv:2304.04487. 805

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, 806
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, 807
and Tao Xie. 2024. Codereval: A benchmark of prag- 808
matic code generation with generative pre-trained 809
models. In Proceedings of the 46th IEEE/ACM Inter- 810
national Conference on Software Engineering, pages 811
1–12. 812

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 813
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 814
Weizhu Chen. 2023. Repocoder: Repository-level 815
code completion through iterative retrieval and gen- 816
eration. arXiv preprint arXiv:2303.12570. 817

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, 818
Gang Chen, and Sharad Mehrotra. 2024. Draft & 819
verify: Lossless large language model acceleration 820
via self-speculative decoding. In Proceedings of the 821
62nd Annual Meeting of the Association for Compu- 822
tational Linguistics (Volume 1: Long Papers), pages 823
11263 – 11282. 824

Weilin Zhao, Yuxiang Huang, Xu Han, Wang Xu, 825
Chaojun Xiao, Xinrong Zhang, Yewei Fang, Kai- 826
huo Zhang, Zhiyuan Liu, and Maosong Sun. 2024. 827
Ouroboros: Generating longer drafts phrase by 828
phrase for faster speculative decoding. In Proceed- 829
ings of the 2024 Conference on Empirical Methods in 830
Natural Language Processing, pages 13378–13393. 831

10

https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/c4127b9194fe8562c64dc0f5bf2c93bc-Paper.pdf

A Repository-level Code Generation832

Code generation refers to the generation of code833

snippets that meet requirements based on natural834

language requirements. Most previous researches,835

such as the widely used datasets HumanEval(Chen836

et al., 2021) and MBPP (Austin et al., 2021), focus837

on standalone scenarios, which means the gener-838

ated functions may invoke or access only built-in839

functions and standard libraries.840

Researches on standalone code generation of-841

ten diverges from the complexities of real-world842

programming tasks. In practical development set-843

tings, developers typically work within project en-844

vironments, where the code to be generated is fre-845

quently intertwined with external contexts, such846

as API calls. This code often relies on the meth-847

ods and properties defined in other files. These848

non-standalone functions constitute more than 70%849

of the functions in popular open-source projects,850

and evaluating models’ effectiveness on standalone851

functions cannot reflect these models’ effectiveness852

on pragmatic code generation scenarios (i.e., code853

generation for real settings of open source or propri-854

etary code) (Yu et al., 2024). Consequently, there855

has been growing interest in repository-level code856

generation (Liu et al., 2024b; Wu et al., 2024; Liang857

et al., 2024), which refers to leveraging repository-858

level context during code generation tasks, rather859

than restricting the context to the file under devel-860

opment. Code files within a repository are often861

interdependent, featuring cross-module API calls,862

shared global snippets, and other forms of linkage.863

Researchers have introduced benchmark datasets864

such as RepoEval (Zhang et al., 2023), CoderEval865

(Yu et al., 2024), CrossCodeEval (Ding et al., 2024)866

and DevEval (Li et al., 2024a). These datasets pro-867

vide structured means for assessing the quality and868

relevance of generated code in realistic scenarios.869

B LLM inference acceleration870

approaches871

Autoregressive decoding generates tokens in a872

step-by-step manner and results in a slow and873

costly decoding process. In order to accelerate874

decoding, non-autoregressive decoding approaches875

(Ghazvininejad et al., 2019; Liu et al., 2024a) that876

can generate multiple tokens in parallel have been877

proposed. While improving decoding speed, these878

approaches typically affect the model performance.879

Therefore, draft-verification decoding acceleration880

approaches (Chen et al., 2023a; Miao et al., 2024;881

He et al., 2024) have been widely adopted recently, 882

which do not comprise the model performance. 883

These approaches can be further categorized into 884

generation-based and retrieval-based, depending 885

on the technique used for draft generation. 886

B.1 Generation-based Approaches 887

The draft token can be generated either by the target 888

LLM itself or by a small model. Using the target 889

LLM itself to directly generate the token may get a 890

higher acceptance rate, while using a small model 891

is more likely to have a faster generation speed. 892

Using a small model. Speculative decoding 893

(Chen et al., 2023a; Leviathan et al., 2023) is one 894

of the effective acceleration approaches that min- 895

imize the target LLM forward steps by using an 896

smaller model for drafting and then employing the 897

target LLM to verify the draft in a low-cost paral- 898

lel manner. Ouroboros (Zhao et al., 2024) gener- 899

ates draft phrases to parallelize the drafting process 900

and lengthen drafts. Specinfer (Miao et al., 2024) 901

uses many draft models obtained from distillation, 902

quantization, and pruning to conduct speculations 903

together. 904

Using the target LLM itself. Identifying an ap- 905

propriate draft model continues to pose significant 906

challenges, as it must align with the vocabulary of 907

the target LLM and achieve a delicate balance be- 908

tween keeping quick decoding speed and ensuring 909

output quality. Thus, researchers have investigated 910

utilizing the target LLM itself to generate efficient 911

draft sequences. Blockwise Decoding (Stern et al., 912

2018) installs multiple heads on the transformer 913

decoder, enabling parallel generation of multiple 914

tokens per step. Medusa (Cai et al., 2024) intro- 915

duces multiple heads to predict multiple draft to- 916

kens in parallel. Lookahead decoding (Fu et al., 917

2024) uses a n-gram pool to cache the historical 918

n-grams generated so far. Eagle (Li et al., 2024b) 919

conducts the drafting process at the more structured 920

feature level. Self-speculative decoding (Zhang 921

et al., 2024)) employs the target LLM with selec- 922

tively certain intermediate layers skipped as the 923

draft model. 924

B.2 Retrieval-based Approaches 925

The retrieval-based draft generation approach re- 926

places the model generation with a search in a 927

retrieval datastore to obtain candidate sequences. 928

These approaches can avoid extra training and 929

reduce computational overhead. LLMA (Yang 930

11

Table 3: The skipped layers utilized in draft models for Self-speculative decoding.

Index of Skipped Attention Layers Index of Skipped MLP Layers

Deepseek-Coder-1.3B [3, 6, 8, 9, 10, 13, 14, 15, 16, 18, 21, 22] [4, 6, 9, 10, 20]
Deepseek-Coder-6.7B [2, 5, 7, 8, 11, 12, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28] [2, 5, 6, 12, 15, 25, 26, 27, 28]
CodeLlama-7B [4, 5, 7, 10, 11, 12, 13, 14, 18, 20, 21, 22, 27, 29, 31] [8, 11, 13, 22, 23, 25, 27, 28, 31]
CodeLlama-13B [5, 6, 9, 10, 11, 14, 15, 16, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37] [10, 11, 12, 14, 15, 25, 26, 27, 30, 32, 33, 34]

et al., 2023) is an inference-with-reference decod-931

ing mechanism by exploiting the overlap between932

the output and the reference of an LLM. It pro-933

vides generic speedup through speculative retrieval934

and batched verification. REST (He et al., 2024)935

replaces the parametric draft model with a non-936

parametric retrieval datastore. As many subse-937

quences during generation likely appear in the data-938

store, it can frequently generate multiple correct939

tokens per step.940

C Implementation Details of Baselines941

Self-speculative decoding. For the selection of942

skipped layers, we adopt the results provided by943

the authors (Zhang et al., 2024) for CodeLlama-944

13B. As for DeepSeek-Coder and CodeLlama-7B,945

for which the authors did not provide skipped layer946

configurations, we utilize Bayesian optimization on947

4 samples from The Stack (Kocetkov et al., 2022)948

to determine the layers to skip during the drafting949

stage. The results can be seen in Table 3. Other950

settings remain consistent with the original paper.951

Ouroboros. This approach requires a draft model952

for the target LLM, and our selection is illustrated953

in Table 4. We prioritize the selection of a smaller954

model from the same series as the target LLM955

to serve as the draft model. For CodeLlama-7B,956

which is the smallest model in its series, we opt for957

TinyLlama-1.1B as the draft model due to its shared958

architecture and tokenizer compatibility. For the959

configuration of hyper-parameters, we used γ = 11960

for DeepSeek-Coder and γ = 4 for CodeLlama,961

following the recommendations provided in the962

original paper.963

Table 4: Draft model selection for Ouroboros.

Target Model Draft Model

Deepseek-Coder-base-6.7B Deepseek-Coder-base-1.3B
CodeLlama-Python-7B TinyLlama-1.1B-v1_math_code
CodeLlama-Python-13B CodeLlama-Python-7B

REST. To construct the datastore, we select the964

first 10 files out of the 145 files in The Stack dataset965

(Kocetkov et al., 2022), resulting in a datastore966

of approximately 8.7 GB in size. The results of967

REST demonstrate that its performance on the Hu-968

manEval dataset improves as the size of the data- 969

store increases (He et al., 2024). However, due to 970

hardware limitations, we have chosen the largest 971

feasible datastore that could be operated under the 972

given constraints. The values of the other hyper- 973

parameters are consistent with those in the original 974

paper. Specifically, when performing exact match 975

in the datastore, the starting context suffix length, 976

nmax, is set to 16. The maximum number of se- 977

lected draft tokens in the constructed Trie is set to 978

64. 979

D Performance on Different Code Topics 980

As DevEval includes code repositories spanning 981

10 distinct topics, we present the results of 982

CODESWIFT using Deepseek-Coder-6.7B for code 983

generation separately for each topic. As shown in 984

Figure 7, CODESWIFT demonstrates consistent and 985

substantial acceleration in code generation across 986

all topics, highlighting its robustness and effective- 987

ness in diverse contexts. 988

Figure 7: Performance of CODESWIFT on different
code topics.

E Comparison of Acceptance Length 989

We compare the acceptance length between 990

CODESWIFT and REST on both DeepSeek-Coder 991

and CodeLlama. The results are shown in Table 5. 992

CODESWIFT exhibits a longer acceptance length 993

across all datasets and backbone models. 994

12

import functools
from typing import Any, Dict, List, MutableMapping, Tuple, Union

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import transformers

try:
 from opendelta import (
 AdapterModel,
 BitFitModel,
 LoraModel,
 PrefixModel,
 SoftPromptModel,
)

 HAS_OPENDELTA = True
except ModuleNotFoundError:
 HAS_OPENDELTA = False

def make_head(n_embd: int, out: int, dtype: type = torch.float32) -> nn.Sequential:
 """Returns a generic sequential MLP head."""
 return nn.Sequential(

nn.Linear(n_embd, n_embd, dtype=dtype),
 nn.GELU(),
 nn.Linear(n_embd, out, dtype=dtype),
)

def make_head_with_dropout(
 n_embd: int, out: int, dropout: float, dtype: type = torch.float32
) -> nn.Sequential:

"""Returns a generic sequential MLP head with dropout."""
return nn.Sequential(

nn.Linear(n_embd, n_embd, dtype=dtype),
 nn.GELU(),
 nn.Dropout(dropout),

nn.Linear(n_embd, out, dtype=dtype),
)

def make_head_with_dropout_and_layer_norm(
n_embd: int, out: int, dropout: float, dtype: type = torch.float32

) -> nn.Sequential:
"""Returns a generic sequential MLP head with dropout and layer norm."""

 return nn.Sequential(
nn.LayerNorm(n_embd, dtype=dtype),
nn.Linear(n_embd, n_embd, dtype=dtype),

 nn.GELU(),
 nn.Dropout(dropout),

 nn.Linear(n_embd, out, dtype=dtype),
)

Prompt

LLM output

tokens retrieved from datastore
tokens retrieved from cache

 tokens that cannot be retrieved by baseline

Figure 8: Case study of CODESWIFT’s retrieval performance.

Table 5: Acceptance length comparison between
CODESWIFT and REST. DC and CL are abbreviations
for Deepseek-Coder and CodeLlama, respectively.

DevEval RepoEval HumanEval
REST CODESWIFT REST CODESWIFT REST CODESWIFT

DC-1.3B 2.04 2.97 2.04 3.21 2.38 2.87
DC-6.7B 2.06 2.85 2.08 3.05 2.38 2.92
CL-7B 2.05 2.77 2.07 3.06 2.27 2.79
CL-13B 2.06 2.75 2.06 2.99 2.25 2.63

F Case Study995

To demonstrate the effectiveness of CODESWIFT,996

we conduct a case study. As shown in Figure997

8, we use different background colors to high-998

light the sources of the accepted draft tokens. Ad-999

ditionally, the tokens enclosed in red boxes are1000

those that can be retrieved by CODESWIFT but not 1001

by the baseline (REST with Dc as the datastore). 1002

When generating the earlier parts of the sequence, 1003

the CACHE remains unavailable due to an insuf- 1004

ficient accumulation of sequences. Nonetheless, 1005

lots of repository-related tokens can be addition- 1006

ally retrieved by CODESWIFT benefiting from the 1007

multi-source datastore. When the CACHE is avail- 1008

able, a larger number of consecutive tokens be- 1009

comes retrievable, thereby enhancing the inference 1010

speed through the extension of acceptable sequence 1011

lengths and the reduction of retrieval overhead. 1012

13

	Introduction
	Related Work
	Preliminaries
	Retrieval-based Speculative Decoding
	Motivating Examples

	Method
	Multi-source Datastore Construction
	Context- and LLM Preference-aware Caching
	Dynamic and Efficient Retrieval Strategy
	Draft Construction and Verification with Weighted Prefix Optimization

	Experiments
	Experimental Setup
	Main Results
	Repository-level Code Generation
	Standalone Code Generation

	Ablation Study
	Analysis of Acceptance Length
	Heatmap of Retrieval Performance

	Conclusion
	Repository-level Code Generation
	LLM inference acceleration approaches
	Generation-based Approaches
	Retrieval-based Approaches

	Implementation Details of Baselines
	Performance on Different Code Topics
	Comparison of Acceptance Length
	Case Study

