
Published as a conference paper at ICLR 2022

SALIENT IMAGENET: HOW TO DISCOVER SPURIOUS
FEATURES IN DEEP LEARNING?

Sahil Singla & Soheil Feizi
University of Maryland, College Park
{ssingla,sfeizi}@umd.edu

(a) class: band aid,
spurious feature:
fingers, -41.54%

(b) class: space bar,
spurious feature:
keys, -46.15%

(c) class: plate,
spurious feature:
food, -32.31%

(d) class: butterfly,
spurious feature:
flowers, -21.54%

(e) class: potter’s
wheel, spurious fea-
ture: vase, -21.54%

Figure 1: Examples of spurious features discovered using our framework for a Standard Resnet-50
model. In the top row, red color highlights regions with spurious features. The bottom row shows
images generated by visually amplifying these features. Adding a small amount of gaussian noise
(with σ = 0.25) to spurious regions (red regions) significantly reduces the model accuracy (shown
in dark red in captions) for a subset of 65 images with the shown class labels.

ABSTRACT

Deep neural networks can be unreliable in the real world especially when they
heavily use spurious features for their predictions. Focusing on image classifi-
cations, we define core features as the set of visual features that are always a
part of the object definition while spurious features are the ones that are likely
to co-occur with the object but not a part of it (e.g., attribute “fingers” for class
“band aid”). Traditional methods for discovering spurious features either require
extensive human annotations (thus, not scalable), or are useful on specific models.
In this work, we introduce a general framework to discover a subset of spurious
and core visual features used in inferences of a general model and localize them
on a large number of images with minimal human supervision. Our methodol-
ogy is based on this key idea: to identify spurious or core visual features used
in model predictions, we identify spurious or core neural features (penultimate
layer neurons of a robust model) via limited human supervision (e.g., using top
5 activating images per feature). We then show that these neural feature anno-
tations generalize extremely well to many more images without any human su-
pervision. We use the activation maps for these neural features as the soft masks
to highlight spurious or core visual features. Using this methodology, we intro-
duce the Salient Imagenet dataset containing core and spurious masks for a large
set of samples from Imagenet. Using this dataset, we show that several popular
Imagenet models rely heavily on various spurious features in their predictions, in-
dicating the standard accuracy alone is not sufficient to fully assess model perfor-

1

Published as a conference paper at ICLR 2022

mance. Code and dataset for reproducing all experiments in the paper is available
at https://github.com/singlasahil14/salient_imagenet.

1 INTRODUCTION

The growing use of deep learning systems in sensitive applications such as medicine, autonomous
driving, law enforcement and finance raises concerns about their trustworthiness and reliability in
the real world. A key reason for the lack of reliability of deep models is their reliance on spurious
input features (i.e., features that are not essential to the true label) in their inferences. For example, a
convolutional neural network (CNN) trained to classify camels from cows associates green pastures
with cows and fails to classify pictures of cows in sandy beaches correctly since most of the images
of cows had green pastures in the training set (Beery et al., 2018; Arjovsky et al., 2020). Similarly,
Bissoto et al. (2020) discovered that skin-lesion detectors use spurious visual artifacts for making
predictions. The list of such examples goes on (de Haan et al., 2019; Singla et al., 2021).

Most of the prior work on discovering spurious features (Nushi et al., 2018; Zhang et al., 2018;
Chung et al., 2019) requires humans to first come up with a possible list of spurious features. This
is often followed by an expensive human-guided labeling of visual attributes which is not scalable
for datasets with a large number of classes and samples such as ImageNet. In some cases, this may
even require the construction of new datasets with unusual visual attributes to validate the hypothesis
(such as cows in sandy beaches discussed previously). To address these limitations, recent works
(Singla et al., 2021; Wong et al., 2021) use the neurons of robust models as visual attribute detectors
thereby circumventing the need for manual annotations. However, their applicability is either limited
to robust models which achieve low clean accuracy or to models that achieve low accuracy on the
training dataset. We discuss limitations of these methods in more detail in Section 2.

In this work, we introduce a general methodology to discover a subset of spurious and core (non-
spurious) visual attributes used in model inferences and localize them on a large number of images
with minimal human supervision. Our work builds upon the prior observations (Engstrom et al.,
2019) that for a robust model, neurons in the penultimate layer (called neural features) often corre-
spond to human-interpretable visual attributes. These visual attributes can be inferred by visualizing
the heatmaps (e.g. via CAM, Zhou et al. (2016)) that highlight the importance of image pixels for
those neural features (top row in Figure 1). Alternatively, one can amplify these visual attributes
in images by maximizing the corresponding neural feature values via a procedure called the feature
attack (Engstrom et al. (2019); Singla et al. (2021), bottom row in Figure 1).

Our framework (shown in Figure 2) is based on this key idea: to identify spurious or core visual
attributes used for predicting the class i, we identify spurious or core neural features via limited
human supervision. We define a core visual attribute as an attribute for class i that is always a part
of the object definition and spurious otherwise. To annotate a neural feature as core or spurious, we
show only the top-5 images (with a predicted label of i) that maximally activate that neural feature to
Mechanical Turk workers. We then show that these neural feature annotations generalize extremely
well to top-k (with k � 5) images with label i that maximally activate that neural feature. For
example, on Imagenet, in Section 3.4, we show a generalization accuracy of 95% for k = 65 (i.e.,
a 13 fold generalization). Thus, by using neural features and their corresponding neural activation
maps (heatmaps), with limited human supervision, we can identify a large subset of samples that
contain the relevant spurious or core visual attributes. The neural activation maps for these images
can then be used as soft segmentation masks for these visual attributes. We emphasize that the usual
method of obtaining such a set would require the manual detection and segmentation of a visual
attribute across all images in the training set and is therefore not scalable.

We apply our proposed methodology to the Imagenet dataset: we conducted a Mechanical Turk
study using 232 classes of Imagenet and 5 neural features per class. For each neural feature, we
obtained its annotation as either core (non-spurious) or spurious for the label. Out of the 232× 5 =
1, 160 neural features, 160 were deemed to be spurious by the workers. For 93 classes, at least one
spurious neural feature was discovered. Next, for each (class=i, feature=j) pair, we obtained 65
images with class i showing highest activations of the neural feature j and computed their neural
activation maps. The union of these images is what we call the Salient Imagenet dataset. The dataset
contains 52, 521 images with around 226 images per class on average. Each instance in the dataset
is of the form (x, y,Mc,Ms) where y is the ground truth class andMs,Mc represent the set of

2

https://github.com/singlasahil14/salient_imagenet

Published as a conference paper at ICLR 2022

Figure 2: Our framework for constructing the Salient Imagenet dataset. We annotate neural features
as core (non-spurious) or spurious using minimal human supervision. We next show that these
annotations generalize to many more new samples. We highlight core and spurious regions on the
input samples using activation maps of these neural features.

spurious and core masks, respectively (obtained from neural activation maps of neural features).
This dataset can be used to test the sensitivity of any pretrained model to different image features
by corrupting images using their relevant masks and observing the drop in the accuracy.

Ideally, we expect our trained models to show a low drop in accuracy for corruptions in spurious
regions and a high drop for that of the core regions. However, using a standard Resnet-50 model, we
discover multiple classes for which the model shows a trend contradictory to our expectations: a sig-
nificantly higher spurious drop compared to the core drop. As an example, for the class drake (Fig.
5), we discover that corrupting any of spurious features results in a significantly higher drop (> 40%)
compared to corrupting any of core features (< 5%). We show many more examples in Appendix
L. For various standard models (Resnet-50, Wide-Resnet-50-2, Efficientnet-b4, Efficientnet-b7), we
evaluate their accuracy drops due to corruptions in spurious or core regions at varying degrees of
corruption noise and find no significant differences between their spurious or core drops suggesting
that none of the models significantly differentiates between core and spurious visual attributes in
their predictions (Fig. 6). In summary, our methodology has the following steps:

• Step 1: We select neural features as penultimate-layer neurons of a pretrained robust network and
visualize them using a few highly activating samples (Section 3.2).

• Step 2: Using Mechanical Turk, we annotate neural features as core or spurious (Section 3.3).
• Step 3: Using neural feature annotations, we automatically annotate core and spurious visual

attributes on many more samples without any human supervision (Section 3.3).
• Step 4: Using another Mechanical Turk study, we show that our methodology generalizes ex-

tremely well to identify core/spurious visual attributes on new samples (Section 3.4).
• Step 5: Applying steps 1-4 to Imagenet, we develop a new dataset called Salient Imagenet whose

samples, in addition to the class label, are annotated by core and/or spurious masks (Section 4).
• Step 6: Using such a richly annotated dataset, we assess core/spurious accuracy of standard

models by adding small noise to spurious/core visual attributes, respectively (Section 5).

To the best of our knowledge, this is the first work that introduces a general methodology to discover
core and spurious features with limited human supervision by leveraging neurons in the penultimate
layer of a robust model as interpretable visual feature detectors. Also, this is the first work that
releases a version of Imagenet with annotated spurious and core image features. We believe that this
work opens future research directions to leverage richly annotated datasets to develop deep models
that mainly rely on core and meaningful features in their inferences.

2 RELATED WORK

Robustness and Interpretability: In recent years, there have been many efforts towards post-hoc
interpretability techniques for trained neural networks. Most of these efforts have focused on local

3

Published as a conference paper at ICLR 2022

explanations where decisions about single images are inspected (Zeiler & Fergus, 2014; Yosinski
et al., 2016; Dosovitskiy & Brox, 2016; Mahendran & Vedaldi, 2016; Nguyen et al., 2016; Zhou
et al., 2018; Olah et al., 2018; Adebayo et al., 2018; Chang et al., 2019; Carter et al., 2019; Yeh et al.,
2019; Sturmfels et al., 2020; O’Shaughnessy et al., 2019; Verma et al., 2020). These include saliency
maps (Simonyan et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017; Singla et al., 2019),
class activation maps (Zhou et al., 2016; Selvaraju et al., 2019; Bau et al., 2020; Ismail et al., 2019;
2020), surrogate models to interpret local decision boundaries such as LIME (Ribeiro et al., 2016),
methods to maximize neural activation values by optimizing input images (Nguyen et al., 2015;
Mahendran & Vedaldi, 2015) and finding influential inputs (Koh & Liang, 2017). However, recent
work suggests that class activation or saliency maps may not be sufficient to narrow down visual
attributes and methods for maximizing neural activations often produce noisy visualizations (Olah
et al., 2017; 2018) with changes imperceptible to humans. To address these limitations, recent works
(Tsipras et al., 2018; Engstrom et al., 2019) show that for robust (Madry et al., 2018) or adversarially
trained models (in contrast to standard models), activation maps are qualitatively more interpretable
and optimizing an image directly to maximize a certain neuron produces human perceptible changes
in the images which can be useful for visualizing the learned features.

Failure explanation: Most of the prior works on failure explanation either operate on tabular data
where interpretable features are readily available (Zhang et al., 2018; Chung et al., 2019), language
data where domain-specific textual queries can be easily generated (Wu et al., 2019; Ribeiro et al.,
2020), images where visual attributes can be collected using crowdsourcing (Nushi et al., 2018;
Xiao et al., 2021; Plumb et al., 2021) or photorealistic simulation (Leclerc et al., 2021). However,
collecting visual attributes via crowdsourcing can be expensive for large datasets. Moreover, these
methods require humans to hypothesize about the possible failures and one could miss critical failure
modes when the visual attributes used by model are different from the ones hypothesized by humans.

To address these limitations, recent works (Wong et al., 2021; Singla et al., 2021) use the neurons of
robust models as the visual attribute detectors for discovering failure modes, thus avoiding the need
for crowdsourcing. However, Wong et al. (2021) cannot be used to analyze the failures of standard
(non-robust) models which achieve significantly higher accuracy and are more widely deployed in
practice. Moreover, to discover the spurious feature, they ask MTurk workers to identify the com-
mon visual attribute across multiple images without highlighting any region of interest. However,
different images may have multiple common attributes even if they come from different classes and
this approach may not be useful in such cases. Barlow (Singla et al., 2021) learns decision trees
using misclassified instances to discover leaf nodes with high failure concentration. However, the
instances could be correctly classified due to some spurious feature (e.g., background) and Barlow
will discover no failure modes in such cases. In contrast, our approach circumvents these limitations
and discovers the spurious features for standard models even when they achieve high accuracy.

3 A GENERAL FRAMEWORK FOR DISCOVERING SPURIOUS FEATURES

Consider an image classification problem X → Y where the goal is to predict the ground truth label
y ∈ Y for inputs x ∈ X . For each class i ∈ Y , we want to identify and localize a set of core or
spurious visual attributes in the training set that can be used by neural networks to predict i:

• Core Attributes are the set of visual features that are always a part of the object definition.
• Spurious Attributes are the ones that are likely to co-occur with the object, but not a part of it

(such as food, vase, flowers in Figure 1).

A more formal discussion of these abstract definitions can be found in Appendix G. Note that local-
izing these visual attributes on a large number of images requires significant human annotations and
can be very expensive. In this paper, we propose a general methodology to tackle this issue.

3.1 NOTATION AND DEFINITIONS

For a trained neural network, the set of activations in the penultimate layer (adjacent to logits) is
what we call the neural feature vector. Each element of this vector is called a neural feature. For
an input image and a neural feature, we can obtain the Neural Activation Map or NAM, similar to
CAM (Zhou et al., 2016), that provides a soft segmentation mask for highly activating pixels (for
the neural feature) in the image (details in Appendix A.1). The corresponding heatmap can then be

4

Published as a conference paper at ICLR 2022

Image Heatmap Feature Attack Image Heatmap Feature Attack

Figure 3: On the left, the heatmap suffices to explain that the focus is on ground. But on the right,
the heatmap covers both cougar and wires. Feature attack clarifies that the focus is on wires.

obtained by overlaying the NAM on top of the image so that the red region highlights the highly
activating pixels (Appendix A.2). The feature attack (Singla et al., 2021) is generated by optimizing
the input image to increase the values of the desired neural feature (Appendix G).

3.2 EXTRACTING, VISUALIZING AND SELECTING NEURAL FEATURES

Prior works (Engstrom et al., 2019; Singla et al., 2021) provide evidence that neural features of a
robust model encode human interpretable visual attributes. Building on these works, to identify
spurious or core visual attributes used for predicting class i, we identify neural features encoding
these attributes. For each image in the Imagenet training set (Deng et al., 2009), we extract the neural
feature vector using a robust Resnet-50 model. The robust model was adversarially trained using the
l2 threat model of radius 3. Each neural feature is visualized using the following techniques:

• Most activating images: By selecting 5 images that maximally activate the neural feature, the
common visual pattern in these images can be interpreted as the visual attribute encoded in it.

• Heatmaps (NAMs): When there are multiple common visual attributes, heatmaps highlight the
region of interest in images and can be useful to disambiguate; e.g., in Figure 3 (left panels),
heatmap disambiguates that the focus of the neural feature is on the ground (not water or sky).

• Feature attack: In some cases, heatmaps may highlight multiple visual attributes. In such cases,
the feature attack can be useful to disambiguate; e.g., in Figure 3 (right panels), the feature attack
indicates that the focus of the neural feature is on the wires (not cougar).

However, the neural feature vector can have a large size (2048 for the Resnet-50 used in this work)
and visualizing all of these features per class to determine whether they are core or spurious can
be difficult. Thus, we select a small subset of these features that are highly predictive of class i
and annotate them as core or spurious for i. Prior work (Singla et al., 2021) selects this subset by
considering the top-k neural features with the highest mutual information (MI) between the neural
feature and the model failure (a binary variable that is 1 if the model misclassifies x and 0 otherwise).
However, the model could be classifying all the images correctly using some spurious features. In
this case, the MI value between the (spurious) neural feature and the model failure will be small and
thus this approach will fail to discover such critical failure modes.

In this work, we select a subset of neural features without using the model failure variable. To do so,
we first select a subset of images (from the training set) on which the robust model predicts the class
i. We compute the mean of neural feature vectors across all images in this subset denoted by r(i).
From the weight matrix w of the last linear layer of the robust model, we extract the ith row wi,: that
maps the neural feature vector to the logit for the class i. Next, we compute the hadamard product
r(i)�wi,:. Intuitively, the jth element of this vector (r(i)�wi,:)j captures the mean contribution
of neural feature j for predicting the class i. This procedure leads to the following definition:

Definition 1 The Neural Feature Importance of feature j for class i is defined as: IVi,j =
(r(i)�wi,:)j . For class i, the neural feature with kth highest IV is said to have the feature rank k.

We thus select the neural features with the highest-5 importance values (defined above) per class.

3.3 MECHANICAL TURK STUDY FOR DISCOVERING SPURIOUS AND CORE FEATURES

To determine whether a neural feature j is core or spurious for class i, we conducted a crowd study
using Mechanical Turk (MTurk). We show the MTurk workers two panels: One panel visualizes the

5

Published as a conference paper at ICLR 2022

feature j and the other describes the class i. To visualize j, we show the 5 most activating images
(with predicted class i), their heatmaps highlighting the important pixels for j, and the feature attack
visualizations (Engstrom et al., 2019). For the class i, we show the object names (Miller, 1995),
object supercategory (from Tsipras et al. (2020)), object definition and the wikipedia links. We also
show 3 images of the object from the Imagenet validation set. We then ask the workers to determine
whether the visual attribute is a part of the main object, some separate objects or the background.
They were also required to provide reasons for their answers and rate their confidence on a likert
scale from 1 to 5. The design for this study is shown in Figure 9 in Appendix C. Each of these
tasks (also called Human Intelligence Tasks or HITs) were evaluated by 5 workers. The HITs for
which the majority of workers selected either separate objects or background as their responses
were deemed to be spurious and the ones with main object as the majority answer were deemed
to be core. We note that our proposed approach might not be effective for discovering non-spatial
spurious signals (such as gender/race) that are not visualizable using heatmaps/feature attacks.

Because conducting a study for all 1000 Imagenet classes can be expensive, we selected a smaller
subset of 232 classes (denoted by T) by taking a union of 50 classes with the highest and 50 with
the lowest accuracy across multiple models (details in Appendix B). For each class, we selected 5
neural features with the highest feature importance values resulting in 232 × 5 = 1160 HITs. For
160 HITs, workers deemed the feature to be spurious for the label. Thus, for each class i ∈ T , we
obtain a set of core and spurious neural features denoted by C(i) and S(i), respectively.

3.4 GENERALIZATION OF VISUAL ATTRIBUTES ENCODED IN NEURAL FEATURES

We show that the visual attribute inferred for some neural feature j (via visualizing the top-5 images
with predicted class i as discussed in the previous section) generalizes extremely well to top-k (with
k � 5) images with the ground truth label i that maximally activate feature j. That is, we can obtain
a large set of images containing the visual attribute (encoded in neural feature j) by only inspecting
a small set of images. To obtain the desired set, denoted by D(i, j), we first select training images
with label i (Imagenet contains ≈ 1300 images per label). Next, we select k = 65 images (5% of
1300) from this set with the highest activations of the neural feature j. We use the Neural Activation
Maps (NAMs) for these images as soft segmentation masks to highlight the desired visual attributes.

To validate that the NAMs focus on the desired visual attributes, we conducted another Mechanical
Turk study. From the setD(i, j), we selected 5 images with the highest and 5 with the lowest activa-
tions of feature j. We show the workers two panels: The first panel shows images with the highest
5 activations (along with their heatmaps) and the second shows images with the lowest 5 activations
(and heatmaps). We then ask them to determine if the focus of heatmaps in both visualizations was
on the same visual attribute, different attributes or if either of the two visualizations was unclear. For
each spurious feature (160 total), we obtained answers from 5 workers each. For 152 visualizations
(95%), majority of the workers selected same as the answer, thereby validating that the NAMs focus
on the same visual attribute. The design for the study is shown in Figure 10 in Appendix D.

We emphasize that although using k = 65 significantly increases the size of the set (i.e., a 13 fold
increase over the manually annotated set), the value of k can be changed depending on the number
of training images with the desired properties. One can quickly search over various possible values
of k by visualizing the 5 images (and their heatmaps) with the highest and lowest activations of the
relevant neural feature (in the set of k images) until they both focus on the desired visual attribute.

4 THE SALIENT IMAGENET DATASET

Recall that for each class i ∈ T , we obtain a set of core and spurious neural features denoted by
C(i) and S(i), respectively (Section 3.3). Then, using the generalization property (Section 3.4), we
obtain the set D(i, j) for each i ∈ T and j ∈ C(i) ∪ S(i). Each D(i, j) contains 65 images along
with the NAM (per image) acting as the soft segmentation mask for the visual attribute encoded in
feature j. We note these soft segmentation masks overlap with the desired visual attribute and may
not cover it completely. However, since we corrupt these regions using Gaussian noise which pre-
serves the content of the original images (discussed in Section 5), they can be useful for evaluating
the model sensitivity to various spurious/core visual attributes. If j ∈ C(i), these are called core
masks, otherwise spurious masks. The union of all these datasets D(i, j) is what we call the Salient

6

Published as a conference paper at ICLR 2022

(a) Number of images for different classes with at least 1 spurious feature

(b) Number of classes vs. num-
ber of spurious features

(c) Number of classes with sp-
urious feature at various ranks

(d) Number of common spurious
neural features between classes

Figure 4: In the top row, we show number of images for different classes with at least 1 spurious
feature in the Salient Imagenet dataset. Bottom row shows various plots using the dataset.

Imagenet dataset. Each instance in the dataset is of the form (x, y,Mc,Ms) where y is the ground
truth label whileMs/Mc represent the set of spurious/core masks for the image x. The dataset and
anonymized Mechanical Turk study results are also available at the associated github repository.

The dataset contains 52, 521 images with around 226 images per class on average. From the MTurk
study (Section 3.3), 160 features were discovered to be spurious and 1, 000 to be core for relevant
classes. We visualize several spurious features (59 total) in Appendix J. Examples of background
and foreground spurious features are in Appendix J.1 and J.2, respectively. For 93 classes, we
discover at least one spurious feature (the number of images per class shown in Fig. 4a). We show
a histogram of the number of classes vs. the number of spurious features in Fig. 4b. For 3 classes
(namely space bar, miniskirt and seatbelt) all 5 features were found to be spurious. This finding
suggests that in safety critical applications, it can be unsafe to just use the test accuracy to assess the
model performance because the model may be highly accurate on the benchmark for all the wrong
reasons. We plot the histogram of the number of classes with spurious feature at rank k (from 1 to
5) in Fig. 4c. We discover that across all feature ranks, a significant number of spurious features
are discovered (minimum 19) and a larger number of spurious features are discovered at higher
feature ranks (4 and 5). This suggests that inspecting a larger number of features per class (i.e.,
> 5) may be necessary for a more thorough analysis of spurious features. In Fig. 4d, we show the
number of shared spurious features between different classes (diagonal is zeroed out for brevity). By
visualizing common neural features, we diagnose that tree branches are a confusing visual attribute
between titi and junco (Appendix K.1); food between plate and icecream (Appendix K.2).

5 EVALUATING DEEP MODELS USING THE SALIENT IMAGENET DATASET

In this section, we use the Salient Imagenet dataset to evaluate the performance of several pretrained
models on Imagenet. In particular, each set D(i, j) can be used to test the sensitivity of any trained
model to the visual attribute encoded with feature j for predicting the class i. We can either blackout
(fill with black color) or corrupt (using some noise model) the region containing the attribute (using
the soft segmentation masks) for all images in this set and evaluate the accuracy of the model on these
corrupted images. However, because the existing Imagenet pretrained models have not explicitly
been trained on images with black regions, these images can be characterized as out of distribution
of the training set. Thus, it may be difficult to ascertain whether changes in accuracy are due to the
distribution shift or the removal of spurious features. Instead, we choose to corrupt the region of
interest using Gaussian noise to preserve the content of the original images (which can be useful

7

https://github.com/singlasahil14/salient_imagenet

Published as a conference paper at ICLR 2022

(a) Core, -1.5% (b) Core, -4.6% (c) Core, -0% (d) Spurious,-41.5% (e) Spurious,-46.1%

Figure 5: Each image denotes the heatmap for different neural features for the class drake. Using
a standard Resnet-50 model, (clean accuracy of 95.4%), we observe a drop of at least 41.5% by
adding gaussian noise with σ = 0.25 to spurious masks while a drop of at most 4.6% for core
masks. This shows that the model heavily relies on spurious features in its predictions for this class.

when the soft segmentation masks are inaccurate). Such Gaussian noise is also known to occur in
the real world due to sensor or electronic circuit noise. Since the segmentation masks we derive are
soft (i.e., their values lie between 0 and 1, not binary), we use these masks to control the degree of
the Gaussian noise corruption across the original image. That is, given image x and mask m, we
add noise z ∼ N (0, I) using the equation below (examples in Appendix I):

x+ σ (z�m) , (1)

where σ is a hyperparameter that can be used to control the degree of corruption in the image. The
above equation ensures that regions where the mask m has values close to 1 are corrupted by noise
with the desired standard deviation σ and the ones with values close to 0 suffer little changes.

5.1 CORE AND SPURIOUS ACCURACY

We now introduce concepts of core and spurious accuracy to evaluate deep models. Informally,
the core accuracy is the accuracy of the model only due to the core features of the images and the
spurious accuracy is due to the spurious regions. To compute the core accuracy for class i, we first
obtain the sets D(i, j). For some image x ∈ D(i, j), let m(j) be the mask obtained for some feature
j. Next, we take the union of all these sets for j ∈ S(i) denoted by DS(i). Note that for some
images in the union, we may have multiple spurious masks but to evaluate the core accuracy, we
want to obtain a single mask per image that covers all the spurious attributes. Thus, for the image
x, the (p, q)-th element of the single spurious mask s (or, the single core mask c), is computed by
taking the element-wise max over all the relevant masks:

sp,q = max
j∈S(i), x∈D(i,j)

m(j)
p,q, cp,q = max

j∈C(i), x∈D(i,j)
m(j)

p,q (2)

Definition 2 (Core Accuracy) We define the Core Accuracy or acc(C) as follows:

acc(C) =
1

|T |
∑
i∈T

acc(C)(i), acc(C)(i) =
1

|DS(i)|
∑

x∈DS(i)

1 (h (x+ σ (z� s)) = y)

We acknowledge that our definition of core accuracy is incomplete because the set of spurious vi-
sual attributes discovered using our framework may not cover all spurious attributes in the dataset.
Finally, note that the defined core accuracy is a function of the noise parameter (σ) used to cor-
rupt spurious regions. The Spurious Accuracy or acc(S)(i) can be computed similarly by replacing
DS(i) with DC(i) = ∪j∈C(i)D(i, j), and s with c in equation 2. Observe that DS(i) 6= DC(i) in
general because D(i, j) may contain different sets of images for different j’s. Thus, the standard
accuracy of the model (i.e. without adding any noise) on the two sets pf DS(i) and DC(i) can be
different. We want our trained models to show a low degradation in performance when noise is
added to spurious regions (i.e. high core accuracy) and a high degradation when corrupting core
regions (i.e. low spurious accuracy).

5.2 RESULTS FROM EVALUATING DEEP MODELS ON THE SALIENT IMAGENET DATASET

In this section, we test the sensitivity of several models to various spurious/core features.

8

Published as a conference paper at ICLR 2022

(a) Resnet-50 (b) Wide-Resnet-50-2 (c) Efficientnet-b4 (d) Efficientnet-b7

Figure 6: In the top row, we observe a similar drop in accuracy irrespective of whether noise is added
to spurious or core regions suggesting that trained models do not differentiate between the spurious
and core regions for predicting the desired class. In the bottom row, we show core accuracy vs. noise
parameter σ for several classes. In particular, for both classes “triumphal arch” and “ostrich”, the
model has a standard accuracy of 100% (at σ = 0). However, the core accuracy for triumphal arch
is high even at σ = 2.0 (≈ 40%) while that for ostrich is almost 0%.

Testing model sensitivity to spurious features. We test the sensitivity of a standard Resnet-50
model to different spurious and core features (one feature at a time) by corrupting images from the
datasets D(i, j) and evaluating the drop in model accuracy. We use σ = 0.25 (equation 1) because
we observe that it preserves the content of the images (Examples in Appendix I) so we would expect
the model prediction to remain unchanged. In Figure 1, we show multiple examples of spurious
features discovered using this procedure. In Figure 5, we show a class (namely drake) on which the
model has a high clean accuracy (95.4%). However, it exhibits a large drop in performance when
any of the spurious regions (e.g. water) are corrupted while a small drop is observed when any of
the core regions (e.g. bird’s head) are corrupted. This highlights that the model relies on mostly
spurious features in its predictions for this class. Out of the 93 classes with at least one spurious
feature, we discovered 34 classes such that the accuracy drop due to some spurious feature was at
least 20% higher than due to some core feature. In Appendix L, we show visualizations of core and
spurious features for 15 of these classes. On 11 of these 15 classes, the model has > 95% accuracy.
Since the l2 norm of noise perturbations can be different for different features (e.g. due to different
l2 norms of their activation maps), we also evaluate accuracy drops due to corrupting spurious/core
features when the mean l2 perturbations are similar and find similar trends (details in Appendix L).

Comparing core and spurious accuracy of trained models. Next, we compute the core and spuri-
ous accuracy of four standard (i.e. not adversarially trained) pretrained models namely, Resnet-
50 (He et al., 2015), Wide Resnet-50-2 (Zagoruyko & Komodakis, 2016), Efficientnet-b4 and
Efficientnet-b7 (Tan & Le, 2019). In Figure 6 (top row), we plot the drop in accuracy when noise
is added to spurious regions (i.e., core accuracy - standard accuracy) and also to core regions (i.e.,
spurious accuracy - standard accuracy). We observe a similar drop in performance for all values of
σ and for all trained models. This suggests that trained models do not differentiate between spurious
and core regions of the images for predicting an object class. In some sense, this is expected because
in the standard Empirical Risk Minimization (ERM) paradigm, models have never explicitly been
trained to make such differentiation, suggesting that providing additional supervision during train-
ing (for example, segmenting core/spurious regions as provided in Salient Imagenet or diversifying
the training dataset) may be essential to train models that achieve high core accuracy. In Figure 6
(bottom row), we plot the core accuracy for 4 different classes as the noise level σ increases. In
particular, consider the two classes “triumphal arch” and “ostrich” that both have standard accu-
racy of 100% (at σ = 0). However, the core accuracy for triumphal arch is high even at σ = 2.0
(≈ 40%) while that for ostrich is almost 0%. This provides further evidence that the standard
accuracy alone is not a reliable measure for model performance in the real world because the
core accuracy for two classes with the same standard accuracy can be very different. We believe
having richly annotated training datasets such as Salient Imagenet can lead to training reliable deep
models that mainly rely on core and informative features in their predictions.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

This project was supported in part by NSF CAREER AWARD 1942230, a grant from NIST
60NANB20D134, HR001119S0026-GARD-FP-052, ONR YIP award N00014-22-1-2271, Army
Grant W911NF2120076 and AWS Machine Learning Research Award. We would like to thank
Besmira Nushi, Eric Horvitz and Shital Shah for helpful discussions.

REPRODUCIBILITY

We provide the design details of our Mechanical Turk studies in Appendix Sections C and D.
The code for user studies, experiments and the dataset is available at https://github.com/
singlasahil14/salient_imagenet.

ETHICS STATEMENT

This paper introduces a scalable framework for discovering spurious features in predictions made
by deep neural networks. Our approach can be useful for various downstream tasks such as model
debugging and developing improved models that rely on core features in their predictions. We intro-
duce a new dataset called Salient ImageNet that includes annotations of various core and spurious
visual attributes for a subset of images in the ImageNet training set. We do not collect any new
samples for constructing our dataset. As this work paves the way to develop reliable models, we do
not see any foreseeable negative consequences associated with our work.

REFERENCES

Julius Adebayo, J. Gilmer, M. Muelly, Ian J. Goodfellow, M. Hardt, and Been Kim. Sanity checks
for saliency maps. In NeurIPS, 2018.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2020.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Tor-
ralba. Understanding the role of individual units in a deep neural network. Proceedings
of the National Academy of Sciences, 117(48):30071–30078, 2020. ISSN 0027-8424. doi:
10.1073/pnas.1907375117. URL https://www.pnas.org/content/117/48/30071.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. CoRR,
abs/1807.04975, 2018. URL http://arxiv.org/abs/1807.04975.

Alceu Bissoto, E. Valle, and S. Avila. Debiasing skin lesion datasets and models? not so fast. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
3192–3201, 2020.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. Activation atlas.
Distill, 2019. doi: 10.23915/distill.00015. https://distill.pub/2019/activation-atlas.

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image clas-
sifiers by counterfactual generation. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=B1MXz20cYQ.

Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. Slice
finder: Automated data slicing for model validation. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pp. 1550–1553. IEEE, 2019.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. CoRR,
abs/1905.11979, 2019. URL http://arxiv.org/abs/1905.11979.

J. Deng, Wei Dong, R. Socher, L. Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–
255, 2009.

10

https://github.com/singlasahil14/salient_imagenet
https://github.com/singlasahil14/salient_imagenet
https://www.pnas.org/content/117/48/30071
http://arxiv.org/abs/1807.04975
https://openreview.net/forum?id=B1MXz20cYQ
http://arxiv.org/abs/1905.11979

Published as a conference paper at ICLR 2022

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander
Madry. Adversarial robustness as a prior for learned representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2015.

Aya Abdelsalam Ismail, Mohamed K. Gunady, Luiz Pessoa, Héctor Corrada Bravo, and Soheil Feizi.
Input-cell attention reduces vanishing saliency of recurrent neural networks. In NeurIPS, 2019.

Aya Abdelsalam Ismail, Mohamed K. Gunady, Héctor Corrada Bravo, and Soheil Feizi. Bench-
marking deep learning interpretability in time series predictions. In NeurIPS, 2020.

Fereshte Khani and Percy Liang. Removing spurious features can hurt accuracy and affect groups
disproportionately. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, FAccT ’21, pp. 196–205, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445883. URL https://doi.
org/10.1145/3442188.3445883.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 1885–1894. JMLR.org, 2017.

Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai
Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, Ashish Kapoor, and Aleksander Madry.
3db: A framework for debugging computer vision models. In Arxiv preprint arXiv:2106.03805,
2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Aravindh Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural
pre-images. International Journal of Computer Vision, 120:233–255, 2016.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5188–
5196, 2015. doi: 10.1109/CVPR.2015.7299155.

George A. Miller. Wordnet: A lexical database for english. COMMUNICATIONS OF THE ACM,
38:39–41, 1995.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 427–436, 2015. doi: 10.1109/CVPR.2015.7298640.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncovering
the different types of features learned by each neuron in deep neural networks. In ICML Workshop
on Visualization for Deep Learning, 2016.

Besmira Nushi, Ece Kamar, and Eric Horvitz. Towards accountable AI: hybrid human-machine
analyses for characterizing system failure. In Yiling Chen and Gabriella Kazai (eds.), Pro-
ceedings of the Sixth AAAI Conference on Human Computation and Crowdsourcing, HCOMP,
pp. 126–135. AAAI Press, 2018. URL https://aaai.org/ocs/index.php/HCOMP/
HCOMP18/paper/view/17930.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/
distill.00010. https://distill.pub/2018/building-blocks.

11

https://doi.org/10.1145/3442188.3445883
https://doi.org/10.1145/3442188.3445883
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17930
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17930

Published as a conference paper at ICLR 2022

Matthew O’Shaughnessy, Gregory Canal, Marissa Connor, Mark Davenport, and Christopher
Rozell. Generative causal explanations of black-box classifiers. In NeurIPS, 2019.

Gregory Plumb, Marco Túlio Ribeiro, and Ameet Talwalkar. Finding and fixing spurious patterns
with explanations. CoRR, abs/2106.02112, 2021. URL https://arxiv.org/abs/2106.
02112.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.
2939778. URL https://doi.org/10.1145/2939672.2939778.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In Association for Computational Linguistics (ACL),
2020.

R. R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, D. Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. Inter-
national Journal of Computer Vision, 128:336–359, 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Workshop at International Confer-
ence on Learning Representations, 2014.

Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-order loss
approximations and features in deep learning interpretation. In ICML, 2019.

Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding failures of
deep networks via robust feature extraction. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. In ICML Workshop on Visualization for Deep Learning,
2017.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
baselines. Distill, 2020. doi: 10.23915/distill.00022. https://distill.pub/2020/attribution-baselines.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
ICML, 2017.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6105–6114. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/tan19a.html.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In ICLR, 2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
imagenet to image classification: Contextualizing progress on benchmarks. In ArXiv preprint
arXiv:2005.11295, 2020.

Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning:
A review, 2020.

Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debug-
gable deep networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 11205–11216. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/wong21b.html.

12

https://arxiv.org/abs/2106.02112
https://arxiv.org/abs/2106.02112
https://doi.org/10.1145/2939672.2939778
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v139/wong21b.html
https://proceedings.mlr.press/v139/wong21b.html

Published as a conference paper at ICLR 2022

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 747–763, 2019.

Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The
role of image backgrounds in object recognition. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.net/forum?id=gl3D-xY7wLq.

Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep D. Ravikumar.
On the (in)fidelity and sensitivity of explanations. In NeurIPS, 2019.

Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. In ICML Deep Learning Workshop, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87. URL https://dx.doi.org/10.5244/C.30.87.

Matthew D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV,
2014.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. Manifold: A model-agnostic
framework for interpretation and diagnosis of machine learning models. IEEE transactions on
visualization and computer graphics, 25(1):364–373, 2018.

B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep Features for Dis-
criminative Localization. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representations
via network dissection. IEEE transactions on pattern analysis and machine intelligence, 41(9):
2131–2145, 2018.

13

https://openreview.net/forum?id=gl3D-xY7wLq
https://dx.doi.org/10.5244/C.30.87

Published as a conference paper at ICLR 2022

Appendix

A VISUALIZING THE NEURAL FEATURES OF A ROBUST MODEL

A.1 NEURAL ACTIVATION MAP (NAM)

Figure 7: Neural activation map generation

Figure 7 describes the Neural Activation Map generation procedure. To obtain the neural activation
map for feature j, we select the feature map from the output of the tensor of the previous layer (i.e
the layer before the global average pooling operation). Next, we simply normalize the feature map
between 0 and 1 and resize the feature map to match the image size, giving the neural activation
map.

A.2 HEATMAP

Heatmap can be generated by first converting the neural activation map (which is grayscale) to an
RGB image (using the jet colormap). This is followed by overlaying the jet colormap on top of the
original image using the following few lines of code:

import cv2

def compute hea tmap (img , fam) :
hm = cv2 . applyColorMap (np . u i n t 8 (255 * nam) ,

cv2 . COLORMAP JET)
hm = np . f l o a t 3 2 (hm) / 255
hm = hm + img
hm = hm / np . max (hm)
re turn hm

A.3 FEATURE ATTACK

In Figure 8, we illustrate the procedure for the feature attack. We select the feature we are inter-
ested in and simply optimize the image to maximize its value to generate the visualization. ρ is a
hyperparameter used to control the amount of change allowed in the image. For optimization, we
use gradient ascent with step size = 40, number of iterations = 25 and ρ = 500.

14

Published as a conference paper at ICLR 2022

Figure 8: Feature attack generation

B SELECTING THE CLASSES FOR DISCOVERING SPURIOUS FEATURES

Because conducting a Mechanical Turk (MTurk) study for discovering the spurious features for all
1000 classes of Imagenet can be expensive, we selected a smaller subset of classes as follows. Using
some pretrained neural network h, for each class i in Imagenet, we obtain groups of images with the
label i (called label grouping) and prediction i (i.e h predicts i, called prediction grouping) giving
2000 groups. For each group, we compute their accuracy using the network h. For each grouping
(label/prediction), we selected 50 classes with the highest and 50 with the lowest accuracy giving
100 classes per grouping and take the union. We used two pretrained neural networks: standard and
robust Resnet-50 resulting in total 232 classes.

C MECHANICAL TURK STUDY FOR DISCOVERING SPURIOUS FEATURES

The design for the Mechanical Turk study is shown in Figure 9. We showed the workers two panels
side by side. The left panel visualizes a neuron (from a robust resnet-50 model trained on Imagenet)
and the right panel describes an object class from Imagenet.

The left panel visualizing the neuron is shown in Figure 9a. To visualize the neuron, we first select
the subset of images for which the robust model predicts the object class (given on the right). We
show three sections: Top five images (five images with highest activation values of the neuron in
the subset), Highlighted visual attributes (heatmaps computed using the neural activation maps as
described in Section A.2) and Amplified visual attributes (feature attack computed by optimizing
the top five images to maximize the neuron as described in Section A.3).

The right panel describing the object class is shown in Figure 9b. We show the object category name
(also called synset) from the wordnet heirarchy (Miller, 1995), object supercategory (from Tsipras
et al. (2020)), object definition (also called gloss) and the relevant wikipedia links describing the
object. We also show 3 images of the object from the Imagenet validation set.

The questionnaire is shown in Figure 9c. We ask the workers to determine whether they think the
visual attribute (given on the left) is a part of the main object (given on the right), some separate
object or the background of the main object. We also ask the workers to provide reasons for their
answers and rate their confidence on a likert scale from 1 to 5. The visualizations for which majority
of workers selected either separate object or background as the answer were deemed to be spurious.
In total, we had 205 unique workers, each completing 5.66 tasks (on average). Workers were paid
$0.1 per HIT, with an average salary of $8 per hour.

15

Published as a conference paper at ICLR 2022

(a) Visual attribute

(b) Main object

(c) Questionnaire

Figure 9: Mechanical Turk study for discovering spurious features

16

Published as a conference paper at ICLR 2022

C.1 QUALITY CONTROL

Only allowed workers with at least 95% approval rates and minimum of 1000 HITs were allowed to
complete our tasks. Additionally, short and generic answers to Q3 were rejected.

D MECHANICAL TURK STUDY FOR VALIDATING HEATMAPS

The design for the Mechanical Turk study is shown in Figure 10. Given a subset of the training set
(constructed as described in Section 3.4), our goal is to validate whether the heatmaps focus on the
same visual attribute for all images in the subset.

Recall that this subset was constructed for each spurious feature discovered using the previous crowd
study (Section C). For each spurious feature, we already know both the object class and the neuron
index of the robust model. We construct the subset of training set by first selecting the subset of
images for which the label is the object class. Note that this is different from the previous crowd
study where the prediction of the robust model is the object class. Next, we select the top-65 images
from this subset where the desired neuron has the highest activation values.

We showed the workers two panels side by side, each panel visualizing the same neuron. The left
panel visualizing the neuron is shown in Figure 10a. The visualization shows the images with the
highest-5 neural activations in the subset and corresponding heatmaps. The right panel visualizing
the neuron is shown in Figure 10b. That shows the images with the lowest-5 neural activations in
the subset and corresponding heatmaps.

The questionnaire is shown in Figure 10c. We ask the workers to determine whether they think the
focus of the heatmap is on the same object (in both the left and right panels), different objects or
whether they think the visualization in either of the sections is unclear . They were given the option
to choose from these four options: same, different, Section A is unclear and Section B is unclear.
Same as in the previous study (Section C), we ask the workers to provide reasons for their answers
and rate their confidence on a likert scale from 1 to 5.

The visualizations for which majority of workers selected same as the answer were deemed to be
validated i.e for this subset of 65 images, we assume that the neural activation maps focus on the
same visual attribute.

17

Published as a conference paper at ICLR 2022

(a) Section A: Images with the highest activation
values for the neuron of interest in the subset.

(b) Section B: Images with the lowest activation
values for the neuron of interest in the subset.

(c) Questionnaire.

Figure 10: Mechanical Turk study for validating heatmaps

18

Published as a conference paper at ICLR 2022

E DISCOVERING SPURIOUS VISUAL ATTRIBUTES IN OTHER IMAGE DATASETS
USING OUR FRAMEWORK

In this work, we consider the problem of classification on Imagenet and introduce a methodology to
discover core/spurious features. Our framework can be applied to discover the spurious/core visual
attributes of other image classification datasets using the following steps:

(i) Train a robust model using the l2 norm of some large radii (we use 3 in this work).
(ii) To discover spurious visual attributes for some class i in the dataset, select the subset of images

from the training dataset on which the robust model predicts i.
(iii) Select neural features from the penultimate layer of the robust model with the k highest importance

values (as defined in Section 1). We use k = 5 in this work. We note that other layers of the
network may also provide informative neural features in some applications.

(iv) Visualize each neural feature using m highly activating images, their heatmaps and feature attack
(Section 3.2). We use m = 5 in this work. Note that both k and m may be changed depending on
the problem at hand.

(v) Create a Mechanical Turk HIT per (class=i, neural feature=j) pair such that the HIT contains both
the visualization for feature j and also the details about the class i (similar to Figure 9) and obtain
worker annotations.

The HITs for which the majority of the workers annotate the neural feature to be spurious for class
are deemed to be the spurious visual attributes. Then, simply one can use any Heatmap methods
such as CAM to automatically highlight core and spurious masks on many other samples in the
dataset. At this point, we recommend another MTurk study to validate the quality of highlighted
core and spurious masks on new samples.

F ANALYZING THE REASONS PROVIDED BY MECHANICAL TURK WORKERS

Understanding the reasoning behind the answers of MTurk workers is a general and challenging
problem in all crowd studies. To understand the reasons behind the answers provided by our MTurk
workers, we have taken the following steps: (i) workers were required to give reasons for their
answers to complete each task and (ii) they were explicitly instructed to use heatmaps (called high-
lighted visual attributes in the study) for their answers and use feature attack visualization (called
amplified visual attributes in the study) for their answers when the heatmaps are unclear. For the
crowd study for discovering spurious features (Section 3.3), we have observed more than 1200 men-
tions of the word “highlighted” and only 29 mentions of the word “amplified” suggesting that the
workers use highlighted visual attributes (heatmaps) significantly more than the amplified visual at-
tributes (feature attack). Some example descriptions provided by workers are given below in Figures
11 and 12.

19

Published as a conference paper at ICLR 2022

Figure 11: Visualization of feature 625 for class barn spider (class index: 73).
Reasons for the answers provided by workers (all workers answered main object): (i) The red region
in the Highlighted visual attributes focuses on the leg of the barn spider that is the main object, (ii)
Legs of spider are mainly focused. (iii) Focus on spider, (iv) The red is on the legs of the barn spider,
(v) Focus is on another part of the main object, such as the barn spider’s legs.

Figure 12: Visualization of feature 957 for class ruffed grouse (class index: 82).
Reasons for the answers provided by workers (all workers answered main object): (i) The red region
in the Highlighted visual attributes focuses on the feathers of the ruffed grouse that is the main
object, (ii) focus is highlighting the bird’s wing, (iii) The focus is on the feathers of the bird, (iv)
Focus is on the bird, (v) All of the red parts are within the object

20

Published as a conference paper at ICLR 2022

G FORMAL DEFINITIONS OF CORE AND SPURIOUS VISUAL ATTRIBUTES

Figure 13: A simple graphical model relationship between core, spurious and label variables.

In the main text, we have explained definitions of core and spurious visual attributes used in our
studies as following:

• Core Attributes are the set of visual features that are always a part of the object definition.
• Spurious Attributes are the ones that are likely to co-occur with the object, but not a part of it

(such as food, vase, flowers in Figure 1).

In fact, defining these abstract concepts for Mturkers was quite challenging: For example, in our
first user studies on Mechanical Turk, we have observed that defining spurious visual attributes as
attributes that could be removed without changing the label of the object resulted in workers labeling
attributes such as “limbs” to be spurious for the class “dog” (because a dog can still be recognized
when the limbs are removed). Thus, for the purpose of our user studies, we defined the core visual
attributes as the attributes that are a part of the relevant object definition. With this definition, “limbs”
would be considered as a core feature for the class “dog”. Similarly, we have defined spurious visual
attributes as the attributes that are not a part of the object definition.

Although not necessary in our empirical Mechanical Turk studies, one can define core and spurious
visual attributes formally through a simple graphical model depicted in Figure 13 (as explained in
Khani & Liang (2021)) Let us consider L, C and S as label, core and spurious random variables,
respectively. This graphical model indicates that given C, L and S are conditionally independent.
That is, spurious variables are not essential in the object definition. This graphical model can be
viewed through the lens of the Reichenbach’s Common Cause Principle which indicates that since
there is a correlation (and not causation) relationship between S and L, they have a common cause
that renders them conditionally independent. We emphasize that even this more formal definition
of core/spurious features is incomplete since in practice there may be other confounding factors
ignored in the representation of Figure 13.

21

Published as a conference paper at ICLR 2022

H ADDITIONAL RESULTS FROM EVALUATING DEEP MODELS ON THE
SALIENT IMAGENET DATASET

Figure 14: Comparing between the core accuracy (using σ = 0.25) and usual accuracy of different
Imagenet trained models.

(a) Resnet-50 (b) Wide-Resnet-50

(c) Efficientnet-b4 (d) Efficientnet-b7

(e) Legend

Figure 15: We plot the core accuracy for different classes as noise level σ increases. For some
classes, core accuracy is high even at large σ, but for most it decreases rapidly (e.g., triumphal arch,
jellyfish on Efficientnet-b7).

22

Published as a conference paper at ICLR 2022

I EXAMPLES OF IMAGES FROM THE SALIENT IMAGENET DATASET
CORRUPTED BY ADDING GAUSSIAN NOISE TO THE SPURIOUS REGIONS

Figure 16: Images randomly sampled from the set D(i, j) where i = 810 (class index) and j = 325
(feature index). Class name: space bar.

Figure 17: Images randomly sampled from the setD(i, j) where i = 626 (class index) and j = 1986
(feature index). Class name: lighter.

23

Published as a conference paper at ICLR 2022

Figure 18: Images randomly sampled from the set D(i, j) where i = 975 (class index) and j = 516
(feature index). Class name: lakeside, lakeshore.

Figure 19: Images randomly sampled from the set D(i, j) where i = 809 (class index) and j = 895
(feature index). Class name: soup bowl.

24

Published as a conference paper at ICLR 2022

Figure 20: Images randomly sampled from the set D(i, j) where i = 657 (class index) and j = 961
(feature index). Class name: missile.

Figure 21: Images randomly sampled from the set D(i, j) where i = 536 (class index) and j = 76
(feature index). Class name: dock.

25

Published as a conference paper at ICLR 2022

J EXAMPLES OF SPURIOUS FEATURES

J.1 BACKGROUND SPURIOUS FEATURES

Figure 22: Visualization of feature 230 for class sorrel (class index: 339).
Train accuracy using Standard Resnet-50: 99.385%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -12.308%.

Figure 23: Visualization of feature 925 for class black swan (class index: 100).
Train accuracy using Standard Resnet-50: 98.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -4.615%.

26

Published as a conference paper at ICLR 2022

Figure 24: Visualization of feature 223 for class geyser (class index: 974).
Train accuracy using Standard Resnet-50: 97.923%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -20.0%.

Figure 25: Visualization of feature 1468 for class oystercatcher (class index: 143).
Train accuracy using Standard Resnet-50: 97.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -21.539%.

27

Published as a conference paper at ICLR 2022

Figure 26: Visualization of feature 341 for class red breasted merganser (class index: 98).
Train accuracy using Standard Resnet-50: 97.195%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -12.308%.

Figure 27: Visualization of feature 1697 for class albatross (class index: 146).
Train accuracy using Standard Resnet-50: 96.615%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -20.0%.

28

Published as a conference paper at ICLR 2022

Figure 28: Visualization of feature 981 for class rock beauty (class index: 392).
Train accuracy using Standard Resnet-50: 96.285%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -32.308%.

Figure 29: Visualization of feature 820 for class water ouzel (class index: 20).
Train accuracy using Standard Resnet-50: 96.231%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -15.385%.

29

Published as a conference paper at ICLR 2022

Figure 30: Visualization of feature 535 for class water ouzel (class index: 20).
Train accuracy using Standard Resnet-50: 96.231%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -16.923%.

Figure 31: Visualization of feature 1475 for class coral fungus (class index: 991).
Train accuracy using Standard Resnet-50: 93.308%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -9.231%.

30

Published as a conference paper at ICLR 2022

J.2 FOREGROUND SPURIOUS FEATURES

Figure 32: Visualization of feature 1556 for class jacamar (class index: 95).
Train accuracy using Standard Resnet-50: 97.000%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -21.538%.

Figure 33: Visualization of feature 189 for class potter’s wheel (class index: 739).
Train accuracy using Standard Resnet-50: 95.615%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -21.538%.

31

Published as a conference paper at ICLR 2022

Figure 34: Visualization of feature 1832 for class desk (class index: 526).
Train accuracy using Standard Resnet-50: 69.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -7.692%.

Figure 35: Visualization of feature 895 for class wok (class index: 909).
Train accuracy using Standard Resnet-50: 71.077%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -46.154%.

32

Published as a conference paper at ICLR 2022

Figure 36: Visualization of feature 43 for class plate (class index: 923).
Train accuracy using Standard Resnet-50: 64.538%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -32.308%.

33

Published as a conference paper at ICLR 2022

J.3 SPURIOUS FEATURES BY FEATURE RANKS

J.3.1 SPURIOUS FEATURES AT FEATURE RANK 1

Figure 37: Visualization of feature 56 for class bullet train (class index: 466).
Train accuracy using Standard Resnet-50: 98.077%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -1.538%.

Figure 38: Visualization of feature 925 for class red breasted merganser (class index: 98).
Train accuracy using Standard Resnet-50: 97.195%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -3.077%.

34

Published as a conference paper at ICLR 2022

Figure 39: Visualization of feature 1406 for class jellyfish (class index: 107).
Train accuracy using Standard Resnet-50: 98.077%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -4.615%.

Figure 40: Visualization of feature 925 for class hippopotamus (class index: 344).
Train accuracy using Standard Resnet-50: 97.846%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -27.693%.

35

Published as a conference paper at ICLR 2022

Figure 41: Visualization of feature 123 for class band aid (class index: 419).
Train accuracy using Standard Resnet-50: 81.000%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -41.538%.

Figure 42: Visualization of feature 325 for class space bar (class index: 810).
Train accuracy using Standard Resnet-50: 59.043%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -46.154%.

36

Published as a conference paper at ICLR 2022

Figure 43: Visualization of feature 1536 for class dock (class index: 536).
Train accuracy using Standard Resnet-50: 71.098%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -35.385%.

Figure 44: Visualization of feature 421 for class promontory (class index: 976).
Train accuracy using Standard Resnet-50: 82.462%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -15.384%.

37

Published as a conference paper at ICLR 2022

J.3.2 SPURIOUS FEATURES AT FEATURE RANK 2

Figure 45: Visualization of feature 1772 for class gondola (class index: 576).
Train accuracy using Standard Resnet-50: 98.308%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -1.538%.

Figure 46: Visualization of feature 925 for class american coot (class index: 137).
Train accuracy using Standard Resnet-50: 97.538%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -3.077%.

38

Published as a conference paper at ICLR 2022

Figure 47: Visualization of feature 1753 for class rock beauty (class index: 392).
Train accuracy using Standard Resnet-50: 96.285%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -12.308%.

Figure 48: Visualization of feature 1986 for class lighter (class index: 626).
Train accuracy using Standard Resnet-50: 86.154%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -35.385%.

39

Published as a conference paper at ICLR 2022

Figure 49: Visualization of feature 895 for class soup bowl (class index: 809).
Train accuracy using Standard Resnet-50: 79.462%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -46.154%.

Figure 50: Visualization of feature 798 for class spider monkey (class index: 381).
Train accuracy using Standard Resnet-50: 74.154%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -26.154%.

40

Published as a conference paper at ICLR 2022

Figure 51: Visualization of feature 516 for class dock (class index: 536).
Train accuracy using Standard Resnet-50: 71.098%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -15.384%.

Figure 52: Visualization of feature 516 for class lakeside (class index: 975).
Train accuracy using Standard Resnet-50: 61.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -32.308%.

41

Published as a conference paper at ICLR 2022

Figure 53: Visualization of feature 1832 for class space bar (class index: 810).
Train accuracy using Standard Resnet-50: 59.043%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -36.923%.

42

Published as a conference paper at ICLR 2022

J.3.3 SPURIOUS FEATURES AT FEATURE RANK 3

Figure 54: Visualization of feature 1797 for class sulphur butterfly (class index: 325).
Train accuracy using Standard Resnet-50: 95.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -18.462%.

Figure 55: Visualization of feature 481 for class gondola (class index: 576).
Train accuracy using Standard Resnet-50: 98.308%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -6.154%.

43

Published as a conference paper at ICLR 2022

Figure 56: Visualization of feature 432 for class potter’s wheel (class index: 739).
Train accuracy using Standard Resnet-50: 95.615%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -20.0%.

Figure 57: Visualization of feature 1287 for class lighter (class index: 626).
Train accuracy using Standard Resnet-50: 86.154%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -10.77%.

44

Published as a conference paper at ICLR 2022

Figure 58: Visualization of feature 840 for class soup bowl (class index: 809).
Train accuracy using Standard Resnet-50: 79.462%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -33.846%.

Figure 59: Visualization of feature 2000 for class wok (class index: 909).
Train accuracy using Standard Resnet-50: 71.077%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -38.462%.

45

Published as a conference paper at ICLR 2022

Figure 60: Visualization of feature 961 for class missile (class index: 657).
Train accuracy using Standard Resnet-50: 67.846%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -13.846%.

Figure 61: Visualization of feature 2025 for class plate (class index: 923).
Train accuracy using Standard Resnet-50: 64.538%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -36.923%.

46

Published as a conference paper at ICLR 2022

Figure 62: Visualization of feature 387 for class space bar (class index: 810).
Train accuracy using Standard Resnet-50: 59.043%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -29.231%.

Figure 63: Visualization of feature 1120 for class titi (class index: 380).
Train accuracy using Standard Resnet-50: 58.692%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -38.462%.

47

Published as a conference paper at ICLR 2022

J.3.4 SPURIOUS FEATURES AT FEATURE RANK 4

Figure 64: Visualization of feature 1797 for class admiral (class index: 321).
Train accuracy using Standard Resnet-50: 99.846%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -3.077%.

Figure 65: Visualization of feature 595 for class sulphur butterfly (class index: 325).
Train accuracy using Standard Resnet-50: 95.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -21.539%.

48

Published as a conference paper at ICLR 2022

Figure 66: Visualization of feature 1642 for class lighter (class index: 626).
Train accuracy using Standard Resnet-50: 86.154%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -27.693%.

Figure 67: Visualization of feature 447 for class band aid (class index: 419).
Train accuracy using Standard Resnet-50: 81.000%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -43.077%.

49

Published as a conference paper at ICLR 2022

Figure 68: Visualization of feature 1296 for class soup bowl (class index: 809).
Train accuracy using Standard Resnet-50: 79.462%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -49.23%.

Figure 69: Visualization of feature 76 for class dock (class index: 536).
Train accuracy using Standard Resnet-50: 71.098%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -24.616%.

50

Published as a conference paper at ICLR 2022

Figure 70: Visualization of feature 2 for class desk (class index: 526).
Train accuracy using Standard Resnet-50: 69.769%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -16.923%.

Figure 71: Visualization of feature 1469 for class space bar (class index: 810).
Train accuracy using Standard Resnet-50: 59.043%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -15.384%.

51

Published as a conference paper at ICLR 2022

Figure 72: Visualization of feature 961 for class projectile (class index: 744).
Train accuracy using Standard Resnet-50: 53.538%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -23.077%.

52

Published as a conference paper at ICLR 2022

J.3.5 SPURIOUS FEATURES AT FEATURE RANK 5

Figure 73: Visualization of feature 36 for class stupa (class index: 832).
Train accuracy using Standard Resnet-50: 98.385%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -9.231%.

Figure 74: Visualization of feature 371 for class house finch (class index: 12).
Train accuracy using Standard Resnet-50: 98.308%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -24.615%.

53

Published as a conference paper at ICLR 2022

Figure 75: Visualization of feature 1556 for class bittern (class index: 133).
Train accuracy using Standard Resnet-50: 97.077%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -10.769%.

Figure 76: Visualization of feature 1541 for class junco (class index: 13).
Train accuracy using Standard Resnet-50: 97.000%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -9.231%.

54

Published as a conference paper at ICLR 2022

Figure 77: Visualization of feature 96 for class pineapple (class index: 953).
Train accuracy using Standard Resnet-50: 94.538%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -1.539%.

Figure 78: Visualization of feature 961 for class sandbar (class index: 977).
Train accuracy using Standard Resnet-50: 71.923%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -60.0%.

55

Published as a conference paper at ICLR 2022

Figure 79: Visualization of feature 510 for class space bar (class index: 810).
Train accuracy using Standard Resnet-50: 59.043%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -24.615%.

Figure 80: Visualization of feature 1541 for class titi (class index: 380).
Train accuracy using Standard Resnet-50: 58.692%.
Drop in accuracy when gaussian noise is added to the highlighted (red) regions: -30.769%.

56

Published as a conference paper at ICLR 2022

K DIAGNOSING THE CONFUSING VISUAL ATTRIBUTE BETWEEN DIFFERENT
CLASSES

K.1 FEATURE INDEX: 1541

Figure 81: Visualization for class junco (class index: 13).

Figure 82: Visualization for class titi (class index: 380).

57

Published as a conference paper at ICLR 2022

K.2 FEATURE INDEX: 2025

Figure 83: Visualization for class plate (class index: 923).

Figure 84: Visualization for class icecream (class index: 928).

58

Published as a conference paper at ICLR 2022

L COMPARING BETWEEN THE ACCURACY DROPS DUE TO SPURIOUS AND
CORE NEURAL FEATURES

For some class i, we want to test the sensitivity of a trained model to the visual attribute encoded in
the feature j for predicting the class i. To this end, we add Gaussian noise to highly activating regions
for images in the dataset D(i, j) and evaluate the drop in the accuracy of the model being inspected
for failure. In particular, we show the drop in the accuracy for different classes by perturbing both
core and spurious neural features using Gaussian noise with σ = 0.25.

However, for some of the classes, given a σ value, the mean of noise perturbation magnitudes im-
posed on images in the dataset D(i, j) (referred to as “mean `2 perturbation”) can be different for
different features. This is because the activation maps of different neural features can have differ-
ent l2 norms. Thus, for such classes, we also compute accuracy drops using multiple values of σ:
[0.30, 0.35, . . . , 0.60]. Then, for the features whose mean l2 perturbations were smaller, we choose
the smallest value of σ (referred to as σs) that results in a mean l2 perturbation similar to (or even
slightly higher than) that of the other neural feature (that initially had higher mean l2 perturbation).
Thus, for each neural feature, we show the accuracy drops using both σ = 0.25 and σs in the figure
captions in this section.

59

Published as a conference paper at ICLR 2022

L.1 CLASS NAME: OSTRICH, TRAIN ACCURACY (STANDARD RESNET-50): 98.615%

Figure 85: Visualization of feature 1964 for class ostrich (class index: 9).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: 0.0%, mean l2 perturbation: 35.782.
Using σ = 0.35, drop in accuracy: -6.154%, mean l2 perturbation: 47.815.

Figure 86: Visualization of feature 63 for class ostrich (class index: 9).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -20.0%, mean l2 perturbation: 47.653.
Using σ = 0.35, drop in accuracy: -32.308%, mean l2 perturbation: 63.911.

60

Published as a conference paper at ICLR 2022

L.2 CLASS NAME: BRAMBLING, TRAIN ACCURACY (STANDARD RESNET-50): 95.615%

Figure 87: Visualization of feature 457 for class brambling (class index: 10).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -1.538%, mean l2 perturbation: 25.337.
Using σ = 0.6, drop in accuracy: -21.538%, mean l2 perturbation: 51.371.

Figure 88: Visualization of feature 371 for class brambling (class index: 10).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -33.846%, mean l2 perturbation: 50.046.
Using σ = 0.6, drop in accuracy: -93.846%, mean l2 perturbation: 100.689.

61

Published as a conference paper at ICLR 2022

L.3 CLASS NAME: HOUSE FINCH, TRAIN ACCURACY (STANDARD RESNET-50): 98.308%

Figure 89: Visualization of feature 1667 for class house finch (class index: 12).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -3.077%, mean l2 perturbation: 33.214.
Using σ = 0.4, drop in accuracy: -60.0%, mean l2 perturbation: 49.5.

Figure 90: Visualization of feature 371 for class house finch (class index: 12).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -24.615%, mean l2 perturbation: 49.474.
Using σ = 0.4, drop in accuracy: -60.0%, mean l2 perturbation: 73.833.

62

Published as a conference paper at ICLR 2022

L.4 CLASS NAME: BULBUL, TRAIN ACCURACY (STANDARD RESNET-50): 98.308%

Figure 91: Visualization of feature 762 for class bulbul (class index: 16).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -4.615%, mean l2 perturbation: 29.186.
Using σ = 0.45, drop in accuracy: -29.231%, mean l2 perturbation: 48.193.

Figure 92: Visualization of feature 660 for class bulbul (class index: 16).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -27.692%, mean l2 perturbation: 48.715.
Using σ = 0.4, drop in accuracy: -84.615%, mean l2 perturbation: 72.98.

63

Published as a conference paper at ICLR 2022

L.5 CLASS NAME: COUCAL, TRAIN ACCURACY (STANDARD RESNET-50): 97.308%

Figure 93: Visualization of feature 170 for class coucal (class index: 91).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: 0.0%, mean l2 perturbation: 30.588.
Using σ = 0.5, drop in accuracy: -41.538%, mean l2 perturbation: 54.295.

Figure 94: Visualization of feature 614 for class coucal (class index: 91).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -27.693%, mean l2 perturbation: 54.854.
Using σ = 0.5, drop in accuracy: -92.308%, mean l2 perturbation: 96.12.

64

Published as a conference paper at ICLR 2022

L.6 CLASS NAME: JACAMAR, TRAIN ACCURACY (STANDARD RESNET-50): 97.0%

Figure 95: Visualization of feature 1339 for class jacamar (class index: 95).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: 0.0%, mean l2 perturbation: 33.526.
Using σ = 0.45, drop in accuracy: -38.462%, mean l2 perturbation: 54.749.

Figure 96: Visualization of feature 1556 for class jacamar (class index: 95).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -21.538%, mean l2 perturbation: 53.542.
Using σ = 0.45, drop in accuracy: -76.923%, mean l2 perturbation: 87.339.

65

Published as a conference paper at ICLR 2022

L.7 CLASS NAME: DRAKE, TRAIN ACCURACY (STANDARD RESNET-50): 95.462%

Figure 97: Visualization of feature 1113 for class drake (class index: 97).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -1.538%, mean l2 perturbation: 36.558.
Using σ = 0.45, drop in accuracy: -16.923%, mean l2 perturbation: 60.362.

Figure 98: Visualization of feature 1339 for class drake (class index: 97).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -4.615%, mean l2 perturbation: 32.946.
Using σ = 0.45, drop in accuracy: -16.923%, mean l2 perturbation: 54.731.

66

Published as a conference paper at ICLR 2022

Figure 99: Visualization of feature 925 for class drake (class index: 97).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -41.539%, mean l2 perturbation: 47.465.
Using σ = 0.45, drop in accuracy: -72.308%, mean l2 perturbation: 78.273.

Figure 100: Visualization of feature 341 for class drake (class index: 97).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -46.154%, mean l2 perturbation: 55.205.
Using σ = 0.45, drop in accuracy: -86.154%, mean l2 perturbation: 89.644.

67

Published as a conference paper at ICLR 2022

Figure 101: Visualization of feature 736 for class drake (class index: 97).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: 0.0%, mean l2 perturbation: 28.878.
Using σ = 0.45, drop in accuracy: -6.154%, mean l2 perturbation: 47.661.
Using σ = 0.55, drop in accuracy: -7.692%, mean l2 perturbation: 55.554.

68

Published as a conference paper at ICLR 2022

L.8 CLASS NAME: OYSTERCATCHER, TRAIN ACCURACY (STANDARD RESNET-50):
97.769%

Figure 102: Visualization of feature 618 for class oystercatcher (class index: 143).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -1.538%, mean l2 perturbation: 28.932.
Using σ = 0.5, drop in accuracy: -12.308%, mean l2 perturbation: 52.0.

Figure 103: Visualization of feature 1468 for class oystercatcher (class index: 143).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -21.539%, mean l2 perturbation: 51.153.
Using σ = 0.5, drop in accuracy: -70.77%, mean l2 perturbation: 90.219.

69

Published as a conference paper at ICLR 2022

L.9 CLASS NAME: RINGLET, TRAIN ACCURACY (STANDARD RESNET-50): 95.692%

Figure 104: Visualization of feature 1305 for class ringlet (class index: 322).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: 0.0%, mean l2 perturbation: 41.931.
Using σ = 0.35, drop in accuracy: -7.692%, mean l2 perturbation: 55.774.

Figure 105: Visualization of feature 1556 for class ringlet (class index: 322).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -36.924%, mean l2 perturbation: 53.174.
Using σ = 0.35, drop in accuracy: -70.77%, mean l2 perturbation: 71.192.

70

Published as a conference paper at ICLR 2022

L.10 CLASS NAME: LYCAENID, TRAIN ACCURACY (STANDARD RESNET-50): 97.846%

Figure 106: Visualization of feature 1041 for class lycaenid (class index: 326).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -3.077%, mean l2 perturbation: 36.564.
Using σ = 0.4, drop in accuracy: -16.923%, mean l2 perturbation: 53.997.

Figure 107: Visualization of feature 1390 for class lycaenid (class index: 326).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -43.077%, mean l2 perturbation: 51.468.
Using σ = 0.4, drop in accuracy: -95.385%, mean l2 perturbation: 76.594.

71

Published as a conference paper at ICLR 2022

L.11 CLASS NAME: PROBOSCIS MONKEY, TRAIN ACCURACY (STANDARD RESNET-50):
98.231%

Figure 108: Visualization of feature 334 for class proboscis monkey (class index: 376).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -6.154%, mean l2 perturbation: 37.884.
Using σ = 0.35, drop in accuracy: -15.385%, mean l2 perturbation: 50.698.

Figure 109: Visualization of feature 1120 for class proboscis monkey (class index: 376).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -32.308%, mean l2 perturbation: 51.138.
Using σ = 0.35, drop in accuracy: -55.385%, mean l2 perturbation: 68.414.

72

Published as a conference paper at ICLR 2022

L.12 CLASS NAME: TITI, TRAIN ACCURACY (STANDARD RESNET-50): 58.692%

Figure 110: Visualization of feature 1003 for class titi (class index: 380).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -1.539%, mean l2 perturbation: 34.703.
Using σ = 0.4, drop in accuracy: +12.307%, mean l2 perturbation: 51.98.

Figure 111: Visualization of feature 1120 for class titi (class index: 380).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -38.462%, mean l2 perturbation: 50.591.
Using σ = 0.4, drop in accuracy: -53.846%, mean l2 perturbation: 75.361.

73

Published as a conference paper at ICLR 2022

L.13 CLASS NAME: BAND AID, TRAIN ACCURACY (STANDARD RESNET-50): 81.0%

Figure 112: Visualization of feature 1164 for class band aid (class index: 419).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -6.154%, mean l2 perturbation: 42.589.

Figure 113: Visualization of feature 447 for class band aid (class index: 419).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -43.077%, mean l2 perturbation: 41.225.

74

Published as a conference paper at ICLR 2022

L.14 CLASS NAME: PROJECTILE, TRAIN ACCURACY (STANDARD RESNET-50): 53.538%

Figure 114: Visualization of feature 1606 for class projectile (class index: 744).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: +9.23%, mean l2 perturbation: 34.188.
Using σ = 0.45, drop in accuracy: +6.153%, mean l2 perturbation: 56.571.

Figure 115: Visualization of feature 961 for class projectile (class index: 744).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -23.077%, mean l2 perturbation: 56.179.
Using σ = 0.45, drop in accuracy: -30.769%, mean l2 perturbation: 91.036.

75

Published as a conference paper at ICLR 2022

L.15 CLASS NAME: WOK, TRAIN ACCURACY (STANDARD RESNET-50): 71.077%

Figure 116: Visualization of feature 628 for class wok (class index: 909).
Feature label as annotated by Mechanical Turk workers: core.
Using σ = 0.25, drop in accuracy: -1.539%, mean l2 perturbation: 34.231.
Using σ = 0.4, drop in accuracy: -3.077%, mean l2 perturbation: 51.388.

Figure 117: Visualization of feature 895 for class wok (class index: 909).
Feature label as annotated by Mechanical Turk workers: spurious.
Using σ = 0.25, drop in accuracy: -46.154%, mean l2 perturbation: 48.968.
Using σ = 0.4, drop in accuracy: -43.077%, mean l2 perturbation: 73.24.

76

	Introduction
	Related work
	A general framework for discovering Spurious Features
	Notation and Definitions
	Extracting, visualizing and selecting neural features
	Mechanical Turk study for discovering spurious and core features
	Generalization of visual attributes encoded in neural features

	The Salient Imagenet dataset
	Evaluating deep models using the Salient Imagenet dataset
	Core and Spurious accuracy
	Results from evaluating deep models on the Salient Imagenet dataset

	Visualizing the neural features of a robust model
	Neural Activation Map (NAM)
	Heatmap
	Feature attack

	Selecting the classes for discovering spurious features
	Mechanical Turk study for discovering spurious features
	Quality control

	Mechanical Turk study for validating heatmaps
	Discovering spurious visual attributes in other image datasets using our framework
	Analyzing the reasons provided by Mechanical Turk workers
	Formal Definitions of Core and spurious visual attributes
	Additional results from evaluating deep models on the Salient Imagenet dataset
	Examples of images from the Salient Imagenet dataset corrupted by adding gaussian noise to the spurious regions
	Examples of spurious features
	Background spurious features
	Foreground spurious features
	Spurious features by feature ranks
	Spurious features at feature rank 1
	Spurious features at feature rank 2
	Spurious features at feature rank 3
	Spurious features at feature rank 4
	Spurious features at feature rank 5

	Diagnosing the confusing visual attribute between different classes
	Feature index: 1541
	Feature index: 2025

	Comparing between the accuracy drops due to spurious and core neural features
	Class name: Ostrich, Train accuracy (Standard Resnet-50): 98.615%
	Class name: Brambling, Train accuracy (Standard Resnet-50): 95.615%
	Class name: House finch, Train accuracy (Standard Resnet-50): 98.308%
	Class name: Bulbul, Train accuracy (Standard Resnet-50): 98.308%
	Class name: Coucal, Train accuracy (Standard Resnet-50): 97.308%
	Class name: Jacamar, Train accuracy (Standard Resnet-50): 97.0%
	Class name: Drake, Train accuracy (Standard Resnet-50): 95.462%
	Class name: Oystercatcher, Train accuracy (Standard Resnet-50): 97.769%
	Class name: Ringlet, Train accuracy (Standard Resnet-50): 95.692%
	Class name: Lycaenid, Train accuracy (Standard Resnet-50): 97.846%
	Class name: Proboscis monkey, Train accuracy (Standard Resnet-50): 98.231%
	Class name: Titi, Train accuracy (Standard Resnet-50): 58.692%
	Class name: Band aid, Train accuracy (Standard Resnet-50): 81.0%
	Class name: Projectile, Train accuracy (Standard Resnet-50): 53.538%
	Class name: Wok, Train accuracy (Standard Resnet-50): 71.077%

