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Abstract

As the number of model parameters increased,
large language models achieved linguistic flu-
ency and exhibited high performance in various
natural language tasks without gradient updates
because the models could retain more knowl-
edge. However, the large model size makes dif-
ficult to apply the model to a task requiring
domain knowledge not included in the training
corpus, due to the fact that knowledge stored
in model parameters is not controllable dur-
ing generation and model parameter updates
are costly. To tackle the problem, we suggest
separating the language model and knowledge,
and divide the end-to-end language model into
three parts: 1) encoding knowledge, 2) process-
ing the encoded knowledge, and 3) restoring
the processed knowledge embedding to natural
language. In this paper, we propose a model
for learning restorable embeddings as a first
step toward the study to separate the language
model and knowledge. The experimental re-
sults shows that the proposed model can restore
most knowledge in 1-2 sentences by encod-
ing knowledge in sentence-level embeddings
and then restoring the embeddings back to the
original sentence. We also verify that the em-
beddings generated through our method signif-
icantly improves performance in the passage
retrieval task.

1 Introduction

Recently decoder-based language models (Rad-
ford et al., 2019; Wang and Komatsuzaki, 2021)
and encoder-decoder-based language models (Raf-
fel et al., 2020; Zhang et al., 2020; Lewis et al.,
2020) have become linguistically fluent by implic-
itly storing general knowledge in model parame-
ters and using the stored knowledge during gener-
ation. In particular, the number of decoder-based
model parameters has increased to store knowl-
edge as much as possible from a large corpus, and
resulted in high performance in zero-shot and few-
shot settings. However, the number of model pa-

rameters has reached 175B (Brown et al., 2020)
and 530B (Narayanan et al., 2021).

The cost of updating all parameters through
transfer learning became extremely costly due to
the large size of language models. Therefore, it
is computationally feasible only when updating
head layers, whose input are contextualized rep-
resentations, or manipulating conditional context
input without gradient updates. In case domain-
specific knowledge is required, it must be provided
through conditional context because the amount of
the knowledge in model parameters is likely to be
small. As more domain knowledge are needed, the
length of the conditional context become longer
so that the computation cost increases sharply due
to Transformer (Vaswani et al., 2017) structure’s
quadratic memory complexity with respect to the
length of the input sequence. Although several
sparse attention studies (Beltagy et al., 2020; Za-
heer et al., 2020; Roy et al., 2021) have been con-
ducted to address this problem and the length that
can be computed in the same memory size has in-
creased about 8 to 10 times, the length limitation
of the conditional context remains.

Large language models have another limitation
called the hallucination problem (Maynez et al.,
2020; Shuster et al., 2021; Roller et al., 2020),
which produces a contradiction or a plausible un-
truth in the generated text. The problem is caused
because knowledge are mixed and stored in inter-
nal parameters, and it is unclear which knowledge
is chosen for text generation. As a way to tackle
this problem, we isolate the knowledge in internal
parameters to an external permanent memory, and
refer to the isolated knowledge whenever needed.
To store knowledge in an external memory, an em-
bedding presenting a certain unit of knowledge,
which minimizes information loss, must be devised.
The embedding should be applicable to natural lan-
guage processing, and the embedding generated
from the processing should be convertible into natu-



ral language that humans can understand. If the em-
bedding is restorable to the original text sequence,
this approach also improves memory efficiency be-
cause the original text does not have to be stored
together with the embedding. Otherwise, pairs of
embeddings and original texts must be stored in or-
der to extract the correct answer from the document
after finding a document containing an answer in
tasks such as open-domain question answering.
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Figure 1: Conceptual diagram of sequence-to-sequence
natural language processing using a sentence-level em-
bedding

The framework to separate the language model
and knowledge is shown in Figure 1, and illustrates
the unit knowledge-based natural language process-
ing which are divided into three stages: (1) creat-
ing an embedding vector for sentence-level knowl-
edge to minimize information loss and express its
proper meaning; (2) processing a natural language
task using the generated embedding and knowledge
embedding stored in memory, and expressing the
result as embedding; (3) converting the resulting
embedding into natural language that humans can
understand. If this sentence-level knowledge unit
is applied to natural language processing, a larger
amount of context can be viewed with the same
size of memory. Besides there is no need to look
up a large amount of context because context can
be converted into sentence-level knowledge em-
beddings, stored in memory, and processed from
memory.

For the framework of Figure 1 to be possible,
research on creating embeddings and restoring em-
beddings back to the original text must be preceded.
In this paper, as shown in the red box in Figure 1,
we therefore conduct a study to express the token-
level embedding sequence as one embedding and to
restore the expressed embedding to the original text.

If the objective of the model is set to restore the em-
bedding to the original text, the embedding might
not suitable in various language tasks because the
embedding mainly expresses the lexical informa-
tion of the original text sequence. Thus, training
the model to improve the restoration performance
and to maintain or improve the performance for
downstream tasks is necessary.

For reconstructable embeddings, (1) we propose
a new layer structure to enhance performance of
the restoration from the embedding vector to the
original text sequence. In addition, (2) we confirm
that the generated embedding from the proposed
model maintains performance in various down-
stream tasks and improves performance consider-
ably in passage retrieval where small information
loss shows advantageous. Finally, (3) we analyze
the length at which the occurrence of hallucination
is minimized, according to the length of the orig-
inal text sequence, when embedding is made and
the original text is restored.

2 Related Work

Research on making good sentences and passage
embeddings has been studied in various fields such
as sentence embedding and passage retrieval. In
particular, the sentence embedding study lowered
the computational complexity for scoring and clas-
sifying between sentence pairs after BERT (Devlin
et al., 2019) was introduced. In addition, many stud-
ies have been conducted in the fields of long docu-
ment summarization and document classification
as one of the methods to alleviate large memory
consumption in long document processing.

2.1 Sentence Embedding

Sentence embedding has been studied for a
long time, and various methods such as Skip-
thought (Kiros et al., 2015), InferSent (Conneau
et al., 2017), and Universal Sentence Encoder (Cer
et al., 2018) have been proposed and studied. To al-
leviate the need to compute all combinations in
the classification and similarity scoring task of
sentence-pair in BERT, sentence-BERT (Reimers
and Gurevych, 2019) proposed classification and
similarity scoring methods using sentence embed-
ding. In sentence BERT, a model was trained us-
ing the semantic textual similarity (STS) dataset to
make good semantic embeddings, and it showed
high performance and computational efficiency in
various sentence classification and regression tasks.



2.2 Passage Retrieval

Passage Retrieval Task is a task that retrievals pas-
sages related to a query in a large number of pas-
sages. In Open-domain Question Answering such
as Natural Question and TriviaQA, and document
augmented conversational models such as Wizlnt,
relevant passages must be searched from large-
scale data such as Wikipedia and Common Crawl.
Because the number of passages to be ranked is on
a million scale, measuring the correlation with all
documents for every query requires many calcula-
tions. In most methods, queries and passages are
thus expressed as embedding vectors and the cor-
relation is measured using metrics such as cosine
similarity or inner product between embedding vec-
tors. Recently, several methods (Karpukhin et al.,
2020; Xiong et al., 2021; Zhang et al., 2021) for en-
coding queries and passages using language model
encoders have been studied.

2.3 Long-Document Summarization

In long document summarization, the length of the
sequence to be summarized is too long, so it is dif-
ficult to use Transformer with quadratic memory
complexity for the length of the input sequence.
Therefore, studies are being conducted in two main
directions. One is a study of lowering memory com-
plexity through sparse attention (Wang et al., 2020;
Kitaev et al., 2020; Tay et al., 2020; Huang et al.,
2021), and the other is a study of making a sentence
or paragraph into an embedding vector and then
generating a summary using a hierarchical trans-
former with these embedding vectors (Rohde et al.,
2021; Zhang et al., 2019; Liu and Lapata, 2019;
Wu et al., 2021). In the case of a method using a
hierarchical transformer, a summary is generated
end-to-end using an encoder-decoder structure, but
research on restoring this embedding vector to a
natural language is not in progress.

3 Model Architectures

In this section, we describe the model used in the
experiment and the proposed model. The following
expressions are used to maintain the consistency of
annotations throughout the description.

e x = {x1, -+, zp}: The token sequence to be
expressed as an embedding vector

cYy = {yla"' 7yM}7 Zz = {217"' 7ZN}: A
token sequence to be input to encoder and
decoder respectively

* dmoder: The dimensionality of encoder and
decoder

* drepr: the dimensionality of representation
vector

* ¢(y;): The embedding vector of ith token y;

* h(y;): contextualized embedding of y; pro-
duced by encoder

* e,¢pr: The embedding vector of x generated
using encoder

3.1 Passage Encoder

Conventional methods for generating embeddings
of text sequences include (a) using the embedding
vector of the [CLS] token and (b) using the vector
obtained through mean pooling. In case of (a), the
[CLS] token and text sequence are concatenated
then input to the encoder, and the contextualized
embedding value of the [CLS] token position is
projected using a linear layer to create an embed-
ding vector. Therefore, the embedding vector €,
of x is defined as Eq. 1.

Crepr = Wh(@h)

where y = {[CLS],z1,--- ,x7} W

The projection matrix W is a learnable variable,
and it satisfies W € R%modetXdrepr In case of (b),
the embedding vector is obtained by inputting the
text sequence to the encoder and projecting the
vector obtained by mean pooling all contextualized
embedding values into a linear layer. Therefore, in
case of mean pooling, the embedding vector e,
of x is defined as Eq. 2.

T

erepr = W(_(h(@)/VT)) @

=1

3.2 Passage Decoder

There are two vanilla methods to restore the em-
bedding vector e, to the original x as shown
in Figure 2. In Figure 2, (a) uses a decoder struc-
ture without cross attention block like GPT. The
er¢pr and the original text sequence X is to concate-
nate and then input it to the decoder, and trained to
generate the original sentence from the output. (b)
inputs e, as the key/value of the cross attention
block in the decoder structure, and concatenates
[BOS] token and x as the decoder input, and train
the model to generate original sentences as output.
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Figure 2: Decoder structures for restoring the embedding vector to the original text. (a) A decoder using embedding
vector as input. (b) A decoder using embedding vector as key/value of cross attention layer. (c) The decoder structure
using the proposed gating layer instead of the cross attention layer. (d) The structure of the proposed gating layer.

Therefore, in the case of (a), the input se-
quence is e(z) {eyepr, e(z1), -+ ,e(zr)}, the tar-
get sequence is {e(xy1), -+ ,e(zr),e([EOS])} .
In case of (b), the input sequence is e(z) is
{e([BOS]),e(x1),- - ,e(xr)}, target sequence is
{e(z1), - ,e(zr),e([EOS])}, and the e;.py is in-
put as key/value of cross attention layer . (Hereafter,
in Figure 2, (a) is called an input decoder, and (b)
is called a cross decoder.)

However, cross attention calculates attention
over sequence dimension and performs sum, so
when one embedding is entered as key/value, the
query vector and the scalar value, which is the in-
ner product of the embedding vector and the query
vector, are multiplied, and this vector is added to
the query vector. Therefore, the embedding vector
does not reflect only the elements that are highly
related to the current query vector, but multiplies
and adds all elements of the embedding vector as
much as the similarity between the embedding vec-
tor and the current query vector. That is, when the
sequence of the query vector input to the cross at-
tention layer is q;., and the ith query vector is q;,
The query vector q; updated by cross attention is
Eq. 3.

q; =q; +c- €repr
where ¢ =q; - €repr (3)
s.t. dmodel = drepr

As shown in Eq.3, when cross attention is used,

a vector multiplied by a scalar to €., is added to
the query vector. Also, since it is q; € R%modet and
€repr € Rrerr .. 401 and drepr must be the same
in order for inner product between two vectors to
be possible. In this paper, we only deal with the
case where dy,0dei = drepr, but it may be necessary
to increase the size of d,., to include more infor-
mation in e;.p,. This constraint can be a disadvan-
tage in creating embeddings with low information
loss. Therefore, we propose a gating layer that can
decode even if d¢p, and d,.p, are different and ex-
tracts only the elements related to the current query
vector from the embedding vector.

3.3 Gating Layer

Figure 2 (c) shows the use of the gating layer in-
stead of the cross attention layer, and (d) shows the
structure of the gating layer. As the gating layer,
query and ey, are input. When the i-th query vec-
tor input to the gating layer is q; € R%model, q;
is projected to dy.¢p, through the projection matrix
W, € Rmoderxdrepr and becomes C. §; is added
to the j-th vectors smaller than ¢ through causal
masking and sum operation, and then divided by
i, and becomes a normalized vector q;. If q; is ex-
pressed as an expression for qj, it is the same as
Eq. 4.

ai=) a/Vi )
j=1



Finally, each q; is concatenated with e, and
a vector with R2%err dimension is projected to
dyepr through Wy € [R2drepr Xdrepr and then acti-
vated through activation function. The activated
i-th query vector is gated through the hadamard
product with e;..;, and finally projected to d;,oder
through W3 € RrerrXdmodet to become ¢;. If §;
is expressed as an expression for q;, it becomes
Eq. 5.

q; :(ACt(quz) ©) erepr)w?) (5)
where ¢; = Concat(q;; €repr)

As shown in (c) of Figure 2, q; is added to q; and
then normalized by layer normalization. Therefore,
er¢pr gated by the hadamard product is added to
q;. When the structure of Figure 2 (c) including the
gating layer is called a gating decoder, the input
and target sequence of the gating decoder are the
same as that of the cross decoder.

The learning objective of the input, cross, and
gating decoder is Eq. 6, which is an auto regressive
objective.

T
meax log pg(x) = Z log pg(z+|x<t, 6”%("))

t=1
(6)

ency denotes an encoder function parameterized

by 6, and pg denotes the entire encoder-decoder
function parameterized by 0. The relationship be-
tween 6 and 6 is § C 6.

4 Experiments

In this section, the embedding of the text sequence
created using the proposed model can be restored
to the original text, and at the same time, it is
shown that the performance is improved in the
downstream task using embedding compared to
when not used. This shows that the proposed model
does not sacrifice downstream performance for re-
covery performance. The restoration performance
of the original text sequence is quantitatively eval-
uated through Perplexity (PPL), Rouge-1 (R-1),
Rouge-2 (R-2), and Rouge-L (R-L) scores. Then,
we proceed with qualitative performance evalua-
tion by looking at the actual recovered text. Perfor-
mance in downstream task using embedding was
measured as passage retrieval performance using
Natural Question (Kwiatkowski et al., 2019), one
of the open domain QA datasets.

4.1 Experimental Settings for Text
Restoration

C4 RealNewsLike (Raffel et al., 2020; Zellers et al.,
2019) introduced in TS5 (Raffel et al., 2020) was
used as a raw corpus for text restoration. C4 Re-
alNewsLike is a dataset that applies the prepro-
cessing used in C4 to Common Crawl! used in
FakeNews (Zellers et al., 2019), and consists of 13
millions samples of train split and 13,863 samples
of validation split. The preprocessing used in C4
includes bad word filtering and duplicate removal.
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Figure 3: 1, 3, and 5 sentences were used to examine
the restoration performance according to the length of
the text sequence, and the figure shows the token length
distribution for each number of sentences.

In order to examine the restoration performance
and the performance in downstream tasks accord-
ing to the length of the text sequence, the text data
was separated into sentence units using NLTK’s
sentence tokenizer (Bird and Loper, 2004). A
dataset was separately constructed according to
the number of sentences (1, 3, 5), and Figure 3
shows the token length according to the number of
sentences. The average token length according to
the number of sentences is 33, 96, and 156 for 1, 3,
and 5 sentences, respectively.

The training was conducted for 1 epoch using
the train split, and the restoration performance was
measured using the validation split. For the model
size, a small configuration of TS5 was used, and
training was carried out after initializing with the
pre-trained weights of T5. In order to examine the
difference in the restoration performance and the
performance difference in the downstream task be-
tween whether the pre-trained weights transferred
from T5 were frozen or not, both the case of freez-
ing and the case of updating the weights transferred

"http://commoncrawl.org/



from TS were tested. In addition, since there is only
the last projection matrix of the encoder as a vari-
able that can be learned to make a restorable em-
bedding in the case of freezing layers, we also mea-
sured the restoration performance when 3 Trans-
former layers are added. The parameters of the
3 Transformer layers were randomly initialized.
Therefore, as shown in Table 1, we experimented
with 4 configurations for each encoder and decoder
variation.

option [@ ® © @
freeze pre-trained weights N Y N Y
# additional layers w/ random init. | O 0 3 3

Table 1: experiment configuration. There are 4 configu-
rations depending on the combination of whether to add
randomly initialized layers after 6 pre-trained layers in
the encoder part and whether to update parameters by
freezing the pre-trained layers.

Adam optimizer was used as the optimizer, and
learning rate scheduling was performed using linear
scheduling. d,oder and dyrepr Were set to 512 in all
experiments. Also, Gated ReLU (Dauphin et al.,
2017) was used for the activation function in the
gating layer. Detailed hyperparameters for model
and optimizer can be found in Appendix A.

4.2 Single Sentence Restoration Performance

In Table 2, when the embedding vector is created
using the [CLS] token, the restoration performance
of the original text is low in all configurations from
(a)-(d). Considering that it does not restore well
even when three randomly initialized layers are
added, global attention is effective in making token-
level contextualized embeddings, but there seems
to be a limit to making sentence-level embeddings.

Conversely, when embeddings were created us-
ing mean pooling, restoration performance was
higher in all configurations than when embeddings
were created using [CLS] token. Unlike the [CLS]
token, since all tokens are used directly to gener-
ate embeddings, information loss is low and high
restoration performance appears to be achieved.
Comparing the restoration performance according
to decoders in mean pooling, all experimental con-
figurations and all performance metrics improved
in the order of input, cross, and gating methods.
That is, the proposed model showed higher restora-
tion performance than the input and cross decoder
in all cases.

Comparing the restoration performance accord-

ing to the experimental configuration when gener-
ating embeddings by the mean pooling, the case of
freezing pre-trained model weights in both cases
with three additional layers and without additional
layers, performed lower than those without freez-
ing. This seems to be due to the difference in the
number of parameters that can be updated. In case
of (b), compared to (a), it shows significantly lower
performance. In the case of (a), 6 layers can be up-
dated, but in the case of (b), only the last projection
layer can be updated. The large difference in the
number of parameters that can be updated seems to
be the main cause.

4.3 Performance according to the number of
sentences

Table 3 shows the restoration performance when
using a cross decoder and a gating decoder for each
sentence length. In all cases, as the length of the
sentence increases, the recovery performance de-
creases, which indirectly shows the amount of infor-
mation that can be contained in a 512-dimensional
embedding vector. As the length of the sentence in-
creases, the cross decoder tends to have a relatively
sharp decrease in restoration performance than the
gating decoder. More restoration performance de-
pending on the text sequence length, experimental
configuration, and decoder type can be found in
Appendix C.

4.4 Passage Retrieval Performance

The passage retrieval performance was measured to
examine the performance in the downstream task
using the embedding generated by the proposed
model. As in Dense Passage Retrieval (DPR), we
used a biencoder that learns two encoders: a query
encoder and a passage encoder. The model was
trained with in-batch training (Karpukhin et al.,
2020) using the positive passages of other sam-
ples in the batch as negative passages. Detailed
hyper parameters used for training are described in
Appendix B. Natural question data and Wikipedia
passages data used in DPR were used, so as in
DPR, among the 21,015,324 passages, the perfor-
mance (Recall) of whether passages containing the
correct answer to the question exist in the top K
passages returned by the model was measured, and
the results are shown in Table 4.

First, comparing the performance from the case
where there is no additional layer, the case where
the sentence restoration was learned performed
much higher than the case where the transfer learn-



classifcation token

mean pooling

decoder | PPL R-1 R2 RL|PPL R-l R-2 R-L
(a) 6 layers from pre-trained model + 0 additional layers
input 6.178 9.87 0.79 8.09 | 1.16 9337 82.93 89.72
Cross 6.10 7.09 0.19 624 | 1.10 95.14 87.80 92.76
gating 6.04 11.21 055 821 | 1.04 97.76 94.63 96.94
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
input 1.79 1333 0.75 953 | 224 6599 3445 50.96
Cross 622 1229 078 930 | 2.04 6797 37.85 54.00
gating 6.16 11.13 029 847 | 1.93 70.54 40.83 56.81
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)

input 6.18 1332 0.75 953 | 1.15 92.63 83.34 89.63
Cross 6.10 995 021 831 | 1.12 9413 86.26 91.62
gating 6.04 1081 056 8.07 | 1.03 98.32 96.30 97.91

(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
input 6.30 11.86 0.77 8.84 | 1.34 8477 69.68 81.12
Cross 622 11.21 055 821 | 1.29 87.18 73.07 83.79
gating 6.16 9.88 058 7.57 | 1.09 9595 91.07 95.04

Table 2: The restoration performance of a single sentence according to the experimental configuration, the method
used to create the embedding vector, and the decoder type

type  #sents [ PPL R-1 R-2 R-L
decoder - cross
1 1.12 9413 86.26 91.62
(c) 3 1.89 63.08 29.25 46.87
5 280 5235 15.09 31.28
1 129 87.18 73.07 83.79
(d) 3 248 59.00 2439 44.09
5 350 5130 14.58 31.00
decoder - gating
1 1.03  98.32 9630 97.91
(c) 3 1.37 7211 5045 64.16
5 2.08 52.82 1891 36.77
1 1.09 9595 91.07 95.04
(d) 3 1.75 67.14 3997 5843
5 276 5238 17.92 36.83

Table 3: Restoration performance of cross decoder and
gating decoder according to the number of original sen-
tences (mean pooling was used to generate embeddings)

ing was performed from the T5 small. In addition,
even when three random initialized layers were
added, the case of learning sentence restoration
showed higher performance. The reason why the
model that learned sentence restoration showed
high performance improvement in passage retrieval
seems to be because it was trained to make embed-
dings with minimal information loss in the passage.

When learning sentence restoration, the frozen
case had lower performance, but there was no sig-
nificant difference when comparing the case where
the pre-trained weight part was frozen and the case
where it was not frozen. In the case of using three
additional layers, the frozen case showed a high
performance improvement in the passage retrieval
task. It seems that, if the pre-trained weight part is
not frozen, the representation that affects passage
retrieval performance is damaged during the learn-
ing process of the sentence restoration. Therefore,

# sentences [ R@20 R@100
0 additional layers
T5-small 49.58 67.12
1 64.33 78.34
(a) 3 63.09 78.34
5 63.09 77.88
1 63.61 78.39
(b) 3 62.56 77.71
5 62.18 77.67
3 additional layers
T5-small + 3 layers(random init.) ~ 55.73 72.37
1 64.07 78.05
(c) 3 63.13 77.82
5 63.61 78.30
1 70.30 83.32
(d) 3 68.70 82.29
5 68.46 82.13

Table 4: Passage retrieval performance in natural ques-
tions according to experimental configuration and sen-
tence length

the restoration performance was high in the case
of not freezing pre-trained weights, but the perfor-
mance in passage retrieval was high in the case
of freezing. Therefore, when learning a sentence
restoration, it is necessary to learn along with a
language modeling objective such as masked lan-
guage modeling or next token prediction, or learn
the restoration while maintaining the weight of the
already learned language model as in this paper.

4.5 Analysis of the restored text according to
the number of sentences

In the case of one sentence, it was completely re-
stored, and almost all samples as well as the sam-
ples in Table 5 were restored without loss of infor-
mation. In the case of 3 sentences, the first sentence
was completely restored, but the 2nd and 3rd sen-



gating decoder

Was it a surprise to you that you were given the arts and culture position?

No, there is no surprise when you are a cadre of the ANC because you are deployed anywhere.

origin

You are given a five-year contract to do a portfolio and when you are finished, you wait for another one.

At no stage do you have a say.

| B W 9| —

What qualities do you bring to the position?

1 sentence

restored [ 1

Was it a surprise to you that you were given the arts and culture position?

3 sentences

1 Was it a surprise to you that you were given the arts and culture position?

restored 2

No, there is no surprise when you are a cadre of the ANC because you are deployed overseas.

another.

You are given a five-year contract to do a portfolio and when you (are) finish, you are waiting for

5 sentences

Was it a surprise to you that you were given the arts and culture culture?

No, there is no surprise when you are a candidate of the ANC because you are deployed anywhere.

restored
looking for one.

You are given a four-year contract to do a portfolio and when you (are) finish(ed), you are no longer

At one stage did you have a capabilities?

D B W 9=

What does the message bring to you?

cross decoder

Two bedrooms home on a corner lot.

Two car detached garage.

origin Nice covered front porch.

Seller will not complete any repairs to the subject property, either lender or buyer requested.

D B W 19| —

The property is sold in AS IS condition.

5 sentences

Two car garage on a corner lot.

Two covered covered porch.

restored Sony front porch.

Nice covered garage will not return any repairs to the seller, either buyer or seller.

D | W B —

The property is listed in ASOLD condition.

Table 5: Samples in which embedding is restored to origin text according to the length of the input text. Blue text
means a part different from the original text, and red text means a part omitted from the original text.

tences omit a part or have different parts with origin
text. In particular, the frequency of restoring differ-
ent from the original in the 3rd sentence was higher
than in the 2nd sentence.

In the case of 5 sentences, the 4th and 5th sen-
tences were generated using plausible words except
for some keywords. That is, it can be confirmed that
the hallucination problem appears due to the loss
of information. Comparing the results of encoding
5 sentences of text and restoring it with a cross
decoder, it can be confirmed that the information of
the original sentences is mixed. Therefore, in the
sentence vector dimension and model size used in
this experiment, to prevent hallucination problem
and minimize information loss, it is appropriate to
convert only 1 to 2 sentences into embedding.

5 Conclusion

In this paper, we conducted a study to create
restorable embeddings of text sequences. In ad-
dition, in order to improve the restoration perfor-
mance of the created embeddings, we proposed gat-
ing layers that gated only the information that needs

to be newly extracted from the embedding vector
based on the information extracted from the em-
beddings so far. And it was proved by experiments
that the proposed structure shows high restoration
performance in sentence restorations. In addition,
it has been shown experimentally that embeddings
with minimal information loss show high perfor-
mance in downstream tasks where information loss
is advantageous such as passage retrieval.

However, in this paper, we focused on how to re-
store sentence-level embeddings to the original text,
and we did not study the encoder structure that can
create embeddings that contain a lot of information
with little loss of information. Therefore, we plan to
study the effective encoder structure and objective
for this purpose. In this research, information loss
was minimized by using an objective that restores
the lexical representation, and further research is
needed to improve the semantics of embeddings.
nally, in order to use the embedding generated in
this way in various natural language processing,
we plan to study the method of effectively storing
information and the structure of referencing and
using the stored information.
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A Hyper Parameters Settings for Restoration

Table 6 shows the hyperparameters of the model and optimizer when learning the sentence restoration.

Encoder & Decoder Optimizer & Generation
name value [ name value
dmodel 512 algorithm AdamW
number of attention heads 8 learning rate le-3
number of attention layers 6 adam epsilon le-8
dfeedforward 2048 weight decay le-2
drop out rate 0.1 scheduling linear
activation for feed forward relu warm up Y
epsilon for layer normalization le-6 warm up rate 0.1
max positional embedding size 512 number of beams 4
initialize factor 1.0 early stopping Y
positional embedding type relative bucket embeddings top k 50
positional bucket size 32 top p 50

Table 6: hyper-parameters for training sentence restoration

B Hyper Parameters Settings for Retrieval

Table 7 shows the hyperparameters when learning the passage retrieval.

name | value
batch size 128
epochs 40
optimizer AdamW
learning rate le-3
adam epsilon le-8
weight decay 0
scheduling linear
warm up Y
warm up rate 0.2
max length for query 70
max length for context 350
number of positive context per sample 1
number of negative context per sample 1

Table 7: hyper-parameters for training passage retrieval
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C Full Restoration Performance

Table 8 shows all the restoration performance according to the experimental configuration, the method
used to create the embedding vector, and the decoder type.

classifcation token mean pooling
# sents decoder | PPL R-1 R-2 R-L [ PPL R-1 R-2 R-L
(a) 6 layers from pre-trained model + 0 additional layers
input 6.178 9.87 0.79 8.09 | 1.16 93.37 8293 89.72
Cross 6.10 7.09 019 624 | 1.10 95.14 87.80 92.76
gating 6.04 1121 0.55 8.21 1.04 9776 94.63 96.94
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
input 1.79 1333 0.75 953 | 224 6599 3445 50.96
Cross 6.22 1229 078 930 | 2.04 6797 37.85 54.00
1 gating 6.16 11.13 029 847 | 1.93 7054 40.83 56.81
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
input 6.18 1332 0.75 953 | 1.15 92.63 83.34 89.63
Cross 6.10 995 021 831 1.12 9413 86.26 91.62
gating 6.04 10.81 056 8.07 1.03  98.32 96.30 97.91
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
input 630 11.86 0.77 8.84 | 1.34 8477 69.68 81.12
Cross 6.22 11.21 055 8.21 1.29 87.18 73.07 83.79
gating 6.16 9.88 058 7.57 1.09 9595 91.07 95.04
(a) 6 layers from pre-trained model + 0 additional layers
input 8.13 1333 048 11.08 | 2.33 5898 23.10 40.36
cross 8.04 13.14 026 9.55 1.83 64.86 3042 47.79
gating 790 1841 1.14 1272 | 149 70.79 43.06 58.97
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
input 833 1270 0.07 1045 | 4.88 43.60 12.08 24.60
cross 8.21 14.17 034 1085 | 444 4537 12.87 25.07
3 gating 8.08 1480 0.79 10.86 | 4.09 47.52 13.81 25.99
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
input 8.14 1432 032 1136 | 231 5443 21.22 39.01
cross 804 1448 0.79 10.88 | 1.89 63.08 29.25 46.87
gating 7.91 1467 042 11.10 | 1.37 7211 5045 64.16
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
input 834 1120 0.13 9.70 | 296 51.82 18.70 38.18
cross 822 1507 023 11.76 | 248 59.00 24.39 44.09
gating 809 1681 1.11 1198 | 1.75 67.14 39.97 58.43
(a) 6 layers from pre-trained model + 0 additional layers
input 880 1198 0.24 10.69 | 3.60 49.63 13.45 28.19
Cross 8.67 1514 0.87 1253 | 2.75 49.63 13.45 28.19
gating 853 11.19 0.21 8.85 | 2.25 5536 1854 35.98
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
input 9.02 1398 0.09 1243 | 630 3824 8.87 20.48
Cross 8.87 1326 021 1146 | 580 4125 9.63 21.00
5 gating 874 1146 0.12 10.12 | 5.39 43.66 10.60 21.79
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
input 8.80 471 0.09 442 | 336 4657 1234 28.54
Cross 8.66 1696 0.80 1230 | 2.80 52.35 15.09 31.28
gating 8.54 742 029 6.15 | 2.08 52.82 1891 36.77
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
input 9.02 802 030 738 | 419 4531 11.46 27.65
Cross 8.87 12.02 0.34 10.80 | 3.50 51.30 14.58 31.00
gating 875 17.16 125 11.79 | 2.76 5238 17.92 36.83

Table 8: The restoration performance according to the experimental configuration, the method used to create the
embedding vector, and the decoder type

D Retrieval Performance of Proposed Model

Table 9 shows the retrieval performance of proposed model according to configurations.
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#sentences  # additional layers | R@1 R@5 R@20 R@100

random initialize 0 14.77 32.68 49.58 67.12
freeze 1 0 21.50 44.11 63.61 78.39
freeze 3 0 2143 4396 62.56 77.71
freeze 5 0 21.18 43.61 62.18 77.67
grad 1 0 2434 4749 64.33 78.34
grad 3 0 2229 4505 63.09 78.34
grad 5 0 22.18 45.08 63.09 77.88
random initialize 3 16.88 37.90 55.73 72.37
freeze 1 3 2692 5254 70.30 83.32
freeze 3 3 2497 50.02 68.70 82.29
freeze 5 3 25.05 49.56 68.46 82.13
grad 1 3 21.53 4597 64.07 78.05
grad 3 3 2097 44.83 63.13 77.82
grad 5 3 2241 45.13 63.61 78.30

Table 9: Passage retrieval performance in natural questions according to experimental configuration and sentence
length

E Performance on Various Sentence level NLP tasks

Table 10 shows the performance of various sentence level downstream tasks when using the sentence
embedding of the proposed model.

GLUE
MNLI QNLI WNLI MRPC QQP
# sentences  # additional layers | Accuracy Accuracy Accuracy  Accuracy  Accuracy
random initialize 0 74.91 80.82 58.33 75.00 88.81
freeze 1 0 75.58 81.68 52.78 74.51 88.43
freeze 3 0 75.48 81.66 37.50 77.21 88.47
freeze 5 0 75.58 81.92 55.56 74.26 88.32
grad 1 0 72.38 80.33 56.94 71.81 88.69
grad 3 0 72.34 80.56 58.33 74.26 88.69
grad 5 0 72.41 81.28 56.94 73.04 88.50
random initialize 0 74.93 78.53 52.78 74.26 89.89
freeze 1 3 75.74 81.97 50.00 71.57 89.96
freeze 3 3 75.73 82.27 55.56 72.79 90.01
freeze 5 3 75.69 82.65 45.83 73.53 89.96
grad 1 3 72.47 79.83 56.94 72.79 89.04
grad 3 3 72.26 80.38 52.78 75.25 89.12
grad 5 3 72.10 80.22 56.94 74.26 89.11
GLUE SSTDataset TREC
SST2 SSTDataset Coarse Fine
# sentences  # additional layers | Accuracy Accuracy Accuracy  Accuracy
random initialize 0 91.28 85.42 97.02 8591
freeze 1 0 91.74 86.05 96.83 85.32
freeze 3 0 91.17 85.96 96.03 85.71
freeze 5 0 91.63 85.96 96.23 83.93
grad 1 0 86.93 77.90 93.85 78.17
grad 3 0 87.84 78.08 94.25 80.16
grad 5 0 87.96 79.17 94.84 81.15
random initialize 0 92.09 85.78 97.02 92.46
freeze 1 3 92.55 85.69 96.83 89.48
freeze 3 3 92.55 85.33 97.22 91.47
freeze 5 3 91.97 86.50 96.43 91.67
grad 1 3 87.16 76.54 92.66 83.13
grad 3 3 88.19 77.45 94.84 84.13
grad 5 3 88.76 78.17 94.84 84.72

Table 10: Performance of various sentence level downstream tasks when using the sentence embedding of the
proposed model
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F Restored Samples

This section shows samples restored by a model trained on sentence restoration (No cherry-picking). In
the result of 5 sentences, in the sentence generated by the cross decoder, parts of the sentence such as
subject and object were mixed. In sentences generated by the gating decoder, it is rare that parts are mixed.
In Table 13, it can be seen that the text generated by the cross encoder is a jumble of information from 5

sentences.

Was it a surprise to you that you were given the arts and culture position?

No, there is no surprise when you are a cadre of the ANC because you are deployed anywhere.

origin

You are given a five-year contract to do a portfolio and when you are finished, you wait for another one.

| B W 19| —

At no stage do you have a say.

What qualities do you bring to the position?

gating decoder

1 sentence

restored |

1

Was it a surprise to you that you were given the arts and culture position?

3 sentences

Was it a surprise to you that you were given the arts and culture position?

restored

No, there is no surprise when you are a cadre of the ANC because you are deployed overseas.

You are given a five-year contract to do a portfolio and when you (are) finish, you are waiting for
another.

5 sentences

Was it a surprise to you that you were given the arts and culture culture?

No, there is no surprise when you are a candidate of the ANC because you are deployed anywhere.

restored

You are given a four-year contract to do a portfolio and when you (are) finish(ed), you are no longer
looking for one.

D B W | N —

At one stage did you have a capabilities?

What does the message bring to you?

cross decoder

1 sentence

restored |

Was it a surprise to you that you were given the arts and culture position?

3 sentences

—

Was it a surprise to you when you were given the arts and culture culture?

restored

No, there is no surprise that you are a part of the ANC because you are deployed there.

%

You are paid a five-year contract when you are ready to do a portfolio and finish another, for five years.

5 sentences

Was it a surprise to you that there was no talent or culture when you were awarded the ANC?

No, you are a part of the arts department.

restored

You are given that you are ready to finish a five-year contract when you are awarded a position and do
not finish until a year.

At one stage, do you have another role?

D B W —

What do you do for the ANC?

Table 11: A sample in which embedding is restored to origin text according to the length of the input text. Blue text
means a part different from the original text, and red text means a part omitted from the original text.
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origin

Occasional diarrhea is a common occurrence.

Most people will experience an episode of diarrhea at least once or twice a year that will disappear in a
couple of days.

Luckily, there are many foods to eat that may help a person reduce the symptoms of diarrhea.

A{w O |—

There are also some foods to avoid when dealing with a bout of diarrhea, and some additional home
care tips to consider.

Anyone who is experiencing persistent diarrhea should see a doctor, as a person may become dehydrated
over time.

gating decoder

1 sentence

restored | 1

Occasional diarrhea is a common occurrence.

3 sentences

1 Occasional diarrhea is a common occurrence.
restored 5 Most people will experience an episode of diarrhea at least twice or twice a year that will disappear in
a couple of days.
3 Luckily, there are many foods to eat that may help a person reduce the symptoms of diarrhea.
5 sentences
1 Occupy diarrhea is a common occurrence.
5 Most people will experience an episode of diarrhea at least once a month or two that will disappear in a
restored week.
3 Fortunately, there are plenty of ways to eat a food that may help eliminate the symptoms.
4 There are also some symptoms of diarrhea to avoid eating with a side dish, and some regular food tips
that you should consider.
5 Anyone experiencing chronic diarrhea will be referred to as a woman, but you have a medical problem
before.
cross decoder
1 sentence
restored | 1 | Occasional diarrhea is a common occurrence
3 sentences
1 Otago occurrences is an uncommon problem.
restored 5 Most people will experience (an episode of) a diarrhea of at least one day or two during a month that
will disappear in less than a month.
Fortunately, there are many ways to eat foods that can help (a person reduce) the symptoms of a person.
5 sentences
1 Occupied diarrhea is a frequent issue.
) Many people will experience a severe diarrhea at least once a week 2014 and that may occur in some
restored cases of diarrhea.
3 Here are a few things that will stop you to consume more of the food to avoid.
4 There are also a few cases of diarrhea, while people can experience a side effect to avoid experiencing
chronic diarrhea.
5 If an individual is experiencing chronic diarrhea or diarrhea, some people are able to do a handover

after that.

Table 12: A sample in which embedding is restored to origin text according to the length of the input text. Blue text
means a part different from the original text, and red text means a part omitted from the original text.
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Two bedrooms home on a corner lot.

Two car detached garage.

origin Nice covered front porch.

Seller will not complete any repairs to the subject property, either lender or buyer requested.

| B W DN —

The property is sold in AS IS condition.

gating decoder

1 sentence

restored [ 1 [ Two bedrooms home on a corner lot.

3 sentences

1 Two bedrooms home on a corner lot.

restored | 2 Two car detached garage.

W)

Nice covered front porch.

5 sentences

Two bedroom home on a corner lot.

Two detached car garage.

restored Nice covered front porch.

Seller will not complete any repairs to the (subject) property, either insured buyer or seller.

D K| W B —

The property is listed in ASOLD condition.

cross decoder

1 sentence

restored [ 1 Two bedrooms home on a corner lot.

3 sentences

—_

Two bedroom homes on a corner lot.

restored Two car detached garage.

W

Nice covered front porch.

5 sentences

Two car garage on a corner lot.

Two covered covered porch.

restored Sony front porch.

Nice covered garage will not return any repairs to the seller, either buyer or seller.

D B W 19| —

The property is listed in ASOLD condition.

Table 13: A sample in which embedding is restored to origin text according to the length of the input text. Blue text
means a part different from the original text, and red text means a part omitted from the original text.
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