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Abstract

Recent advances in transformer-based models have
led to significant improvements in 2D image super-
resolution. However, leveraging these advances
for volumetric super-resolution remains challenging
due to the high memory demands of self-attention
mechanisms in 3D volumes, which severely limit
the receptive field. As a result, long-range inter-
actions, one of the key strengths of transformers,
are underutilized in 3D super-resolution. To in-
vestigate this, we propose MTVNet, a volumetric
transformer model that leverages information from
expanded contextual regions at multiple resolution
scales. Here, coarse resolution information from
boarder context regions is carried on to inform the
super-resolution prediction of a smaller area. Using
transformer layers at each resolution, our coarse-
to-fine modeling limits the number of tokens at
each scale and enables attention over larger regions
than previously possible. We compare our method,
MTVNet, against state-of-the-art models on five
3D datasets. Our results show that expanding the
receptive field of transformer-based methods yields
significant performance gains on high-resolution 3D
data. While CNNs outperform transformers on low-
resolution data, transformer-based methods excel
on high-resolution volumes with exploitable long-
range dependencies, with our MTVNet achieving
state-of-the-art performance. Our code is available
at https://github.com/AugustHoeg/MTVNet.

1 Introduction

In recent years, super-resolution (SR) and other vi-
sion tasks have seen significant improvements via
usage of vision transformers (ViTs). Although ViTs
achieve state-of-the-art performance in 2D SR [1–
4], few studies have attempted applying ViTs for
volumetric SR. Part of the success of ViTs is their
increased receptive field compared to Convolutional
Neural Networks (CNNs), enabling inferences based
on broader image context [5]. Based on experiences
from 2D SR, it is logical to assume ViTs will out-

∗Corresponding Author.

Figure 1. Overview of MTVNet that is informed by a
large contextual volume processed at multiple resolution
scales for predicting SR in the center volume.

perform CNNs in the domain of 3D data. However,
in volumetric SR, ViTs are challenged by the cu-
bic growth in tokens required to process larger 3D
image contexts. Although window-based attention
allieviates the quadratic complexity of self-attention
[6], the complexity of 3D data still limits the re-
ceptive field of volumetric SR models. Because of
this disadvantage, the performance gap of CNNs vs.
ViT-based architectures for volumetric SR has yet
to be fully understood.

Several works have studied enhancement of 3D
medical data such as MRI (magnetic resonance imag-
ing) and CT (computed tomography) by upscaling
slices independently [7–11]. While such methods
circumvent the complexity issues of volumetric SR,
not fully considering the 3D context reduces perfor-
mance and risks slice discontinuities [12–16].

Current brain MRI benchmark datasets for eval-
uating volumetric SR are relatively low-resolution
[17], limiting the benefits of a larger receptive field.
Advancements in medical imaging technology en-
able higher spatial resolution [18], resulting in larger
volumes where volumetric SR can benefit from long-
range contextual information. Given the potential of
SR in clinical settings and the increasing interest in
applications like multi-resolution synchrotron imag-
ing [19], there is a need for volumetric SR methods
designed for high-resolution (HR) 3D data.

Aside increasing contextual information in vol-
umetric SR, recent studies in 2D SR have shown
that the window-based attention mechanism of the
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Swin-Transformer [6] is not ideal for capturing rela-
tionships across distant image regions. Using Local
Attribution Mapping (LAM), Chen et al. [2] showed
that strengthening long-range information exchange
can lead to significant performance gains. Similarly,
recent ViT research has focused on modeling long-
range interactions to increase performance [20, 21].

To address the limitations caused by self-attention,
we present MTVNet, a volumetric SR approach that
leverages multi-contextual information from regions
beyond the prediction area (see fig. 1) and employs
hierarchical attention to enhance long-range infor-
mation propagation. This approach builds on the as-
sumption that regions closest to the prediction area
provide the most critical contextual information,
while more distant regions contribute less. Conse-
quently, we design a coarse-to-fine feature extraction
and image tokenization scheme that allocates less
compute to regions further from the prediction area,
enabling larger volumetric inputs without exceed-
ing GPU memory. Inspired by FasterViT [21], we
introduce a hierarchical attention mechanism for vol-
umetric image processing, improving modelling of
long-range interactions to enhance SR performance.

Finally, MTVNet enables us to investigate the per-
formance gap between CNNs and ViT-based meth-
ods for volumetric SR. We compare MTVNet with
convolutional and ViT-based SR methods in both
2D and 3D across low-resolution brain MRI data
and high-resolution CT data. Extensive experiments
show that on low-resolution MRI datasets, CNNs
outperform ViTs due to their stronger ability to
model local image dependencies. This suggests that
the architectural advantages of ViTs only emerge in
high-resolution data, where long-range contextual
information becomes more important. Conversely,
in high-resolution data, we find ViT-based methods
achieve superior performance, with our MTVNet
leveraging broader contextual input to achieve state-
of-the-art performance. These findings highlight
that the relative performance of ViT-based methods
in 3D highly depends on input resolution.

2 Related Work

2.1 Learning-based super-resolution

The benefits of learning-based SR over classical in-
terpolation were first shown by SRCNN [22]. Several
CNN-based models have since been proposed to im-
prove performance and efficiency [23–27].

Despite the success of CNNs, many vision tasks,
including image classification [5, 6, 20, 21], object
detection [28–31], and segmentation [32–36] have
seen improvements using vision transformers. In
2D SR, SwinIR [1] demonstrated the potential of
ViTs over CNN-based models by incorporating the
Swin Transformer [6] in a residual network scheme.

Building upon the success of SwinIR, Chen et al. [2,
37] proposed cross attention of overlapping window
partitions and channel attention mechanisms to en-
able activation of more input pixels. Recently, Hsu
et al. [4] suggested combining Swin transformer lay-
ers and gating mechanisms in a densely-connected
structure [38, 39] to alleviate information bottle-
necks. Although these methods achieve state-of-the-
art performance in 2D SR, the increased complexity
of 3D data makes them difficult to transfer directly
to 3D, except when applied slice-wise.

2.2 Super-resolution for 3D volumes

Super-resolution of 3D volumes finds motivation
in clinical applications, where workflows are highly
dependent on the interpretation of fine-grained struc-
tures that are often undersampled during routine
acquisitions. SR enhancement of these structures en-
ables improved diagnostic sensitivity and treatment
planning through more precise delineation of or-
gans and lesions. SR reconstructions from LR scans
allow shorter acquisition times and alleviate require-
ments for scanner hardware replacement, enabling
increased scanner throughput and accessibility. In
CT, SR reduces patient health risks by allowing
lower radiation scan protocols without compromis-
ing image quality [12, 13, 15–17]. Recognizing these
benefits, several 3D SR methods have been proposed,
including slice-wise and volumetric approaches.

Slice-wise methods predict each slice indepen-
dently, enabling support for deeper architectures but
neglecting cross-slice information, potentially caus-
ing discontinuities in slice predictions. Volumetric
SR methods fully utilize the context in 3D, increas-
ing computational complexity but enabling better
performance thanks to improved inter-plane mod-
elling [12–16]. Inspired by SRCNN [22] and SRGAN
[13], Pham et al. [40] and Chen et al. [13] proposed
volumetric adaptations of convolutional SR models
and demonstrated the potential of volumetric SR
over slice-wise approaches. Research in volumetric
SR has since grown rapidly and several methods
have been proposed to improve efficiency and per-
formance [12, 14, 15, 41–46]. These approaches are
similar to 2D SR, only they aim to improve the
image quality along all dimensions of a volumetric
image instead. However, other approaches including
axial SR models [47–49] have been proposed to in-
crease the slice count of low-resolution MRI volumes
while preserving in-plane resolution. To alleviate
the limitation of fixed upscaling factors, arbitrary
scale SR based on Implicit Neural Representation
[45, 50, 51] have been proposed. Multi-contrast vol-
umetric models [49, 51] that leverage information
from multiple MRI modalities (T1- and T2-weighted
images) have also been proposed. Recent advances
in ViTs have also inspired volumetric SR methods.
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Figure 2. Illustration of MTVNet and the structure of DCHAT block and DCHAT group. Our proposed
architecture consists of up to three network stages L1, L2, L3 of multi-contextual volumetric image processing. In
each succeeding network stage of MTVNet, we tokenize spatial subsets of the input volume using progressively
smaller 3D patch sizes, resulting in both coarse- and fine-grained feature extraction. The depth of subsequent
DCHAT groups increases from n = 1 to 3 DCHAT blocks towards the last network stage, which produces the SR
prediction. Image tokens and carrier tokens from preceding network stages (red arrows) are fused into later stages
using multi-head cross-attention (MCA) and window-based multi-head cross-attention (W-MCA).

SuperFormer [16] merged feature embeddings and
volume embeddings using a volumetric transformer-
based network structure similar to SwinIR [1]. Also
inspired by SwinIR, Ji et al. [49] implemented a
transformer-based GAN (generative adversarial net-
work) for axial SR using residual swin transformer
blocks [1, 6]. The CFTN model [52] used 3D resid-
ual channel attention blocks [26] and transformers
to capture global cross-scale dependencies between
multi-scale feature embeddings. Li et al. [51] pro-
posed a 2D slice-wise multi-modal arbitrary scale SR
model featuring a rectangle-window cross-attention
transformer to model long-range dependencies.

2.3 ViT enhancements

With the increasing usage of ViTs across image
tasks, several works have sought to address the scal-
ability of self-attention. Liu et al. [53] proposed
SwinV2, featuring improved normalization and a
more robust attention mechanism using cosine sim-
ilarly. EfficientFormer [54] proposed a lightweight
ViT architecture featuring efficient attention mecha-
nisms to achieve competitive accuracy and inference
speeds. In CrossViT [20], multi-scale tokenization
and efficient cross-attention mechanisms were used
to extract and fuse feature representations at differ-
ent image scales. In connection with scaling ViTs to
higher input resolution, several works have suggested
augmenting local attention to improve long-range

interactions while maintaining efficiency. Twins [55]
combined local attention and globally sub-sampled
attention to improve efficiency and capture both
local and long-range dependencies. RegionViT [56]
suggested combining attention between local and
regional tokens for conveying global information
between attention windows, improving long-range
interaction and efficiency. Similarly, FasterViT [21]
proposed a hybrid CNN/ViT architecture featuring
hiearchical attention mechanisms using local tokens
and specialized carrier tokens. These works find
natural applicability for volumetric image tasks due
to the high data complexity. For instance, FINE
[57] used global attention using memory tokens for
improved 3D segmentation performance. Yet, to our
knowledge, MTVNet is the first to leverage these
concepts for volumetric SR.

3 Methods

3.1 Network architecture

The architecture of MTVNet consists of up to three
network stages L1, L2, L3 marked by respectively
red, green and blue in fig. 2. Stages L3 and L2

extract features from regions beyond the SR predic-
tion area and merges them into L1. These features
serve as a prior for stage L1, producing a SR output
conditioned on the surrounding image context.
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Figure 3. Illustration of our proposed SVHAT. Carrier tokens first undergo full self-attention (MSA) before being
concatenated with the tokens of their respective local attention window. Shifted windowed self-attention (SW-MSA)
is then performed within each attention window, with the carrier tokens enabling global information exchange
between neighboring windows. Attention masking is used to drop information exchange between non-adjacent
image tokens and carrier tokens, where grey and black areas indicate masked regions.

Shallow Feature Extraction. Each network
stage performs shallow feature extraction (SFE) us-
ing 3× 3× 3 convolutional layers, producing shallow
feature embeddings FSFE ∈ RCSFE×H×W×D, where
CSFE is the feature dimension. The feature map of
each stage’s SFE module is spatially center-cropped
and passed as input to the next, producing more
complex features in subsequent stages.

Token initialization. During token initializa-
tion, shallow features are projected and tokenized
using differently-sized 3D image patches. Stages
L1, L2 and L3 use progressively larger patch sizes,
covering broader context regions using the same
number of tokens or less. Specifically, image to-
ken embeddings (ITEs) in each stage are produced
by applying a convolution with a stride and kernel
size of pi × pi × pi, where i ∈ {1, 2, 3} is the stage
level. These tokens are then projected into vector
embeddings of length Cemb before being partitioned
into 3D local attention windows of M × M × M
tokens. MTVNet employs specialized carrier tokens
(CATs) which summarize the features within each
local attention window. In each stage, carrier to-
kens are generated by applying a convolution with
a stride and kernel size of ⌊ M

Ncat
⌋ × ⌊ M

Ncat
⌋ × ⌊ M

Ncat
⌋

to the image tokens, yielding Ncat
3 carrier tokens of

embedding length Cemb for each attention window.

Deep Feature Extraction. For deep feature
extraction in each stage, MTVNet employs groups
of dense-connected hierarchical attention (DCHAT)
blocks. Each group consists of n ∈ {1, 2, 3} DCHAT
blocks connected in a residual scheme, as shown in
fig. 2. Cross-attention [58] is applied to merge the
image tokens and carrier tokens of each DCHAT
group into the subsequent stage’s DCHAT group,
facilitating propagation of multi-scale information.

Reconstruction. In the final stage, token upsam-
pling is performed using deconvolution, transforming
token embeddings back into the image space. These
features are then refined in a pre-reconstruction
stage before being fused with the shallow features
from stage L1 through a long skip-connection. The
fused features are then upsampled using a 3D pixel-

shuffle layer [59]. We employ a 3D pre-convolution
layer initialized according to the ICNR method de-
scribed in [60] to prevent checkerboard artifacts.

3.2 DCHAT block

For efficient extraction of volumetric image features,
we propose a DCHAT block, see fig. 2. Inspired
by DRCT [4], our DCHAT block employs a densely
connected structure of volumetric transformer lay-
ers, LeakyReLU activations, and convolutions. To
preserve the feature space of image tokens and car-
rier tokens, we process each token set using separate
skip connections and convolutions. Additionally, we
match the embedding dimension of all token em-
beddings throughout each block to equally promote
learning of progressively complex features. As in
DRCT [4], we utilize 1×1×1 convolutions as gating
mechanisms between transformer layers to filter re-
dundant features, enabling direct feature transition
between DCHAT blocks.

3.3 SVHAT layer

Inspired by FasterViT [21], we implement SVHAT
(shifting volumetric hierarchical attention trans-
former) layer. Like FasterViT, SVHAT adopts the
same use of specialized carrier tokens, which serve to
summarize and propagate information between local
attention windows. First, full attention of all carrier
tokens enables global information exchange between
attention window summaries. Then, each set of lo-
cal window tokens is concatenated with their carrier
tokens, and windowed attention is applied jointly,
allowing carrier tokens to convey information from
other windows. This alternating attention procedure
efficiently transfers global information between local
attention windows to improve information flow, see
fig. A.2 in appendix which illustrates the intuition
behind carrier tokens. To further enhance this, we
reintroduce the notion of shifted-window attention
from [6], see fig. 3. Before window partitioning, 3D
cyclic-shifting is performed to allow the attention
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of tokens in neighboring windows. To account for
the presence of carrier tokens, we shift image tokens
and carrier tokens by ⌊M

2 ⌋ and ⌊Ncat

2 ⌋ voxels, respec-
tively, conserving the alignment of the token spaces.
Attention masking is applied to drop interactions
between non-adjacent image/carrier tokens.

We compute attended carrier token embeddings
xL,t
cat at network level L and transformer layer t as:

x̂L,t
cat = xL,t−1

cat + γ1 MSA
(

LN
(
xL,t−1
cat

))
,

xL,t
cat = x̂L,t

cat + γ2 MLP
(

LN
(
x̂L,t
cat

))
,

(1)

where γ1, γ2 are learnable channel-wise scaling fac-
tors, MSA denotes multi-headed self-attention [58],
LN is Layer Normalization [61], and MLP is the
multi-layer perceptron.

Next, we compute the attention of image tokens
and carrier tokens using windowed self-attention, see
eq. (2). Carrier tokens are window partitioned and
concatenated with their corresponding set of local
window tokens to produce sequences of M3 + Ncat

3

tokens for each window. Window-attended tokens
xL,t+1
w are computed using post-normed shifted win-

dow self-attention (SW-MSA) [53] as:

xL,t
w = [xL,t−1, xL,t

cat]

x̂L,t+1
w = xL,t

w + LN
(
SW-MSA

(
xL,t
w

))
xL,t+1
w = x̂L,t+1

w + LN
(
MLP

(
x̂L,t+1
w

)) (2)

The carrier tokens and image tokens are then sepa-
rated for compatibility with later SVHAT layers.

Prior to the attention mechanisms described in
eq. (1) and eq. (2), SVHAT uses multi-head cross-
attention (MCA) layers to facilitate information
exchange across network stages L1, L2, L3. Each
cross-attention layer implements a two-layer MLP to
ensure dimension compatibility between cross-scale
token sequences. Then, MCA is applied to capture
relationships between tokens from current and pre-
vious network stages. Exploiting the compactness of
the carrier token space, we compute cross-attended
carrier tokens xL

cross, cat using full MCA:

xL
cross, cat = LN

(
MCA

(
xL,t−1
cat ,MLP

(
xL−1
cat

)))
,

(3)
where xL−1

cat denotes the final set of carrier tokens
from the previous network stage. A similar window-
based multi-head cross-attention (W-MCA) mech-
anism is used for capturing relationships between
image tokens, see equation 4. The cross-attended
image tokens xL

cross are computed as:

xL
cross = LN

(
W-MCA

(
xL,t−1,MLP

(
xL−1

)))
, (4)

where xL−1 denote the final set of image tokens
from the previous network stage. Finally, the cross-
attended token embeddings are fused by addition:

xL,t−1
cat = x̄L,t−1

cat + xL
cross, cat

xL,t−1 = x̄L,t−1 + xL
cross

(5)

Here, x̄L,t−1 and x̄L,t−1
cat denote image- and carrier

tokens before fusion. For more details on the func-
tionality of SVHAT, see appendix A.

4 Experiments

Datasets. We use four public MRI datasets and one
CT-based dataset to train/evaluate our proposed
MTVNet: The Human Connectome Project (HCP)
1200 Subjects dataset [62], the IXI dataset1, the
Brain Tumor Segmentation Challenge (BraTS) 2023
[63–66] and Kirby 21 [67]. All scans were acquired
using 1.5T-3T MRI platforms with a volume size
of ≤ 3203 voxels. Finally, we use the Femur Ar-
chaeological CT Superresolution (FACTS) dataset
[68], which includes 12 registered 3D volume pairs
of archaeological femur bones scanned using clinical-
CT and micro-CT. The FACTS dataset consists of
large volumes (∼ 20003 voxels) featuring detailed
trabecular bone structures. Two SR tasks are con-
sidered using this dataset: In FACTS-Synth, we use
downsampled micro-CT images as the LR model in-
put, while FACTS-Real instead uses the clinical-CT
images. Refer to appendix B for additional details.

Models. We evaluate the SR performance of
MTVNet against 2D models RCAN [26] and HAT
[2, 37], as well as six volumetric models: mDC-
SRN [15], EDDSR [44], MFER [46], RRDBNet3D
[27], SuperFormer [16], and ArSSR [45]. We adapt
mDCSRN and SuperFormer, originally designed to
restore images degraded by 3D k-space truncation
[13, 16], by extending them with the upsampling
module from MTVNet. We use the authors’ sug-
gested upsampling for the remaining models.

Training. We train all models from scratch on
each dataset for 100K iterations on a single A100
80GB GPU. For ArSSR, we collate N = 8000 ran-
domly sampled HR/LR point pairs from 15 patches
per batch. The rest use batch size 4 for MRI or 5 for
CT data. The LR patch size is set to 32 × 32 × 32
or 32 × 32 in case of 2D. MTVNet L2 and L3 with
two and three stages use patch sizes 64 × 64 × 64
and 128 × 128 × 128, respectively. All models are
optimized using ADAM [69] with β1 = 0.9 and
β2 = 0.999. We use a multi-step learning rate sched-
uler, halving the learning rate once after 50k, 70k,
85k, and 95k iterations. All model parameters are
optimized using pure L1 loss. HR/LR pairs are gen-
erated using volumetric blurring followed by down-
sampling via linear interpolation. In FACTS-Real,
we use downsampled clinical-CT images as the LR
input and the micro-CT images as the HR reference.

Evaluation. We reconstruct all test samples from
each dataset using strided aggregation of SR patch
predictions. Patch predictions are tiled using an
overlap of 4 × s voxels where s is the upscaling fac-

1https://brain-development.org/ixi-dataset/
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2D methods PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE

RCAN [26] 27.88 .8940 .1952 31.03 .9336 .1359 20.51 .3554 .5391 20.72 .3870 .5548
† HAT [37] 28.05 .8951 .1924 31.15 .9334 .1355 20.54 .3686 .5343 20.63 .4242 .5614

3D methods PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE

ArSSR [45] 28.83 .8998 .1779 30.78 .9284 .1459 20.88 .3871 .4881 20.68 .3980 .5767
EDDSR [44] 29.86 .9109 .1620 33.22 .9451 .1104 20.62 .3531 .4815 19.84 .3499 .5223
MFER [46] 29.48 .9094 .1646 32.50 .9420 .1179 21.58 .4708 .4080 21.64 .4671 .4096
mDCSRN [15] 29.77 .9099 .1624 33.23 .9460 .1090 21.31 .4078 .4765 21.37 .4259 .4922
† SuperFormer [16] 30.46 .9175 .1481 33.47 .9480 .1055 20.93 .3491 .4846 21.40 .4038 .4463
RRDBNet3D [27] 29.78 .9120 .1584 33.21 .9442 .1093 21.64 .4670 .4022 21.91 .4775 .4019
† MTVNet 31.57 .9303 .1313 33.91 .9502 .1020 21.52 .4576 .4061 21.74 .4633 .4051

2D methods PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE

RCAN [26] 32.61 .8812 .1593 28.52 .8367 .1768 33.47 .9306 .1505 33.06 .8978 .2256
† HAT [37] 32.39 .8770 .1640 28.42 .8331 .1791 33.20 .9266 .1551 31.18 .8561 .2940

3D methods PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE

ArSSR [45] 27.90 .8118 .2810 24.22 .7204 .3060 22.96 .3182 .4437 31.82 .8632 .2775
EDDSR [44] 30.12 .8335 .2174 25.22 .7394 .2597 32.66 .9169 .1686 33.51 .8946 .2244
MFER [46] 33.40 .8933 .1484 25.23 .7611 .2576 34.76 .9430 .1309 35.68 .9307 .1719
mDCSRN [15] 33.46 .8941 .1470 29.50 .8558 .1622 34.76 .9431 .1308 35.26 .9255 .1806
† SuperFormer [16] 33.70 .8982 .1430 29.89 .8679 .1545 34.60 .9400 .1333 35.85 .9341 .1675
RRDBNet3D [27] 34.31 .9092 .1331 30.27 .8793 .1488 35.20 .9486 .1242 36.27 .9376 .1598
† MTVNet 34.04 .9046 .1374 30.16 .8754 .1502 35.16 .9477 .1250 35.97 .9355 .1654

FACTS-Synth Dataset FACTS-Real Dataset
Scale 4× Scale 3× Scale 4× Scale 3×

HCP 1200 Dataset IXI Dataset BraTS 2023 Dataset Kirby 21 Dataset
Scale 4× Scale 4× Scale 4× Scale 4×

Table 1. Quantitative comparison of state-of-the-art 2D/volumetric SR models on datasets FACTS-Synth,
FACTS-Real, HCP 1200, IXI, BraTS 2023, and Kirby 21. The best performance metrics PSNR ↑ / SSIM ↑ /
NRMSE ↓ are highligthed in red, and second best in blue. Transformer-based methods are marked with a † symbol.

tor, then smoothed using a Hanning window. Perfor-
mance metrics Peak-Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), and
Normalized Root Mean Square Error (NRMSE) are
computed slice-wise in the axial direction and av-
eraged over all samples, excluding slices where the
foreground area occupies less than 20%.

4.1 Implementation details

All MTVNet configurations use a learning rate of
2e−4 without weight decay. For MRI data, we use
MTVNet L2, as we found two stages to be enough
to cover most whole scans. In the high-resolution
FACTS dataset, we use MTVNet L3 with three
network stages. Each DCHAT block has 6 SVHAT
layers. The number of shallow features CSFE and
embedding features Cemb are set to 128, with skip-
connection features Cskip = 64. In MTVNet L3,
patch sizes are p1 = 2, p2 = 4, p3 = 8; in L2,
p1 = 2, p2 = 4. The attention window size is M = 8,
with Ncat = 4 carrier tokens. To reduce memory,
we halve feature channels in MTVNet, mDCSRN,
SuperFormer, and RRDBNet3D before upsampling.

4.2 Quantitative results

Table 1 compares MTVNet with eight SOTA SR
models: RCAN, HAT, ArSSR, EDDSR, MFER, mD-
CSRN, SuperFormer, and RRDBNet3D. Across all

brain MRI datasets (HCP 1200, IXI, BraTS 2023,
and Kirby 21), MTVNet achieves competitive results.
We observe the CNN-based RRDBNet3D slightly
outperforming the ViT-based MTVNet and Super-
Former on brain MRI, while in 2D, RCAN similarly
surpasses the newer ViT-based HAT. This trend
suggests that for low-resolution data, CNNs outper-
form ViTs, contradicting earlier findings [16]. We
reason that the advantage of CNNs in these datasets
stems from a combination of low image resolution
and local image dependencies being predominant,
limiting the benefits of the broader receptive field
offered by ViTs.

In the high-resolution FACTS dataset, where
we can leverage the multi-contextual architecture
of our proposed method, we observe several new
trends: in FACTS-Synth, ViT-based methods sur-
pass CNN-based architectures in both 2D and
3D, with MTVNet outperforming all methods by
a large margin. Compared with SuperFormer,
MTVNet improves PSNR by 0.44dB–1.11dB, and by
0.70dB–1.79dB over RRDBNet3D, illustrating that
added contextual information yields significant gains
in high-resolution volumetric SR. In FACTS-Real,
where clinical CT images serve as LR input, the best
results are achieved by RRDBNet3D, MFER and
MTVNet, despite the similarity to FACTS-Synth.
We hypothesize this stems from the domain shift
between micro-CT and clinical-CT, which weakens
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Figure 4. Visual comparisons of SR outputs on HCP 1200, IXI, FACTS-Synth, and FACTS-Real at 4× upscaling.
Ground truth (GT) and LR inputs are shown in the top-left, separated by a red line.

long-range dependencies that would otherwise bene-
fit ViTs. Overall, these results indicate that CNN vs.
ViT performance depends strongly on both input
resolution and on the underlying 3D image structure.

4.3 Qualitative results and 3D LAM

Fig. 4 shows a visual comparison of SR predic-
tions on scale 4× for HCP 1200, IXI, FACTS-Synth,
and FACTS-Real. We find that MTVNet produces
faithful reconstructions of structures and patterns
across all datasets. Compared with ArSSR, EDDSR,
MFER, mDCSRN, and SuperFormer, our MTVNet
produces notably sharper features while producing
similar results as RRDBNet3D. In the Brain MRI
datasets HCP 1200 and IXI, we find that many meth-
ods struggle to reconstruct anatomical details while
RRDBNet3D and our MTVNet produce the clearest
results. Refer to appendix E for more comparisons.

Next, we investigate how volumetric SR models
leverage surrounding image context using LAM [70].
We extend LAM into 3D to visualize context usage in
volumetric SR predictions. Fig. 5 shows log-scaled
LAM activations on FACTS-Synth at ×4 upscal-
ing, where higher intensities indicate stronger voxel
contributions towards the region marked by the red
box. The blue box highlights the SR prediction area,
which is constant across methods. Although no pre-
dictions are computed outside this area, MTVNet
can use information from these regions via its con-
textual stages. To quantify context usage, we com-
pute the Diffusion Index (DI) [70]. We report the

mean DI across slices for volumetric SR methods
and per-slice DI for 2D methods. Examples from
FACTS-Synth show that MTVNet, with contextual
stages, enables broader leverage of input context
than competing methods. Additional LAM com-
parisons are provided in appendix C. To study the
importance of context across datasets, we compute
average DI scores over 50 random 3D patch samples
from HCP 1200 and FACTS-Synth, see fig. 6. DI
scores are generally lower in HCP 1200, especially
for stronger models, suggesting that context is less
critical in brain MRI. Conversely, SR models achieve
higher DI in FACTS-Synth, with MTVNet achieving
the highest average DI among all methods.

4.4 Ablation experiments

We perform ablation of the features of MTVNet, in-
cluding carrier tokens and contextual network stages
across MRI and CT data. Table 2 shows a quantita-
tive comparison on BraTS 2023 and FACTS-Synth
using ×4 upscaling. Using BraTS 2023, replacing
the baseline Swin transformer layers [6] with our
SVHAT layers using carrier tokens results in modest
performance gains across all metrics. Using FACTS-
Synth, increasing the number of context levels of
MTVNet results in significant performance improve-
ments across all metrics. Compared with MTVNet
L1, adding an extra level of context increases PSNR
by 0.44dB. Similarly, using three contextual network
stages further improves PSNR by 1.1dB.
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Figure 5. LAM comparisons of SR models using FACTS-Synth at ×4 upscaling. The blue box marks the
prediction area for SR, which is the same for all methods. The highest DI ↑ is highlighted in bold.
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Method #Params CATs PSNR/SSIM/NRMSE

Baseline 19.7M ✗ 35.00 / .9460 / .1273
MTVNet L1 34.6M ✓ 35.05 / .9467 / .1265

Method #Params Levels PSNR/SSIM/NRMSE

MTVNet L1 34.6M 1 30.03 / .9168 / .1550
MTVNet L2 109.0M 2 30.47 / .9211 / .1452
MTVNet L3 138.2M 3 31.57 / .9303 / .1313

Table 2. Ablation on the effect of carrier tokens and
context levels. Best metrics are underlined.

4.5 Memory footprint of MTVNet

Fig. 7 shows the memory footprint of SuperFormer,
RRDBNet3D, and MTVNet across volumetric input
resolutions. Memory footprint is measured as the
peak GPU memory usage for one forward and back-
ward pass using a batch size of 1. With one network
stage, MTVNet L1 exhibits better memory scaling
than SuperFormer and RRDBNet3D. Provided the
prediction area is fixed to 323, adding contextual
network stages allows processing of input sizes far
exceeding the capabilities of other architectures.

Fig. 8 shows PSNR vs. throughput of Super-
Former, RRDBNet3D, and MTVNet on FACTS-
Synth using 4× upscaling. MTVNet achieves SOTA
performance while maintaining a higher throughput
than SuperFormer, despite having more parameters.

5 Conclusion

In this work, we present MTVNet, a ViT-based
method for volumetric SR tailored for high-
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resolution 3D data. Our method overcomes the
challenge of limited contextual information through
a multi-contextual network structure with a coarse-
to-fine feature extraction and tokenization scheme,
enabling processing of larger input sizes than com-
peting methods. We model long-range dependencies
by combining global and window-based attention to
exchange information in a larger input volume.

We compare MTVNet against 2D and volumet-
ric SR approaches across several data domains, in-
cluding brain MRI data and high-resolution CT
data. Based on extensive experiments, we find that
CNN-based models outperform ViT-based models
in certain 3D data domains. CNN-based SR models
are especially effective in low-resolution 3D volumes
where the receptive field of transformers cannot be
leveraged as effectively. Nevertheless, our proposed
MTVNet with extra contextual processing layers
outperforms all other models in high-resolution 3D
data with long-range image dependencies.
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A Details of SVHAT layer

An overview of our proposed SVHAT layer featur-
ing separate attention branches for carrier tokens
and image tokens is illustrated in fig. A.1. The
first branch (red) follows the attention procedure
from FasterViT [21], whereas the second branch
follows the procedure from SwinV2 [53] with post-
normalization. We use multi-head cross attention
(MCA) and window-based multi-head cross attention
(W-MCA) to merge tokens from previous network
stages before computing attention in each branch.
Embedding dimensions from previous network stages
are matched using a small MLP.

Scaling

MSA

LayerNorm

+

Scaling

MLP

LayerNorm

+

SW-MSA

LayerNorm

Concat

+

MLP

LayerNorm

+

Carrier tokens

Previous-level
carrier tokens

Pos embedding

Carrier tokens Image tokens

+

M
L

P

MCA

LayerNorm

Image tokens

Previous-level
image tokens

+

M
L

P

W-MCA

LayerNorm

Figure A.1. Overview of our proposed SVHAT layer
that captures global and local token dependencies using
separate attention branches for carrier tokens (red) and
image tokens (blue).

An illustration of the functionality of carrier to-
kens is provided in fig. A.2, showing both full CAT
attention and local window attention with CATs.

B Dataset details

Human Connectome Project
The Human Connectome Project (HCP) 1200 Sub-
jects Data Release [62] includes structural MRI scans
from 1113 healthy subjects acquired using a 3T
scanning platform. We use the T1-weighted images,
featuring an isotropic resolution of 0.7 mm and a
matrix size of 320 × 320 × 256. Following [15, 16],

Carrier token 

Image token Full attention Window attention

Carrier tokens (CATs)
summarize windows

Full attention of CATs
across local windows

Window attention w.
global info from CATs

Figure A.2. Illustration of the carrier token (CAT)
attention mechanism proposed by Hatamizadeh et al. [21]
and adopted by SVHAT. Carrier tokens convey global
information between local attention windows to enrich
long-range information propagation.

the dataset is split into 780 subjects for training,
and 111 each for validation, evaluation, and testing.
Performance evaluation is conducted on the test set.

Information eXtraction from Images
The Information eXtraction from Images (IXI)
dataset contains multi-modality MRI data (PD-,
T1-, and T2-weighted) from 600 healthy subjects
scanned with one 3T and two 1.5T scanning plat-
forms. We use 581 T1-weighted scans, of which 507
have a resolution of 0.9375 × 0.9375 × 1.2 mm and
a matrix size of 256 × 256 × 150, while the remain-
ing 74 have a similar resolution but a matrix size
of 256 × 256 × 146. The dataset is split into 500
subjects for training, 6 for validation, and 75 for
testing, with evaluation performed on the test set.

Brain Tumor Segmentation Challenge 2023
For the Brain Tumor Segmentation Challenge
(BraTS) 2023, we use 1470 T1-weighted skull-
stripped MRI scans of glioma patients, standardized
to an isotropic resolution of 1 mm and a matrix size
of 240 × 240 × 155. We use the dataset split pro-
vided by the challenge, which allocates 1251 subjects
for training and 219 for validation, with evaluation
performed on the validation set.

Kirby 21
The Kirby 21 dataset includes multi-modality MRI
scans from healthy individuals with no history of
neurological conditions. We use the 42 T2-weighted
images, which have a resolution of 1×0.9375×0.9375
mm and a matrix size of 180×256×256. The data is
split into 37 images for training (KKI-06 to KKI-42)
and 5 for testing (KKI-01 to KKI-05).

Femur Archaeological CT Superresolution
The Femur Archaeological CT Superresolution
(FACTS) dataset comprises 12 archaeological proxi-
mal femurs scanned with clinical-CT and micro-CT
platforms [68]. Clinical-CT scans have a resolution
of 0.21×0.21×0.4 mm, while micro-CT scans have a
resolution of 58 × 58 × 58 µm. Clinical-CT volumes
are registered and linearly interpolated to match
the micro-CT matrix size. The dataset is split into
10 images for training and 2 (f 002 and f 138) for
testing.
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Figure B.1. LAM comparisons of SR models using FACTS-Synth and HCP 1200 at ×4 upscaling. The blue box
shows the SR prediction area, which is kept constant across all methods. The highest DI ↑ is highlighted in bold.

C More LAM comparisons

Additional visual comparisons of the LAM method
using FACTS-Synth and the HCP 1200 dataset at
×4 upscaling are shown in figure B.1. Similar to
FACTS-Synth, we find that MTVNet incorporates
information from the surrounding image context
when trained using the HCP 1200 dataset. De-
spite this, we observe the CNN-based RRDBNet3D
achieving better performance, suggesting that image
context is less critical in brain MRI data.

D MTVNet hyperparameters

Tab. E.1 shows an overview of the GPU memory
usage, throughput and parameter count of MTVNet
using different hyperparameter configurations. Mem-
ory usage is measured as the maximum GPU mem-
ory required for a single forward and backward pass
using a batch size of 1. The throughput in patch-
es/sec is measured using a batch size of 1 assuming
4× upscaling. All configurations use MTVNet L3

with three network stages. The number of blocks
in table E.1 denotes the total number of DCHAT
blocks used, with 6 blocks corresponding to a depth
of (1, 2, 3) for network stages (L1, L2, L3), 9 blocks
corresponding to network depths (2, 3, 4), and 12
blocks corresponding to network depths (3, 4, 5).

Parameter Memory usage Throughput #Params

Cskip

64∗ 10.47 GB 7.79 patches/sec 138.3M
96 10.83 GB 7.70 patches/sec 226.6M
128 11.24 GB 7.50 patches/sec 340.3M

Ncat

4∗ 10.47 GB 7.79 patches/sec 138.3M
2 10.31 GB 7.75 patches/sec 141.0M
1 10.37 GB 7.90 patches/sec 163.0M

#Blocks

6∗ 10.47 GB 7.79 patches/sec 138.3M
9 10.98 GB 5.51 patches/sec 198.2M
12 11.49 GB 4.25 patches/sec 258.1M

Cemb

128∗ 10.47 GB 7.79 patches/sec 138.3M
192 10.03 GB 7.47 patches/sec 194.5M
256 10.30 GB 7.34 patches/sec 261.3M

Table E.1. Overview of memory usage, throughput
and no. of parameters using different hyperparameter
configurations of MTVNet L3. Baseline parameters of
MTVNet L3 are highlighted with an asterisk.

E More visual comparisons

Additional visual comparisons of SR predictions for
HCP 1200, IXI, BraTS 2023, Kirby 21, FACTS-
Synth, and FACTS-Real are shown in fig. E.1.
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Figure E.1. Visual comparisons of SR outputs on HCP 1200, IXI, BraTS 2023, Kirby 21, FACTS-Synth, and
FACTS-Real at 4× upscaling. Ground truth (GT) and LR inputs are shown in the top-left, separated by a red line.
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