
Published as a conference paper at ICLR 2024

STACK ATTENTION:
IMPROVING THE ABILITY OF TRANSFORMERS TO
MODEL HIERARCHICAL PATTERNS

Brian DuSell∗
Department of Computer Science
ETH Zürich
brian.dusell@inf.ethz.ch

David Chiang
Department of Computer Science and Engineering
University of Notre Dame
dchiang@nd.edu

ABSTRACT

Attention, specifically scaled dot-product attention, has proven effective for natu-
ral language, but it does not have a mechanism for handling hierarchical patterns
of arbitrary nesting depth, which limits its ability to recognize certain syntactic
structures. To address this shortcoming, we propose stack attention: an atten-
tion operator that incorporates stacks, inspired by their theoretical connections to
context-free languages (CFLs). We show that stack attention is analogous to stan-
dard attention, but with a latent model of syntax that requires no syntactic super-
vision. We propose two variants: one related to deterministic pushdown automata
(PDAs) and one based on nondeterministic PDAs, which allows transformers to
recognize arbitrary CFLs. We show that transformers with stack attention are very
effective at learning CFLs that standard transformers struggle on, achieving strong
results on a CFL with theoretically maximal parsing difficulty. We also show that
stack attention is more effective at natural language modeling under a constrained
parameter budget, and we include results on machine translation.

1 INTRODUCTION

Although transformers (Vaswani et al., 2017) have proven very successful on natural language, lin-
guists have long held that language contains hierarchical syntactic structures (Chomsky, 1956, inter
alia). Transformers do not appear to have any explicit mechanism for dealing with nested syntactic
patterns of arbitrary depth. Recent theoretical work, in fact, has shown that finite-precision trans-
formers cannot recognize certain syntactic patterns, such as Dyck-2 (Hahn, 2020), although they
can do so up to bounded depth (Yao et al., 2021). Recent work has also shown that transformers
have a linear, rather than hierarchical, inductive bias (Petty & Frank, 2021; Mueller et al., 2022)
unless trained long past convergence (Murty et al., 2023a). This might explain, at least partly, why
transformers are much less data-efficient than human children at learning language (Gilkerson et al.,
2017; van Schijndel et al., 2019; Zhang et al., 2021; Frank, 2023; Warstadt et al., 2023).

In this paper, we propose a novel type of attention mechanism, stack attention, that is explicitly
designed to model hierarchical patterns. It does this by treating input vectors as items in a stack,
and performing a soft-selection not directly over input vectors, but over sequences of stack ac-
tions. We motivate this theoretically by pointing out that pushdown automata (PDAs), which are
finite automata augmented with stacks, recognize the entire class of context-free languages (CFLs),
which capture the essence of compositionality and recursion in natural language syntax (Hopcroft
& Ullman, 1979; Sipser, 2013). Accordingly, we expect stack attention to increase transformers’
expressive power, in addition to possibly learning language from fewer examples and generalizing
to held-out combinations of syntactic patterns in more human-like fashion.

Stack attention draws from prior work on differentiable stacks, which are continuous functions
that approximate the behavior of discrete stacks (Grefenstette et al., 2015; Joulin & Mikolov, 2015;
DuSell & Chiang, 2020). We adapt two differentiable stacks into attention operators: the “super-
position” stack of Joulin & Mikolov (2015), and a nondeterministic generalization introduced by

∗Work done while at the University of Notre Dame.

1

mailto:brian.dusell@inf.ethz.ch
mailto:dchiang@nd.edu

Published as a conference paper at ICLR 2024

DuSell & Chiang (2023). Previous work attached differentiable stacks to recurrent neural networks
(RNNs) as external memory modules, but here we integrate differentiable stacks into transformers in
a much deeper way. Whereas standard attention performs a soft-selection over input vectors, these
differentiable stacks perform a soft-selection over sequences of push and pop actions on stacks of
vectors, returning the topmost vector of the stack of the selected sequence. Accordingly, we use
differentiable stacks as a drop-in replacement for standard attention, resulting in a transformer with
a latent model of syntax that, unlike most prior work, requires no syntactic supervision, and, in the
case of nondeterministic stack attention, is able to recognize the entire class of CFLs.

Our experiments show that transformer language models with nondeterministic stack attention learn
CFLs very effectively, consistently outperforming baseline transformers, and outperforming even
the previously-proposed VRNS-RNN (DuSell & Chiang, 2022) on a CFL with maximal parsing
difficulty (Greibach, 1973). We also show that under a constrained parameter budget, transformer
language models with stack attention outperform baseline transformers on the Penn Treebank by 4.3
perplexity points, and we include results on a small machine translation task based on the German-
English dataset from Europarl v7. Our code is publicly available.1

2 RELATED WORK

Our method enjoys two key advantages over prior work on syntax-oriented transformers: (1) it does
not require syntactic supervision (although it can be extended to leverage it); and (2) it is unidirec-
tional in time, so it can be used in causal language models and decoders. Most prior work requires
syntactic supervision (Shiv & Quirk, 2019; Deguchi et al., 2019; Zhang et al., 2020; McDonald &
Chiang, 2021; Qian et al., 2021; Sartran et al., 2022; Murty et al., 2023b). Wang et al. (2019b)
proposed an unsupervised but bidirectional model. Kim et al. (2017) proposed a framework for
structured attention mechanisms that sum over an exponential number of latent structures, similar
to our approach. Their work included an attention operator based on the inside-outside algorithm
for projective dependency trees, whereas we propose one based on a dynamic programming algo-
rithm for PDAs. A key difference is that, at each timestep, their attention mechanism marginalizes
over all latent structures backward and forward in time, so it is bidirectional. Our stack attention
marginalizes backward in time only.

3 BACKGROUND

We start by reviewing attention and differentiable stacks. For any tensor (matrix, vector) A, let
A[i, j, . . .] indicate the element or sub-tensor indexed by i, j, Let σ be the logistic function.

3.1 SCALED DOT-PRODUCT ATTENTION

Attention has become a cornerstone of modern neural network architectures (Cho et al., 2015; Bah-
danau et al., 2015; Vaswani et al., 2017). Loosely defined, attention refers to an operation that, given
a sequence of values v1, . . . ,vn ∈ Rdv , produces an output v′ that represents a linear interpolation,
or “soft-selection,” over v1, . . . ,vn.

The transformer uses an attention operator called scaled dot-product attention (SDPA). The self-
attention sublayer function in a transformer receives input vectors x′

1, . . . ,x
′
n ∈ Rdmodel and linearly

transforms them to sequences of query vectors q1, . . . , qn ∈ Rdk , key vectors k1, . . . ,kn ∈ Rdk ,
and value vectors v1, . . . ,vn ∈ Rdv . It runs SDPA for each timestep 1 ≤ t ≤ n, producing outputs
v′
1, . . . ,v

′
n ∈ Rdv . Each v′

t is linearly transformed to an output y′
t ∈ Rdmodel .

qt = Wqx
′
t kt = Wkx

′
t vt = Wvx

′
t (1)

z′
t[i] =

qt · ki√
dk

(1 ≤ i ≤ n) zt = softmax(z′
t) (2)

v′
t =

n∑
i=1

zt[i] vi y′
t = Wyv

′
t (3)

1https://github.com/bdusell/stack-attention

2

https://github.com/bdusell/stack-attention

Published as a conference paper at ICLR 2024

If we prevent SDPA from attending to future timesteps by ending the iterations over i at t instead
of n, which is necessary for causal language modeling and decoding, we say it is causally masked.
Each sublayer typically has multiple attention heads, applying multiple SDPA operators to the input
sequence and adding the results together.2

3.2 DIFFERENTIABLE STACKS

A stack is a container of elements that allows one to push and pop elements in last-in-first-out
order. A differentiable stack is a continuous function that approximates the behavior of a stack; in
this paper, we assume elements are vectors in Rm. Suppose we start with an empty stack S0 and
perform n operations on it (e.g. pushing and popping), resulting in a sequence of stacks S1, . . . ,Sn.
In a differentiable stack, we represent the actions as stack action vectors a1, . . . ,an, where each
at is a set of action weights. The exact set of available actions varies with the particular style
of differentiable stack. The inputs also include a sequence of pushed vectors v1, . . . ,vn ∈ Rm

that serve as the new elements inserted by push actions. The output of the differentiable stack is a
sequence of stack reading vectors r1, . . . , rn, where each rt represents the top vector element of
the stack after processing the stack actions and pushed vectors up to timestep t. Each differentiable
stack can be abstracted into a function STACK that incrementally updates the stack, and a function
READING that queries the stack reading from it.

St = STACK(St−1,at,vt) rt = READING(St) (4)

The stack readings are differentiable with respect to the stack actions and pushed vectors, so if the
stack is incorporated into a neural network, the whole network can still be trained end-to-end with
backpropagation, without any need for supervision over stack actions.

3.2.1 SUPERPOSITION STACK

The differentiable stack of Joulin & Mikolov (2015) uses a strategy called superposition. It sim-
ulates fractionally-weighted stack actions by computing three new, separate stacks: one with all
elements shifted down (push), kept the same (no-op), and shifted up (pop). The new stack is an
element-wise interpolation (“superposition”) of these three stacks. Another way of viewing this is
that each element is an interpolation of the elements above, at, and below it at the previous timestep,
weighted by push, no-op, and pop probabilities respectively. Here, at = [apusht anoopt apopt]T is a
probability distribution over the three actions, and the stack state St is a matrix Vt containing the
stack elements. We implement Vt = STACK(Vt−1,at,vt) as

Vt[i] = apusht ABOVEt(i) + anoopt ATt(i) + apopt BELOWt(i) (1 ≤ i ≤ t) (5)

ABOVEt(i) =

{
vt i = 1

Vt−1[i− 1] i > 1
(6)

ATt(i) =

{
Vt−1[i] i < t

0 i = t
(7)

BELOWt(i) =

{
Vt−1[i+ 1] i < t− 1

0 i ≥ t− 1.
(8)

The stack reading rt = READING(Vt) is simply the top vector element Vt[1], and we set V0 = [0].
This stack has quadratic time and space complexity with respect to input length.

3.2.2 NONDETERMINISTIC STACK

DuSell & Chiang (2023) recently proposed a differentiable stack based on pushdown automata
(PDAs). PDAs are a type of nondeterministic automaton that consists of a finite state machine
connected to an infinite stack memory (for a detailed definition, see Appendix A). They recognize
exactly the class of CFLs. Every PDA has a finite alphabet of input symbols Σ, a finite set of
states Q, and a finite alphabet of stack symbols Γ. The initial stack consists of ⊥ ∈ Γ, which is a
designated bottom symbol.

2This is presented a little differently from Vaswani et al. (2017), but it is mathematically equivalent.

3

Published as a conference paper at ICLR 2024

A PDA has transitions of the form q, u
a−→ r, v, which signifies that if the PDA is in state q ∈ Q and

has string u ∈ Γ∗ on top of the stack, and string a ∈ Σ∪{ε} can be scanned from the input tape, then
it goes to state r ∈ Q, pops u, and pushes string v ∈ Γ∗ onto the stack. PDAs are nondeterministic
in the sense that multiple transitions may apply ambiguously to the same machine configuration, in
which case all sequences of transitions are explored. Nondeterminism is essential for recognizing
all CFLs, because deterministic PDAs are strictly less powerful. We call a sequence of connecting
transitions that starts from the initial machine configuration a run. We write π ⇝ t, q, x to indicate
that run π scans exactly t input symbols, ends in state q, and ends with symbol x on top of the stack.

The differentiable stack of DuSell & Chiang (2023) assumes the PDA is in the following normal
form, which is equivalent in recognition power. Transitions must have one of the following forms,
where q, r ∈ Q, a ∈ Σ, and x, y ∈ Γ:

q, x
a−→ r, xy Push y on top of x. (9)

q, x
a−→ r, y Replace x with y. (10)

q, x
a−→ r, ε Pop x. (11)

Weighted PDAs (WPDAs) are an extension of PDAs that assigns a non-negative weight to each
transition. The weight of run π, which we denote ψ(π), is the product of its transition weights.
DuSell & Chiang (2023) extended WPDAs further by augmenting every instance of a stack symbol
with a vector in Rm, so that stack elements are members of Γ×Rm. The purpose of adding vectors
is to allow the automaton to transmit information via the stack efficiently using embedding vectors
rather than a finite alphabet of discrete symbols. We will refer to it as the vector PDA (VPDA).

Let w = w1 · · ·wn ∈ Σn be a string of input symbols, and assume that there is a sequence of
pushed vectors v0, . . . ,vn. In a vector PDA, the initial stack consists of (⊥,v0). Transitions have
the following semantics when scanning wt:

q, x
wt−→ r, xy If (x,u) is on top, push (y,vt).

q, x
wt−→ r, y If (x,u) is on top, replace it with (y,u).

q, x
wt−→ r, ε If (x,u) is on top, pop it.

Note that transitions can only be conditioned on (q, x) ∈ Q×Γ, never the value of vector u, so only
Q and Γ direct the nondeterministic branching of the VPDA (this will allow Eq. (12) to be tractable).

The differentiable stack of DuSell & Chiang (2023) is a differentiable simulation of a vector PDA.
We will refer to it as the differentiable vector PDA (dVPDA). Here, each at is the flattening of a
tensor ∆t which contains the transition weights used when scanning wt. We denote the weight of
transition q, x wt−→ r, v as ∆t[q, x→ r, v]. Since q, r ∈ Q, x ∈ Γ, and there are 2|Γ|+1 possibilities
for v given Eqs. (9) to (11), the size of ∆t is |Q| × |Γ| × |Q| × (2|Γ| + 1). We set v0 = σ(wv),
where wv ∈ Rm is a learned parameter.

Let v(π) denote the top stack vector at the end of VPDA run π. The stack reading rt ∈ R|Q|·|Γ|·m

includes, for each (r, y) ∈ Q× Γ, an interpolation of v(π) for every run π ⇝ t, r, y, normalized by
the weight of all runs. Let rt[r, y] denote the slice of rt corresponding to (r, y). Then

rt[r, y] =

∑
π⇝t,r,y ψ(π) v(π)∑

r′∈Q

∑
y′∈Γ

∑
π⇝t,r′,y′ ψ(π)

. (12)

In this way, the dVPDA is a soft-selection over VPDA runs that outputs the expected top stack
vector. Although Eq. (12) sums over an exponential number of runs, it can be computed in cubic
time and quadratic space using Lang’s dynamic programming algorithm (Lang, 1974), which can be
expressed using the abstraction of Eq. (4). See Appendix B for details.

4 COMPARISON OF DIFFERENTIABLE STACKS

Here we make the novel insight that the superposition stack is a special case of the dVPDA. If we
unroll the superposition stack’s equation for rt, we see that it is a summation that enumerates all
possible sequences of actions:

rt =
∑
π⇝t

ψ(π) v(π) (13)

4

Published as a conference paper at ICLR 2024

where π is a run of a VPDA with |Q| = |Γ| = 1, and π ⇝ t means that π ends at timestep t.
This means the superposition stack is a special case of the dVPDA with |Q| = |Γ| = 1, normalized
transition weights, and v0 = 0. So, like the dVPDA, the superposition stack is a soft-selection over
VPDA runs, but for a weak VPDA where nondeterministic branching can only be directed by the
choice to push, pop, or do nothing at each step, and not by the state machine or stack contents.

This explains differences in the range of tasks these two stacks can solve, which we will observe
in Section 6. Both stacks are real-time, meaning that all PDA transitions scan exactly one input
symbol. The superposition stack resembles real-time deterministic PDAs (DPDAs), which recog-
nize only a subset of CFLs called real-time deterministic CFLs (DCFLs) (Ginsburg & Greibach,
1966; Igarashi, 1985). In contrast, nondeterministic PDAs recognize all CFLs even when they are
real-time (Greibach, 1965) and in the normal form of Eqs. (9) to (11) (DuSell & Chiang, 2023).
Therefore dVPDAs, and transformers that contain them, can recognize all CFLs.

5 METHOD

We construct a stack attention layer by replacing multi-head SDPA with a differentiable stack. Trans-
formers consist of multiple layers, each of which contains multiple sublayers. Every sublayer in-
cludes layer normalization, dropout, and residual connections. In a transformer encoder, each layer
consists of a self-attention sublayer followed by a feedforward sublayer. Similarly, in a transformer
decoder, each layer consists of a self-attention sublayer, a cross-attention sublayer that attends to the
output of an encoder, and a feedforward sublayer, in that order. Let xt ∈ Rdmodel and yt ∈ Rdmodel

be the input and output, respectively, of a sublayer at timestep t. A sublayer is implemented as

x′
t = LAYERNORM(xt) (14)

y′
t = SUBLAYER(t, (x′

1, . . . ,x
′
n)) (15)

yt = xt + DROPOUT(y′
t). (16)

Here, SUBLAYER is called the sublayer function, and it customizes the behavior of the sublayer.
In a standard SDPA layer, the sublayer function is multi-head SDPA (Section 3.1). LAYERNORM is
layer normalization (Ba et al., 2016). We use pre-norm instead of post-norm (Wang et al., 2019a;
Nguyen & Salazar, 2019). Layer normalization is also applied to the output of the last layer.

Like SDPA, the superposition stack and dVPDA produce a weighted sum of input vectors (Sec-
tion 4). Based on this insight, we adapt each differentiable stack into an attention sublayer by using
it as the sublayer function instead of multi-head SDPA. We linearly transform each sublayer function
input x′

t ∈ Rdmodel to vt ∈ Rm, using the logistic function to ensure elements are in (0, 1).

vt = σ(Wvx
′
t) (17)

This is similar to the way SDPA generates values (cf. Eq. (1)), and like SDPA, stack attention
performs a soft-selection over them. We also linearly transform x′

t to at ∈ Rda , analogously to
the way SDPA generates queries (cf. Eq. (1) again). For the superposition stack, we use softmax to
ensure at is a probability distribution.

at = softmax(Wax
′
t) (18)

For the dVPDA, we ensure weights are non-negative using exp. (In implementation, we actually
calculate run weights in log space to avoid overflow, and the exp is merely implicit.)

at = exp(Wax
′
t) (19)

We compute rt from a1, . . . ,at and v1, . . . ,vt according to Eq. (4), using STACK and READING
for one of the two differentiable stacks. We call stack attention based on the superposition stack
superposition stack attention, and we call stack attention based on the dVPDA nondeterministic
stack attention. We linearly transform each rt ∈ Rdr to get the sublayer function output y′

t ∈
Rdmodel (cf. Eq. (3)).

y′
t = Wyrt (20)

Note that because the differentiable stack does not attend to future timesteps, we do not need to
apply any masking to enforce causality. We illustrate our stack attention architecture in Fig. 1. To
characterize the practical speed of stack attention on GPUs, we show its parallel time complexity in
Table 1. See Appendix C for more details on time and space complexity.

5

Published as a conference paper at ICLR 2024

· · ·

xt−1

LAYERNORM

St−1

at−1,vt−1

DROPOUT
rt−1

yt−1

xt

LAYERNORM

St
at,vt

DROPOUT

rt

yt

xt+1

LAYERNORM

St+1

at+1,vt+1

DROPOUT
rt+1

yt+1

· · ·

input
{

stack
{

output
{

Figure 1: Conceptual diagram of a stack attention sublayer, unrolled across a portion of time. Dotted
arrows indicate linear transformations, and dashed arrows indicate residual connections.

Table 1: Parallel time complexity of the types of attention studied in this paper, as a function of
sequence length n. “Implemented” shows the complexity of each implementation used in this paper.
Nondeterministic stack attention could be further parallelized in a manner similar to parallel CKY
(Kosaraju, 1975), which is impossible in RNNs (“Parallel CKY”). Since CFL recognition is in NC2

(Ruzzo, 1981), theoretically this could be lowered even further to O((log n)2) (“Theoretical”).

Attention Implemented Parallel CKY Theoretical

SDPA O(logn) – –
Superposition O(n) – O((logn)2)
Nondeterministic O(n2) O(n logn) O((logn)2)

6 CONTEXT-FREE LANGUAGES

In this section, we test the performance of transformers with stack attention as language models on
the same five CFL tasks from DuSell & Chiang (2020; 2022). Let wR denote the reverse of w.

w#wR The language {w#wR | w ∈ {0,1}∗}.
wwR The language {wwR | w ∈ {0,1}∗}.
wapwR Like wwR, but with a higher tendency to have a long stretch of the same symbol repeated

in the middle. Strings are of the form wapwR, where w ∈ {0,1}∗, a ∈ {0,1}, and p ≥ 0.
Dyck The language of strings with two types of balanced brackets.
Hardest CFL A highly ambiguous, CFL-complete language with maximal parsing difficulty

(Greibach, 1973). See DuSell & Chiang (2020) for details.

The w#wR and Dyck languages are real-time DCFLs, whereas wwR, wapwR, and Hardest CFL
are nondeterministic CFLs. We use the same sampling procedure as DuSell & Chiang (2020) to
generate datasets for each task. Every time we train a model, we randomly sample a training set of
10k examples and a validation set of 1k examples, both with lengths in the range [40, 80]. For each
task, we sample a test set with string lengths varying from 40 to 100, with 100 examples per length.
The test sets remain the same across all runs. Following DuSell & Chiang (2022), we evaluate
models using the cross-entropy difference between the distribution the model learns and the true
distribution the data is sampled from. Units are nats, lower is better, and 0 is optimal.

We compare transformers with SDPA (Tf), superposition stack attention (Tf+Sup), and nondeter-
ministic stack attention (Tf+Nd), as well as their stack-augmented LSTM (Hochreiter & Schmid-
huber, 1997) counterparts (LSTM+Nd is what DuSell & Chiang (2023) call the VRNS-RNN). All
transformers have 5 layers. For transformers with stack attention, in the third (middle) layer, we
replace the SDPA sublayer with the corresponding stack attention sublayer. Although we could
have used stack attention in all layers, only one is necessary for recognizing CFLs, and multiple
stack attention layers would be computationally costly. Using stack attention in the middle layer is
a compromise between placing it at the beginning or end of the transformer.

We have adjusted model sizes so that their parameter counts satisfy the following constraints on the
Hardest CFL: (1) each type of stack has fewer parameters than the preceding types (none > Sup >

6

Published as a conference paper at ICLR 2024

Table 2: Results of training transformers with different attention mechanisms as language models
on the Penn Treebank benchmark of Dyer et al. (2016), measured with perplexity. All results are
the best of 20 random restarts, selected by validation cross-entropy. Despite having the fewest
parameters, our nondeterministic stack attention (Tf+Nd) has the lowest perplexity.

Model Params. Val. ↓ Test ↓
Tf 10,051,072 115.11 92.84
Tf+Sup (Ours) 10,050,304 122.94 98.67
Tf+Nd (Ours) 9,861,898 110.59 88.54

Nd); and (2) each transformer has fewer parameters than its LSTM counterpart. For transformers, the
feedforward hidden layer size is 2 · dmodel. SDPA layers are causally masked and have 4 heads. For
Tf, we use dmodel = 32. For Tf+Sup, we use dmodel = m = 32. For Tf+Nd, we use dmodel = 28,
m = 5, and the same values for |Q| and |Γ| as DuSell & Chiang (2022) (|Q| = 2, |Γ| = 3 for
w#wR, wwR, and Dyck; |Q| = 3, |Γ| = 3 for wapwR and Hardest CFL). For LSTM, we use one
layer with 100 hidden units. For LSTM+Sup, we use 93 hidden units and m = 10. For LSTM+Nd,
we use 64 hidden units and the same dVPDA sizes as Tf+Nd. See Appendix D for more details.

For each language and architecture, we train 10 models and report results for the model with the best
validation performance (Fig. 2). Tf+Sup outperforms Tf on all tasks except Hardest CFL. Tf+Nd
achieves strong results across all tasks, except out-of-distribution lengths on DCFLs (w#wR and
Dyck). Notably, Tf+Nd outperforms all models on Hardest CFL for in-distribution lengths despite
having the fewest parameters. It also outperforms Tf and Tf+Sup on all nondeterministic CFLs
(wwR, wapwR, Hardest CFL). Although multi-head SDPA can express multiple interpretations
of an input at once, it represents only a fixed number, whereas Tf+Nd sums over an exponential
number of VPDA runs. The poor performance of Tf and even Tf+Sup on wwR, an extremely simple
nondeterministic task, highlights the importance of nondeterminism.

How do transformers compare to their LSTM counterparts? For all tasks except Dyck, LSTM out-
performs Tf, and transformers have serious length generalization issues. This may have to do with
the linear bias in the SDPA layers, and different positional encodings might also alleviate this (we
use sinusoidal encodings). However, Tf+Nd appears to alleviate this problem on nondeterministic
CFLs, but it still overfits to the training length distribution on the DCFLs. LSTM+Sup generally
outperforms Tf+Sup. LSTM+Nd has better length generalization than Tf+Nd and outperforms on
wwR, but Tf+Nd has better in-distribution performance on Hardest CFL.

Qualitatively, we find that Tf+Sup learns easily interpretable action patterns on the real-time DCFLs.
On w#wR, it learns to push before # and pop afterwards. On Dyck, it learns to push after reading
opening brackets and pop after reading closing brackets. See Appendix E for details.

7 NATURAL LANGUAGE MODELING

In this section, we test transformers with and without stack attention on a natural language modeling
benchmark. We use the Penn Treebank (Marcus et al., 1994) as preprocessed by Dyer et al. (2016).
We train the models to learn a probability distribution over single sentences, without context from
past sentences. Each transformer has 5 encoder layers, with stack attention inserted in the same way
as Section 6. We use dmodel = 256 and a feedforward hidden layer size of 1024. SDPA sublayers
are causally masked and have 8 heads. For superposition stack attention (Tf+Sup), we set m = 511.
For nondeterministic stack attention, we set |Q| = 3, |Γ| = 3, and m = 10. These settings ensure
that the number of parameters in each model is less than that of the preceding baselines. Note that
these models are relatively small; for comparison, the Transformer-XL language model of Sartran
et al. (2022) has 12M parameters. See Appendix F for more details, including computational cost.

For each architecture, we train 20 models and report results for the model with the lowest valida-
tion cross-entropy (Table 2). We see that Tf+Sup does not outperform the Tf baseline, but Tf+Nd
outperforms both, despite having the fewest parameters. This suggests that nondeterministic stack
attention is more efficient at encoding language under a constrained parameter budget.

7

Published as a conference paper at ICLR 2024

LSTM LSTM+Sup LSTM+Nd
Tf Tf+Sup (Ours) Tf+Nd (Ours)

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

C
ro

ss
-e

nt
ro

py
D

iff
. w#wR

40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

C
ro

ss
-e

nt
ro

py
D

iff
. w#wR

0 50 100 150 200
0.0

0.1

0.2

0.3

C
ro

ss
-e

nt
ro

py
D

iff
. wwR

40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py
D

iff
. wwR

0 50 100 150
0.0

0.1

0.2

C
ro

ss
-e

nt
ro

py
D

iff
. wapwR

40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

C
ro

ss
-e

nt
ro

py
D

iff
. wapwR

0 20 40 60 80
0.0

0.1

0.2

0.3

C
ro

ss
-e

nt
ro

py
D

iff
. Dyck

40 50 60 70 80 90 100
0.0

0.1

C
ro

ss
-e

nt
ro

py
D

iff
. Dyck

0 50 100 150 200
0.0

0.1

Epoch

C
ro

ss
-e

nt
ro

py
D

iff
. Hardest CFL

40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

Length

C
ro

ss
-e

nt
ro

py
D

iff
. Hardest CFL

Figure 2: Language modeling results on context-free languages, comparing transformers with and
without stack attention, as well as their LSTM counterparts. Left: Cross-entropy difference (↓) in
nats between model and source distribution on the validation set, as a function of training time.
Lines are the best of 10 runs, selected by validation cross-entropy difference. Right: Cross-entropy
difference (↓) on the test set, binned by string length. The dashed line indicates the longest length in
the training set. See Table 5 for model parameter counts. Nondeterministic stack attention (Tf+Nd)
outperforms standard attention (Tf) on wwR, wapwR, and Hardest CFL; and it achieves the best
in-distribution performance on Hardest CFL despite having the fewest parameters.

8

Published as a conference paper at ICLR 2024

Table 3: Machine translation results for models trained on a subset of 100k examples from the
Europarl v7 de-en corpus. Models are organized into three tiers by number of parameters. All
results are the best of 5 runs, selected by decoder cross-entropy on the validation set. We report
decoder perplexity on the validation set (newstest2016) and BLEU on the test set (newstest2017).

Model dmodel Params. Val. Perp. ↓ Test BLEU ↑
Tf 160 4,595,200 12.52 12.21
Tf+Sup (Ours) 160 4,492,480 11.94 12.03
Tf+Nd (Ours) 160 4,465,610 13.00 11.86

Tf 240 9,580,800 12.54 12.11
Tf+Sup (Ours) 240 9,349,920 11.53 12.81
Tf+Nd (Ours) 240 9,232,810 12.46 11.50

Tf 360 20,419,200 11.80 12.69
Tf+Sup (Ours) 360 19,900,080 12.03 12.03
Tf+Nd (Ours) 360 19,551,610 12.54 11.74

8 MACHINE TRANSLATION

In this section, we test transformers with stack attention on a small machine translation task, using
stack attention in both the encoder and decoder. We use a subset of the German-English dataset from
Europarl v7 (Koehn, 2005), simulating a low-resource scenario. We use the news translation tasks
from WMT 16 (newstest2016) and WMT 17 (newstest2017) as validation and test data, respectively.
To accommodate the computational cost of nondeterministic stack attention, we limit the training,
validation, and test sets to examples where both the source and target side have no more than 150
characters, and we randomly subsample 100k examples from the training set. We tokenize the data
into a vocabulary of 32k tokens using BPE (Sennrich et al., 2016).

We use 5 layers in both the encoder and decoder, swapping out SDPA with the same kind of stack
attention in the third layer of each. We continue to use SDPA as the cross-attention mechanism.
In order to examine model performance as a function of parameter count, we vary dmodel to test
models with three size tiers, roughly doubling the number of parameters in each successive tier, and
ensuring that the number of parameters in each model is less than that of the preceding baselines.
We use 8 heads in each SDPA sublayer and set the feedforward hidden layer size to 4 · dmodel. For
superposition stack attention (Tf+Sup), we set m = dmodel. For nondeterministic stack attention
(Tf+Nd), we set |Q| = 3, |Γ| = 3, and m = 5. See Appendix G for more details.

For each tier and architecture, we train 5 models and report results for the model with the lowest
decoder cross-entropy on the validation set (Table 3). Stack attention does not appear to improve
translation quality over Tf, although Tf+Sup performs best on the middle tier. Why does stack
attention not help consistently? Perhaps natural language does not actually contain many deeply-
nested hierarchies (especially on sentences limited to 150 characters), so adding a latent model of
syntax does not provide a benefit over the baseline transformer, as suggested by Yao et al. (2021).
However, Section 7 seems to indicate that this is not the case, at least for language modeling. Perhaps
language is hierarchical, but baseline transformers of this size are already able to learn syntax just as
effectively as those with stack attention. Or, perhaps stack attention can provide an advantage over
baseline transformers, but the training procedure simply does not find parameter settings that do so.

9 CONCLUSION

We showed that two types of differentiable stack, the superposition stack (Joulin & Mikolov, 2015)
and a nondeterministic generalization of it (DuSell & Chiang, 2023), can be incorporated into trans-
formers as an attention mechanism. On CFL language modeling tasks, we showed that nondeter-
ministic stack attention improves upon the standard transformer architecture, and even improves
upon its RNN counterpart on the Hardest CFL, a challenging ambiguous language. We also showed
that nondeterministic stack attention improves perplexity on a language modeling benchmark. We
believe stack attention is an important development in unsupervised syntax-oriented transformers.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have publicly released all code we used to download and preprocess
datasets, run our experiments, and generate the figures and tables in this paper. During both develop-
ment and experimentation, we ran our code in containers to simplify the replication of our software
environment. Our code includes the original Docker image definition we used, as well as the shell
commands we used for each experiment, figure, and table. We have thoroughly documented our
experimental settings in Sections 6 to 8 and Appendices D, F and G.

Although we cannot distribute the Penn Treebank dataset used in Section 7, we have included a
script that generates the same preprocessed files used by Dyer et al. (2016) and Sartran et al. (2022)
from the raw Penn Treebank distribution files, so that anyone with a license for the Penn Treebank
can reproduce them. To our knowledge, such a script was not available previously.

We used publicly available datasets for the machine translation experiments in Section 8.

ACKNOWLEDGEMENTS

We thank Laurent Sartran for providing us with the preprocessed Penn Treebank dataset used by
Dyer et al. (2016) and Sartran et al. (2022), and for answering our questions. We thank Ken Sible for
helpful discussion about the implementation of our machine translation system. We thank Darcey
Riley, Aarohi Srivastava, Stephen Bothwell, and Ken Sible for their feedback on a draft of this
paper. We thank Alex Warstadt and Chihiro Taguchi for pointing us to some of the cited work.
We thank the Center for Research Computing at the University of Notre Dame for providing the
computing infrastructure used for our experiments. Finally, we thank the anonymous reviewers for
their invaluable discussion and feedback. This material is partially based upon work supported by
the National Science Foundation under Grant No. CCF-2019291.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In NIPS 2016
Deep Learning Symposium, December 2016. URL https://openreview.net/forum?
id=BJLa_ZC9.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR, San Diego, California, USA, May 2015. URL
https://arxiv.org/abs/1409.0473.

Kyunghyun Cho, Aaron Courville, and Yoshua Bengio. Describing multimedia content using
attention-based encoder-decoder networks. Trans. on Multimedia, 17(11):1875–1886, Novem-
ber 2015. doi: 10.1109/TMM.2015.2477044. URL https://ieeexplore.ieee.org/
document/7243334.

Noam Chomsky. Three models for the description of language. IRE Trans. on Information Theory,
2(3):113–124, 1956. doi: 10.1109/TIT.1956.1056813. URL https://ieeexplore.ieee.
org/document/1056813.

Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ninomiya. Dependency-based self-attention
for transformer NMT. In Proc. RANLP, pp. 239–246, Varna, Bulgaria, September 2019. IN-
COMA Ltd. doi: 10.26615/978-954-452-056-4 028. URL https://aclanthology.org/
R19-1028.

Brian DuSell and David Chiang. Learning context-free languages with nondeterministic stack
RNNs. In Proc. CoNLL, pp. 507–519, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.conll-1.41. URL https://aclanthology.org/
2020.conll-1.41.pdf.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In Proc. ICLR, Online, April 2022. URL https://openreview.net/forum?
id=5LXw_QplBiF.

10

https://openreview.net/forum?id=BJLa_ZC9
https://openreview.net/forum?id=BJLa_ZC9
https://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TMM.2015.2477044
https://ieeexplore.ieee.org/document/7243334
https://ieeexplore.ieee.org/document/7243334
https://doi.org/10.1109/TIT.1956.1056813
https://ieeexplore.ieee.org/document/1056813
https://ieeexplore.ieee.org/document/1056813
https://doi.org/10.26615/978-954-452-056-4_028
https://aclanthology.org/R19-1028
https://aclanthology.org/R19-1028
https://doi.org/10.18653/v1/2020.conll-1.41
https://aclanthology.org/2020.conll-1.41.pdf
https://aclanthology.org/2020.conll-1.41.pdf
https://openreview.net/forum?id=5LXw_QplBiF
https://openreview.net/forum?id=5LXw_QplBiF

Published as a conference paper at ICLR 2024

Brian DuSell and David Chiang. The surprising computational power of nondeterministic stack
RNNs. In Proc. ICLR, Kigali, Rwanda, May 2023. URL https://openreview.net/
forum?id=o58JtGDs6y.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural net-
work grammars. In Proc. NAACL HLT, pp. 199–209, San Diego, California, USA, June
2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1024. URL https:
//aclanthology.org/N16-1024.

Michael C. Frank. Bridging the data gap between children and large language mod-
els. Trends in Cognitive Sciences, 27(11):990–992, November 2023. doi: 10.1016/j.tics.
2023.08.007. URL https://www.sciencedirect.com/science/article/pii/
S1364661323002036.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Judith K. Montgomery, Charles R. Green-
wood, D. Kimbrough Oller, John H. L. Hansen, and Terrance D. Paul. Mapping the early
language environment using all-day recordings and automated analysis. American Journal of
Speech-Language Pathology, 26:248–265, May 2017. doi: 10.1044/2016 AJSLP-15-0169. URL
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169.

Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Information and
Control, 9(6):620–648, October 1966. doi: 10.1016/S0019-9958(66)80019-0. URL https:
//www.sciencedirect.com/science/article/pii/S0019995866800190.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proc. AISTATS, volume 9 of PMLR, pp. 249–256, Sardinia, Italy, May 2010. URL
https://proceedings.mlr.press/v9/glorot10a.html.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Advances in NIPS, volume 28, Montreal, Canada, De-
cember 2015. Curran Associates, Inc. URL https://papers.nips.cc/paper_files/
paper/2015/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html.

Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. J.
ACM, 12(1):42–52, January 1965. doi: 10.1145/321250.321254. URL https://dl.acm.
org/doi/10.1145/321250.321254.

Sheila A. Greibach. The hardest context-free language. SIAM J. Computing, 2(4):304–310, 1973.
doi: 10.1137/0202025. URL https://epubs.siam.org/doi/10.1137/0202025.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. ACL, 8:
156–171, January 2020. doi: 10.1162/tacl a 00306. URL https://doi.org/10.1162/
tacl_a_00306.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, November 1997. doi: 10.1162/neco.1997.9.8.1735. URL https://www.
researchgate.net/publication/13853244_Long_Short-term_Memory.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison–Wesley, 1979.

Yoshihide Igarashi. A pumping lemma for real-time deterministic context-free languages. Theoret-
ical Computer Science, 36:89–97, 1985. doi: 10.1016/0304-3975(85)90032-5. URL https:
//www.sciencedirect.com/science/article/pii/0304397585900325.

Armand Joulin and Tomáš Mikolov. Inferring algorithmic patterns with stack-augmented re-
current nets. In Advances in NIPS, volume 28, Montreal, Canada, December 2015. Cur-
ran Associates, Inc. URL https://proceedings.neurips.cc/paper/2015/hash/
26657d5ff9020d2abefe558796b99584-Abstract.html.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks. In
Proc. ICLR, Toulon, France, April 2017. URL https://openreview.net/forum?id=
HkE0Nvqlg.

11

https://openreview.net/forum?id=o58JtGDs6y
https://openreview.net/forum?id=o58JtGDs6y
https://doi.org/10.18653/v1/N16-1024
https://aclanthology.org/N16-1024
https://aclanthology.org/N16-1024
https://doi.org/10.1016/j.tics.2023.08.007
https://doi.org/10.1016/j.tics.2023.08.007
https://www.sciencedirect.com/science/article/pii/S1364661323002036
https://www.sciencedirect.com/science/article/pii/S1364661323002036
https://doi.org/10.1044/2016_AJSLP-15-0169
https://pubs.asha.org/doi/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1016/S0019-9958(66)80019-0
https://www.sciencedirect.com/science/article/pii/S0019995866800190
https://www.sciencedirect.com/science/article/pii/S0019995866800190
https://proceedings.mlr.press/v9/glorot10a.html
https://papers.nips.cc/paper_files/paper/2015/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/b9d487a30398d42ecff55c228ed5652b-Abstract.html
https://doi.org/10.1145/321250.321254
https://dl.acm.org/doi/10.1145/321250.321254
https://dl.acm.org/doi/10.1145/321250.321254
https://doi.org/10.1137/0202025
https://epubs.siam.org/doi/10.1137/0202025
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://doi.org/10.1016/0304-3975(85)90032-5
https://www.sciencedirect.com/science/article/pii/0304397585900325
https://www.sciencedirect.com/science/article/pii/0304397585900325
https://proceedings.neurips.cc/paper/2015/hash/26657d5ff9020d2abefe558796b99584-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/26657d5ff9020d2abefe558796b99584-Abstract.html
https://openreview.net/forum?id=HkE0Nvqlg
https://openreview.net/forum?id=HkE0Nvqlg

Published as a conference paper at ICLR 2024

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In Proc. ICLR,
San Diego, California, USA, May 2015. URL https://arxiv.org/abs/1412.6980.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proc. MT Sum-
mit, pp. 79–86, Phuket, Thailand, September 2005. URL https://aclanthology.org/
2005.mtsummit-papers.11.

S. Rao Kosaraju. Speed of recognition of context-free languages by array automata. SIAM J. Com-
puting, 4(3):331–340, 1975. doi: 10.1137/0204028. URL https://epubs.siam.org/
doi/10.1137/0204028.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proc. EMNLP: System Demonstrations,
pp. 66–71, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Bernard Lang. Deterministic techniques for efficient non-deterministic parsers. In Proc. ICALP,
pp. 255–269, Saarbrücken, Germany, July 1974. Springer. doi: 10.1007/978-3-662-21545-6 18.
URL https://link.springer.com/chapter/10.1007/978-3-662-21545-6_
18.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Fer-
guson, Karen Katz, and Britta Schasberger. The Penn Treebank: Annotating predicate argu-
ment structure. In Human Language Technology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8–11, 1994, Plainsboro, New Jersey, USA, March 1994. URL
https://aclanthology.org/H94-1020.

Colin McDonald and David Chiang. Syntax-based attention masking for neural machine trans-
lation. In Proc. NAACL: Student Research Workshop, pp. 47–52, Online, June 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-srw.7. URL https:
//aclanthology.org/2021.naacl-srw.7.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang, and Sebastian Schuster. Coloring the
blank slate: Pre-training imparts a hierarchical inductive bias to sequence-to-sequence models.
In Findings of ACL, pp. 1352–1368, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-acl.106. URL https://aclanthology.org/
2022.findings-acl.106.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of hierarchi-
cal structure in vanilla transformers. In Proc. ACL (Short Papers), pp. 439–448, Toronto, Canada,
July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.38. URL
https://aclanthology.org/2023.acl-short.38.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Pushdown layers:
Encoding recursive structure in transformer language models. In Proc. EMNLP, pp. 3233–3247,
Singapore, December 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.195. URL https://aclanthology.org/2023.emnlp-main.195.

Toan Q. Nguyen and Julian Salazar. Transformers without tears: Improving the normaliza-
tion of self-attention. In Proc. International Conference on Spoken Language Translation,
Hong Kong, November 2019. Association for Computational Linguistics. URL https://
aclanthology.org/2019.iwslt-1.17.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in NeurIPS, volume 32, Vancouver, Canada, December 2019. Cur-
ran Associates, Inc. URL https://papers.nips.cc/paper_files/paper/2019/
hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Jackson Petty and Robert Frank. Transformers generalize linearly, September 2021. URL https:
//arxiv.org/abs/2109.12036. arXiv:2109.12036.

12

https://arxiv.org/abs/1412.6980
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://doi.org/10.1137/0204028
https://epubs.siam.org/doi/10.1137/0204028
https://epubs.siam.org/doi/10.1137/0204028
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/D18-2012
https://doi.org/10.1007/978-3-662-21545-6_18
https://link.springer.com/chapter/10.1007/978-3-662-21545-6_18
https://link.springer.com/chapter/10.1007/978-3-662-21545-6_18
https://aclanthology.org/H94-1020
https://doi.org/10.18653/v1/2021.naacl-srw.7
https://aclanthology.org/2021.naacl-srw.7
https://aclanthology.org/2021.naacl-srw.7
https://doi.org/10.18653/v1/2022.findings-acl.106
https://aclanthology.org/2022.findings-acl.106
https://aclanthology.org/2022.findings-acl.106
https://doi.org/10.18653/v1/2023.acl-short.38
https://aclanthology.org/2023.acl-short.38
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://aclanthology.org/2023.emnlp-main.195
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/2109.12036
https://arxiv.org/abs/2109.12036

Published as a conference paper at ICLR 2024

Peng Qian, Tahira Naseem, Roger Levy, and Ramón Fernandez Astudillo. Structural guidance for
transformer language models. In Proc. ACL-IJCNLP (Long Papers), pp. 3735–3745, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.289.
URL https://aclanthology.org/2021.acl-long.289.

Walter L. Ruzzo. On uniform circuit complexity. J. Computer and System Sciences, 22(3):365–383,
1981. doi: 10.1016/0022-0000(81)90038-6. URL https://www.sciencedirect.com/
science/article/pii/0022000081900386.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Miloš Stanojević, Phil Blunsom, and Chris
Dyer. Transformer grammars: Augmenting transformer language models with syntactic in-
ductive biases at scale. Trans. ACL, 10:1423–1439, December 2022. doi: 10.1162/tacl a
00526. URL https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_
00526/114315/Transformer-Grammars-Augmenting-Transformer.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proc. ACL (Long Papers), pp. 1715–1725, Berlin, Germany, August
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https:
//aclanthology.org/P16-1162.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based trans-
formers. In Advances in NeurIPS, volume 32, Vancouver, Canada, 2019. Curran Asso-
ciates, Inc. URL https://papers.nips.cc/paper_files/paper/2019/hash/
6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2013.

Marten van Schijndel, Aaron Mueller, and Tal Linzen. Quantity doesn’t buy quality syntax
with neural language models. In Proc. EMNLP-IJCNLP, pp. 5831–5837, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1592. URL
https://aclanthology.org/D19-1592.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in NIPS, volume 30, Long Beach, California, December 2017. Curran Asso-
ciates, Inc. URL https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation. In Proc. ACL, pp. 1810–1822, Flo-
rence, Italy, July 2019a. Association for Computational Linguistics. doi: 10.18653/v1/P19-1176.
URL https://aclanthology.org/P19-1176.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer: Integrating tree structures
into self-attention. In Proc. EMNLP-IJCNLP, pp. 1061–1070, Hong Kong, China, November
2019b. Association for Computational Linguistics. doi: 10.18653/v1/D19-1098. URL https:
//aclanthology.org/D19-1098.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Bhargavi Paranjabe, Adina Williams, Tal Linzen, and Ryan Cotterell. Find-
ings of the BabyLM challenge: Sample-efficient pretraining on developmentally plausible cor-
pora. In Proc. BabyLM Challenge at CoNLL, pp. 1–34, Singapore, December 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.conll-babylm.1. URL https:
//aclanthology.org/2023.conll-babylm.1.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. In Proc. ACL-IJCNLP (Long Papers), pp.
3770–3785, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.292. URL https://aclanthology.org/2021.acl-long.292.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and Samuel R. Bowman. When do you need billions
of words of pretraining data? In Proc. ACL-IJCNLP (Long Papers), pp. 1112–1125, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.90.
URL https://aclanthology.org/2021.acl-long.90.

13

https://doi.org/10.18653/v1/2021.acl-long.289
https://aclanthology.org/2021.acl-long.289
https://doi.org/10.1016/0022-0000(81)90038-6
https://www.sciencedirect.com/science/article/pii/0022000081900386
https://www.sciencedirect.com/science/article/pii/0022000081900386
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00526/114315/Transformer-Grammars-Augmenting-Transformer
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00526/114315/Transformer-Grammars-Augmenting-Transformer
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://papers.nips.cc/paper_files/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/6e0917469214d8fbd8c517dcdc6b8dcf-Abstract.html
https://doi.org/10.18653/v1/D19-1592
https://aclanthology.org/D19-1592
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P19-1176
https://aclanthology.org/P19-1176
https://doi.org/10.18653/v1/D19-1098
https://aclanthology.org/D19-1098
https://aclanthology.org/D19-1098
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://aclanthology.org/2023.conll-babylm.1
https://aclanthology.org/2023.conll-babylm.1
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292
https://aclanthology.org/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.90
https://aclanthology.org/2021.acl-long.90

Published as a conference paper at ICLR 2024

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng Duan, Hai Zhao, and Rui Wang. SG-Net:
Syntax-guided machine reading comprehension. In Proc. AAAI, New York, New York, USA,
February 2020. URL https://ojs.aaai.org/index.php/AAAI/article/view/
6511/6367.

A DETAILS OF PUSHDOWN AUTOMATA

Here, we define pushdown automata in more detail than in Section 3.2.2.

Definition 1. A pushdown automaton (PDA) is a tuple (Q,Σ,Γ, δ, q0, F), where

• Q is a finite set of states,
• Σ is a finite input alphabet,
• Γ is a finite stack alphabet,
• δ ⊆ Q× (Σ ∪ {ε})× Γ∗ ×Q× Γ∗ is the transition function,
• q0 is the start state, and
• F ⊆ Q is the set of accept states.

Let w = w1 · · ·wn ∈ Σn be a string of input symbols. At any given time, having read up to input
position i, a PDA is in a state q ∈ Q and has a stack β ∈ Γ∗ (denoted in bottom-to-top order). We
encapsulate this as a configuration (i, q, β). The initial configuration is always (0, q0,⊥), where
⊥ ∈ Γ is a designated bottom symbol. If (q, a, u, r, v) ∈ δ, we say the PDA has transition q, u a−→
r, v, which signifies that if the PDA is in state q and has u on top of the stack, and a can be scanned
from the input, then it goes to state r, pops u, and pushes v.

A run is a sequence of transitions in δ, linked by configurations, starting with the initial configura-
tion. Since the PDA is nondeterministic, multiple transitions may ambiguously apply to the same
configuration, generating multiple runs per input string. We write π ⇝ i, q, x to indicate that run π
ends in configuration (i, q, βx) for some β ∈ Γ∗, x ∈ Γ. We say the PDA accepts string w if there
is a run π ⇝ n, f,⊥ for some f ∈ F , and rejects it otherwise.

B IMPLEMENTATION DETAILS OF THE DVPDA

Here, we provide details of implementing the dVPDA, which consists of computing r0, . . . , rn
(Eq. (12)) given ∆1, . . . ,∆n and v0, . . . ,vn, where n is the length of the input sequence. For an
explanation of how this implementation is derived, see DuSell & Chiang (2020; 2023).

We maintain three main data structures:

• A tensor γ of size (n+ 1)× (n+ 1)× |Q| × |Γ| × |Q| × |Γ| called the inner weights. We write
elements as γ[i→ t][q, x→ r, y], where −1 ≤ i ≤ n− 1, 0 ≤ t ≤ n, q, r ∈ Q, and x, y ∈ Γ.

• A tensor ζ of size (n+1)× (n+1)×|Q|× |Γ|× |Q|× |Γ|×m called the vector inner weights.
We write elements, which are members of Rm, as ζ[i→ t][q, x→ r, y], similarly to γ.

• A tensor α of size (n+2)×|Q|×|Γ| called the forward weights. We write elements as α[t][r, y],
where −1 ≤ t ≤ n, r ∈ Q, and y ∈ Γ.

Let I[ϕ] denote the indicator function, which is 1 if proposition ϕ is true and 0 otherwise. We
initialize the tensors as follows.

γ[−1→ 0][q, x→ r, y] = I[q = q0 ∧ x = ⊥ ∧ r = q0 ∧ y = ⊥] (21)
ζ[−1→ 0][q, x→ r, y] = I[q = q0 ∧ x = ⊥ ∧ r = q0 ∧ y = ⊥] v0 (22)

α[−1][r, y] = I[r = q0 ∧ y = ⊥] (23)

14

https://ojs.aaai.org/index.php/AAAI/article/view/6511/6367
https://ojs.aaai.org/index.php/AAAI/article/view/6511/6367

Published as a conference paper at ICLR 2024

For 1 ≤ t ≤ n and −1 ≤ i ≤ t− 1,

γ[i→ t][q, x→ r, y] = I[i = t− 1] ∆t[q, x→ r, xy] push

+
∑

s∈Q,z∈Γ

γ[i→ t−1][q, x→ s, z] ∆t[s, z → r, y] repl.

+

t−2∑
k=i+1

∑
u∈Q

γ[i→ k][q, x→ u, y] γ′[k → t][u, y → r]. pop

(24)

Here, γ′ is an auxiliary tensor of size (t − 1) × |Q| × |Γ| × |Q| that is computed once for each t.
Elements are written as γ′[k → t][u, y → r], where 0 ≤ k ≤ t − 1, u, r ∈ Q, and y ∈ Γ. For
0 ≤ k ≤ t− 2,

γ′[k → t][u, y → r] =
∑

s∈Q,z∈Γ

γ[k → t−1][u, y → s, z] ∆t[s, z → r, ε]. (25)

For 1 ≤ t ≤ n and −1 ≤ i ≤ t− 1,

ζ[i→ t][q, x→ r, y] = I[i = t− 1] ∆t[q, x→ r, xy] vt push

+
∑

s∈Q,z∈Γ

ζ[i→ t−1][q, x→ s, z] ∆t[s, z → r, y] repl.

+

t−2∑
k=i+1

∑
u∈Q

ζ[i→ k][q, x→ u, y] γ′[k → t][u, y → r]. pop

(26)

For 0 ≤ t ≤ n,

α[t][r, y] =

t−1∑
i=−1

∑
q∈Q,x∈Γ

α[i][q, x] γ[i→ t][q, x→ r, y]. (27)

For each t, we compute a tensor ηt of size |Q| × |Γ| ×m. We write elements, which are members
of Rm, as ηt[r, y], where r ∈ Q and y ∈ Γ.

ηt[r, y] =

t−1∑
i=−1

∑
q∈Q,x∈Γ

α[i][q, x] ζ[i→ t][q, x→ r, y] (28)

Finally, we compute the stack reading rt, implementing Eq. (12), as follows.

rt[r, y] =
ηt[r, y]∑

r′∈Q,y′∈Γ α[t][r
′, y′]

(29)

To prevent underflow and overflow, we compute γ, ζ, α, γ′, and η entirely in log space.

How do these equations fit with Eq. (4)? Note that γ, ζ, and α can be computed incrementally in
order of increasing t. To achieve the right time and space complexity, it is important to pre-allocate
γ, ζ, and α and update them in-place. We can represent the stack state St as (t, γ, ζ, α). Then
STACK((t − 1, γ, ζ, α),∆t,vt) computes all values up to timestep t, assuming that all values up
to t − 1 have been computed, and increments t − 1 to t. We let READING((t, γ, ζ, α)) implement
Eqs. (28) and (29).

C TIME AND SPACE COMPLEXITY OF STACK ATTENTION

In Table 4, we show the serial time and space complexity of the three types of attention studied in
this paper: SDPA, superposition stack attention (Sup), and nondeterministic stack attention (Nd).
In the case of superposition stack attention, if only the forward pass is needed, past stacks can be
discarded at each timestep, reducing the space complexity by a factor of O(n).

15

Published as a conference paper at ICLR 2024

Table 4: Serial time and space complexity of the types of attention studied in this paper. “Serial
Time” and “Space” are for a combined forward-backward pass; “Space (Forward Only)” is for a
forward pass only. Here, n is the length of the input sequence, dk is the size of the query/key vectors
in SDPA, dv is the size of the value vectors in SDPA, m is the size of the pushed stack vectors vt

in stack attention, Q is the set of PDA states in the nondeterministic stack, and Γ is the set of stack
symbols in the nondeterministic stack. For simplicity, we disregard the linear transformations of
Eqs. (1) and (17) to (20).

Attention Serial Time Space Space (Forward Only)

SDPA O(dkn
2 + dvn

2) O(n2 + dkn+ dvn) same
Sup O(mn2) O(mn2) O(mn)

Nd O(m|Q|3|Γ|3n2 +m|Q|3|Γ|2n3) O(m|Q|2|Γ|2n2) same

In order to provide a better picture of the practical speed of stack attention on GPUs, in Table 1,
we show the parallel time complexity of our current implementations of stack attention, as well as
improved parallel time complexity that could be attained after applying known speedups.

Stack attention introduces a recurrence that does not exist in SDPA (see Eq. (4)), so it cannot be par-
allelized across the timestep dimension as easily. (Note that SDPA requires a softmax over n inputs,
which can be done in O(log n) parallel time.) However, stack attention in transformers does present
opportunities for parallelization that do not exist in stack-augmented RNNs. In stack-augmented
RNNs, the actions and pushed vector for timestep t depend on the hidden state at timestep t. Since
the hidden state computation cannot be parallelized across t, neither can the stack computation. On
the other hand, in a transformer with stack attention, the stack actions and pushed vectors for all t
are computed in parallel by earlier SDPA layers and are available all at once. This means that we
can use techniques that parallelize the stack computation across t.

In the case of nondeterministic stack attention, our current implementation, which is based on Lang’s
algorithm (see Appendix B), populates γ and ζ serially for increasing t, incurring a cost of Θ(n)
parallel time. The update at each step is parallelized over i, but the summation over k runs in Θ(k)
parallel time. So, the overall parallel time complexity is O(n2).

We can parallelize Lang’s algorithm over t in a manner very similar to that of parallel CKY parsing
(Kosaraju, 1975). This would require n iterations that populate γ and ζ in increasing order of span
size t−i. Each iteration would, in parallel over each i, compute the terms for all splits in the pop rule
in parallel over k, and sum them in O(log k) parallel time. So, the overall parallel time complexity
can be lowered to O(n log n). Since CFL recognition is in NC2 (Ruzzo, 1981), theoretically this
can be lowered even further to O((log n)2).

In the case of superposition stack attention, each stack element depends only on a constant number
of elements (three) from the previous timestep, so each stack update can be done in O(1) parallel
time. Our implementation performs stack updates in order of increasing t, so overall it runs in
O(n) parallel time. Since superposition stack attention is a special case of nondeterministic stack
attention, it can also be theoretically lowered to O((log n)2), and perhaps further.

GPU memory limitations are sometimes a practical challenge when using nondeterministic stack
attention. For the machine translation experiments in particular, which use separate stack attention
modules in both the encoder and decoder, we had to contend with memory fragmentation issues in
PyTorch’s CUDA memory allocator.

For examples of wall-clock runtimes and GPU memory cost, see Table 6.

D DETAILS OF CONTEXT-FREE LANGUAGE EXPERIMENTS

Here, we provide additional details about the models and training procedure used in Section 6.

16

Published as a conference paper at ICLR 2024

Table 5: Parameter counts for each task and each model used in Section 6. Parameter counts differ
across tasks due to differences in vocabulary size.

Task LSTM LSTM+Sup LSTM+Nd Tf Tf+Sup Tf+Nd

w#wR 42,004 41,402 31,138 43,044 40,964 33,273
wwR 41,503 40,936 30,817 42,979 40,899 33,216
wapwR 41,503 40,936 41,482 42,979 40,899 36,576
Dyck 42,505 41,868 31,459 43,109 41,029 33,330
Hardest CFL 44,008 43,266 43,087 43,304 41,224 36,861

D.1 MODELS

For LSTMs, inputs are encoded as one-hot vectors. We use PyTorch’s (Paszke et al., 2019) LSTM
implementation, which by default includes redundant bias parameters bhi, bhf , bhg, and bho. We
remove these parameters in our experiments and from our reported parameter counts. We set the
initial hidden state and memory cell to 0.

For transformers, we use PyTorch’s transformer layer implementation. Like Vaswani et al. (2017),
we map inputs to vectors of size dmodel with a scaled embedding layer and apply sinusoidal posi-
tional encodings. We do not tie input and output embeddings. The first input token to each trans-
former is always BOS. We train all models to predict EOS as the last output token. We map the
outputs of the final layer to logits for predicting the next token via a learned affine transformation.
We use a dropout rate of 0.1 throughout the transformer; PyTorch applies it in the same places as
Vaswani et al. (2017), and additionally to the hidden units of feedforward sublayers and the atten-
tion probabilities of SDPA (zt in Eq. (2)). We apply dropout to the hidden units of the feedforward
sublayers of stack attention layers as well.

We show parameter counts for all models on all tasks in Table 5.

D.2 INITIALIZATION

We initialize all fully-connected layers with Xavier uniform initialization (Glorot & Bengio, 2010)
except for the recurrent LSTM layer and all fully-connected layers in SDPA layers. For layer norm,
we initialize all weights to 1 and all biases to 0. We initialize all other parameters by sampling
uniformly from [−0.1, 0.1].

D.3 TRAINING

We use minibatches of size 10. We generate batches once before training; to generate a batch, we first
select a length and then sample 10 strings of that length. We randomly shuffle batches before each
epoch. We train each model by minimizing its cross-entropy (summed over the timestep dimension
of each batch) on the training set, and we use per-symbol cross-entropy on the validation set as
the early stopping criterion. We optimize parameters with Adam (Kingma & Ba, 2015), and we
randomly sample the initial learning rate from a log-uniform distribution over [5× 10−4, 1× 10−2].
We clip gradients with a threshold of 5 using L2 norm rescaling. We multiply the learning rate by
0.9 after 5 epochs of no improvement in cross-entropy on the validation set, and we stop early after
10 epochs of no improvement. We train for a maximum of 200 epochs.

E ANALYSIS OF STACK ATTENTION

In Figs. 3 and 4, we show heatmaps of the stack actions learned by Tf+Sup on the real-time DCFL
tasks. These actions are from the same models whose results are shown in Fig. 2.

F DETAILS OF NATURAL LANGUAGE MODELING EXPERIMENTS

Here, we provide additional details about the models and training procedure used in Section 7.

17

Published as a conference paper at ICLR 2024

pu
sh
no

-oppo
p

BOS
0
1
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
0
#
0
1
0
0
1
1
1
0
1
1
0
0
0
1
0
1
1
0
1
0

EOS

Action

←
Sy

m
bo

l

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Figure 3: Visualization of superposition
stack attention on a string in w#wR. As ex-
pected, the model learns to push all symbols
before #, do nothing when reading #, and
pop all symbols after #.

pu
sh
no

-oppo
p

BOS
[
(
)
]
[
[
(
[
(
(
[
]
)
)
[
(
[
[
[
(
(
(
(
[
]
)
)
(
)
)
)
]
]
]
)
]
]
)
]
]

EOS

Action

←
Sy

m
bo

l

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

Figure 4: Visualization of superposition
stack attention on a string in the Dyck lan-
guage. As expected, the model learns to push
opening brackets and pop when reading clos-
ing brackets.

18

Published as a conference paper at ICLR 2024

Table 6: Computational cost of training each architecture on the PTB language modeling task when
run on an NVIDIA TITAN Xp GPU.

Model Examples/s Minutes/Epoch GPU Memory

Tf 859 0.8 394 MB
Tf+Sup 345 1.9 397 MB
Tf+Nd 27 24.3 1.91 GB

F.1 MODELS

The first input token to each transformer is always BOS, and we train it to predict EOS as the last
output token. We use a dropout rate of 0.1 in all the same places as in Appendix D.1. We use
sinusoidal positional encodings. We do tie the embeddings of the input and output layers.

F.2 INITIALIZATION AND TRAINING

We initialize parameters in the same way as Appendix D.2, except the interval used for uniform
sampling is [−0.01, 0.01].
For each run, we randomly sample a batch size B from a uniform distribution over [128, 512]. For
each epoch, we randomly shuffle examples and group examples of similar lengths into the same
minibatch, enforcing an upper limit of B tokens per batch, including padding, BOS, and EOS tokens.
We clip gradients with a threshold of 5 using L2 norm rescaling.

We optimize parameters using Adam. For each run, we randomly sample the initial learning rate
from a log-uniform distribution over [10−6, 10−4]. We take a checkpoint every 20k examples to
evaluate the model’s cross-entropy on the validation set. We multiply the learning rate by 0.5 after 2
checkpoints with no improvement on the validation set, and we stop early after 4 checkpoints with
no improvement. We use the checkpoint with the lowest validation cross-entropy.

We show the computational cost of training each architecture on this task in Table 6.

G DETAILS OF MACHINE TRANSLATION EXPERIMENTS

Here, we provide additional details about the data preprocessing, models, training procedure, and
decoding algorithm used in Section 8.

G.1 DATA PREPROCESSING

We limit the training, validation, and test sets to examples where the source and target side each have
no more than 150 Unicode characters after applying NFKC normalization. In the training set, we
filter out training examples with empty sentences and those where the length in characters of one side
is more than 4 times that of the other. After filtering, we train a tokenizer on the combined source
and target sentences of the subsampled training data using the SentencePiece (Kudo & Richardson,
2018) implementation of BPE (Sennrich et al., 2016). We use a vocabulary of 32k tokens and a
frequency threshold of 50.

G.2 MODELS

We always give the encoder EOS as the last input token to allow it to detect the end of the source
sequence. We always give the decoder BOS as the first input token and have it predict EOS as the last
output token. SDPA is not causally masked in the encoder, but it is in the decoder. Like Vaswani
et al. (2017), we tie the embeddings of the encoder input, decoder input, and decoder output layers.
We use a dropout rate of 0.1 as in Appendix F.1, applying it also to the softmax probabilities of
cross-attention.

19

Published as a conference paper at ICLR 2024

G.3 INITIALIZATION AND TRAINING

We initialize parameters in the same way as Appendix F.2. For every epoch, we randomly shuffle the
training data and group examples where the combined source and target length in tokens is similar
into the same minibatch. We limit the number of tokens in the source or target side of a batch to
2048 tokens, including padding, BOS, and EOS symbols. We use label smoothing with a weight of
0.1. We clip gradients with a threshold of 5 using L2 norm rescaling.

We optimize parameters using Adam. We randomly sample the initial learning rate from a log-
uniform distribution over [10−5, 10−3]. We take a checkpoint every 50k examples to evaluate the
decoder’s cross-entropy on the validation set. We multiply the learning rate by 0.5 after 2 check-
points with no improvement on the validation set, and we stop early after 4 checkpoints with no
improvement. We train for a maximum of 100 epochs. We use the checkpoint with the best valida-
tion cross-entropy.

G.4 DECODING

We use beam search for decoding, using a beam size of 4. During beam search, we apply length nor-
malization to the probabilities of hypotheses before selecting the top k hypotheses for the next beam.
We do this by dividing the log-probability of each hypothesis by the number of tokens generated by
that hypothesis so far (including EOS).

20

	Introduction
	Related work
	Background
	Scaled dot-product attention
	Differentiable stacks
	Superposition stack
	Nondeterministic stack

	Comparison of differentiable stacks
	Method
	Context-free languages
	Natural language modeling
	Machine translation
	Conclusion
	Details of pushdown automata
	Implementation details of the dVPDA
	Time and space complexity of stack attention
	Details of context-free language experiments
	Models
	Initialization
	Training

	Analysis of stack attention
	Details of natural language modeling experiments
	Models
	Initialization and training

	Details of machine translation experiments
	Data preprocessing
	Models
	Initialization and training
	Decoding

