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Abstract

Frontier Large Language Models (LLMs) pose unprecedented dual-use risks
through the potential proliferation of chemical, biological, radiological, and nuclear
(CBRN) weapons knowledge. We present the first comprehensive evaluation of 10
leading commercial LLMs against both a novel 200-prompt CBRN dataset and a
180-prompt subset of the FORTRESS benchmark, using a rigorous three-tier attack
methodology. Our findings expose critical safety vulnerabilities: Deep Inception
attacks achieve 86.0% success versus 33.8% for direct requests, demonstrating
superficial filtering mechanisms; Model safety performance varies dramatically
from 2% (claude-opus-4) to 96% (mistral-small-latest) attack success rates; and
eight models exceed 70% vulnerability when asked to enhance dangerous material
properties. We identify fundamental brittleness in current safety alignment, where
simple prompt engineering techniques bypass safeguards for dangerous CBRN
information. These results challenge industry safety claims and highlight urgent
needs for standardized evaluation frameworks, transparent safety metrics, and more
robust alignment techniques to mitigate catastrophic misuse risks while preserving
beneficial capabilities.

1 Introduction

The rapid advancement of Large Language Models (LLMs) presents a significant dual-use challenge
within artificial intelligence research. Although these models offer substantial benefits for scientific
inquiry, medical research, and educational applications, they simultaneously introduce potential
risks regarding the proliferation of chemical, biological, radiological, and nuclear (CBRN) weapons
knowledge. This concern has garnered attention from governmental bodies, as evidenced by the
U.S. Executive Order 14110 on "Safe, Secure, and Trustworthy AI" and subsequent Department of
Homeland Security analysis indicating that LLLMs may reduce barriers for malicious actors seeking
to develop CBRN threats [[1]].

Despite widespread acknowledgment of CBRN risks within Al safety frameworks, a significant
research gap persists in empirical assessment of safety measure efficacy against sophisticated adver-
sarial techniques. Current evaluation methodologies exhibit several limitations: they predominantly
employ direct prompting techniques that inadequately represent realistic adversarial behaviors; they
disproportionately focus on biological risks at the expense of chemical, radiological, and nuclear do-
mains; and they primarily assess factual knowledge retrieval rather than evaluating models’ capacity
to facilitate applications of potentially harmful information.

This study addresses these methodological gaps through systematic evaluation of 10 frontier LLMs,
employing:



1. A comprehensive evaluation dataset comprising 200 prompts in all CBRN domains, designed
to assess multiple capabilities dimensions including factual recall, process instruction, novel
generation, and synthesis guidance.

2. A structured three-tier attack taxonomy of increasing methodological sophistication involv-
ing direct requests, obfuscated requests, and Deep Inception attacks to simulate realistic
adversarial approaches.

3. Standardized evaluation criteria aligned with established Al risk management frameworks
to allow systematic cross-model comparison and identification of vulnerability patterns.

Our empirical analysis reveals several significant findings regarding the current implementation of
safety:

1. Fundamental Brittleness of Safety Mechanisms: The substantial effectiveness differential
between Deep Inception[2] attacks (86.0% success) and direct requests (33.8% success)
suggests current safety systems rely predominantly on superficial pattern matching rather
than semantic understanding of harmful intent.

2. Heterogeneous Safety Implementation: Attack success rates exhibit extraordinary variance
across models (2% to 96%), indicating substantial differences in the implementation of
safety despite comparable capability levels.

3. Direct Query Vulnerability: Basic unobfuscated requests for sensitive information are
successful at noteworthy rates, with quantitative analysis indicating that some models
provide potentially harmful CBRN content in 89% of direct query instances.

4. Implementation Quality Variance: Significant performance differences exist between
models, with some demonstrating substantially higher resilience (2%-35% ASR) compared
to others exhibiting concerning vulnerability levels (89%-96% ASR).

5. Enhancement Request Vulnerability: Eight of ten evaluated models exceed 70% vulnera-
bility when prompted to enhance dangerous material properties, suggesting a critical gap in
safety implementation for this high-risk category.

These findings indicate a need for methodological advancements in standardized evaluation protocols,
transparent safety metrics, and more robust alignment techniques to address potential misuse risks
while preserving beneficial model capabilities. The evaluation framework presented here provides a
foundation for systematic monitoring of CBRN safety implementation as model capabilities continue
to advance.

2 Background and Related Work

2.1 Prior CBRN Risk Assessments

The potential of LLMs to increase CBRN and biosecurity risks has been a subject of increasing
concern and research. Early studies explored whether LLMs could lower the barrier to accessing
dual-use information, finding that while existing models could provide some dangerous information,
they often lacked the reliability and detailed know-how required for weaponization [3]. The risks are
not only theoretical; researchers have demonstrated that Al tools can be repurposed from benign drug
discovery to generate novel toxic compounds [4], and that LLMs can readily provide instructions for
the anesthetization of pandemic pathogens [3].

Subsequent red-teaming efforts by model developers and independent researchers have confirmed
these initial findings. Studies by OpenAl [3] and Anthropic [6] concluded that while current gen-
eration models provide at most a marginal increase in the ability to create biological threats, this
risk landscape is evolving rapidly. These studies emphasize that the primary barrier to misuse is not
just access to information but the tacit knowledge required for experimentation, a gap that Al is not
yet able to close. A comprehensive report from the Center for New American Security [7] further
contextualizes these findings, highlighting that while AI’s current impact is limited, future capabilities
in lab automation and experimental instruction could significantly alter the risk landscape.

Advances in red-teaming methodologies have significantly enhanced our ability to detect and evaluate
safety vulnerabilities in frontier models. Perez et al. [8] demonstrated that using LLMs themselves



for red-teaming can efficiently generate adversarial prompts that bypass safety guardrails. Hendrycks
et al. [9] further refined these approaches through "chain of utterances" techniques that simulate
multi-turn adversarial conversations. Recent work by Berger et al. [[10] provides a comprehensive
taxonomy of prompt engineering techniques that can exploit LLM vulnerabilities, particularly relevant
to CBRN safety evaluation. The Berkeley Center for Long-Term Cybersecurity [11] emphasizes
that comprehensive evaluation methods must combine automated benchmarks with sophisticated
red-teaming approaches to effectively assess dual use hazards of foundation models.

To better structure the analysis of these risks, researchers have proposed frameworks that categorize
the potential misuse of LLMs throughout the CBRN production lifecycle, identifying pathways
such as brainstorming, technical assistance, code generation for process simulation and component
design [[12]]. Weidinger et al. [13] provide a broader taxonomy of Al risks that contextualizes CBRN
threats within a comprehensive risk landscape, highlighting the interconnections between various risk
categories and their potential cascading effects.

To address the need for objective and scalable testing, researchers have developed increasingly
sophisticated benchmarks and evaluation methodologies. Scale Al released the Weapons of Mass
Destruction Proxy (WMDP) and FORTRESS benchmarks to assess the risks of WMD proliferation
and the trade-off between model safety and usefulness [14, [15]. More broadly, benchmarks such
as SafetyBench [16] with over 11,000 multiple-choice questions across seven safety categories,
SafeBench [17] for multimodal LLLMs, and WalledEval [18] with 35+ safety benchmarks have
advanced our capability to evaluate Al safety comprehensively.

Recent systematic reviews of evaluation methodologies, such as Grey and Segerie’s "Safety by
Measurement” [[19], have highlighted persistent challenges in safety measurement, including proving
the absence of harmful capabilities and detecting potential model sandbagging. Blythe et al. [20]
further emphasize the difficulties in defining and operationalizing catastrophic events caused by Al
models, particularly for complex domains such as CBRN risks. Despite these advances, existing
benchmarks primarily test for direct knowledge recall rather than assessing a model’s capacity to assist
in the application of dangerous knowledge a gap our work addresses through a novel process-oriented
evaluation using a multi-step attack taxonomy.

2.2 Al Safety Frameworks

As frontier AI models have become more powerful, leading developers have established public safety
frameworks to articulate their commitment to managing dual-use risks. These frameworks, often
called Responsible Scaling Policies or Preparedness Frameworks, typically define tiered risk levels to
guide internal safety research and governance. They serve as public declarations of what developers
consider to be unacceptable model capabilities and establish internal triggers for implementing
additional safeguards.

A critical review of these documents reveals a strong industry-wide consensus. The development or
facilitation of CBRN threats is almost universally classified as the highest and most severe risk level.
As shown in TableE], organizations use terms such as "Critical Risk" (OpenAl, Meta), "Catastrophic
Malicious Use" (xAl), or "Al Safety Level 4" (Anthropic) to categorize these dangers. This consensus
underscores the shared understanding that preventing the proliferation of CBRN knowledge is an
essential safety objective. However, while these frameworks define what to prevent, they lack the
specific and verifiable metrics required to measure a model’s propensity to cause such harm, creating
the evaluation gap our research aims to address.

3 Methodology and Experimental Setup

We evaluate CBRN safety vulnerabilities in 10 frontier LLMs using a three-tier attack taxonomy
applied to two complementary datasets. Our methodology aligns with the NIST AI Risk Management
Framework [31]], with Attack Success Rate (ASR = unsafe responses / total queries x 100%) as our
primary metric.



Table 1: AI Safety Framework Classification of CBRN Risks

Framework | Organization | Risk Classification for CBRN
AT Safety Levels (ASL)[21]] Anthropic ASL-3 to ASL-4 (High Catastrophic Risk)
Preparedness Framework[22]] OpenAl High to Critical Risk
Frontier Safety Framework[23] Google Critical Capability Level
Secure Al Framework[24]] Cohere High to Very High Risk
Risk Management Framework[23] xAl Catastrophic Malicious Use
Frontier AI Framework[26]] Meta Critical Risk Threshold
Frontier Governance[27] Microsoft High to Critical Risk
Frontier Model Safety[28]] Amazon (AWS) High-Risk Capability
Responsible Use Policy[29] Mistral Al High-Risk/Prohibited Use
Dual-Use Model Policies[30] Hugging Face Extreme Risk

AT Risk Management[31]] NIST High Impact (Loss of Life)

3.1 Evaluation Framework and Datasets

Our assessment framework models a motivated, technically proficient but non-expert adversary
seeking CBRN information. This actor can reformulate prompts, but lacks specialized infrastructure,
representing the threat vector where Al systems could most meaningfully lower barriers to harm.

We employ two datasets: (1) A FORTRESS subset [15] containing 180 prompt pairs (each with adver-
sarial and benign versions) filtered by risk_domain to include Chemical, Biological, Radiological,
Nuclear, and Explosive categories; and (2) A custom CBRN dataset with 200 prompts developed to
address coverage gaps in existing benchmarks.

For the custom dataset, we created a comprehensive risk taxonomy (Figure[T)) derived from industry
safety frameworks (Table [I). Using this taxonomy with the SAGE-RT methodology [32], we
generated diverse adversarial prompts balanced across four domains (50 per category) and four
capability types: knowledge retrieval, process instructions, novelty generation, and synthesis guidance
(25% each).

Characteristic Chemical Biological Radiological Nuclear
Threats Threats Hazavrds Weapons

Genetic Weapon design
& Kes components
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Figure 1: CBRN Risk Taxonomy used for dataset creation, showing threat vectors across domains
and capability dimensions.
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3.2 Attack Taxonomy and Experimental Protocol

To simulate increasing adversarial sophistication, we applied three attack types to all prompts:

* Direct (Baseline): Unmodified adversarial requests

* Obfuscation: Text transformations that evade keyword filters while preserving semantics,
using techniques across character-level (e.g., leetspeak), encoding-based (e.g., Base64), and
structural (e.g., chunking) categories



* Deep Inception: A prompt-based jailbreak using nested role-playing scenarios to bypass
safety controls

Our experimental procedure is summarized in the following algorithm:

Algorithm 1 Evaluation Protocol
1: Input: 10 models, 200 CBRN prompts, 180 FORTRESS prompts
2: Output: Attack Success Rates (ASR) and response pattern analysis
3: for each model do
4: for each prompt do

5: Generate 3 variants: Direct, Obfuscated, Deep Inception
6: Query model via API (temperature=0.0)
7: Two raters classify responses (binary safe/unsafe and detailed 8-class taxonomy)
8: Resolve disagreements through arbitration (x=0.87)
9: end for
10: end for

11: Compute ASR and response class distribution per model/attack type/domain

In total, we evaluated 11,400 model responses (1,140 prompts per model), with comprehensive
annotation using both binary safe/unsafe classification and a fine-grained response taxonomy to
analyze behavior patterns (see Appendix [B).

4 Results

Our evaluation reveals significant safety vulnerabilities across frontier models on both our custom
CBRN dataset and the FORTRESS benchmark subset. We present our findings through statistical
visualizations that highlight key trends in model performance and attack effectiveness.

4.1 Model and Attack Type Vulnerabilities

Our evaluation revealed significant safety vulnerabilities across all tested models. Figures[2]and[3]
illustrate the Attack Success Rates (ASR) across models, attack types, and datasets.

Extreme Model Safety Disparity: The heatmap reveals an unprecedented 87 percentage point
gap between the most and least secure models. Claude-Opus-4 demonstrated exceptional resilience
(2-28% ASR) while Mistral-Small-Latest exhibited alarming vulnerability (89-96% ASR across all
CBRN attack types). This disparity suggests effective safety alignment is achievable with current
technology but not uniformly implemented across the industry.

Safety System Brittleness: Most models showed dramatic vulnerability increases when facing more
sophisticated attacks. GPT-4.1 exhibited a 211% ASR increase from Basic (27%) to Deep Inception
(84%) attacks, while Llama-4-Maverick-Instruct showed a 406% increase (17% to 86%). These
patterns suggest current safety mechanisms rely on superficial pattern matching rather than deeper
understanding of harmful intent.

Attack Sophistication Impact: As shown in Figure 3] we observed clear progression in attack
effectiveness across all datasets when looking at aggregate model performance. For our custom
CBRN dataset, the median ASR across all models increased from 33.8% for Basic requests to 51.5%
for Obfuscated requests and 86.0% for Deep Inception attacks a 154% jump. Even with benign
FORTRESS prompts, Deep Inception attacks doubled the success rate compared to direct requests,
while adversarial FORTRESS prompts showed high vulnerability across all attack types (median
ASR: 60.3%, 63.5%, and 81.1% respectively).

Domain-Specific Vulnerability: Chemical weapons information was most accessible across models
(median ASR 71.3%), followed by biological (65.7%), radiological (58.2%), and nuclear (55.1%)
content. All domains showed substantially higher vulnerability to Deep Inception attacks.
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Figure 2: Heatmap of Attack Success Rates across models and attack types. The visualization
reveals an 87 percentage point gap between the most secure model (Claude-Opus-4, 2-28% ASR)
and the least secure (Mistral-Small-Latest, 89-96% ASR). Most models show dramatic vulnerability
increases from Basic to Deep Inception attacks, with GPT-4.1 jumping from 27% to 84% ASR and
Llama-4-Maverick-Instruct from 17% to 86%.

4.2 Implications of Findings

Our results paint a concerning picture of the current state of CBRN safety in frontier language
models. The extreme performance disparity between models (87 percentage points from best to
worst) demonstrates that effective safety alignment for CBRN content is achievable with current
technology, but implementation quality varies dramatically across the industry. The particular
vulnerability to Deep Inception attacks reveals that most safety mechanisms rely on superficial pattern
matching rather than deeper understanding of harmful intent. Although this analysis focuses on
CBRN specifically, these findings suggest that similar vulnerabilities may exist for other categories of
harmful content that require sophisticated reasoning to identify. Most critically, our results indicate
that evaluations using only direct, straightforward requests as is common in many safety benchmarks
substantially underestimate real-world vulnerability against motivated adversaries employing even
modestly sophisticated evasion techniques.

Key findings include:

» Attack Sophistication Impact: Direct requests had a 33.8% success rate, Deep Incep-
tion attacks 86.0%, and obfuscation attacks 51.5%, demonstrating that even basic prompt
engineering techniques can dramatically increase success rates.

* Content Type Vulnerability: Enhancement requests (92.9% ASR) and synthesis guidance
(68.1% ASR) were particularly successful, indicating that the models struggle most with
preventing creative applications of dangerous knowledge.

* Domain-Specific Vulnerabilities: Chemical weapons information was most accessible
(71.3% ASR), followed by biological (65.7%), radiological (58.2

4.3 Ethical Considerations

This research was conducted with careful attention to responsible disclosure principles. We imple-
mented several safeguards: (1) all testing was performed in controlled environments with appropriate
security measures; (2) prompts were designed to elicit concerning responses without providing
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Figure 3: Distribution of Attack Success Rates aggregated across all models by attack type. Each
boxplot represents the distribution of ASR values for all 10 models, showing the overall effectiveness
of each attack strategy. For the CBRN dataset, median ASR across all models increases from 33.8%
(Basic) to 51.5% (Obfuscated) to 86.0% (Deep Inception). Statistical significance was established
using paired Wilcoxon signed-rank tests (p < 0.001) for all comparisons except between Basic and
Obfuscation in FORTRESS Adversarial (p = 0.78).

complete operational information; (3) findings were shared with affected model developers prior to
publication following coordinated vulnerability disclosure practices; and (4) we do not release the
full prompt dataset or obfuscation code to prevent misuse while maintaining scientific reproducibility
through methodological transparency.

5 Discussion

Our findings reveal several critical insights about the current state of Al safety that both confirm and
extend previous research in this domain:

1. Safety Mechanisms are Superficial and Brittle

The dramatic increase in success rates between direct requests (33.8%) and Deep Inception attacks
(86.0%) suggests that current safety measures rely primarily on keyword-based filters rather than
deeper semantic understanding. Models appear to be trained to recognize and refuse explicit harmful
requests but lack the reasoning capabilities to identify the same harmful intent when presented
through different framing. This aligns with observations by Berger et al. [[10], who demonstrated
that prompt engineering techniques can systematically bypass safety guardrails by obfuscating intent.
Our findings extend this work by quantifying the specific vulnerability gap in the high-stakes CBRN
domain.

2. Industry Safety Standards Vary Dramatically

The 87 percentage point gap between the best and worst performing models indicates a lack of
standardized safety practices across the industry. This suggests that robust safety is achievable
with current technology, but is not being uniformly implemented. As noted in Grey and Segerie’s
systematic review [[19], the absence of standardized evaluation frameworks makes it difficult to
compare safety implementations across models meaningfully. This variation poses significant
challenges for governance frameworks that rely on consistent safety standards, as highlighted by
Blythe et al. [20] in their analysis of measurement challenges in Al risk governance.

3. Next-Generation Safety Requires Deeper Alignment



The high success rates for enhancement and synthesis prompts (92.9% and 68.1% respectively)
demonstrate that current safety approaches fail to prevent creative applications of dangerous knowl-
edge. Future safety systems will need to incorporate deeper reasoning about potential harm, context
awareness, and robust out-of-distribution detection. The Berkeley Center for Long-Term Cyberse-
curity [[L1] similarly concludes that comprehensive safety mechanisms must go beyond superficial
content filtering to incorporate reasoning about potential applications and dual-use implications of
seemingly benign information.

4. Multi-Method Evaluation is Essential

Our three-tier attack taxonomy reveals that single-method evaluations dramatically underestimate
model vulnerabilities. This finding resonates with Hendrycks et al.’s [9] work on chain-of-utterance
attacks, which demonstrated that multi-turn interactions can more effectively reveal safety weak-
nesses than single-prompt approaches. As benchmarks like SafetyBench [16] and WalledEval [[18]]
continue to evolve, incorporating multi-method attack vectors will be critical for comprehensive
safety assessment.

6 Limitations and Future Work

Limitations. Our study has two primary limitations. First, methodological constraints include
reliance on human judgment for response classification and focus on text-only interactions, excluding
multimodal risk vectors like dangerous image generation. Second, scope limitations include our
attack taxonomy capturing only three sophistication levels while adversarial techniques continue to
expand [10], and results representing just a point-in-time snapshot (Q2 2025) of rapidly evolving
models. Due to the sensitive nature of CBRN information, we cannot publicly release our full prompt
dataset, though we have provided detailed methodological specifications and followed coordinated
vulnerability disclosure practices.

Future Work. Building on these findings, several research directions warrant exploration: (1)
extending evaluation to multimodal capabilities and more sophisticated attack vectors including
multi-turn interactions and collaborative attacks; (2) developing standardized benchmarks for ongoing
monitoring of CBRN safety as model capabilities advance; and (3) exploring more robust alignment
techniques that maintain effectiveness against sophisticated attacks while preserving beneficial
capabilities. These efforts would benefit from cross-industry collaboration to establish shared safety
standards and evaluation methodologies for high-risk domains.

7 Conclusion

This work presents a systematic evaluation of CBRN safety vulnerabilities in 10 frontier language
models, revealing critical and widespread safety gaps. With an overall attack success rate of 57.1%,
our findings show that most models are highly susceptible to misuse, particularly when faced with
sophisticated, multi-step attacks. The high success of novelty (58.7% ASR) and synthesis (68.1%
ASR) prompts is especially concerning, indicating that current safety measures do not prevent the
disclosure of creative and procedural dual-use information.

However, the significant performance gap between the most (claude-opus-4, 13% ASR) and least
secure (mistral-small-latest, 94% ASR) models demonstrates that robust safety is an achievable
engineering goal. The industry must move away from brittle, reactive safety filters and toward deeply
integrated, reasoning-based safety alignment. As Al capabilities advance, developing, verifying, and
standardizing these next-generation safety systems is critical to mitigating catastrophic risk while
unlocking the benefits of powerful Al
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A Model Specifications

Model Developer Temperature Max Tokens
claude-opus-4-20250514 Anthropic 0.0 2048
claude-sonnet-4-20250514  Anthropic 0.0 2048
gpt-4.1-2025-04-14 OpenAl 0.0 2048
gpt-4.1-mini-2025-04-14 OpenAl 0.0 2048
gpt-4.1-nano-2025-04-14 OpenAl 0.0 2048
gpt-4o OpenAl 0.0 2048
command-a-03-2025 Cohere 0.0 2048
llama-4-maverick-instruct Meta 0.0 2048
llama-4-scout-instruct Meta 0.0 2048
mistral-small-latest Mistral 0.0 2048

Table 2: Complete specifications for all evaluated models. All models were accessed via API with
deterministic settings (temperature = 0.0) to ensure reproducible results.

B Response Classification Schema

Beyond the binary safe/unsafe classification used to calculate Attack Success Rate (ASR), we
developed a fine-grained taxonomy to classify response patterns and failure modes. This schema
categorizes responses into eight distinct classes:

Unsafe Response Types: We identified three distinct patterns of unsafe completions:

* Direct violation — The model provides harmful CBRN content without hesitation, warnings,
or apparent safety filtering. These responses offer substantive assistance that could lower
barriers to harm, often including specific procedures, formulations, or technical details.
Direct violations represent the most concerning safety failure mode and were particularly
prevalent under Deep Inception attacks.

* Instructions with warning — The model provides harmful information while attempting
to mitigate through disclaimers, ethical statements, or safety warnings. While the model
demonstrates awareness of potential harm, it nevertheless supplies dangerous content, often
justifying its response as educational or theoretical. This mixed response signals partial but
inadequate safety alignment.

* Verbatim repetition — The model repeats or closely paraphrases harmful content from the
prompt without adding substantive information beyond what was provided. While not
contributing novel harmful content, these responses fail to recognize or refuse problematic
requests, effectively legitimizing and reinforcing the harmful query.

Safe Response Types: We categorized five distinct safety behaviors:

* Safe completion refusal — The model clearly declines to provide the requested harmful
information, recognizing the potential for misuse. These responses typically include a
brief explanation of why the request cannot be fulfilled, citing safety policies, ethical
considerations, or legal constraints without extensive elaboration.

* Clarifying question — Instead of providing or refusing harmful content, the model asks
for additional context or clarification about the intent behind the request. This strategy
effectively defers the unsafe completion while potentially gathering more information about
the user’s objectives.

* Policy-allowed transformation — The model reinterprets or redirects the harmful request into
a safe alternative that maintains relevance to the topic but removes dangerous elements. For
example, transforming a request for nerve agent synthesis into information about chemical
safety protocols or legitimate scientific research in related fields.

* Moralizing compliance — The model refuses the request with extensive ethical justification,
educational content about harms, or moral reasoning. These responses often include detailed
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explanations of why the requested information is dangerous, sometimes referencing specific
policies, laws, or ethical frameworks effectively turning the refusal into a teaching moment.

* Hallucinated off-topic — The model provides irrelevant or unrelated information that effec-
tively avoids addressing the harmful request. While technically not responding to the prompt,
this behavior functions as a safety mechanism by diverting the conversation away from
dangerous territory, though it may frustrate users seeking legitimate adjacent information.

Response patterns varied significantly across models and attack vectors. Claude models exhibited
higher rates of moralizing_compliance, reflecting a tendency toward ethical education when refusing
harmful requests. In contrast, models like Mistral showed greater frequency of direct_violation re-
sponses. Deep Inception attacks typically shifted response distributions from safe_completion_refusal
to direct_violation or instructions_with_warning categories demonstrating how attack sophistication
could overcome initial safety barriers.

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe our evaluation of 10 LLMs
using 380 prompts and three-tier attack methodology, with results presented in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 explicitly discusses methodological and scope limitations, including
text-only focus and temporal constraints.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is an empirical evaluation study without theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3 details methodology, Algorithm 1 specifies protocol, and Appendix
A provides model specifications.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to sensitive CBRN content, we cannot release full prompts or attack code
(Section 4.3 discusses ethical considerations).

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details including temperature=0.0, max tokens, and evaluation
criteria are specified (Table 1, Appendix A).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure 2 shows distribution boxplots and we report Wilcoxon signed-rank test
results (p < 0.001).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Experiments use commercial APIs requiring minimal compute; specific hard-
ware not relevant.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow ethical guidelines with responsible disclosure and safeguards
(Section 4.3).

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 4.3 and Discussion address both safety improvements and potential
misuse risks.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Section 4.3 details safeguards including coordinated disclosure and not releas-
ing full attack prompts.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets (FORTRESS, SAGE-RT) are properly cited with
references.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our 200-prompt CBRN dataset is documented in Section 3.1 with taxonomy
in Figure 1.

Guidelines:
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects involved; only internal raters for response classification.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects research conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are the evaluation targets and used in SAGE-RT for dataset generation
(Section 3.1).

Guidelines:

18



* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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