
Under review as a conference paper at ICLR 2023

MIXED-PRECISION INFERENCE QUANTIZATION: PROB-
LEM RESETTING AND TRADITIONAL NP HARD PROB-
LEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Based on the model’s resilience to computational noise, model quantization is
important for compressing models and improving computing speed. Existing
quantization techniques rely heavily on experience and "fine-tuning" skills. In
this paper, we map the mixed-precision layout problem into a traditional NP hard
problem and the problem can be solved by low cost methods like branch and bound
method without "fine-tuning". In experiments, experimental results show that our
method is better than HAWQ-v2, which is one of the current SOTA methods to
solve mixed-precisions layout problem.

1 INTRODUCTION

Neural network storage, inference, and training are computationally intensive due to the massive
parameter size of neural networks. Therefore, developing a compression algorithm for machine
learning models is necessary. Model quantization, based on the robustness of computational noise, is
one of the most important compression techniques. The computational noise robustness measures the
algorithm’s performance when noise is added during the computation process. The primary sources
of noise are truncation and data type conversion mistakes.

The initial high-precision data type used for a model’s parameters is replaced with a lower-precision
data type during model quantization. It is typical to replace FP32 with FP16, and both PyTorch and
TensorFlow have quantization techniques that map floats to integers. Various quantization methods
share the same theoretical foundation, which is the substitution of approximation data for the original
data in the storage and inference processes. A lower-precision data format requires less memory,
and using lower-precision data requires fewer computer resources and less time. In quantization, the
precision loss in different quantization level conversions and data type conversions is the source of
the noise.

The primary issue with the model quantization methods is that a naive quantization scheme is likely
to raise the loss function. It is not easy to substitute massive-scale model parameters with extremely
low-data precision without sacrificing significant precision. It is also not possible to utilize the same
quantization level, i.e., to introduce the same level of noise to all parameters for all model parameters
and get good performance.

Utilizing mixed-precision quantization is one way to solve this issue. For more "sensitive" model
parameters, higher-precision data is used, whereas lower-precision data is used for "nonsensitive"
model parameters. Higher-precision data indicates that the original data adds small noise, while
lower-precision data indicates that the original data adds large noise. But mixed-precision quantization
also has its restrictions: In computing processes, for example, GPU and CPU must use the same data
type in a computing process.

Moreover, the following facts challenge current algorithms for mixed-precision algorithms: 1. These
algorithms are built on empirical experience and "tuning" skills. 2.Some algorithms forego neural
network and dataset analysis. Some algorithms base model quantization on hardware features. It
is impossible to show the bounds of algorithms’ performance. 3. Some algorithms utilize Hessian
data. The majority of them are analyzable. However, obtaining Hessian information necessitates

1

Under review as a conference paper at ICLR 2023

a considerable computing resources and time. Some of these methods are only useful for storing
purposes.

The consensus among researchers is that quantization technology without "fine-tuning" is harmful to
the performance of the model. Current quantization technology widely uses the "fine-tuning" method,
but no one can explain why their algorithm cannot work without "fine-tuning", even though the basis
of their algorithm is well-defined in math.

This paper establishes the model quantization problem setting for inference processes. Based on our
analysis, we map layerwise PTQ problem into one of the traditional NP-hard problems, i.e.,extended
0-1 knapsack problems, which can be solved by the branch and bound method without too much
computing resources or inference/training model too many times. Thus, our work gets rid of "fine-
tuning" skills and has clear interpretability. Compared with the SOTA mixed-precision algorithm
HAWQ-v2 without "fine-tuning" the quantization model based on our work is better than the model
from HAWQ-v2 under the same computation resource limitation.

2 RELATED WORK

Model compression methods include pruning methodsHan et al. (2015); Li et al. (2016); Mao
et al. (2017) , knowledge distillationHinton et al. (2015), weight sharingUllrich et al. (2017) and
quantization methods. From the perspective of the precision layout, post-training quantization
methods can be mainly divided into channelwise Li et al. (2019); Qian et al. (2020), groupwise Dong
et al. (2019b) and layerwise Dong et al. (2019a) methods. Layerwise mixed-precision layout schemes
are more friendly to hardware. Parameters of the same precision are organized together, making full
of a program’s temporal and spatial locality. A common problem definition for quantizationDong
et al. (2019a); Morgan et al. (1991); Courbariaux et al. (2015); Yao et al. (2020) is as follows Gholami
et al. (2021).

Problem 1 The objective of quantization is to solve the following optimization problem:

min
q∈Q
‖q(w)− w‖2

where q is the quantization scheme, q(w) is the quantized model with quantization q, and w represents
the weights, i.e., parameters, in the neural network.

Although problem 1 gives researchers a target to aim for when performing quantization, the current
problem definition has two shortcomings: 1. The search space of all possible mixed-precision layout
schemes is a discrete space that is exponentially large in the number of layers. There is no effective
method to solve the corresponding search problem. 2. There is a gap between the problem target and
the final task target. As we can see, no terms related to the final task target, such as the loss function
or accuracy, appear in the current problem definition.

3 BACKGROUND ANALYSIS

3.1 MODEL COMPUTATION, NOISE GENERATION AND QUANTIZATION

Compressed models for the inference process are computed using different methods depending on
the hardware, programming methods and deep learning framework. All of these methods introduce
noise into the computing process. One reason for this noise problem is that although it is common
practice to store and compute model parameters directly using different data types, only data of the
same precision can be support precise computations. Therefore, before performing computations on
nonuniform data, a computer will convert them into the same data type. Usually, a lower-precision
data type in a standard computing environment will be converted into a higher-precision data type;
this ensures that the results are correct but require more computational resources and time. However,
to accelerate the computing speed, some works on artificial intelligence (AI) computations propose
converting higher-precision data types into lower-precision data types based on the premise that
AI models are not sensitive to compression noise. The commonly used quantization technology is
converting data directly and using a lower-precision data type to map to a higher-precision data type
linearly.

2

Under review as a conference paper at ICLR 2023

We use the following example to illustrate quantization method, which is presented in Yao et al.
(2020). Suppose that there are two data objects input1 and input2 are to be subjected to a computing
operation, such as multiplication. After the quantization process, we have Q1 = int(input1scale1

) and
Q2 = int(input2scale2

), and we can write

Qoutput = int(
input1 ∗ input2
scaleoutput

) ≈ int(Q1Q2
scale1 ∗ scale2
scaleoutput

)

scaleoutput, scale1 and scale2 are precalculated scale factors that depend on the distributions of
input1, input2 and the output; Qi is stored as a lower-precision data type, such as an integer. All
scale terms can be precalculated and established ahead of time. Then, throughout the whole inference
process, only computations on the Qi values are needed, which are fast. In this method, the noise is
introduced in the int(·) process. This basic idea gives rise to several variants, such as (non)uniform
quantization and (non)symmetrical quantization.

When we focus on quantization strategy, i.e. round function in quantization framework like Micronet,
we can have at least three strategy: round up, i.e., ceil function in python, round down, i.e., floor
function in python and rounding, i.e., round function in python. usually, rounding is the most
common method to deal with quantization. But, in this paper, we will show that how to mixed use
round up/round down to gain a mixed precision quantized model which is better than full precision
model.

3.2 NEURAL NETWORKS

In this paper, we mainly use the mathematical properties of extreme points to analyze quantization
methods. This approach is universal to all cases, not only neural networks. However, there is a myth
in the community that it is the neural network properties that guarantee the success of quantization
methodsWang et al. (2019); Morgan et al. (1991); Demidovskij & Smirnov (2020). To show that the
properties of the extreme points, not the properties of the neural network, are what determine the
ability to quantize, i.e. the ability to handle noise, we must first define what a neural network is.

The traditional definition of a neural network Denilson & Barbosa (2016) as a human brain simulation
is ambiguous; it is not a rigorous mathematical concept and cannot offer any analyzable information.
The traditional descriptions of neural networks Denilson & Barbosa (2016) focus on the inner products
of the network weights and inputs, the activation functions and directed acyclic graphs. However,
with the development of deep learning, although most neural networks still consist of weighted
connections and activation layers, many neural networks no longer obey these rules, such as the
network architectures for position embedding and layer norm operations in Transformers. Moreover,
current deep learning frameworks, such as PyTorch and TensorFlow, offer application programming
interfaces (APIs) to implement any function in a layer. Therefore, we propose that the definition of a
neural network adheres to the engineering concept indicated by the definition 1 rather than a precise
mathematical definition; that is, a neural network is a way for implementing a function.

Definition 1 The neural network is the function which is implemented in composite function form.

A neural network can be described in the following Eq. 1 form.
model(x) = h1(h2,1(h3,1(...), ..., h3,k, w2,1),

h2,2(h3,k+1(...), ..., w3), ..., w2,2), ..., w1) (1)
where hi,j , i ∈ [2, ..., n], are the (n− i+ 1)th layers in the neural network; wi,j is the parameter in
hi,j(·).

Definition 1 means that a neural network, without training, can be any function. With definition 1, a
neural network is no longer a mathematical concept, and this idea is widely used in practice Roesch
et al. (2019). We can see from definition 1 that the requirement that a neural network is in composite
function form is the only mathematical property of a neural network that can be used for analysis.

In practice, the loss function is one method to evaluate a neural network. A lower loss on a dataset
means a better performance neural network. For example, the training process optimises the model’s
loss, i.e., following Eq. 2.

min
w
f(w) = Esample`(w, sample) =

1

m

∑
(xi,yi)∈D

`(w, xi, yi) (2)

3

Under review as a conference paper at ICLR 2023

where f(·) is the loss for model on a dataset, w represents the model parameters, D is the dataset, m
is the size of the dataset, `(·) is the loss function for a sample and (xi, yi) represents a sample in the
dataset and its label.

In this paper, we mainly use the sequential neural network to describe the conclusion for the sequential
neural network is easily described, and the whole conclusion is non-related to the structure of the
neural network. For a sequential n-layer neural network, `(·) can be described in the following Eq.3
form.

`(w, xi, yi) = L(modeln(xi, w), yi)

modeln = h1(h2(h3(h4(· · ·hn(hn+1, wn) · · · , w4), w3), w2), w1) (3)

where L(·) is the loss function, such as the cross-entropy function; hi, i ∈ [1, ..., n], is the (n−i+1)th
layer in the neural network; w = (wTn , w

T
n−1, · · · , wT1)T , wi is the parameter in hi(·); and for a

unified format, hn+1 stands for the sample x.

4 START POINT AND THEORY PROBLEM SETTING

4.1 QUANTIZATION TARGET

The problem 1 cannot expose any useful information. Thus, we have to setting another quantization
target. Because of the natural of quantization is the trade of the performance and the computation
resource. From the current work, we know that generally, the less computation resource use, the
worse the model’s performance is. We want to give the model that has best quantization performance
with limited computation resource, like limited memory cost. The performance of model can be
measured by loss function. Thus, using memory cost as computational resource example. we have
following problem setting.

Problem 2

min ‖f(w)− f̄(w)‖, s.t.‖w‖ < C (4)

where C is the limitation of memory cost, f̄(w) is the loss of model after quantization.

Again, problem 2 setting also cannot be solved. We need more description about f̄ .

4.2 ANALYSIS BASE

Quantization methods for inference are complex. In addition to the noise added to the parameters
directly, noise is also introduced between different layers in the inference process because different
quantization levels or data types of different precisions are used in different layers, which shown in
figure 1.

loss
function

(L)

layern-1
(h1)

Param
eter

(w
n)

x(h
n+1)

output

input

Param
eter

(w
n-1)

output

input

Param
eter

(w
1)

output

input

label

loss

layer1
(hn)

layer2
(hn-1)

ℇ n-1

A
D
D

ℇ 1

A
D
D

δn δn-1 δ1

A
D
D

A
D
D

A
D
D

Figure 1: The quantization of models for use in the inference process. When quantized models are
used in the inference process, the outputs of different layers suffer from noise due to the conversion
between the different quantization levels of different layers in layerwise quantized models.

After quantization, the quantized loss for a sample, i.e.¯̀(·), in the inference process is as follows.
¯̀(w, xi, yi) = L(h1(h2(· · ·hn(hn+1 + εn, wn + δn) + εn−1 · · · , w2 + δ2) + ε1, w1 + δ1), yi)

4

Under review as a conference paper at ICLR 2023

where δi, i ∈ 1, · · · , n, and εi, i ∈ [1, ..., n], are the minor errors that are introduced in model
parameter quantization and in data type conversion in the mixed-precision layout scheme, respectively.

Thus, we obtain the following expression based on the basic total differential calculation.

¯̀(w, xi, yi)− `(w, xi, yi) =

n∑
i=1

∂`

∂hi+1
· εi +

∂`

∂wi
· δi (5)

where · is inner product and ∗ is the scalar product in following parts. For the loss on whole dataset,
we can gain

min
ε∈E

f̄(w)− f(w) =
1

m

∑
(xj ,yj)∈D

n∑
i=1

∂`

∂hi+1
· εi +

∂`

∂wi
· δi

=
1

m

n∑
i=1

∑
(xj ,yj)∈D

∂`

∂hi+1
· εi ≤

1

m

n∑
i=1

∥∥∥∥∥∥
∑

(xj ,yj)∈D

∂`

∂hi+1
εi

∥∥∥∥∥∥ ≤ 1

m

n∑
i=1

∥∥∥∥∥∥
∑

(xj ,yj)∈D

∂`

∂hi+1

∥∥∥∥∥∥ ‖εi‖
(6)

where f̄(w) = 1
m

∑ ¯̀(·). The reason for second equation in Eq. 6 is for a well-trained model,
the expectation of `(·)’s gradient for parameters is zero, i.e., for the

∑
(xj ,yj)∈D

∂`
∂w components,

∂`
∂wi

= 0.

As we can see, current works mixed discussed the quantization for storage and inference Dong et al.
(2019a); Yao et al. (2020); Dong et al. (2019b); Nahshan et al. (2021). Consequently, these works
must add a “fine-tuning” process, and they still fail in some cases. Moreover, this is why channel-wise
quantization methods are booming. In a channel that uses the same data type at all times, the precision
loss of the corresponding layer input is usually zero.

A frequently asked question is why
∑

(xj ,yj)∈D
∂`
∂w is zero but

∑
(xi,yi)∈D

∂`
∂hi+1

is non-zero. The

optimization algorithm is to optimize w in the training process. Thus,
∑

(xi,yi)∈D
∂`

∂hi+1
is random in

the final model except for the layers with bias terms like the batch norm layer. The bias term will
absorb the gradient and train them in the optimization process. What is more, in the model, which
mainly consists of identity mapping,

∑
(xi,yi)∈D

∂`
∂hi+1

is close to zero vector.

4.3 THEORY PROBLEM SETTING

Eq. 6 makes it extremely clear that the noise supplied from the output of the previous layer to
the input of the later layer in a neural network exerts a first-order effect on the change of the final
loss function, whereas noise on weights exerts a second-order effect on the loss function. In the
quantization process, the input and output of the layer should take precedence over the quantization
method, while the quantization of the weights should accommodate the impact brought by the
quantization between layers.

When the gradient between layers, i.e., ∂`
∂hi

is large, the input and the weight of that layer should
be quantized with a more precise approach, i.e., more bit data type. In this case, although it is
possible that weight quantization in this layer does not require a high-bit data type, for example, the
distribution of weight is a binary distribution, it cannot be stored with a simple boolean data type
due to the significant error generated by the input layer quantization. When the gradient between
layers is small, we can select a data type with the lowest possible precision to boost the speed of
computing while still satisfying the mathematical concept of "neighborhood" for the magnitude of
the noise introduced in both the layer weights and the layer inputs.

Based on the above description, we can derive the main idea of the algorithm: we want to solve the
following problem by using total differential as the benchmark and prediction function, adjusting the
quantization of ∂`

∂hi
in a mix-precision quantization scheme, and quantizing weight to accommodate

the quantization of corresponding ∂`
∂hi

. We modified problem 2 into the problem 3.

5

Under review as a conference paper at ICLR 2023

Problem 3

min

n∑
i=1

∥∥∥∥∥∥
∑

(xj ,yj)∈D

∂`

∂hi+1

∥∥∥∥∥∥ ‖εi‖ or
n∑
i=1

∥∥∥∥∥∥
∑

(xj ,yj)∈D

∂`

∂hi+1
εi

∥∥∥∥∥∥ , s.t.‖w‖ < C (7)

where C is the limitation of memory cost.

Our problem setting for quantization is different from previous work like HAWQDong et al. (2019a);
Yao et al. (2020); Dong et al. (2019b); Nagel et al. (2020) because these methods do not take the error
in the layer’s input into consideration, which prevents their work and analysis in the mixed-precision
computing area. As a result, these works can only be used to store a compressed neural network on a
disk. When the compressed model is stored in memory for inference, these compressed models have
to be recovered into the full precision model.

5 MAP MATHEMATICAL CONCEPT INTO PRACTICAL OPERATION AND REAL
PROBLEM SETTING

Although we have a target problem 3, yet all variable in Eq. 7 is purity mathematical concept and
cannot be used to indicate the practical operation like quantization level choosing. Thus, we have to
map mathematical concept into practical operation

5.1 MAP NOISE INTO QUANTIZATION LEVEL

Before using Eq. 6 to design an algorithm, we have to deal with the problem that maps the math
concepts into practical operations and concepts that can be implemented by a computation device.

Based on the preceding discussion, the first consideration when mapping from the concept of noise to
the quantization level or data type is how to describe the noise into a data type and how to design a
method in which noise can be covered by the mathematical concept of "neighborhood". And if the
value of noise exceeds the mathematical concept of "neighborhood", it must be adjusted based on the
practical environment, computation source, and target.

5.1.1 MAP ε INTO QUANTIZATION METHOD PARAMETERS

Based on the above explanation, the fluctuations due to quantization are almost a linear function
of the ε. Thus in order to restrict the changes of the loss function caused by quantization, the ε
vector should have the smallest second norm value, i.e., the quantization parameter setting’s objective
is min ε2. On the basis of the above objective function, it is simple to choose optimal parameter
configurations for many quantization schemes.

Using symmetric and asymmetric quantization schemes as examples in this paper, we need to set a
clip value for the (a)symmetric INT quantization scheme. When the value is either less than clip−

or greater than clip+, we treat them as clip(+/−). Using the right clip setting can help narrow the
range of data distribution and improve the accuracy of INT expression. Thus, the values of clip(+/−)
parameters are very important. In this part, we will show why the ACIQ quantization methodBanner
et al. (2019) is reasonable which is a experimental results currently.

The traditional approach is to use the KL divergence to determine the clip value. The problem is
that the approximation of the KL divergence is not an approximation in the aspect of the norm. It
only represents the difference between the two distributions in terms of information theory. But the
difference in information theory cannot be directly reflected in the change of the loss function. In
general, the mathematical property that directly reflects the change in the loss function is the loss
function’s gradient or the value that is relative to the gradient.

Simple proof of ACIQ Because of the Eq. 6, the fluctuation of loss function is related to the
‖ ∂`∂hi
‖and ‖εi‖. ‖ ∂`∂hi

‖ is constant number for a network on a dataset. Thus, we have to minimize the
‖ε‖, i.e.,‖ε‖2. Thus, when we use asymmetric quantization, then we should choose a clip value that
satisfies the following conditions. When the data distribution is p(x), and quantization datatype has

6

Under review as a conference paper at ICLR 2023

B bits, the objective function is as following.

min ‖ε‖2

=>min

∫ clip−

−∞
(x− clip−)2p(x)dx+

∫ clip+

clip−
(x− b x ∗ 2B

clip+ − clip−
c)2p(x)dx+

∫ ∞
clip+

(x− clip+)2p(x)dx

The above problem can be solved by direct derivation after determining the form of p(x), which is the
content of the workBanner et al. (2019).

5.1.2 MAP ∂`
∂hi

INTO THE SLOPE OF SECANT LINE

In our discussion, a prerequisite for the correct application of total differentiation is that the noise that
we introduce must be small enough to permit error estimation using total differentiation. However,
in practice, we always expect faster computation by employing coarser data storage methods and
lower-bit data types. In practice, there may be instances where large noise is used in the quantization
process, such as quantization with INT4 or 2-value, 3-value on a vector with a wide value distribution.
In our experiments with ResNet8 and 14 on the cifar10 dataset, the noise when quantization using the
above quantization scales is roughly in the range of 0.1 to 0.3, indicating that the noise is outside the
range that can be expressed in terms of "neighborhood".

Higher order differentials are useful for solving precise prediction problems, but a first-order approxi-
mation is more practical due to computational and memory constraints. As demonstrated in the figure
2 below, secant lines perform significantly better than tangent lines, whose slope is gradient, in the
case of larger noise, particularly for points close to the extreme points. In the work Cheng & Chen
(2022), it was shown that for the SOTA models and near SOTA models, the gradient of the inter-layer
inputs, i.e., `hi

, tends to be zero.

Figure 2: When the predicted point(xp) is out
of the neighborhood range but not pretty far
from x0, secant lines between the x0 and x1
perform significantly better than tangent lines.
The choice of x1 is the maximum quantization
noise in practice.

Figure 3: Different directions have different
secant line in prediction process.

However, the secant line is different in different directions, which is shown figure 3. The direction of
the secant line on each feature is different, which leads us to having to compute thousands of different
secant lines. To avoid this issue, we only use floor or ceiling quantization methods in a vector to
ensure that all data in the vector has the same directions. The more computing method is the content
of the work Cheng & Chen (2022).

5.1.3 MODEL WEIGHT QUANTIZATION

Based on analyses, we know that the real impact on the fluctuations in the loss function is the error in
the quantization of the data between the layers, i.e.,the value of ε, and that the error in the weights
in a layer almost has no impact on the loss within the "neighbourhood". Ideally, we would expect
the quantization, which is leaded by the ∂`

∂hi
is accepted by the concept of the "neighborhood" of

weights within layers. In this case, the problem can be set up to easily reach theoretical extreme
points, and what is important, the computation cost in this case is low. For the same reason as in the

7

Under review as a conference paper at ICLR 2023

Algorithm 1: Change Mixed-Precision Inference Layout Problem into Low computation cost NP
hard problem
Input: Trained Neural Network M which has n layers, Different Quantization Levels

[q1, q2, ..., qk],errormax,Calibration dataset D
Output: Price Matrix P , Weight Matrix W , matrix sizes are n*k
1.Forwark and Backward Network on Calibration Dataset, Collection the distribution of data in

inputs on calibration.;
for qj in Q do

for Layeri in M do
2. Compute the W [i][j]. (For example, If we quantizate model for the memory cost,
W [i][j] is the the memory cost of Layeri on qj quantization level);

3. Compute ‖εi‖ and scaleinput based on the input of Layeri
4. Compute slopeinput = ‖(f(M)− finput(M ; scaleinput; i))/scaleinput‖, where
finput(M ; scale; i) is the loss on the M with the input of M ’s Layeri add the
scaleinput ∗ [1, 1, .., 1] for ceil quantization or scaleinput ∗ [−1,−1, ..,−1] for floor
quantization.;

5. Compute fluc = ‖(f(M)− fweight(M ; scaleinput; i))‖, where
fweight(M ; scaleinput; i) is the loss on the M with the weight of M ’s Layeri add the
scaleinput ∗ [1, 1, .., 1] for ceil quantization or scaleinput ∗ [−1,−1, ..,−1] for floor
quantization.;

if fluc < errormax then
6.P [i][j] = slopeinput ∗ ‖εi‖/

√
size(εi);

7.Continue;
end
8. Compute ‖δi‖ and scaleweight based on the weight of Layeri;
9.P [i][j] = slopeinput ∗ ‖εi‖/

√
size(εi) + fluc/scaleweight ∗ ‖δi‖/

√
size(δi);

end
end
return Price Matrix P , Weight Matrix W

above sections, in practice the noise introduced by quantization often becomes uncontrollable due to
the need for speed/model size or due to the quantization needs of the layer input vectors passively.
Therefore, the quantization level of this layer must be adjusted to match the weights. In practice, we
will first determine whether the noise introduced by the quantization of the model parameters will
have a significant effect. The parameter setting in weight quantization is the same as in section 5.1.1.
When the noise is significant, it must be corrected by the secant line approach, which is shown in
5.1.2.

5.2 PRACTICAL PROBLEM SETTING AND SOLVING

In the above sections, we change the mathematical concepts in Eq. 6 into engineering computations
one by one. Then we obtain the following algorithm 1. In this problem transformation, we map
through the relationship between quantization level and the noise and the analysis stability of a model
on the target data set. To extend the use of the gradient, we use the secant line for linear prediction in
the case of larger noise. We convert the quantization problem to a low computation cost NP hard
problem, i.e., extended 0-1 knapsack problem as following problem 4:

Problem 4 The Low Computational Cost Equivalence Problem of Mixed-precision layout problem

min

n∑
i=1

P [i][j], s.t.

n∑
i=1

W [i][j] < C, j ∈ [1, k] and j ∈ Z (8)

where C is the constraint for quantization target. For example, if we quantization model for memory
cost, the C is the maximum memory size.

8

Under review as a conference paper at ICLR 2023

Problem 4 is the equivalence problem with the problem 3. Compared with problem 3, all elements in
problem 4 and algorithm 1 are corresponding to the quantization process parameters or operations. By
choosing and selecting at least one P [i][j] in each row of matrix price and one value W [i][j] at the
corresponding position in matrix weight, we guarantee that each layer knows which quantization
level they should choose to reach the quantization target. Problem 4 is an easy problem to be solved
by the branch-and-bound method. This problem can be solved very quickly because it doesn’t need
inference or training on the original neural network. Instead, it only needs a small number of additions
and multiplications.

In traditional concepts, it is generally believed that the less use the quantization bit, the larger the
impact on performance, which can be expressed by the value of the loss function. Based on our
analysis, i.e., the nature of the 0-1 knapsack problem, we verify that this expectation is correct when
quantization introduces small noise. However, it often finds examples of quantization models with
better performance with extremely small quantization bits in different papers. This is due to the
inability to use the concept of the "neighborhood" of the points for the estimation of the prediction
points, i.e., the use of differential or Taylor expansions, which leads to unstable prediction results in
the presence of large noise. Given the lack of techniques to perform Fourier expansions on neural
networks, the analysis and solution of the problem in the presence of large noise cannot be solved at
the current stage.

6 EXPERIMENT

In this section, we evaluate the performance of branch and bound method on problem 4. Our objective
is to show that branch and bound method based on our proposed problem is better than the full
precision model without "fine-tuning" technology, which we use HAWQ-v2 as benchmark.

We use CIFAR 10 dataset. The training dataset is split into calibration and training datasets. Further-
more, the size of the calibration dataset is equal to the test dataset.

Based on the workCheng & Chen (2022), the model with many identity mapping structures has
strong noise robustness. Thus we have to choose the model which contain less residual structure. For
CIFAR 10, ResNet 20 is close to the SOTA ResNet model(ResNet 110), which mains the layers’ input
gradient is small. Thus, we choose ResNet 8 and ResNet 14 as our quantization models. Furtherly, to
enlarge the E ∂`

∂hi+1
, we delete the identity mapping structure in our experimental models.

In quantization practice, quantizing data into INT8 is the most frequently used and ripe choice because
current computation devices, like V100GPU, only support INT8, INT16 and INT32 computing in
hardware. Thus, we use mixed-precision INT8 and full-precision(FP32) in our experiments. We
will compress these model, and our target is to reduce memory consumption by 20 percent. In this
experiments, we set errormax = 0.1 to reduce the computing time.

The loss for ResNet8 with the full precision is 0.3896. The loss for the quantization ResNet8 model
is 0.4168 by our method. The loss for the quantization ResNet8 model is 0.4418 by HAWQ-v2. The
loss for ResNet14 with the full precision is 0.3634. The loss for the quantization ResNet8 model is
0.3892 by our method. The loss for the quantization ResNet14 model is 0.3964 by HAWQ-v2. The
experimental results match our analysis.

7 CONCLUSION

In this paper we propose the algorithm that change mix-precision problem, i.e. problem 2 into a
low computation cost NP hard problem, i.e., problem 4. Based on the total differential, we show
that the fluctuation of loss function is mainly related to the gradient of layer’s input and the noise
of quantization. We map mathematical concept into practical operations. After gain the NP hard
problem, branch and bound methods to solve the problem efficiently and our quantized model is
better than the model from HAWQ-v2 with the same quantization limitation.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. Advances in Neural Information Processing Systems, 32, 2019.

Daning Cheng and WenGuang Chen. Quantization in layer’s input is matter. arXiv preprint
arXiv:2202.05137, 2022.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

A. Demidovskij and E. Smirnov. Effective post-training quantization of neural networks for inference
on low power neural accelerator. In 2020 International Joint Conference on Neural Networks
(IJCNN), 2020.

Denilson and Barbosa. Understanding machine learning: from theory to algorithms. Computing
reviews, 57(4):238–238, 2016.

Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer. Hawq: Hessian aware quantization of
neural networks with mixed-precision. IEEE, 2019a.

Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Hawq-v2: Hessian aware trace-weighted quantization of neural networks. arXiv
preprint arXiv:1911.03852, 2019b.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

R. Li, Y. Wang, F. Liang, H. Qin, and R. Fan. Fully quantized network for object detection. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

Nelson Morgan et al. Experimental determination of precision requirements for back-propagation
training of artificial neural networks. In Proc. Second Int’l. Conf. Microelectronics for Neural
Networks, pp. 9–16. Citeseer, 1991.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein,
and Avi Mendelson. Loss aware post-training quantization. Machine Learning, 110(11):3245–3262,
2021.

X. Qian, V. Li, and C. Darren. Channel-wise hessian aware trace-weighted quantization of neural
networks. 2020.

J. Roesch, S. Lyubomirsky, M. Kirisame, J. Pollock, and Z. Tatlock. Relay: A high-level ir for deep
learning. 2019.

10

Under review as a conference paper at ICLR 2023

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
arXiv preprint arXiv:1702.04008, 2017.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8612–8620, 2019.

Z. Yao, Z. Dong, Z. Zheng, A. Gholami, and K. Keutzer. Hawqv3: Dyadic neural network quantization.
2020.

11

	Introduction
	Related Work
	Background Analysis
	Model Computation, Noise Generation and Quantization
	Neural Networks

	Start point and Theory Problem Setting
	Quantization Target
	Analysis Base
	Theory Problem Setting

	Map Mathematical Concept into Practical operation and Real Problem Setting
	Map Noise into Quantization Level
	Map into quantization method parameters
	Map hi into the slope of secant line
	Model weight quantization

	Practical Problem Setting and Solving

	Experiment
	Conclusion

