
Published as a conference paper at ICLR 2023

FLOW STRAIGHT AND FAST: LEARNING TO GENER-
ATE AND TRANSFER DATA WITH RECTIFIED FLOW

Xingchao Liu∗, Chengyue Gong∗, Qiang Liu
Department of Computer Science
University of Texas at Austin
{xcliu, cygong, lqiang}@cs.utexas.edu

ABSTRACT

We present rectified flow, a simple approach to learning (neural) ordinary differen-
tial equation (ODE) models to transport between two empirically observed distri-
butions π0 and π1, hence providing a unified solution to generative modeling and
domain transfer, among various other tasks involving distribution transport. The
idea of rectified flow is to learn the ODE to follow the straight paths connecting
the points drawn from π0 and π1 as much as possible. This is achieved by solv-
ing a straightforward nonlinear least squares optimization problem, which can be
easily scaled to large models without introducing extra parameters beyond stan-
dard supervised learning. The straight paths are the shortest paths between two
points, and can be simulated exactly without time discretization and hence yield
computationally efficient models. We show that, by learning a rectified flow from
data, we effectively turn an arbitrary coupling of π0 and π1 to a new deterministic
coupling with provably non-increasing convex transport costs. In addition, with a
“reflow” procedure that iteratively learns a new rectified flow from the data boot-
strapped from the previous one, we obtain a sequence of flows with increasingly
straight paths, which can be simulated accurately with coarse time discretization
in the inference phase. In empirical studies, we show that rectified flow performs
superbly on image generation and image-to-image translation. In particular, on
image generation and translation, our method yields nearly straight flows that give
high quality results even with a single Euler discretization step. Code is available
at https://github.com/gnobitab/RectifiedFlow.

1 INTRODUCTION

Compared with supervised learning, the shared difficulty of various forms of unsupervised learning
is the lack of paired input/output data that makes standard regression or classification tasks possible.
The crux of many unsupervised methods is to find meaningful correspondences between points
from two distributions. For example, generative models such as generative adversarial networks
(GAN) and variational autoencoders (VAE) (e.g., Goodfellow et al., 2014; Kingma & Welling, 2013;
Dinh et al., 2016) seek to map data points to latent codes following a simple elementary (e.g.,
Gaussian) distribution with which the data can be generated and manipulated. On the other hand,
domain transfer methods find mappings to transfer points between two different data distributions,
both observed empirically, for the purpose of image-to-image translation, style transfer, and domain
adaption (e.g., Zhu et al., 2017; Flamary et al., 2016; Trigila & Tabak, 2016; Peyré et al., 2019).
These tasks can be framed unifiedly as finding a transport map between two distributions:

Learning Transport Mapping Given empirical observations of two distributions π0, π1 on Rd,
find a transport map T : Rd → Rd, which, in the infinite data limit, gives Z1 := T (Z0) ∼ π1 when
Z0 ∼ π0, that is, (Z0, Z1) is a coupling (a.k.a transport plan) of π0 and π1.

We should note that the answers of this problem are not unique because there are often infinitely
many transport maps between two distributions. Optimal transport (OT) (e.g., Villani, 2021; Am-
brosio et al., 2021; Figalli & Glaudo, 2021; Peyré et al., 2019) addresses the more challenging

∗Xingchao and Chengyue contributed equally.

1

https://github.com/gnobitab/RectifiedFlow


Published as a conference paper at ICLR 2023

Figure 1: The trajectories of rectified flows for image generation (π0: standard Gaussian noise, π1: cat faces,
top two rows), and image transfer between human and cat faces (π0: human faces, π1: cat faces, bottom two
rows), when simulated using Euler method with step size 1/N for N steps. The first rectified flow induced
from the training data (1-rectified flow) yields good results with a very small number (e.g., ≥ 2) of steps; the
straightened reflow induced from 1-rectified flow (denoted as 2-rectified flow) has nearly straight line trajectories
and yield good results even with one discretization step.
problem of finding an optimal coupling that minimizes a notion of transport cost, typically of form
E[c(Z1 − Z0)], where c : Rd → R is a cost function, such as c(x) = ∥x∥2. However, for the gen-
erative and transfer modeling tasks above, the transport cost is not of direct interest, even though
it induces a number of desirable properties. Hence, it is not necessary to accurate solve the OT
problems given the high difficulty of doing so. An important question is to identify relaxed notions
of optimality that are of direct interest for ML tasks and are easier to enforce in practice.

Several lines of techniques have been developed depending on how to represent and train the map
T . In traditional generative models, T is parameterized as a neural network, and trained with either
GAN-type minimax algorithms or (approximate) maximum likelihood estimation (MLE). However,
GANs suffer from numerically instability and mode collapse issues, and require substantial engi-
neering efforts and human tuning, which tend to transfer poorly across different model architecture
and datasets. On the other hand, MLE tends to be intractable for complex models, and hence requires
either approximate (variational or Monte Carlo) inference techniques such as those used in VAE, or
special model structures that yield tractable likelihood such as normalizing flow and auto-regressive
models, which causes difficult trade-offs between expressive power and computational cost.

Recently, advances have been made by representing the transport plan implicitly as a continuous time
process, including flow models with neural ordinary differential equations (ODEs) (e.g., Chen et al.,
2018; Papamakarios et al., 2021; Song et al., 2020a) and diffusion models by stochastic differential
equations (SDEs) (e.g., Song et al., 2020b; Ho et al., 2020; Tzen & Raginsky, 2019; De Bortoli et al.,
2021; Vargas et al., 2021). In these models, a neural network is trained to represent the drift force of
the processes and a numerical ODE/SDE solver is used to simulate the process during inference. By
leveraging the mathematical structures of ODEs/SDEs, the continuous-time models can be trained
efficiently without resorting to minimax or traditional approximate inference techniques. The most
notable examples are the score-based generative models (Song & Ermon, 2019; 2020; Song et al.,
2020b) and denoising diffusion probabilistic models (DDPM) (Ho et al., 2020), which has achieved
impressive empirical results on image generation recently (e.g., Dhariwal & Nichol, 2021). How-
ever, compared with the traditional “one-step” models like GAN and VAE, continuous-times models
are effectively “infinite-step” and cast high computational cost in inference time: drawing a single
point (e.g., an image) requires to solve the ODE/SDE with a numerical solver that needs to repeat-
edly call the expensive neural force field for a large number of times.

Moreover, in existing approaches, generative modeling and domain transfer are typically treated
separately. It often requires to extend techniques to solve domain transfer problems; see e.g., Cycle

2



Published as a conference paper at ICLR 2023

(a) Linear interpolation

Xt = tX1 + (1 − t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1 − t)Z0

(d) Rectified flow Z′
t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ∼ π0 × π1. (b) The trained rectified flow Zt ; the
trajectories are “rewired” at the intersection points to avoid crossing. (c) The linear interpolation of the end
points (Z0, Z1) of flow Zt. (d) The rectified flow induced from (Z0, Z1), which follows straight paths.

GAN (Zhu et al., 2017) and diffusion-based image-to-image translation (e.g., Su et al., 2022; Zhao
et al., 2022). One framework that naturally unifies both tasks is optimal transport, which, however,
is challenging to solve for problems with high dimensional and large volumes of data.

Contribution We introduce rectified flow, a surprisingly simple approach to the transport mapping
problem, which unifiedly solves both generative modeling and domain transfer. The rectified flow
is an ODE model that transport distribution π0 to π1 by following straight line paths as much as
possible. The straight paths are preferred both theoretically because it is the shortest path between
two end points, and computationally because it can be exactly simulated without time discretization.
Hence, flows with straight paths bridge the gap between one-step and continuous-time models.

Algorithmically, the rectified flow is trained with a simple and scalable unconstrained least squares
optimization procedure, which avoids the instability issues of GANs, the intractable likelihood of
MLE methods, and the subtle hyper-parameter decisions of denoising diffusion models. The proce-
dure of obtaining the rectified flow from the training data has the attractive theoretical property of 1)
yielding a coupling with non-increasing transport cost jointly for all convex cost c, and 2) making the
paths of flow increasingly straight and hence incurring lower error with numerical solvers. With a re-
flow procedure that iteratively trains new rectified flows with the data simulated from the previously
obtained rectified flow, we obtain nearly straight flows that yield good results even with very coarse
time discretization. Our method is purely ODE-based, both conceptually simpler and practically
faster in inference time than the SDE-based methods (Ho et al., 2020; Song et al., 2020b;a).

As shown in Figure 1, rectified flow yields high-quality results for image generation when simulated
with a very few number of Euler steps (see Figure 1, top row). Moreover, with just one step of
reflow, the flow becomes nearly straight and hence yields good results with one Euler discretization
step (Figure 1, the second row). This substantially improves over the standard denoising diffusion
methods. Quantitatively, we claim a state-of-the-art result of FID (4.85) and recall (0.51) on CI-
FAR10 for one-step fast diffusion/flow models (Bao et al., 2022; Lyu et al., 2022; Xiao et al., 2021;
Zheng et al., 2022; Luhman & Luhman, 2021). The same algorithm also achieves superb results on
the image-to-image translation task (see the bottom two rows of Figure 1).

2 METHOD

We provide an overview of the method in Section 2.1 with more discussion in Section 2.2.

2.1 OVERVIEW

Rectified flow Given empirical observations of X0 ∼ π0 and X1 ∼ π1, the rectified flow induced
from (X0, X1) is an ordinary differentiable model (ODE) on time t ∈ [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from π0 to a Z1 following π1. The drift force v : Rd → Rd is set to drive the flow
to follow the direction (X1 − X0) of the linear path pointing from X0 to X1 as much as possible,
by solving a simple least squares regression problem:

min
v

∫ 1

0

E
[∥∥(X1 −X0)− v

(
Xt, t

)∥∥2] dt, with Xt = tX1 + (1− t)X0, (1)
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Algorithm 1 Rectified Flow: Main Algorithm

Procedure: Z = RectFlow((X0, X1)):
Inputs: Velocity model vθ : Rd → Rd with parameter θ.
Training: θ̂ = argmin

θ
E
[
∥X1 −X0 − v(tX1 + (1− t)X0, t)∥2

]
, with t ∼ Uniform([0, 1]).

Sampling: Draw (Z0, Z1) following dZt = vθ̂(Zt, t)dt starting from Z0 ∼ π0 (or Z1 ∼ π1).
Return: Z = {Zt : t ∈ [0, 1]}.

Reflow (optional): Zk+1 = RectFlow((Zk
0 , Z

k
1 )), starting from (Z0

0 , Z
0
1 ) = (X0, X1), where (X0, X1)

is drawn from π0 and π1.
Distill (optional): Learn a neural network T̂ to distill the k-rectified flow, such that Zk

1 ≈ T̂ (Zk
0 ).

where Xt is the linear interpolation of X0 and X1. The expectation E[·] here is w.r.t. the randomness
of (X0, X1) while treating Xt = tX1 + (1 − t)X0 as a function of (X0, X1). To understand the
method intuitively, note that the linear interpolation Xt follows an naive ODE of dXt = (X1 −
X0)dt. This ODE is not practically useful for constructing a transport map as it is non-causal (or
anticipating): the update of Xt requires the information of the final point X1. By fitting the drift v
with X1 − X0, the rectified flow causalizes the paths of linear interpolation Xt, yielding an ODE
flow that can be simulated without seeing the future.

In practice, we parameterize v with neural networks or other nonlinear models and solve (1) with
any off-the-shelf stochastic optimizer, such as stochastic gradient descent, with empirical draws of
(X0, X1). After we get v, we solve the ODE either forwardly starting from Z0 ∼ π0 to transfer π0

to π1, or backwardly from Z1 ∼ π1 to Z0 ∼ π0. Specifically, for backward sampling, we simply
solve dX̃t = −v(X̃t, t)dt initialized from X̃0 ∼ π1 and set Xt = X̃1−t. The forward and backward
sampling are equally favored by the training method, because the loss in (1) is time-symmetric in
that it yields the equivalent problem when exchanging X0 and X1 and flipping the sign of v.

Flows avoid crossing A key to understanding the method is the non-crossing property of flows as
illustrated in Figure 2: the different paths of a well-defined ODE dZt = v(Zt, t)dt, whose solution
exists and is unique, cannot cross each other at any time t ∈ [0, 1). Specifically, there exists no
location z ∈ Rd and time t ∈ [0, 1), such that two paths go across z at time t along different
directions, because otherwise the solution of the ODE would be non-unique. On the other hand, the
paths of the interpolation process Xt may intersect with each other (Figure 2a), which what makes
it non-causal. Hence, as shown in Figure 2b, by solving the optimization in (1), the rectified flow
rewires the individual trajectories passing through the intersection points to avoid crossing, while
tracing out the same density map as that of the linear interpolation paths. We can view the linear
interpolation Xt as building roads (or tunnels) that connect π0 and π1, and the rectified flow as
traffics of particles passing through the roads in a myopic, memoryless, non-crossing way, which
ignore the global path information of how X0 and X1 are paired, and rebuild a more deterministic
pairing of (Z0, Z1).

Rectified flows reduce transport costs If (1) is solved exactly, the pair (Z0, Z1) of the rec-
tified flow is guaranteed to be a valid coupling of π0, π1 (Theorem D.3), that is, Z1 follows π1

if Z0 ∼ π0. Moreover, (Z0, Z1) guarantees to yield no larger transport cost than the data pair
(X0, X1) simultaneously for all convex cost functions c (Theorem D.5). The data pair (X0, X1)
can be an arbitrary coupling of π0, π1, typically independent (i.e., (X0, X1) ∼ π0 × π1) as dic-
tated by the lack of meaningfully paired observations in practical problems. In comparison, the
rectified coupling (Z0, Z1) has a deterministic dependency as it is constructed from an ODE model.
Denote by (Z0, Z1) = RectFlow((X0, X1)) the “rectification” map from (X0, X1) to (Z0, Z1).
Hence, RectFlow(·) converts an arbitrary coupling into a deterministic coupling with lower convex
transport costs.

Straight line flows yield fast simulation Denote by Z = RectFlow((X0, X1)) the rectified flow
induced from (X0, X1). Applying this operator recursively following Algorithm 1 yields a sequence
of rectified flows Zk+1 = RectFlow((Zk

0 , Z
k
1 )) with (Z0

0 , Z
0
1 ) = (X0, X1), where Zk is the k-th

rectified flow, or simply k-rectified flow, induced from (X0, X1).

This reflow procedure not only decreases transport cost, but also has the important effect of straight-
ening the paths of rectified flows, that is, making the paths of the flow more straight. This is highly
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attractive computationally as flows with nearly straight paths incur small time-discretization error in
numerical simulation. Indeed, perfectly straight paths can be simulated exactly with a single Euler
step and is effectively a one-step model. This addresses the very bottleneck of high inference cost
in existing continuous-time ODE/SDE models.

2.2 MAIN PROPERTIES

We provide more in-depth discussions on the main properties of rectified flow. We highlight the
intuitions in this section and defer the full course theoretical analysis to Appendix D.

First, for a given input coupling (X0, X1), the exact minimum of (1) is achieved if

vX(x, t) = E[X1 −X0 | Xt = x], (2)

which is the expectation of the line directions X1 − X0 that pass through x at time t. We discuss
below the property of rectified flow dZt = vX(Zt, t)dt with Z0 ∼ π0, assuming that the ODE has
an unique solution.

Marginal preserving property [Theorem D.3] The pair (Z0, Z1) is a coupling of π0 and π1. The
marginal law of Zt equals that of Xt at every time t, that is, Law(Zt) = Law(Xt),∀t ∈ [0, 1].

Intuitively, this holds because, by the definition of vX in (2), the expected amount of mass that
passes through every infinitesmal volume at all location and time are equal under the dynamics of
Xt and Zt, which ensures that they trace out the same marginal distributions:

Flow in & out

( )
= Flow in & out

( )
,∀time & location ⇒ Law(Zt) = Law(Xt),∀t.

Mathematically, this results is proved in Section D.1 by showing that the marginal laws of both Xt

and Zt satisfy the same continuity equation ρ̇t +∇ · (vXρt) = 0, and are hence equivalent.

On the other hand, the joint distributions of the whole trajectory of Zt and that of Xt are different in
general. In particular, Xt is in general a non-causal, non-Markov process, with (X0, X1) a stochastic
coupling, and Zt causalizes, Markovianizes and derandomizes Xt, while preserving the marginal
distributions at all time.

Reducing transport costs [Theorem D.5] The coupling (Z0, Z1) yields no larger convex transport
costs than the input (X0, X1) in that E[c(Z1 −Z0)] ≤ E[c(X1 −X0)] for any convex c : Rd → R.

The transport costs measure the expense of transporting the mass of one distribution to another fol-
lowing the assignment relation specified by the coupling and is a central topic in optimal transport
(e.g., Villani, 2009; 2021; Santambrogio, 2015; Peyré et al., 2019; Figalli & Glaudo, 2021). Typical
examples are c(·) = ∥·∥α with α ≥ 1. Hence, RectFlow(·) yields a Pareto descent on the collection
of all convex transport costs, without targeting any specific c. This distinguishes it from the typical
optimal transport optimization methods, which are explicitly framed to optimize a given c. As a
result, recursive application of RectFlow(·) does not guarantee to attain the c-optimal coupling for
any given c, with the exception in the one-dimensional case when the fixed point of RectFlow(·) co-
incides with the unique monotonic coupling that simultaneously minimizes all non-negative convex
costs c; see Appendix D.4.

Intuitively, the convex transport costs are guaranteed to decrease because the paths of the flow Zt

is a rewiring of the straight paths connecting (X0, X1). To give an illustration, consider the simple
case of c(·) = ∥·∥ when transport costs E[∥X0 −X1∥] and E[∥Z0 − Z1∥] are the expected length
of the straight lines connecting the end points. The inequality can be proved graphically as follows:

E[∥Z0 − Z1∥] = Length

( )
(∗)
≤ Length

( )
(∗∗)
= Length

( )
= E[∥X0 −X1∥] ,

where
(∗)
≤ uses the triangle inequality, and

(∗∗)
= holds because the paths of Zt is a rewiring of the

straight paths of Xt, following the construction of vX in (2). For general convex c, a similar proof
using Jensen’s inequality is shown in Appendix D.2.

Reflow, straightening, fast simulation As shown in Figure 3, when we recursively apply the
procedure Zk+1 = RectFlow((Zk

0 , Z
k
1 )), the paths of the k-rectified flow Zk are increasingly
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(a)The 1st rectified flow Z1

Z1 = RectFlow((X0, X1))

(b) Reflow Z2

Z2 = RectFlow((Z1
0 , Z

1
1 ))

(c) Reflow Z3

Z3 = RectFlow((Z2
0 , Z

2
1 ))

(d) Transport cost,
Straightness

Figure 3: (a)-(c) Trajectories of the reflows on a toy example (π0: purple dots, π1: red dots; the green and blue
lines are trajectories connecting different modes of π0, π1). (d) The straightness and the relative L2 transport
cost v.s. the reflow steps. See Appendix D.5 for more information.

straight, and hence easier to simulate numerically, as k increases. This straightening tendency can
be guaranteed theoretically.

Specifically, we say that a flow dZt = v(Zt, t)dt is straight if we have almost surely that Zt =
tZ1 + (1 − t)Z0 for ∀t ∈ [0, 1], or equivalently v(Zt, t) = Z1 − Z0 = const following each
path. (More precisely, “straight” here refers to straight with a constant speed.) Such straight flows
are highly attractive computationally as it is effective a one-step model: a single Euler step update
Z1 = Z0+v(Z0, 0) calculates the exact Z1 from Z0. Note that the linear interpolation X = {Xt} is
straight by this definition but it is not a (causal) flow and hence can not be simulated without an oracle
assess to draws of both π0 and π1. In comparison, it is non-trivial to make a flow dZt = v(Zt, t)dt
straight, because if so v must satisfy the inviscid Burgers’ equation ∂tv + (∂zv)v = 0:

d

dt
v(Zt, t) = ∂zv(Zt, t)Żt + ∂tv(Zt, t) = ∂zv(Zt, t)v(Zt, t) + ∂tv(Zt, t) = 0.

More generally, the straightness of any smooth process Z = {Zt} can be measured by

S(Z) =

∫ 1

0

E
[∥∥∥(Z1 − Z0)− Żt

∥∥∥2]dt. (3)

S(Z) = 0 means exact straightness. A flow with a small S(Z) has nearly straight paths and hence
can be simulated accurately using numerical solvers with a small number of discretization steps.
Appendix D.3 shows that applying rectification recursively provably decreases S(Z) towards zero.

[Theorem D.7] Let Zk be the k-th rectified flow induced from (X0, X1). Then
mink∈{0···K} S(Z

k) ≤ E[∥X1−X0∥2]
K .

As shown Figure 1, applying one step of reflow can already provide nearly straight flows that yield
good performance when simulated with a single Euler step. It is not recommended to apply too
many reflow steps as it may accumulate estimation error on vX .

Distillation After obtaining the k-th rectified flow Zk, we can further improve the inference
speed by distilling the relation of (Zk

0 , Z
k
1 ) into a neural network T̂ to directly predict Zk

1 from
Zk
0 without simulating the flow. Given that the flow is already nearly straight (and hence well

approximated by the one-step update), the distillation can be done efficiently. In particular, if we take
T̂ (z0) = z0 + v(z0, 0), then the loss function for distilling Zk is E

[∥∥(Zk
1 − Zk

0 )− v(Zk
0 , 0)

∥∥2],
which is the term in (1) when t = 0. The difference between distillation and rectification should be
highlighted: distillation attempts to faithfully approximate the coupling (Zk

0 , Z
k
1 ), while rectification

yields a different coupling (Zk+1
0 , Zk+1

1 ) with lower transport cost and more straight flow. Hence,
distillation should be applied only in the final stage for fine-tuning the model to one-step inference.

Nonlinear rectified flow and friends (Appendix C) Our method can be extended to a simple
yet high general nonlinear rectified flow method which uses any smooth interpolation curve Xt

between X0 and X1 and a training loss of
∫ 1

0
E[||Ẋt − v(Xt, t)||2]dt, where Ẋt = ∂Xt is the time

derivative. A natural class of Xt, which include probability flow ODEs (Song et al., 2020b) and
DDIM (Song et al., 2020a) as the special cases, is Xt = αtX1 + βtX0 for some αt, βt sequences
satisfies (approximately) α1 = β0 = 1 and α0 = β1 = 0. However, depending on the choices of
αt, βt, the Xt may not have straight trajectories and can not yield straight flows even with reflows.

Interestingly, the idea of learning generative ODEs with interpolating curves (e.g., 1-rectified flow
with general Xt) was concurrently proposed in a number of works (Lipman et al., 2022; Albergo &
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Method NFE(↓) IS (↑) FID (↓) Recall (↑)
ODE One-Step Generation (Euler solver, N=1)
1-Rectified Flow (+Distill) 1 1.13 (9.08) 378 (6.18) 0.0 (0.45)
2-Rectified Flow (+Distill) 1 8.08 (9.01) 12.21 (4.85) 0.34 (0.50)
3-Rectified Flow (+Distill) 1 8.47 (8.79) 8.15 (5.21) 0.41 (0.51)
VP ODE (Song et al., 2020b) (+Distill) 1 1.20 (8.73) 451 (16.23) 0.0 (0.29)
sub-VP ODE (Song et al., 2020b) (+Distill) 1 1.21 (8.80) 451 (14.32) 0.0 (0.35)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N )
1-Rectified Flow 127 9.60 2.58 0.57
2-Rectified Flow 110 9.24 3.36 0.54
3-Rectified Flow 104 9.01 3.96 0.53
VP ODE (Song et al., 2020b) 140 9.37 3.93 0.51
sub-VP ODE (Song et al., 2020b) 146 9.46 3.16 0.55
SDE Full Simulation (Euler solver, N=2000)
VP SDE (Song et al., 2020b) 2000 9.58 2.55 0.58
sub-VP SDE (Song et al., 2020b) 2000 9.56 2.61 0.58

Method NFE(↓) IS (↑) FID (↓) Recall (↑)
GAN One-Step Generation
SNGAN (Miyato et al., 2018) 1 8.22 21.7 0.44
StyleGAN2 (Karras et al., 2020) 1 9.18 8.32 0.41
StyleGAN-XL (Sauer et al., 2022) 1 - 1.85 0.47
StyleGAN2 + ADA (Karras et al., 2020) 1 9.40 2.92 0.49
StyleGAN2 + DiffAug (Zhao et al., 2020) 1 9.40 5.79 0.42
TransGAN + DiffAug (Jiang et al., 2021) 1 9.02 9.26 0.41
GAN with U-Net One-step Generation
TDPM (T=1) (Zheng et al., 2022) 1 8.65 8.91 0.46
Denoising Diffusion GAN (T=1) (Xiao et al., 2021) 1 8.93 14.6 0.19
ODE One Step Generation (Euler solver, N=1)
DDIM Distillation (Luhman & Luhman, 2021) 1 8.36 9.36 0.51
NCSN++ (VE ODE) (Song et al., 2020b) (+Distill) 1 1.18 (2.57) 461 (254) 0.0 (0.0)
Progressive (Salimans & Ho, 2021) 1 - 9.12 -
DDIM (Song et al., 2020a) 1 - >20 -
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N )
NCSN++ (VE ODE) (Song et al., 2020b) 176 9.35 5.38 0.56
SDE Full Simulation (Euler solver)
DDPM (Ho et al., 2020) 1000 9.46 3.21 0.57
NCSN++ (VE SDE) (Song et al., 2020b) 2000 9.83 2.38 0.59
ODE Full Simulation (Euler solver)
DDIM (Song et al., 2020a) 10 - 13.36 -
DDIM (Song et al., 2020a) 100 - 4.16 -

(a) Results using the DDPM++ architecture. (b) Recent results with different architectures reported in literature.

Table 1: Results on CIFAR10 unconditioned image generation. Fréchet Inception Distance (FID) and Inception
Score (IS) measure the quality of the generated images, and recall score (Kynkäänniemi et al., 2019) measures
diversity. The number of function evaluation (NFE) denotes the number of times we forward through the main
neural network. It coincides with the number of discretization steps N for ODE and SDE models.

Vanden-Eijnden, 2022; Heitz et al., 2023). Neklyudov et al. (2022) proposes a different but highly
related method for the problem of trajectory inference from uncorrelated samples (e.g., Hashimoto
et al., 2016; Lavenant et al., 2021). The distinctive features of our work include enabling fast,
one-step generation via ODEs with straight trajectories using the reflow procedure, and the clari-
fied connections to optimal transport (OT) shown in Appendix D, which is further elaborated in a
companion work (Liu, 2022a). A different connection to OT was discussed in Albergo & Vanden-
Eijnden (2022) which proposes a minimax procedure that yields L2 optimal transport maps.

3 EXPERIMENTS

Figure 4: Sample trajectories zt of different flows
on the AFHQ Cat dataset, and the extrapolation
ẑt1 = zt + (1 − t)v(zt, t) from different zt. The
same random seed is adopted for all methods. The
ẑt1 of 2-rectified flow is almost independent with
t, indicating that its trajectory is almost straight.

Setup We follow the procedure in Algorithm 1.
We start with drawing (X0, X1) ∼ π0 × π1 and use
it to get the first rectified flow Z1 by minimizing
(1). The second rectified flow Z2 is obtained by the
same procedure except with the data replaced by the
draws from (Z1

0 , Z
1
1 ), generated by simulating the

first rectified flow Z1. This process is repeated for k
times to get the k-rectified flow Zk. Finally, we can
further distill the k-rectified flow Zk into a one step
model z1 = z0 + v(z0, 0) by fitting it on draws from
(Zk

0 , Z
k
1 ). By default, the ODEs are simulated us-

ing the vanilla Euler method with constant step size
1/N for N steps, that is, Ẑt+1/N = Ẑt+v(Ẑt, t)/N
for t ∈ {0, . . . , N}/N . We use the Runge-Kutta
method of order 5(4) from Scipy (Virtanen et al., 2020), denoted as RK45, which adaptively decide
the step size and number of steps N based on user-specified relative and absolute tolerances. In our
experiments, we stick to the same parameters as Song et al. (2020b). More details can be found in
Appendix E.

3.1 UNCONDITIONED IMAGE GENERATION

Experiment settings For generative modeling, we set π0 to be the standard Gaussian distribution
and π1 the data distribution. Our implementation of rectified flow is modified upon the open-source
code of (Song et al., 2020b). We adopt the U-Net architecture of DDPM++ (Song et al., 2020b)
for representing the drift vX , and report in Table 1 (a) and Figure 5 the results of our method and
the (sub)-VP ODE from Song et al. (2020b) using the same architecture. Other recent results using
different network architectures are shown in Table 1 (b) for reference.

Results • Results of fully solved ODEs. As shown in Table 1 (a), the 1-rectified flow trained on
the DDPM++ architecture, solved with RK45, yields the lowest FID (2.58) and highest recall (0.57)
among all the ODE-based methods. In particular, the recall of 0.57 yields a substantial improvement
over existing ODE and GAN methods.
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1-Rectified Flow 2-Rectified Flow 3-Rectified Flow 1-Distilled 2-Distilled 3-Distilled
sub-VP ODE VP ODE VE ODE sub-VP SDE VP SDE 2-Rectified Flow 3-Rectified Flow

Reflow Reflow Reflow Reflow

N = 1 N = 2 N = 3

(a) FID and Recall vs. Number of Euler discretization steps N (b) FID and Recall vs. Training Iterations

Figure 5: (a) Results of rectified flows and (sub-)VP ODE on CIFAR10 with different number N of Euler
discretization steps. (b) The FID and recall during different reflow and training steps. In (a), k-Distilled refers
to the one-step model distilled from k-Rectified Flow for k = 1, 2, 3.

• Results on few and single step generation. As shown in Figure 5, the reflow procedure substantially
improves both FID and recall in the small step regime (e.g., N⪅80), even though it worsens the
results in the large step regime due to the accumulation of error on estimating vx. Figure 5 (b)
show that each reflow leads to a noticeable improvement in FID and recall. For one-step generation
(N = 1), the results are further boosted by distillation (see the stars in Figure 5 (a)). Overall, the
distilled k-Rectified Flow with k = 1, 2, 3 yield one-step generative models beating all previous
ODEs with distillation; they also beat the reported results of one-step models with similar U-net
type architectures trained using GANs (see the GAN with U-Net in Table 1 (b)). In particular, the
distilled 2-rectified flow achieves an FID of 4.85, beating the best known one-step generative model
with U-net architecture, 8.91 (TDPM, Table 1 (b)). The recalls of both 2-rectified flow (0.50) and
3-rectified flow (0.51) outperform the best known results of GANs (0.49 from StyleGAN2+ADA)
showing an advantage in diversity.

Reflow Reflow
1-Rectified Flow

2-Rectified Flow
3-Rectified Flow

1-Rectified Flow 2-Rectified Flow

Pi
xe

l  V
al

ue

Figure 6: The straightening effect on CIFAR10.
Left: the straightness measure w.r.t. reflow steps
and iterations. Right: trajectories of randomly
sampled pixels following 1- and 2-rectified flow.

• Reflow straightens the flow. Figure 6 shows the
reflow procedure decreases improves the straight-
ness of the flow on CIFAR10. In Figure 4 visual-
izes the trajectories of 1-rectified flow and 2-rectified
flow on the AFHQ cat dataset: at each point zt, we
extrapolate the terminal value at t = 1 by ẑt1 =
zt + (1 − t)v(zt, t); if the trajectory of ODE fol-
lows a straight line, ẑt1 should not change as we vary
t when following the same path. We observe that
ẑt1 is almost independent with t for 2-rectified flow,
showing the path is almost straight. Moreover, even
though 1-rectified flow is not straight with ẑt1 over
time, it still yields recognizable and clear images very early (t ≈ 0.1). In comparison, it is need
t ≈ 0.6 to get a clear image from the extrapolation of sub-VP ODE.

High-resolution image generation Figure 7 shows the result of 1-rectified flow on image gener-
ation on high-resolution (256 × 256) datasets, including LSUN Bedroom (Yu et al., 2015), LSUN
Church (Yu et al., 2015), CelebA HQ (Karras et al., 2018) to AFHQ Cat (Choi et al., 2020). Ours
can generate high quality results across the different datasets. Figure 1 & 4 show that 1-(2-) rectified
flow yields good results with one or few Euler steps.

3.2 IMAGE-TO-IMAGE TRANSLATION

Assume we are given two sets of images of different styles (a.k.a. domains), whose distributions
are denoted by π0, π1, respectively. We are interested in transferring the style (or other key char-
acteristics) of the images in one domain to the other domain, in the absence of paired examples.
A classical approach to achieving this is cycle-consistent adversarial networks (a.k.a. CycleGAN)
(Zhu et al., 2017; Isola et al., 2017), which jointly learns a forward and backward mapping F,G by
minimizing the sum of adversarial losses on the two domains, regularized by a cycle consistency
loss to enforce F (G(x)) ≈ x for all image x. By constructing the rectified flow of π0 and π1, we
obtain a simple approach to image translation that requires no adversarial optimization and cycle-
consistency regularization: training the rectified flow requires a simple optimization procedure and
the cycle consistency is automatically in flow models satisfied due to reversibility of ODEs.
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Figure 7: Examples of 256× 256 images generated by 1-rectified flow.

(A) Cat → Wild Animals (B) Wild Animals → Cat (C) MetFace → CelebA Face (D) CelebA Face → MetFace
Figure 8: Samples of 1-rectified flow simulated with N = 100 Euler steps between different domains.

As the main goal here is to obtain good visual results, we are not interested in faithfully transferring
X0 ∼ π0 to an X1 that exactly follows π1. Rather, we are interested in transferring the image styles
while preserving the identity of the main object in the image. For example, when transferring a hu-
man face image to a cat face, we are interested in getting a unrealistic face of human-cat hybrid that
still “looks like” the original human face. To achieve this, let h(x) be a feature mapping of image x
representing the styles that we are interested in transferring. Let Xt = tX1+(1−t)X0. Ht = h(Xt)
follows an ODE of dHt = ∇h(Xt)

⊤(X1 − X0)dt. Hence, to ensure that the style is transferred
correctly, we propose to learn v such that Ht = h(Zt) with dZt = v(Zt, t)dt approximates Ht as
much as possible. Because dH ′

t = ∇h(Zt)
⊤v(Zt, t)dt, we minimize the loss:

min
v

∫ 1

0

E
[∥∥∇h(Xt)

⊤(X1 −X0 − v(Xt, t))
∥∥2
2

]
dt, Xt = tX1 + (1− t)X0. (4)

In practice, we set h(x) to be latent representation of a classifier trained to distinguish the images
from the two domains π0, π1, fine-tuned from a pre-trained ImageNet (Tan & Le, 2019) model.
Intuitively, ∇xh(x) serves as a saliency score and re-weights coordinates so that the loss in (4)
focuses on penalizing the error that causes significant changes on h.

Initialization 1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow Initialization 1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow
N = 100 N = 100 N = 1 N = 1 N = 100 N = 100 N = 1 N = 1

Figure 9: Samples of results of 1- and 2-rectified flow simulated with N = 1 and N = 100 Euler steps.
Experiment settings We set the domains π0, π1 to be pairs of the AFHQ (Choi et al., 2020),
MetFace (Karras et al., 2020) and CelebA-HQ (Karras et al., 2018) dataset. The results are shown
by initializing the trained flows from the test data. The training and network configurations follow
Section 3.1. See Appendix E for details.

Results Figure 1, 8, 9 show examples of results of 1- and 2-rectified flow simulated with Euler
method with different number of steps N . We can see that rectified flows can successfully transfer
the styles and generate high quality images. Moreover, 2-rectified flow returns good results with a
single Euler step. See more examples in Appendix E.

4 CONCLUSIONS

Rectified flow provides a simple and clean framework for learning transport mappings from data: (1)
it can be applied to both generative and transfer modeling; (2) it is able to learn fast ODEs (even one-
step) by learning straight flows; (3) it provides a new way for understanding the diffusion models
and their ODE variants; (4) it is purely ODE-based, avoiding SDE models both conceptually and
algorithmically; (5) the theoretical and algorithmic insights to optimal transport are of independent
interest; (6) the idea of causalizing interpolation processes provides a general framework related to
transport mapping problems and is amenable to rigorous theoretical analysis.
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Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

14



Published as a conference paper at ICLR 2023

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
Schrödinger bridge. In International Conference on Machine Learning, pp. 10794–10804. PMLR,
2021.

Rose E Wang, Esin Durmus, Noah Goodman, and Tatsunori Hashimoto. Language modeling via
stochastic processes. arXiv preprint arXiv:2203.11370, 2022.

Antoine Wehenkel and Gilles Louppe. Diffusion priors in variational autoencoders. arXiv preprint
arXiv:2106.15671, 2021.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges. arXiv preprint, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. arXiv preprint arXiv:2112.07804, 2021.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
generation. arXiv preprint arXiv:2203.09481, 2022.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models
with gflownets. arXiv preprint arXiv:2209.02606, 2022a.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gDDIM: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. EGSDE: Unpaired image-to-image translation via
energy-guided stochastic differential equations. arXiv preprint arXiv:2207.06635, 2022.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. Advances in Neural Information Processing Systems, 33:7559–7570,
2020.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-
bilistic models. arXiv preprint arXiv:2202.09671, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

15



Published as a conference paper at ICLR 2023

Roadmap The appendix is structured as follows:
• Appendix A discusses related works on generative models, neural ODE, diffusion models, and
optimal transport.
• Appendix B discusses the form and estimation of velocity field vX of rectified flow.
• Appendix C introduces a nonlinear extension of our method, which include probability flow ODEs
(Song et al., 2020b) and DDIM (Song et al., 2020a) as special cases.
• Appendix D presents the full course theoretical analysis of rectified flow.
• Appendix E gives the details of the experiments and additional experiment results.

A RELATED WORKS AND DISCUSSION

Learning one-step models GANs (Goodfellow et al., 2014; Arjovsky et al., 2017; Liu et al.,
2021), VAEs (Kingma & Welling, 2013), and (discrete-time) normalizing flows (Rezende & Mo-
hamed, 2015; Dinh et al., 2014; 2016) have been three classical approaches for learning deep gen-
erative models. GANs have been most successful in terms of generation qualities (for images in
particular), but suffer from the notorious training instability and mode collapse issues due to use of
minimax updates. VAEs and normalizing flows are both trained based on the principle of maximum
likelihood estimation (MLE) and need to introduce constraints on the model architecture and/or
special approximation techniques to ensure tractable likelihood computation: VAEs typically use
a conditional Gaussian distribution in addition to the variational approximation of the likelihood;
normalizing flows require to use specially designed invertible architectures and need to copy with
calculating expensive Jacobian matrices.

The reflow+distillation approach in this work provides another promising approach to training one-
step models, avoiding the minimax issues of GANs and the intractability issues of the likelihood-
based methods.

Learning ODEs: MLE and PF-ODEs There are two major approaches for learning neural ODEs:
the PF-ODEs/DDIM approach discussed in Section C, and the more classical MLE based approach
of Chen et al. (2018).

• The MLE approach. In Chen et al. (2018), neural ODEs are trained for learning generative models
by maximizing the likelihood of the distribution of the ODE outcome Z1 at time t = 1 under the
data distribution π1. Specifically, with observations from π1, it estimates a neural drift v of an ODE
dZt = v(Zt, t)dt by

min
v

D(π1; ρv,π0), (5)

where D(·; ·) denotes KL divergence (or other discrepancy measures), and ρv,π0 is the density of
Z1 following dZt = v(Zt, t)dt from Z0 ∼ π0; the density of π0 should be known and tractable to
calculate.

By using an instantaneous change of variables formula, it was observed in Chen et al. (2018) that
the likelihood of neural ODEs are easier to compute than the discrete-time normalizing flow without
constraints on the model structures. However, this MLE approach is still computationally expensive
for large scale models as it requires repeated simulation of the ODE during each training step. In
addition, as the optimization procedure of MLE requires to backpropagate through time, it can easily
suffer the gradient vanishing/exploding problem unless proper regularization is added.

Another fundamental problem is that the MLE (5) of neural ODEs is theoretically under-specified,
because MLE only concerns matching the law of the final outcome Z1 with the data distribution π1,
and there are infinitely many ODEs to achieve the same output law of Z1 while traveling through
different paths. A number of works have been proposed to remedy this by adding regularization
terms, such as these based on transport costs, to favor shorter paths; see (Nichol & Dhariwal, 2021;
Onken et al., 2021). Without a regularization term, the ODE learned by MLE would be implicitly
determined by the initialization and other hyper-parameters of the optimizer used to solve (5).

• Probability Flow ODEs. The method of PF-ODEs (Song et al., 2020b) and DDIM (Song et al.,
2020a) provides a different approach to learning ODEs that avoids the main disadvantages of the
MLE approach, including the expensive likelihood calculation, training-time simulation of the ODE
models, and the need of backpropagation through time. However, because PF-ODEs and DDIM
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were derived as the side product of learning the mathematically more involved diffusion/SDE mod-
els, their theories and algorithm forms were made unnecessarily restrictive and complicated. The
nonlinear rectified flow framework shows that the learning of ODEs can be approached directly in
a very simple way, allowing us to identify the canonical case of linear rectified flow and open the
door of further improvements with flexible and decoupled choices of the interpolation curves Xt

and initial distributions π0.

Viewed through the general non-linear rectified flow framework, the computational and theoretical
drawbacks of MLE can be avoided because we can simply pre-determines the “roads” that the ODEs
should travel through by specifying the interpolation curve Xt, rather than leaving it for the algo-
rithm to figure out implicitly. It is theoretically valid to pre-specify any interpolation Xt because the
neural ODE is highly over-parameterized as a generative model: when v is a universal approximator
and π0 is absolutely continuous, the distribution of Z1 can approximate any distribution given any
fixed interpolation curve Xt. The idea of rectified flow is to the simplest geodesic paths for Xt.

Learning SDEs with denoising diffusion Although the scope of this work is limited to learning
ODEs, the score-based generative models (Song & Ermon, 2019; 2020; Song et al., 2020b; 2021)
and denoising diffusion probability models (DDPM) (Ho et al., 2020) are of high relevance as the
basis of PF-ODEs and DDIM. The diffusion/SDE models trained with these methods have been
found outperforming GANs in image synthesis in both quality and diversity (Dhariwal & Nichol,
2021). Notably, thanks to the stable and scalable optimization-based training procedure, the diffu-
sion models have successfully used in huge text-to-image generation models with astonishing results
(e.g., Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022). It has been quickly popularized
in other domains, such as video (e.g., Ho et al., 2022; Yang et al., 2022; Harvey et al., 2022), music
(Mittal et al., 2021), audio (e.g., Kong et al., 2020; Lee & Han, 2021; Popov et al., 2021), and text (Li
et al., 2022; Wang et al., 2022), and more tasks such as image editing (Zhao et al., 2022; Meng et al.,
2021; Zhang et al., 2022a). A growing literature has been developed for improving the inference
speed of denoising diffusion models, an example of which is the PF-ODEs/DDIM approach which
gains speedup by turning SDEs into ODEs. We provide below some examples of recent works,
which is by no mean exhaustive.

• Improved training and inference. A line of works focus on improving the inference and sampling
procedure of denoising diffusion models. For example, Nichol & Dhariwal (2021) presents a few
simple modifications of DDPM to improve the likelihood, sampling speed, and generation quality.
Karras et al. (2022) systematic exams the design space of diffusion generative models with empirical
studies and identifies a number of training and inference recipes for better generative quality with
fewer sampling steps. Zhang & Chen (2022) proposes a diffusion exponential integrator sampler
for fast sampling of diffusion models. Lu et al. (2022) provides a customized high order solver for
PF-ODEs. Bao et al. (2022) provides an analytic estimate of the optimal diffusion coefficient.

• Combination with other methods. Another direction is to speed up diffusion models by combining
them with GANs and other generative models. DDPM Distillation (Luhman & Luhman, 2021)
accelerates the inference speed by distilling the trajectories of a diffusion model into a series of
conditional GANs. The truncated diffusion probabilistic model (TDPM) of (Zheng et al., 2022)
trains a GAN model as π0 so that the diffusion process can be truncated to improve the speed; the
similar idea was explored in Lyu et al. (2022); Franzese et al. (2022), and (Franzese et al., 2022)
provides an analysis on the optimal truncation time. (Sinha et al., 2021; Wehenkel & Louppe, 2021;
Vahdat et al., 2021) learns a denoising diffusion model in the latent spaces and combines it with
variational auto-encoders. These methods can be potentially applied to rectified flow to gain similar
speedups for learning neural ODEs.

• Unpaired Image-to-Image translation. The standard denoising diffusion and PF-ODEs methods
focus on the generative task of transferring a Gaussian noise (π0) to the data (π1). A number of works
have been proposed to adapt it to transferring data between arbitrary pairs of source-target domains.
For example, SDEdit Meng et al. (2021) synthesizes realistic images guided by an input image by
first adding noising to the input and then denoising the resulting image through a pre-trained SDE
model. Choi et al. (2021) proposes a method to guide the generative process of DDPM to generate
realistic images based on a given reference image. Su et al. (2022) leverages two two PF-ODEs
for image translation, one translating source images to a latent variable, and the other constructing
the target images from the latent variable. Zhao et al. (2022) proposes an energy-guided approach
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that employs an energy function pre-trained on the source and target domains to guide the inference
process of a pretrained SDE for better image translation. In comparison, our framework shows
that domain transfer can be achieved by essentially the same algorithm as generative modeling, by
simply setting π0 to be the source domain.

• Diffusion bridges. Some recent works Peluchetti (2021); Liu et al. (2022) show that the design
space of denoising diffusion models can be made highly flexible with the assistant of diffusion bridge
processes that are pinned to a fixed data point at the end time. This reduces the design of denoising
diffusion methods to constructing a proper bridge processes. The bridges in Song et al. (2020b)
are constructed by a time-reversal technique, which can be equivalently achieved by Doob’s h-
transform as shown in Peluchetti (2021); Liu et al. (2022), and more general construction techniques
are discussed in Liu et al. (2022); Wu et al. (2022). Despite the significantly extended design spaces,
an unanswered question is what type of diffusion bridge processes should be preferred. This question
is made challenging because the presence of diffusion noise and the need of advanced stochastic
calculus tools make it hard to intuit how the methods work. By removing the diffusion noise, our
work makes it clear that straight paths should be preferred. We expect that the idea can be extended
to provide guidance on designing optimal bridge processes for learning SDEs.

• Schrodinger bridges. Another body of works (Wang et al., 2021; De Bortoli et al., 2021; Chen
et al., 2021; Vargas et al., 2021) leverages Schrodinger bridges (SB) as an alternative approach
to learning diffusion generative models. These approaches are attractive theoretically, but casts
significant computational challenges for solving the Schrodinger bridge problem.

Re-thinking the role of diffusion noise The introduction of diffusion noise was consider essential
due to the key role it plays in the derivations of the successful methods (Song et al., 2020b; Ho
et al., 2020). However, as rectified flow can achieve better or comparable results with a ODE-only
framework, the role of diffusion mechanisms should be re-examed and clearly decoupled from the
other merits of denoising diffusion models. The success of the denoising diffusion models may be
mainly attributed to the simple and stable optimization-based training procedure that allows us to
avoid the instability issues and the need of case-by-case tuning of GANs, rather than the presence
of diffusion noises.

Because our work shows that there is no need to invoke SDE tools if the goal is to learn ODEs, the
remaining question is whether we should learn an ODE or an SDE for a given problem. As already
argued by a number of works (Song et al., 2020b;a; Karras et al., 2022), ODEs should be preferred
over SDEs in general. Below is a detailed comparison between ODEs and SDEs.

• Conceptual simplicity and numerical speed. SDEs are more mathematically involved and are more
difficult to understand. Numerical simulation of ODEs are simpler and faster than SDEs.

• Time reversibility. It is equally easy to solve the ODEs forwardly and backwardly. In comparison,
the time reversal of SDEs (e.g., Anderson, 1982; Haussmann & Pardoux, 1986; Föllmer, 1985) is
more involved theoretically and may not be computationally tractable.

• Latent spaces. The couplings (Z0, Z1) of ODEs are deterministic and yield low transport cost in
the case of rectified flows, hence providing a good latent space for representing and manipulating
outputs. Introducing diffusion noises make (Z0, Z1) more stochastic and hence less useful. In fact,
the (Z0, Z1) given by DDPM Ho et al. (2020) and the SDEs of Song et al. (2020b) and hence useless
for latent presentation.

• Training difficulty. There is no reason to believe that training an ODE is harder, if not easier, than
training an SDE sharing the same marginal laws: the training loss of both cases would share the
distributions of covariant and differ only on the targets. In the setting of (Song et al., 2020b), the
loss functions are equivalent up to a linear reparameterization.

• Expressive power. As every SDE can be converted into an ODE that has the same marginal
distribution using the techniques in Song et al. (2020a;b) (see also Villani (2009)), ODEs are as
powerful as SDEs for representing marginal distributions, which is what needed for the transport
mapping problems considered in this work. On the other hand, SDEs may be preferred if we need
to capture richer time-correlation structures.

• Manifold data. When equipped with neural network drifts, the outputs of ODEs tend to fall into a
smooth low dimensional manifold, a key inductive for structured data in AI such as images and text.
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In comparison, when using SDEs to model manifold data, one has to carefully anneal the diffusion
noise to obtain smooth outcomes, which causes slow computation and a burden of hyperparameter
tuning. SDEs might be more useful in for modeling highly noisy data in areas like finance and
economics, and in areas that involve diffusion processes physically, such as molecule simulation.

Optimal vs. straight transport Optimal transport has been extensively explored in machine
learning as a powerful way to compare and transfer between probability measures. For the transport
mapping problem considered in this work, a natural approach is to finding the optimal coupling
(Z0, Z1) that minimizes a transport cost E[c(Z1 − Z0)] for a given c. The most common choice of
c is the quadratic cost c(·) = ∥·∥2.

However, finding the optimal couplings, especially for high dimensional continuous measures, is
highly challenging computationally and is the subject of active research; see for example (Seguy
et al., 2017; Korotin et al., 2021; 2022; Makkuva et al., 2020; Rout et al., 2021; Daniels et al., 2021).
In addition, although the optimal couplings are known to have nice smoothness and other regularity
properties, it is not necessary to accurately find the optimal coupling because the transport cost
do not exactly align with the learning performance of individual problems; see e.g., Korotin et al.
(2021).

In comparison, our reflow procedure finds a straight coupling, which is not optimal w.r.t. a given
c (see Section D.4). From the perspective of fast inference, all straight couplings are equally good
because they all yield straight rectified flows and hence can be simulated with one Euler step.

Algorithm 2 Train(Data)

# Input: Data={x0, x1}
# Output: Model v(x, t) for the rectified flow
initialize Model
for x0, x1 in Data: # x0, x1: samples from π0, π1

Optimizer.zero grad()
t = torch.rand(batchsize) # Randomly sample t ∈ [0,1]
Loss = ( Model(t*x1+(1-t)*x0, t) - (x1-x0) ).pow(2).mean()
Loss.backward()
Optimizer.step()

return Model

Algorithm 3 Sample(Model, Data)

# Input: Model v(x, t) of the rectified flow
# Output: draws of the rectified coupling (Z0, Z1)
coupling = []
for x0, in Data: # x0: samples from π0 (batchsize×dim)

x1 = model.ODE solver(x0)
coupling.append((x0, x1))

return coupling

Algorithm 4 Reflow(Data)

# Input: Data={x0, x1}
# Output: draws of the K-th rectified coupling
Coupling = Data
for k = 1, . . . ,K:

Model = Train(Coupling)
Coupling = sample(Model, Data)

return Coupling
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Figure 10: Few-step generation with different ODEs. Compared with VE,VP,sub-VP ODE, 1-rectified flow
can generate blurry images using only 1,2,3 steps. After one time of rectification, 2-rectified flow can generate
clear images with 1,2,3 steps.

B ON THE VELOCITY FIELD vX OF RECTIFIED FLOW

On the velocity field vX If X0 yields a conditional density function ρ(x0 | x1) when conditioned
on X1 = x1, then the optimal velocity field vX(z, t) = E[X1 −X0|Xt = z] can be represented by

vX(z, t) = E
[
X1 − z

1− t
ηt(X1, z)

]
, ηt(X1, z) = ρ

(
z − tX1

1− t

∣∣∣∣ X1

)/
E
[
ρ

(
z − tX1

1− t

∣∣∣∣ X1

)]
,

(6)

where the expectation E [·] is taken w.r.t. X1 ∼ π1. This can be seen by noting that X0 = z−tX1

1−t

and X1 − X0 = X1−z
1−t , when conditioned on Xt = z. Hence, if ρ is positive and continuous

everywhere, then vX is well defined and continuous on Rd× [0, 1). Further, if log ηt is continuously
differentiable w.r.t. z, we can show that

∇zv
X(z, t) =

1

1− t
E [((X1 − z)∇z log ηt(X1, z)− 1) ηt(X1, z)] .

Note that dZt = vX(Zt, t)dt is guaranteed to have a unique solution if vX is uniformly Lipschitz
continuous on [0, a] for any a < 1.

If X0|X1 = x1 does not yield a conditional density function, vX(z, t) may be undefined or dis-
continuous, making the ODE dZt = vX(Zt, t)dt ill-behaved. A simple fix is to add X0 with a
Gaussian noise ξ ∼ N (0, σ2I) independent of (X0, X1) to yield a smoothed variable X̃0 = X0+ξ,
and transfer X̃0 to X1 using rectified flow. This would effectively give a randomized mapping of
form T (X0 + ξ) transporting π0 to π1.

Smooth function approximation Following (6), we can exactly calculate vX if the conditional
density function ρ(·|x1) exists and is known, and π1 is the empirical measure of a finite number
of points (whose expectation can be evaluated exactly). In this case, running the rectified flow
forwardly would precisely recover the points in π1. This, however, is not practically useful in most
cases as it completely overfits the data. Hence, it is both necessary and beneficial to fit vX with a
smooth function approximator such as neural network or non-parametric models, to obtain smoothed
distributions with novel samples that are practically useful.

Deep neural networks are no doubt the best function approximators for large scale problems. For
low dimensional problems, the following simple Nadaraya–Watson style non-parametric estimator
of vX can yield a good approximation to the exact rectified flow without knowing the conditional
density ρ:

vX,h(z, t) = E
[
X1 − z

1− t
ωh(Xt, z)

]
, (7)

where ωh(Xt, z) = κh(Xt,z)
E[κh(Xt,z)]

, and κh(x, z) is a smoothing kernel with a bandwith param-
eter h > 0 that measures the similarity between z and x. Taking the Gaussian RBF kernel
κh(x, z) = exp(−∥x− z∥2 /2h2), then when h → 0+, it can be shown that vX,h(z, t) converges
to vX(z, t) = E

[
X1−z
1−t | Xt = z

]
on points z that can be attained by Xt (i.e., the conditional expec-

tation E [· | Xt = z] exists. ). On points z that Xt can not attain, vX,h(z, t) extrapolates the value
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by finding the Xt that is close to z. In practice, we replace the expectations in (7) with empirical
averaging. We find that vX,h performs well in practice because it is a mixture of linear functions
that always point to a point in the support of π1.

C A NONLINEAR EXTENSION OF RECTIFIED FLOW

We present a nonlinear extension of rectified flow in which the linear interpolation Xt is replaced
by any time-differentiable curve connecting X0 and X1. Such generalized rectified flows can still
transport π0 to π1 (Theorem D.3), but no longer guarantee to decrease convex transport costs, or
have the straightening effect. Importantly, the method of probability flows (Song et al., 2020b) and
DDIM (Song et al., 2020a) can be viewed (approximately) as special cases of this framework, allows
us to clarify the connection with and the advantages over these methods.

Let X = {Xt : t ∈ [0, 1]} be any time-differentiable random process that connects X0 and X1.
Let Ẋt be the time derivative of Xt. More specifically, as what is standard in stochastic process,
the stochastic process Xt can be viewed as a measurable function Xt = X(t, ω), where ω can be
viewed as a some “random seed”. The time-derivative is Ẋt = ∂tX(t, ω).

The (nonlinear) rectified flow induced from X is defined as

dZt = vX(Zt, t)dt, with Z0 = X0, and vX(z, t) = E
[
Ẋt | Xt = t

]
.

We can estimate vX by solving

min
v

∫ 1

0

E
[
wt

∥∥∥v(Xt, t)− Ẋt

∥∥∥2]dt, (8)

where wt : (0, 1) → (0,+∞) is a positive weighting sequence (wt = 1 by default). When using
the linear interpolation Xt = tX1 + (1 − t)X0, we have Ẋt = X1 − X0 and (8) with wt = 1
reduces to (1). As we show in Theorem D.3, the flow Z given by this method still preserves the
marginal laws of X , that is, Law(Zt) = Law(Xt), ∀t ∈ [0, 1], and hence (Z0, Z1) remains to be
a coupling of π0, π1. However, if X is not straight, (Z0, Z1) no longer guarantees to decrease the
convex transport costs over (X0, X1). More importantly, the reflow procedure no longer straightens
the paths of Zt.

A simple class of interpolation processes is Xt = αtX1 + βtX0 where αt and βt are two differ-
entiable sequences that satisfy α1 = β0 = 1 and α0 = β1 = 0 to ensure that the process equals
X0, X1 at the starting and end points. In this case, we have Ẋt = α̇tX1 + β̇tX0 in (8) where α̇t and
β̇t are the time derivatives of αt and βt. The shape of the curve is controlled by the relation of αt

and βt. If we take βt = 1− αt for all t, then Xt have straight paths but does not travel at a constant
speed; it can be viewed as a time-changed variant of the canonical case Xt = tX1+(1− t)X0 when
t is reparameterized to αt. When βt ̸= 1 − αt, the paths of Xt are not straight lines except some
special cases (e.g., α̇tX1 = 0 or β̇tX0 = 0, or X1 = aX1 for some a ∈ R).

C.1 PROBABILITY FLOW ODES AND DDIM

The probability flow ODEs (PF-ODEs) Song et al. (2020b) and denoising diffusion implicit models
(DDIM) Song et al. (2020a) are methods for learning ODE-based generative models of π1 from a
spherical Gaussian initial distribution π0, derived by converting a SDE learned by denoising dif-
fusion methods to an ODE with equivalent marginal laws. In Song et al. (2020b), three types of
PF-ODEs are derived from three types of SDEs learned as score-based generative models, including
variance-exploding (VE) SDE, variance-preserving (VP) SDE, and sub-VP SDE, which we denote
by VE ODE, VP ODE, and sub-VP ODE, respectively. VP ODE is equivalent to the continuous time
limit of DDIM, which is derived from the denoising diffusion probability model (DDPM) Ho et al.
(2020). As the derivations of PF-ODEs and DDIM require advanced tools in stochastic calculus, we
limit our discussion on the final algorithmic procedures suggested in Song et al. (2020b); Ho et al.
(2020). The readers are referred to Song et al. (2020b;a) for the details.
Proposition C.1. All variants of PF-ODEs can be viewed as instances of (8) when using Xt =
αtX1 + βtξ for some αt, βt with α1 = 1, β1 = 0, where ξ ∼ N (0, I) is a standard Gaussian
random variable.
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Here we need to use introduce ξ to replace X0 because the choices of αt and βt suggested in Song
et al. (2020b;a); Ho et al. (2020) do not satisfy the boundary condition of α0 = 0 and β0 = 1 at
t = 0, and hence X0 ̸= ξ. Instead, in these methods, the initial distribution X0 ∼ π0 is implicitly
defined as X0 = α0X1 + β0ξ, which is approximated by X0 ≈ β0ξ by making α0X1 ≪ β0ξ.
Hence, π0 is set to be N (0, β2

0I) in these methods. Viewed through our framework, there is no
reason to restrict ξ to be N (0, β2

0I), or not set α0 = 0, β0 = 1 to avoid the approximation.

Rectified flow VP ODE sub-VP ODE
(αt = t, βt = 1− t) (αt in (9), βt =

√
1− α2

t ) (αt in (9), βt = 1− α2
t )

1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow 1-Rectified Flow 2-Rectified Flow

Figure 11: Comparing rectified flow with VP ODE and sub-VP ODE when π0 = N (0, I) (purple dots) and
π1 is a low variance Gaussian mixture shown as the red dots. The linear rectified flow yields nearly straight
trajectories with one step of reflow. But the trajectories of VP ODE and sub-VP ODE are curved and can not
be straightened by reflowing.

Time-Discretization Rectified Flow VP ODE sub-VP ODE VP ODE (const speed)
Steps N αt = t, βt = 1− t αt in (9), βt =

√
1− α2

t αt in (9), βt = 1− α2
t αt = t, βt =

√
1− α2
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Figure 12: Trajectories of different methods when varying the number of discretization steps N (purple dots:
π0; red dots: π1; orangle dots: intermediate steps; blue curves: flow trajectories). The rectified flow travels
in straight lines and progresses uniformly in time; it generates the mean of π1 when simulated with a single
Euler step, and quickly covers the whole distribution π1 with more steps (in this case N = 2 is sufficient). In
comparison, VP ODE and sub-VP ODE travel in curves with non-uniform speed: they tend to be slow in the
beginning and speed up in the later phase (much of the update happens when t⪆0.5). The non-uniform speed
can be avoided by setting αt = t (see the last column).

VP ODE and sub-VP ODE The VP ODE and sub-VP ODE of Song et al. (2020b) use the fol-
lowing shared αt:

(sub-)VP ODE: αt = exp

(
−1

4
a(1− t)2 − 1

2
b(1− t)

)
; default values: a = 19.9, b = 0.1,

(9)

where the default values of a, b are chosen to match the continuous time limit of the shared training
procedure of DDIM and DDPM. The difference of VP ODE and sub-VP ODE is on the choice of
βt, given as follows:

VP ODE: βt =
√

1− α2
t , sub-VP ODE: βt = 1− α2

t . (10)

As β0 ≈ 1 in both VP and sub-VP ODE, the π0 in both cases are taken as N (0, I).

The choices of αt, βt above are the consequence of the SDE-based derivation in Song et al. (2020b).
However, they are not well-motivated when we exam the path properties of the induced ODEs:
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• Non-straight paths: Due to choices of βt in (10), the trajectories of VP ODE and sub-VP ODE
are curved in general, and can not be straightened by the reflow procedure. We should choose
βt = 1− αt to induce straight paths.

Figure 13: t vs. αt, βt of different methods.

• Non-uniform speed: The exponential form of αt in (9)
is a consequence of using Ornstein–Uhlenbeck processes
in the derivation of SDE models (Song et al., 2020b; Ho
et al., 2020). However, there is no clear advantage of us-
ing (9) for ODEs. As shown in Figure 12, the αt and βt

of VP and sub-VP ODE change slowly in the early phase
(t⪅0.5). As a result, the flow also moves slowly in begin-
ning and hence most of the updates are concentrated in
the later phase. Such non-uniform update speed, in addi-
tion to the non-straight paths, make VP ODE and sub-VP
ODE perform sub-optimally when using large step sizes,
even for transport between simple spherical Gaussian distributions (see Figure 12). As we show in
the last column of Figure 12, changing the exponential αt to the linear function αt = t in VP ODE
allows us to get a uniform update speed while preserving the same continuous-time trajectories.

VE ODE The VE ODE of Song et al. (2020b) uses αt = 1 and βt = σmin

√
r2(1−t) − 1 where

σmin = 0.01 by default r is set such that σmax := rσmin is as large as the maximum Euclidean
distance between all pairs of training data points from π1 (Technique 1 of Song & Ermon (2020)).
Assume that σ2

max is much larger than both σ2
min and the variance of X1, then X0 = X1 + β0ξ ≈

σmaxξ, and we can set the initial distribution to be π0 ∼ N (0, σ2
maxI), which has much larger

variance than π1. Hence, VE ODE can not be applied to (and not shown in) the toys in Figure 11 and
Figure 12. As the case of (sub-)VP ODE, the restriction on ξ is in fact unnecessary and requirement
that σmax is unnatural viewed from our framework. On the other hand, the trajectories of Xt in VE
ODE are indeed straight lines, because the direction of Ẋt = β̇tξ is always the same as ξ. However,
the choice of βt causes a non-uniform speed issue similar to that of (sub-)VP ODE.

Following Song et al. (2020b); Ho et al. (2020), a line of works have been proposed to improve
the choices of αt, βt, but remain to be constrained by the basic design space from the SDE-to-ODE
derivation; see for example Nichol & Dhariwal (2021); Karras et al. (2022); Zhang et al. (2022b).

To summarize, the simple nonlinear rectified flow framework in (8) both simplifies and extends the
existing framework, and sheds a number of importance insights:

• Learning ODEs can be considered directly and independently without resorting to diffusion/SDE
methods;

• The paths of the learned ODEs can be specified by any smooth interpolation curve Xt of X0 and
X1;

• The initial distribution π0 can be chosen arbitrarily, independent with the choice of the interpola-
tion Xt.

• The canonical linear interpolation Xt = tX1 + (1 − t)X0 should be recommended as a default
choice.

On the other hand, non-linear choices of Xt can be useful when we want to incorporate certain non-
Euclidan geometry structure of the variable, or want to place certain constraints on the trajectories
of the ODEs. We leave this for future works.

D THEORETICAL ANALYSIS

We present the theoretical analysis for rectified flow. The results are summarized as follows.

• [Section D.1] All nonlinear rectified flows with any interpolation Xt preserve the marginal laws.

• [Section D.2] The rectified flow (with the canonical linear interpolation) reduces convex transport
costs.

• [Section D.3] Reflow guarantees to straighten the (linear) rectified flows.
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• [Section D.4] We clarify the relation between straight couplings and c-optimal couplings.

D.1 THE MARGINAL PRESERVING PROPERTY

The marginal preserving property that Law(Zt) = Law(Xt) for ∀t is a general property of the
nonlinear rectified flows in (8), regardless whether the interpolation Xt is straight or not.

Definition D.1. For a path-wise continuously differentiable random process X = {Xt : t ∈ [0, 1]},
its expected velocity vX is defined as

vX(x, t) = E[Ẋt | Xt = x], ∀x ∈ supp(Xt).

For x ̸∈ supp(Xt), the conditional expectation is not defined and we set vX arbitrarily, say
vX(x, t) = 0.

Definition D.2. We call that X is rectifiable if vX is locally bounded and the solution of the integral
equation below exists and is unique:

Zt = Z0 +

∫ t

0

vX(Zt, t)dt, ∀t ∈ [0, 1], Z0 = X0. (11)

In this case, Z = {Zt : t ∈ [0, 1]} is called the rectified flow induced from X .

Theorem D.3. Assume X is rectifiable and Z is its rectified flow. Then Law(Zt) = Law(Xt) for
∀t ∈ [0, 1].

Proof. For any compactly supported continuously differentiable test function h : Rd → R, we have

d

dt
E[h(Xt)] = E[∇h(Xt)

⊤Ẋt] = E[∇h(Xt)
⊤vX(Xt, t)], (12)

where we used vX(Xt, t) = E[Ẋt|Xt]. By definition, this is equivalent to that πt := Law(Xt)
solves in the sense of distributions the continuity equation with drift vXt := vX(·, t):

π̇t +∇ · (vXt πt) = 0. (13)

To see the equivalence of (12) and (13), we can multiply (13) with h and integrate both sides:

0 =

∫
h(π̇t +∇ · (vXt πt)) =

∫
hπ̇t −∇h⊤vXt πt =

d

dt
E[h(Xt)]− E[∇h(Xt)

⊤vX(Xt, t)],

where we use integration by parts that
∫
h∇ · (vXt πt) = −

∫
∇h⊤(vXt πt).

Because Zt is driven by the same velocity field vX , its marginal law Law(Zt) solves the very
same equation with the same initial condition (Z0 = X0). Hence, the equivalence of Law(Zt)
and Law(Xt) follows if the solution of (13) is unique, which is equivalent to the uniqueness of
the solution of dZt = vX(Zt, t) following Corollary 1.3 of Kurtz (2011) (see also Theorem 4.1 of
Ambrosio & Crippa (2008)).

D.2 REDUCING CONVEX TRANSPORT COSTS

The fact that (Z0, Z1) yields no larger convex transport costs than (X0, X1) is a consequence of
using the special linear interpolation Xt = tX1 + (1− t)X0 as the geodesic of Euclidean space.

Definition D.4. A coupling (X0, X1) is called rectifiable if its linear interpolation process X =
{tX1 + (1 − t)X0 : t ∈ [0, 1]} is rectifiable. In this case, the Z = {Zt : t ∈ [0, 1]} in (11) is
called the rectified flow of coupling (X0, X1), denoted as Z = RectFlow((X0, X1)), and (Z0, Z1)
is called the rectified coupling of (X0, X1), denoted as (Z0, Z1) = RectFlow((X0, X1)).

Theorem D.5. Assume (X0, X1) is rectifiable and (Z0, Z1) = RectFlow((X0, X1)). Then for any
convex function c : Rd → R, we have

E[c(Z1 − Z0)] ≤ E[c(X1 −X0)].

24



Published as a conference paper at ICLR 2023

Proof. The proof is based on elementary applications of Jensen’s inequality.

E [c(Z1 − Z0)] = E
[
c

(∫ 1

0

vX(Zt, t)dt

)]
//as dZt = vX(Zt, t)dt

≤ E
[∫ 1

0

c
(
vX(Zt, t)

)
dt

]
//convexity of c, Jensen’s inequality

= E
[∫ 1

0

c
(
vX(Xt, t)

)
dt

]
//Xt and Zt shares the same marginals

= E
[∫ 1

0

c (E [(X1 −X0) | Xt]) dt

]
//definition of vX

≤ E
[∫ 1

0

E [c (X1 −X0) | Xt] dt

]
//convexity of c, Jensen’s inequality

=

∫ 1

0

E [c (X1 −X0)] dt //E[E[(X1 −X0)|Xt]] = E[(X1 −X0)]

= E [c (X1 −X0)] .

If Xt is straight but with positive non-constant speed, that is, Xt = αtX1 + βtX0 with βt = 1−αt

and α̇t ≥ 0, then we still have E[c(Z1 −Z0)] ≤ E[c(X1 −X0)] if c is convex and m-homogeneous
in that c(ax) = |a|m c(x) for ∀a ∈ R, x ∈ Rd, with some constant m ∈ (0, 1].

D.3 THE STRAIGHTENING EFFECT

A coupling (X0, X1) is said to be straight (or fully rectified) if it is a fixed point of the RectFlow(·)
mapping. It is desirable to obtain a straight coupling because its rectified flow is straight and hence
can be simulated exactly with one step using numerical solvers. In this section, we first characterize
the basic properties of straight couplings, showing that a coupling is straight iff its linear interpo-
lation paths do not intersect with each other. Then, we prove that recursive rectification straightens
the coupling and its related flow with a O(1/k) rate, where k is the number of rectification steps.

Theorem D.6. Assume (X0, X1) is rectifiable. Let Xt = tX1 + (1 − t)X0 and Z =
RectFlow((X0, X1)). Then (X0, X1) is a straight coupling iff the following equivalent statements
hold.

1. There exists a strictly convex function c : Rd → R, such that E[c(Z1 − Z0)] = E[c(X1 −
X0)].

2. (X0, X1) is a fixed point of RectFlow(·), that is, (X0, X1) = (Z0, Z1).

3. The rectified flow coincides with the linear interpolation process: X = Z.

4. The paths of the linear interpolation X do not intersect:

V ((X0, X1)) :=

∫ 1

0

E
[
∥X1 −X0 − E [X1 −X0 | Xt]∥2

]
dt = 0, (14)

where V ((X0, X1)) = 0 indicates that X1 − X0 = E[X1 − X0|Xt] almost surely when
t ∼ Uniform([0, 1]), meaning that the lines passing through each Xt is unique, and hence
no linear interpolation paths intersect.

Proof. 3 → 2 → 1: Obvious.

1 → 4: If E[c(Z1 −Z0)] = E[c(X1 −X0)], the two applications of Jensen’s inequality in the proof
of Theorem D.5 are tight. Because c is strictly convex, the second Jensen’s inequality in the proof
implies that X1 − X0 = E[X1 − X0 | Xt] almost surely w.r.t. X and t ∼ Uniform([0, 1]), which
implies that V (X) = 0.
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4 → 3: If V (X) = 0, we have
∫ s

0
(X1 − X0)dt =

∫ s

0
E[X1 − X0|Xt]dt =

∫ s

0
vX(Xt, t)dt for

s ∈ (0, 1]. Hence

Xt = X0 +

∫ t

0

(X1 −X0)dt = X0 +

∫ t

0

vX(Xt, t)dt.

Because Z satisfies the same equation (11), we have X = Z by the uniqueness of the solution.

O(1/K) convergence rate We now show that as we apply rectification recursively, the rectified
flows become increasingly straight and the linear interpolation of the couplings becomes increas-
ingly non-intersecting.

Theorem D.7. Let Zk the k-th rectified flow of (X0, X1), that is, Zk+1 = RectFlow((Zk
0 , Z

k
1 ))

and (Z0
0 , Z

0
1 ) = (X0, X1). Assume each (Zk

0 , Z
k
1 ) is rectifiable for k = 0, . . . ,K.

Then
K∑

k=0

S(Zk+1) + V ((Zk
0 , Z

k
1 )) ≤ E

[
∥X1 −X0∥2

]
.

Hence, E[∥X1 −X0∥2] < +∞, we have mink≤K(S(Zk) + V ((Zk
0 , Z

k
1 )) = O(1/K).

Proof. Taking c(x) = ∥x∥2 in the proof of Theorem 3.5, we can obtain that

E [∥X1 −X0∥]− E [∥Z1 − Z0∥] = S(Z) + V ((X0, X1)). (15)

Applying it to each rectification step yields

E
[∥∥Zk

1 − Zk
0

∥∥2]− E
[∥∥Zk+1

1 − Zk+1
0

∥∥2] = S(Zk+1) + V ((Zk
0 , Z

k
1 )).

A telescoping sum on k = 0, . . . ,K gives the result.

D.4 STRAIGHT VS. OPTIMAL COUPLINGS

A coupling (X0, X1) is called c-optimal if it achieves the minimum of E[c(X1 − X0)] among
all couplings that share the same marginals. Understanding and computing the optimal couplings
have been the main focus of optimal transport (e.g., Villani, 2009; Ambrosio et al., 2021; Figalli
& Glaudo, 2021; Peyré et al., 2019). Straight couplings is a different desirable property. In the
following, we show that straightness is a necessary but not sufficient condition of being c-optimal
for a strictly convex function c, except in the one dimensional case when the two concepts coincides.
Hence, it is “easier” to find a straight coupling than a c-optimal couplings.
Theorem D.8. If a rectifiable coupling (X0, X1) is c-optimal for some strictly convex cost function
c, then (X0, X1) is a straight coupling.

Proof. Let (Z0, Z1) = RectFlow((X0, X1)). If (X0, X1) is c-optimal, we must have E[c(Z1 −
Z0)] = E[c(X1 − X0)]. This implies Statement 1 in Theorem D.6 and hence that (X0, X1) is
straight.

1D Case For any π0, π1 on R, there exists an unique coupling (X∗
0 , X

∗
1 ) that is simultaneously

optimal for all non-negative convex cost functions c. This coupling is uniquely characterized by a
monotonic property: for every (x0, x1) and (x′

0, x
′
1) in the support of (X∗

0 , X
∗
1 ), if x0 < x′

0, then
x1 ≤ x′

1. Furthermore, if π0 is absolutely continuously w.r.t. the Lebesgue measure, then (X∗
0 , X

∗
1 )

must be deterministic in that there exists a mapping T : R → R such that X∗
1 = T (X∗

0 ). See
Santambrogio (2015).

In the following, we show that straight couplings on R coincides with the deterministic monotonic
coupling (X∗

0 , X
∗
1 ) and hence is unique and simultaneously optimal for all convex c when π0 is

absolutely continuous. The idea is that, in R, a coupling is monotonic iff its linear interpolation
paths do not intersect, a characteristic feature of straight couplings.
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Lemma D.9. A coupling on R is straight iff it is deterministic and monotonic.
Theorem D.10. For any π0, π1 on R, there exists either no straight coupling, or a unique straight
coupling. Further, if exists, the unique straight coupling is deterministic and monotonic, and
jointly optimal w.r.t. all convex cost functions c : Rd → [0,+∞) for which the minimum value
of E [c(X1 −X0)] exists and is finite.

Proof of Lemma D.9. If (X0, X1) on R is straight, then it coincides with its rectified coupling
(Z0, Z1) = RectFlow((X0, X1)). But because (Z0, Z1) is induced from the rectified flow dZt =
vX(Zt, t)dt, it is obviously deterministic. It is also monotonic due to the non-crossing property of
flows. Specifically, if (Z0, Z1) is not monotonic, there exists (z0, z1) and (z′0, z

′
1) in the support of

(Z0, Z1) such that z0 < z′0 and z1 > z′1. If this happens, there must exists t0 ∈ (0, 1), such that
zt0 = z′t0 . But by the uniqueness of the solution, we have zt = zt for t ≥ t0, which is conflicting
with z1 > z′1.

Assume (X0, X1) is deterministic and monotonic. Due to the monotonicity, there exists no x0 and
x′
0 in the support of π0, such that x0 ̸= x′

0 and xt0 = x′
t0 for some t0 < 1. This suggests that

X1 − X0 = E[X1 − X0 | Xt] = vX(Xt, t) for t ∈ (0, 1), and hence dXt = (X1 − X0)dt =
vX(Xt)dt, which is the ODE of the rectified flow. In addition, Xt is obviously the unique solution
of this ODE. Hence (X0, X1) is rectifiable and straight following Statement 3 of Theorem D.6.

Proof of Theorem D.10. This is the result of Lemma D.9 combined with the fact that the mono-
tonic coupling is unique and jointly optimal for all convex c for which the optimal coupling exists,
following Lemma 2.8 and Theorem 2.9 of Santambrogio (2015).

Multi-dimensional cases On the other hand, on Rd with d ≥ 2, the different cost functions c
do not share a common optimal coupling in general, and a straight coupling is not guaranteed to
optimize a specific c; this is expected because the RectFlow(·) procedure does not depend on a
particular choice of c. Hence, one must modify the RectFlow(·) procedure to tailor it to a specific
c of interest.

In a recent work (Khrulkov & Oseledets, 2022), it was conjectured that the couplings (Z0, Z1)
induced from VP ODE (equivalently DDIM) yields an optimal coupling w.r.t. the quadratic loss,
which was proved to be false in Lavenant & Santambrogio (2022); Tanana (2021). Here we show
that even straight couplings are not guaranteed to be optimal, not to mention that VP ODE does not
follow straight paths by design.

We explore this in a separate work (Liu, 2022b) that is devoted to modifying rectified flow to find
c-optimal couplings, a result that can be easily stated is that the optimal coupling w.r.t. the quadratic
cost c(·) = ∥·∥2 can be achieved as the fixed point of RectFlow(·) if v is restricted to be a gradient
field of form v(x, t) = ∇f(x, t) when solving (1). Restricting v to be a gradient field removes the
rotational component of the velocity field vX that causes sub-optimal transport cost.

D.5 ADDITIONAL TOY EXAMPLES

To accurately illustrate the theoretical properties, we use the non-parametric estimator vX,h(z, t) in
(7) in the toy examples in Figure 2, 3, 11, 12. In practice, we approximate the expectation in (7) an
nearest neighbor estimator: given a sample {x(i)

0 , x
(i)
1 }i drawn from (X0, X1), we estimate vX by

vX,h(z, t) ≈
∑

i∈knn(z,m)

x
(i)
1 − z

1− t
ωh(x

(i)
t , z) /

∑
i∈knn(z,m)

ωh(x
(i)
t , z), x

(i)
t = tx

(i)
1 + (1− t)x

(i)
0 ,

where knn(z,m) denotes the top m nearest neighbors of z in {x(i)
t }i. We find that the results are

not sensitive to the choice of m and the bandwidth h (see Figure 14). We use h = 1 and m = 100 by
default. The flows are simulated using Euler method with a constant step size of 1/N for N steps.
We use N = 100 steps unless otherwise specified.

Alternatively, vX can be parameterized as a neural network and trained with stochastic gradient de-
scent or Adam. Figure 14 shows an example of when vX is parameterized as an 2-hidden-layer fully
connected neural network with 64 neurons in both hidden layers. We see that the neural networks fit
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less perfectly with the linear interpolation trajectories (which should be piece-wise linear in this toy
example). As shown in Figure 14, we find that enhancing the smoothness of the neural networks (by
increasing the L2 regularization coefficient during training) can help straighten the flow, in addition
to the rectification effect.

1-Rectified Flow 2-Rectified Flow 3-Rectified Flow 1-Rectified Flow 2-Rectified Flow 3-Rectified Flow

L
2

Pe
na

lty
=0

h
=

0
.0
1

L
2
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=

0
.0
1

h
=

1

Figure 14: Rectified flows fitted with neural networks trained with different L2 penalty (left), and kernel esti-
mator with different bandwidth h (right). π0: red dots; π1: purple dots.

In Figure 3 of Section 2.2, the straightness is calculated as the empirical estimation of (3) based on
the simulated trajectories. The relative transport cost is calculated based on {z(i)0 , z

(i)
1 }ni=1 drawn

from (Z0, Z1) by simulating the flow, as 1
n

∑n
i=1

∥∥∥z(i)1 − z
(i)
0

∥∥∥2−∥∥∥z(i∗)1 − z
(i)
0

∥∥∥2, where z(i
∗)

1 is the

optimal L2 assignment of z(i)0 obtained by solving the discrete L2 optimal transport problem between
{z(i)0 } and {z(i)1 }. We should note that this metric is only useful in low dimensions, as it tends to
be identically zero in high dimensional cases even vX is set to be a random neural network. This
misleading phenomenon is what causes Khrulkov & Oseledets (2022) to make the false hypothesis
that DDIM yields L2 optimal transport.

E ADDITIONAL EXPERIMENT DETAILS

Experiment Configuration on CIFAR10 We conduct unconditional image generation with the
CIFAR-10 dataset (Krizhevsky et al., 2009). The resolution of the images are set to 32 × 32. For
rectified flow, we adopt the same network structure as DDPM++ in (Song et al., 2020b). The training
of the network is smoothed by exponential moving average as in (Song et al., 2020b), with a ratio
of 0.999999. We adopt Adam (Kingma & Ba, 2014) optimizer with a learning rate of 2e − 4 and a
dropout rate of 0.15.

For reflow, we first generate 4 million pairs of (z0, z1) to get a new dataset D, then fine-tune the
i-rectified flow model for 300, 000 steps to get the (i + 1)-rectified flow model. We further distill
these rectified flow models for few-step generation. To get a k-step image generator from the i-
rectified flow, we randomly sample t ∈ {0, 1/k, · · · , (k − 1)/k} during fine-tuning, instead of
randomly sampling t ∈ [0, 1]. Specifically, for k = 1, we replace the L2 loss function with the
LPIPS similarity (Zhang et al., 2018) since it empirically brings better performance.

Experiment Configuration on High-resolution Image Generation In high-resolution image
generation, we adopt the NCSN++ network, following (Song et al., 2020b). The other configura-
tions are kept the same as CIFAR10. We provide additional quantitative results in Table 2. Because
the dataset only contains < 6000 images, FID is computed with 5000 images.

Expreiment Configuration on Image-to-Image Translation In this experiment, we also adopt
the same U-Net structure of DDPM++ Song et al. (2020b) for representing the drift vX . We follow
the procedure in Algorithm 1. For the purpose of generative modeling, we set π0 to be one domain
dataset and π1 the other domain dataset. For optimization, we use AdamW (Loshchilov & Hutter,
2017) optimizer with β (0.9, 0.999), weight decay 0.1 and dropout rate 0.1. We train the model with
a batch size of 4 for 1, 000 epochs. We further apply exponential moving average (EMA) optimizer
with coefficient 0.9999. We perform grid-search on the learning rate from {5× 10−4, 2× 10−4, 5×
10−5, 2× 10−5, 5× 10−6} and pick the model with the lowest training loss.
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Method NFE(↓) FID (↓)
ODE One-Step Generation (Euler solver, N=1)
1-Rectified Flow (+Distill) 1 227.82 (25.38)
2-Rectified Flow (+Distill) 1 167.79 (28.60)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N )
1-Rectified Flow 201 13.71
2-Rectified Flow 166 20.67

Table 2: FID on AFHQ-CAT dataset.

Method ERM IRM ARM Mixup MLDG CORAL Ours
OfficeHome 66.5± 0.3 64.3± 2.2 64.8± 0.3 68.1± 0.3 66.8± 0.6 68.7± 0.3 69.2± 0.5
DomainNet 40.9± 0.1 33.9± 2.8 35.5± 0.2 39.2± 0.1 41.2± 0.1 41.5± 0.2 41.4± 0.1

Table 3: The accuracy of the transferred testing data using different methods, on the OfficeHome and Domain-
Net dataset. Higher accuracy means the better performance.

We use the AFHQ (Choi et al., 2020), MetFace (Karras et al., 2020) and CelebA-HQ (Karras et al.,
2018) dataset. Animal Faces HQ (AFHQ) is an animal-face dataset consisting of 15,000 high-quality
images at 512 × 512 resolution. The dataset includes three domains of cat, dog, and wild animals,
each providing 5000 images. MetFace consists of 1,336 high-quality PNG human-face images at
1024 × 1024 resolution, extracted from works of art. CelebA-HQ is a human-face dataset which
consists of 30,000 images at 1024 × 1024 resolution. We randomly select 80% as the training data
and regard the rest as the test data, and resize the image to 512× 512.

E.1 DOMAIN ADAPTATION

A key challenge of applying machine learning to real-world problems is the domain shift between the
training and test datasets: the performance of machine learning models may degrade significantly
when tested on a novel domain different from the training set. Rectified flow can be applied to
transfer the novel domain (π0) to the training domain (π1) to mitigate the impact of domain shift.

Experiment settings We test the rectified flow for domain adaptation on a number of datasets.
DomainNet (Peng et al., 2019) is a dataset of common objects in six different domain taken from
DomainBed (Gulrajani & Lopez-Paz, 2020). All domains from DomainNet include 345 categories
(classes) of objects such as Bracelet, plane, bird and cello. Office-Home (Venkateswara et al., 2017)
is a benchmark dataset for domain adaptation which contains 4 domains where each domain consists
of 65 categories. To apply our method, first we map both the training and testing data to the latent
representation from final hidden layer of the pre-trained model, and construct the rectified flow on
the latent representation. We use the same DDPM++ model architecture for training. For inference,
we set the number of steps of our flow model as 100 using uniform discretization. The methods
are evaluated by the prediction accuracy of the transferred testing data on the classification model
trained on the training data.

Experiment Configuration For training the model, we apply AdamW (Loshchilov & Hutter,
2017) optimizer with batch size 16, number of iterations 50k, learning rate 10−4, weight decay
0.1 and OneCycle (Smith & Topin, 2019) learning rate schedule.

Results As demonstrated in Table 3, the 1-rectified flow shows state-of-the-art performance on
both DomainNet and OfficeHome. It is better or on par with the previous best approach (Deep
CORAL (Sun & Saenko, 2016)), while sustainably improve over all other methods.
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Figure 15: An example of image editing using 1-rectified flow. Here, we stitch the images of a white cat and a
black cat into an unnatural image (denoted as z1). We simulate the ODE reversely from z1 to get the latent code
z0. Because z1 is not a natural image, z0 should have low likelihood under π0 = N (0, I). Hence, we move
z0 towards the high probability region of π0 to get z′0 and solve the ODE forwardly to get a more realistically
looking image z′1. The modification can be done deterministically by improving the π0-likelihood via z′0 = αz0
with α ∈ (0, 1), or stochastically by Langevin dynamics, which yields a formula of z′0 = αz0 +

√
1− α2ξ

with ξ ∼ N (0, I).

Figure 16: To visualize the latent space, we randomly sample z0 and z1 from N (0, I), and show the generated
images of

√
αz0 +

√
1− αz1 for α ∈ [0, 1].
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Figure 17: (a) We compare the latent space between Rectified Flow (0) and (1) using different sampling strate-
gies with the same random seeds. We observe that (i) both 1-Rectified Flow and 2-Rectified Flow can provide
a smooth latent interpolation, and their latent spaces look similar; (ii) when using one-step sampling (N = 1),
2-Rectified Flow can still provide visually recognizable interpolation, while 1-Rectified Flow cannot; (iii) Dis-
tilled one-step models can also continuously interpolate between the images, and their latent spaces have little
difference with the original flow. (b) We composite the latent codes of two images by replacing the boundary
of a black cat with a white cat, then visualize the variation along the trajectory. The black cat turns into a grey
cat at first, then a cat with mixing colors, and finally a white cat. (c) We randomly sample ξ ∼ N (0, I), then
generate images with αξ to examine the influence of α on the generated images. We find α < 1 results in
overly smooth images, while α > 1 leads to noisy images.

t0 1

0 1 t

2-Rectified Flow

0.001 0.002 0.1 0.3 0.5 0.8

t

subVP-ODE

0 10.001 0.002 0.1 0.3 0.5 0.8

0 1 t

1-Rectified Flow

0.001 0.002 0.1 0.3 0.5 0.8

Figure 18: Sample trajectories zt of different flows on the CIFAR10 dataset, and the extrapolation ẑt1 =
zt + (1 − t)v(zt, t) from different zt. The same random seed is adopted for all three methods. The ẑt1 of
2-rectified flow is almost independent with t, indicating that its trajectory is almost straight.
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Figure 19: We perform latent space embedding / image reconstruction here. Given an image z1, we use an re-
verse ODE solver to get a latent code ẑ0, then use a forward ODE solver to get a reconstruction ẑ1 of the image.
The columns in the figure are reverse ODE solver (forward ODE solver). (i) Thanks to the‘straightening’ effect,
2-rectified flow can get meaningful latent code with only one reverse step. It can also generate recognizable
images using one forward step. (ii) With the help of distilled models, one-step embedding and reconstruction
is significantly improved.

1-Rectified Flow

2-Rectified Flow

1-Rectified Flow

2-Rectified Flow

(a) 1-rectified flow between different domains (b) 1- and 2-rectified flow for MetFace → Cat.

Figure 20: (a) Samples of trajectories zt of 1- and 2-rectified flow for transferring between different domains.
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Figure 21: More results for image-to-image translation between different domains. The images in each row are
time-uniformly sampled from the trajectory of 1-rectified flow solved N = 100 Euler steps with constant step
size.
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