

000 001 002 003 004 005 OJA KV: CONTEXT-AWARE ONLINE LOW-RANK 006 KV CACHE COMPRESSION WITH OJA'S RULE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

ABSTRACT

036 The expanding long-context capabilities of large language models are constrained
037 by a significant memory bottleneck: the key-value (KV) cache required for au-
038 toregressive generation. This bottleneck is substantial; for instance, a Llama-3.1-
039 8B model processing a 32K-token prompt at a batch size of 4 requires approx-
040 imately 16 GB for its KV cache, a size exceeding the model’s weights. While
041 KV-cache compression via low-rank projection is a promising direction, existing
042 methods’ rely on a static, offline-learned subspace that performs poorly under data
043 distribution shifts. To overcome these limitations, we introduce **OjaKV**, a novel
044 framework that integrates a strategic hybrid storage policy with online subspace
045 adaptation. First, OjaKV recognizes that not all tokens are equally important for
046 compression; it preserves the crucial first and most recent tokens in full-rank,
047 maintaining high-fidelity anchors for attention. Second, for the vast majority of
048 intermediate tokens, it applies low-rank compression by incrementally adapting
049 the projection basis using Oja’s algorithm for online principal component anal-
050 ysis. This adaptation involves a comprehensive update during prompt prefilling
051 and lightweight periodic updates during decoding, ensuring the subspace remains
052 aligned with the evolving context. Crucially, our framework is fully compatible
053 with modern attention modules like *FlashAttention*. Experiments demonstrate that
054 OjaKV maintains or even improves zero-shot accuracy at high compression ratios.
055 In particular, OjaKV achieves its strongest gains on very long-context benchmarks
056 that require complex reasoning, highlighting the importance of online subspace
057 adaptation in dynamically tracking context shifts. Furthermore, our approach is
058 compatible with token-selection methods, enabling compounded memory savings.
059 These results establish our hybrid framework as a practical, plug-and-play solution
060 for memory-efficient long-context inference without requiring model fine-tuning.
061 Code at <https://anonymous.4open.science/r/OjaKV-9D76>.

1 INTRODUCTION

036 Large language models (LLMs) such as GPT-4o (OpenAI et al., 2024) and Deepseek-R1 (DeepSeek-
037 AI et al., 2025) have demonstrated remarkable performance across diverse domains, including cod-
038 ing (Nam et al., 2024), mathematics (Setlur et al., 2024), and open-ended text generation (Kumichev
039 et al., 2024). However, as model capabilities and context length expand, GPU memory emerges as a
040 critical bottleneck for inference. The memory footprint arises from two primary sources: (i) model
041 weights, with a model like Llama-3.1-8B requiring 16 GB alone; and (ii) the Key-Value (KV) cache
042 used during prompt prefilling and autoregressive decoding. For instance, processing a 32K-token
043 prompt with Llama-3.1-8B in float16 precision at a batch size of 4 consumes an additional 16 GB
044 for the KV cache, rivalling the size of the model weights themselves. This substantial memory con-
045 sumption makes long-context inference prohibitive on all but high-end hardware.

046 To mitigate this challenge, a variety of methods have been proposed to optimize KV-cache memory
047 usage (Shi et al., 2024). These approaches can be grouped into four categories: (1) *Quantization*,
048 which stores keys and values at a lower precision (e.g., 8-bit) (Hooper et al., 2024; Liu et al., 2024);
049 (2) *Token Selection*, which prunes or merges tokens deemed unimportant based on attention scores
050 or heuristic saliency measures (Xiao et al., 2023; Li et al., 2024; Zhang et al., 2023); (3) *Offloading*,
051 which transfers the KV cache to CPU memory and selectively streams it back during decoding (Tang
052 et al., 2024; Sun et al., 2024; Zhu et al., 2025); and (4) *Low-rank Approximation*, which projects keys
053 and values into a lower-dimensional subspace (Saxena et al., 2024; Lin et al., 2024).

Our work focuses on this fourth direction. By compressing each key and value vector from dimension d (e.g., $d = 128$) to r (e.g., $r = 96$), low-rank methods can reduce cache memory by $((1 - r/d) \times 100)\%$ while preserving model accuracy, yielding substantial savings for long-context inference. While token selection has become a widely adopted strategy, we provide theoretical support showing that low-rank projection and token eviction are compatible, offering multiplicative benefits that enable even greater memory reductions when combined.

Existing low-rank methods fall into two main categories. (1) *Weight-decomposition* techniques directly factorize the linear projection weights for query, key, and value ($\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$) into low-rank matrices, thereby caching already-compressed intermediate states (Chang et al., 2024). However, this approach often incurs a noticeable degradation in accuracy. (2) *Projection-based* techniques learn fixed orthonormal projecton bases ($\mathbf{U}_q, \mathbf{U}_k, \mathbf{U}_v$) from a calibration dataset. These bases are then used to compress the KV cache, which is reconstructed during attention computation (Saxena et al., 2024; Lin et al., 2024). While effective, these static bases implicitly assume that inference prompts will follow the same distribution as the calibration data. In practice, distribution shifts (e.g., from dialogue to code generation) cause the approximation to deteriorate, harming generation quality.

To address these limitations, we propose **OjaKV**, a novel framework for KV-cache compression that operates on two core principles. Our first key insight is that uniform compression across all tokens is suboptimal. Motivated by the findings of attention sinks (Xiao et al., 2023), OjaKV employs a hybrid storage policy that strategically excludes the crucial first and most recent tokens from low-rank projection. This preserves their full-rank fidelity, creating stable anchors for the attention mechanism and forming a significantly stronger performance baseline. Second, for the remaining intermediate tokens, we incorporate online subspace adaptation using Oja’s incremental principle component analysis (PCA) (Oja, 1997). This mechanism performs a comprehensive update during the prefill stage on a selection of salient tokens, and subsequently executes periodic lightweight updates during decoding. This ensures the low-rank basis continuously adapts to the evolving context with negligible overhead. Our framework is fully compatible with modern attention modules such as FlashAttention (Dao et al., 2022), ensuring practicality in real-world long-context inference.

We evaluate OjaKV on multiple-choice benchmarks from the lm-eval-harness (Biderman et al., 2024), aligning with prior studies (Saxena et al., 2024; Lin et al., 2024). Additionally, for the first time to the best of our knowledge, we evaluate projection-based low-rank KV cache compression methods’ performance on generation-centric long-context tasks using LongBench (Bai et al., 2023) and RULER (Hsieh et al., 2024). Across all settings, OjaKV demonstrates superior performance over static low-rank baselines at the equivalent compression ratios.

In summary, our contributions are fourfold. First, we introduce a hybrid low-rank KV-cache compression framework, OjaKV, which combines a selective full-rank storage policy with a context-aware online subspace adaptation. Second, our design is compatible with FlashAttention, ensuring practicality for modern long-context inference pipelines. Third, we conduct the first comprehensive evaluation of low-rank KV compression on challenging generation-centric benchmarks, moving beyond the simpler multiple-choice tasks. Finally, we provide a theoretical analysis demonstrating the composability of OjaKV with token-eviction techniques, enabling compounded memory savings.

2 RELATED WORK

Recent work on reducing memory footprint of LLM inference has led to various strategies for compressing the KV cache, a primary contributor to memory overhead during long-context generation. These approaches span orthogonal directions, including quantization, token pruning, offloading, and subspace compression. Our method builds on low-rank approximation, extending it with an online, context-adaptive formulation. We review relevant methods below and highlight how OjaKV differs.

2.1 KV-CACHE COMPRESSION

The substantial memory overhead of the KV cache has motivated a range of compression strategies, which can be grouped into four major categories (Shi et al., 2024). (1) *Quantization*: These methods reduce memory by storing keys and values at lower precision, for example, using 4-bit integers instead of the standard 16-bit floats. KVQuant (Hooper et al., 2024) proposes a suite of techniques to

enable accurate KV cache quantization below 4-bit precision. KIVI (Liu et al., 2024) further introduces a tuning-free 2-bit scheme that quantizes keys per-channel and values per-token, achieving up to $2.6 \times$ memory reduction and $2.35\text{-}3.47 \times$ throughput gains with minimal quality loss. (2) *Token selection*: These methods discard or merges tokens deemed less important. StreamingLLM (Xiao et al., 2023) leverages the “attention sink” phenomenon, retaining the first and most recent tokens while discarding others. SnapKV (Li et al., 2024) heuristically selects salient tokens based on computed importance scores. (3) *Offloading*: These approaches move KV cache storage from GPU to CPU memory and selectively reload parts as needed. Quest (Tang et al., 2024) is a query-aware method that estimates the criticality of cache pages via query vectors and loads only the top- K pages, thereby accelerating self-attention without accuracy loss. ShadowKV (Sun et al., 2024) off-loads value caches to CPU memory and streams back only relevant chunks during decoding. (4) *Low-rank approximation*: These methods project keys and values into a lower-dimensional subspace (Saxena et al., 2024; Lin et al., 2024), either by factorizing the projection weights or applying a learned low-rank basis to construct a compressed KV cache. Our method falls into the last category and is *orthogonal* to the first three, making it complementary and enabling additive memory savings when combined.

2.2 LOW-RANK APPROXIMATION FOR ATTENTION

Low-rank structure in Transformer activations has long been leveraged to compress both weights and activations. Palu (Chang et al., 2024) and ReCalKV (Yan et al., 2025) factorize the model weights into low-rank matrices, cache compressed intermediate states, and reconstruct the full key and value tensors during attention. However, these methods often incur noticeable accuracy degradation due to lossy factorization. EigenAttention (Saxena et al., 2024) instead samples key/value activations from a calibration dataset, performs singular value decomposition (SVD), and selects orthonormal bases U_k and U_v that retain a target variance ratio. MatryoshkaKV (Lin et al., 2024) extends this idea by fine-tuning the low-rank projection matrices, thereby aligning the subspace more closely with downstream tasks. A key limitation of EigenAttention and MatryoshkaKV lies in their use of a static basis: once computed, the projections remain fixed throughout inference. This assumption breaks down when inference prompts diverge from the calibration distribution (e.g., shifting from conversational text to code), leading to degraded approximation and reduced generation quality. Our method address this gap by introducing online subspace adaptation. It continuously updates the projection matrices, enabling adaptive and context-aware low-rank approximation during inference.

2.3 ONLINE PRINCIPAL COMPONENT ANALYSIS

When data arrives sequentially, as in the case of autoregressive decoding, rerunning SVD on the entire history is computationally infeasible. Instead, online PCA algorithms incrementally update the low-rank subspace as new samples arrive, without storing or recomputing the full covariance matrix. Classical approaches include perturbation techniques, incremental PCA, and stochastic optimization methods such as Oja’s rule. Perturbation techniques update the eigen decomposition of the sample covariance by treating new observations as a low-rank perturbation (Gu & Eisenstat, 1994). These approaches are numerically accurate but computationally and memory intensive, making them unsuitable for high-dimensional or fast streaming data. Incremental SVD methods maintain a running factorization and updates it with each new batch of samples (Brand, 2002). This strikes a balance between efficiency and accuracy, and is often robust in practical settings, but can still be slower than stochastic updates for extremely large-scale problems like real-time LLM inference. Stochastic optimization methods, in contrast, directly optimize the expected variance using stochastic gradient updates, the most well-known being Oja’s rule (Oja, 1997). Due to their efficiency, stochastic PCA methods are well suited to applications like KV cache compression during autoregressive decoding. Our proposed method, OjaKV, builds on this foundation. We apply Oja’s rule to update the key and value subspaces during inference, enabling fast, adaptive, and context-aware low-rank approximation needing access to calibration data or fine-tuning.

3 PRELIMINARIES: LOW-RANK ATTENTION

We begin by describing the standard attention mechanism and how it can be adapted for low-rank KV cache compression. For simplicity, we focus on a single attention head. Let the head dimension

162 be d_h and the input sequence be $\mathbf{X} \in \mathbb{R}^{n \times d}$. Standard attention first projects the input into query,
 163 key, and value representations using projection matrices $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v \in \mathbb{R}^{d \times d_h}$:

$$164 \quad 165 \quad \mathbf{Q} = \mathbf{X}\mathbf{W}_q, \quad \mathbf{K} = \mathbf{X}\mathbf{W}_k, \quad \mathbf{V} = \mathbf{X}\mathbf{W}_v,$$

166 where $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d_h}$. The KV cache stores \mathbf{K} and \mathbf{V} for future use during decoding. The
 167 attention scores \mathbf{A} are then computed as the scaled dot product between queries and keys, followed
 168 by a softmax operation. The output of the attention head, \mathbf{O} , is computed by applying these attention
 169 scores to value matrix \mathbf{V} : $\mathbf{A} = \text{softmax}(\mathbf{Q}\mathbf{K}^\top / \sqrt{d_h}) \in \mathbb{R}^{n \times n}, \mathbf{O} = \mathbf{AV} \in \mathbb{R}^{n \times d_h}$.
 170

171 3.1 LOW-RANK KV-CACHE APPROXIMATION

172 The core idea of low-rank approximation is to project \mathbf{K} and \mathbf{V} onto lower-dimensional subspaces.
 173 We define two orthonormal bases: $\mathbf{U}_k \in \mathbb{R}^{d_h \times r_k}$ for keys and queries, and $\mathbf{U}_v \in \mathbb{R}^{d_h \times r_v}$ for values,
 174 where $r_k, r_v \ll d_h$ are the desired ranks for compression. The bases satisfy $\mathbf{U}_k^\top \mathbf{U}_k = \mathbf{I}_{r_k}$ and
 175 $\mathbf{U}_v^\top \mathbf{U}_v = \mathbf{I}_{r_v}$. The low-rank bases \mathbf{U}_k and \mathbf{U}_v are initialized from a small calibration dataset (see
 176 Appendix A.2 for details).
 177

178 Instead of caching the full-rank \mathbf{K} and \mathbf{V} , we store their *compressed* representations:

$$179 \quad 180 \quad \tilde{\mathbf{K}} = \mathbf{K}\mathbf{U}_k \in \mathbb{R}^{n \times r_k}, \quad \tilde{\mathbf{V}} = \mathbf{V}\mathbf{U}_v \in \mathbb{R}^{n \times r_v}.$$

181 This reduces per-token storage requirement for the KV cache from $2d_h$ to $r_k + r_v$. If needed, the
 182 full-rank matrices can be approximately reconstructed via $\hat{\mathbf{K}} = \tilde{\mathbf{K}}\mathbf{U}_k^\top$ and $\hat{\mathbf{V}} = \tilde{\mathbf{V}}\mathbf{U}_v^\top$.
 183

184 3.2 EFFICIENT ATTENTION COMPUTATION

185 This compressed representation allows for a more efficient attention calculation. Projecting queries
 186 into the shared query-key subspace yields $\tilde{\mathbf{Q}} = \mathbf{Q}\mathbf{U}_k$. The attention scores can be computed directly
 187 in the low-rank space, as the projection is mathematically equivalent to using the reconstructed
 188 matrices:

$$189 \quad \tilde{\mathbf{Q}}\tilde{\mathbf{K}}^\top = (\mathbf{Q}\mathbf{U}_k)(\mathbf{K}\mathbf{U}_k)^\top = \mathbf{Q}\mathbf{U}_k\mathbf{U}_k^\top \mathbf{K}^\top = \mathbf{Q}\mathbf{U}_k(\mathbf{K}\mathbf{U}_k)^\top = \mathbf{Q}\mathbf{U}_k\tilde{\mathbf{K}}^\top = \mathbf{Q}\hat{\mathbf{K}}^\top \in \mathbb{R}^{n \times n}.$$

190 Thus, attention computed in the low-rank space is equivalent to using the reconstructed keys. The
 191 full attention operation is then performed in the low-rank space, and the final output is projected
 192 back to the original dimension: $\tilde{\mathbf{O}} = \text{softmax}(\tilde{\mathbf{Q}}\tilde{\mathbf{K}}^\top / \sqrt{d_h}) \tilde{\mathbf{V}} \in \mathbb{R}^{n \times r_v}, \hat{\mathbf{O}} = \tilde{\mathbf{O}}\mathbf{U}_v^\top \in \mathbb{R}^{n \times d_h}$.
 193

194 We note that the final output computation in the above formulation is mathematically equivalent to
 195 using the reconstructed keys and values, i.e., $\hat{\mathbf{O}} = \text{softmax}(\mathbf{Q}\hat{\mathbf{K}}^\top / \sqrt{d_h}) \hat{\mathbf{V}}$.
 196

197 3.3 PRACTICAL IMPLEMENTATION: COMPATIBILITY WITH FLASHATTENTION

198 Optimized attention kernels like FlashAttention operate on full-dimensional tensors of shape
 199 $(n \times d_h)$ and cannot directly use the compressed features. To maintain compatibility, we store the
 200 compressed KV cache ($\tilde{\mathbf{K}}, \tilde{\mathbf{V}}$) and perform on-the-fly reconstruction before using FlashAttention.
 201 Given queries $\mathbf{Q} \in \mathbb{R}^{n \times d_h}$, we reconstruct the keys and values in the original space from the
 202 compressed cache:
 203

$$204 \quad \hat{\mathbf{K}} = \tilde{\mathbf{K}}\mathbf{U}_k^\top \in \mathbb{R}^{n \times d_h}, \quad \hat{\mathbf{V}} = \tilde{\mathbf{V}}\mathbf{U}_v^\top \in \mathbb{R}^{n \times d_h}.$$

205 These reconstructed tensors are then passed to FlashAttention:

$$206 \quad 207 \quad \mathbf{O}_{\text{out}} = \hat{\mathbf{O}} = \text{FlashAttention}(\mathbf{Q}, \hat{\mathbf{K}}, \hat{\mathbf{V}}).$$

208 This approach maintains the memory savings of a compressed cache while incurring only a modest
 209 runtime overhead, as detailed in Appendix A.3.
 210

211 4 MOTIVATION

212 Offline low-rank bases are fitted to the calibration distribution and can misalign under domain or task
 213 shifts at inference, increasing projection error for keys and values. We therefore maintain an adaptive
 214

basis that periodically refreshing the basis with key and value features from current prompts and generated content the model can track distributional shifts and maintain alignment between the low-rank subspace and the evolving sequence. To validate this hypothesis, we conduct an experiment, summarized in Table 1. We compute an initial basis, \mathbf{U}_{cal} , from a general-domain corpus (WikiText-2 (Guo et al., 2020)) and evaluate it on a long-context news summarization task from a different domain (the MultiNews subset of LongBench (Bai et al., 2023)). We compare this against an adapted basis, $\mathbf{U}_{\text{adapt}}$, formed by updating \mathbf{U}_{cal} online with Oja’s rule after processing a short prefix of the MultiNews data. An oracle basis, \mathbf{U}_{test} , computed via PCA on the full test set, serves as an upper bound on performance.

We use two metrics: **Residual-Energy Ratio (RER)** (Najafzadeh & Mahmoudi-Rad, 2024) measures the projection error, and **Subspace Overlap (SO)** (Knyazev & Zhu, 2012), which we compute against the oracle basis (\mathbf{U}_{test}) to quantify alignment, defined as $\text{SO}(\mathbf{U}_1, \mathbf{U}_2) = \text{Tr}(\mathbf{U}_1^\top \mathbf{U}_2 \mathbf{U}_2^\top \mathbf{U}_1)/r$. The in-domain RER of \mathbf{U}_{cal} on the calibration set is 0.035. As shown in Table 1, the static calibration basis generalizes poorly under distribution shift: its RER increases to 0.255 on the new task. Applying a lightweight Oja update to form $\mathbf{U}_{\text{adapt}}$ mitigates this, lowering the RER to 0.097. This adaptation also improves alignment with the oracle basis, raising the SO from 0.597 to 0.653. These findings confirm that online updates can effectively counteract distribution shift.

5 METHODOLOGY

Our method, OjaKV, introduces a hybrid strategy for memory-efficient inference that combines selective full-rank retention, with the goal of preserving high-fidelity representations for critical tokens, with online-adapted low-rank compression for remaining sequence. As illustrated in Figure 1, most key and value vectors are projected into a compact subspace via learned projection matrices, which are continuously adapted during inference to remain aligned with the evolving context.

Our framework is built around three core components: (i) a hybrid KV cache storage policy that exempts key contextual tokens from compression; (ii) a two-phase online update scheme using Oja’s algorithm to adapt the low-rank subspace during both the prompt (prefill) and decoding stages; (iii) a lightweight initialization procedure that seeds the projection matrices from a small calibration corpus (see Appendix A.2 for details).

5.1 KV STORAGE POLICY WITH FULL-RANK EXEMPTIONS

In long-context generation, not all tokens contribute equally to downstream predictions. Motivated by the findings of attention sinks (Xiao et al., 2023), we identify two token regions that play a critical role in shaping model outputs: (i) the first n_{start} tokens of the prompt, which often contain crucial context (e.g., instructions), and (ii) the last n_{recent} tokens of the prompt, which heavily influence local generation. OjaKV exempts these tokens from compression, storing their full-rank key and value vectors of dimension d_h . All other tokens are compressed by projecting them onto the low-rank space and stored: $\tilde{\mathbf{K}} = \mathbf{K}\mathbf{U}_k$, $\tilde{\mathbf{V}} = \mathbf{V}\mathbf{U}_v$, where $\mathbf{U}_k, \mathbf{U}_v \in \mathbb{R}^{d_h \times r}$ are the learned projection bases (with $r \ll d_h$). This hybrid policy preserves the most influential early and recent context at full fidelity while leveraging low-rank compression for the vast majority of the sequence.

5.2 TWO-PHASE ONLINE UPDATES WITH OJA’S ALGORITHM

While the hybrid storage policy preserves critical contextual anchors, the vast majority of tokens in a long sequence are still subject to low-rank compression. To ensure this representation remains accurate as the data distribution shifts during inference, we update the low-rank bases online using Oja’s rule (Oja, 1982). The general form of the Oja update for a new input vector x_t is:

$$\mathbf{y}_t = \mathbf{U}^\top \mathbf{x}_t, \quad \mathbf{U} \leftarrow \mathbf{U} + \eta (\mathbf{x}_t - \mathbf{U} \mathbf{y}_t) \mathbf{y}_t^\top,$$

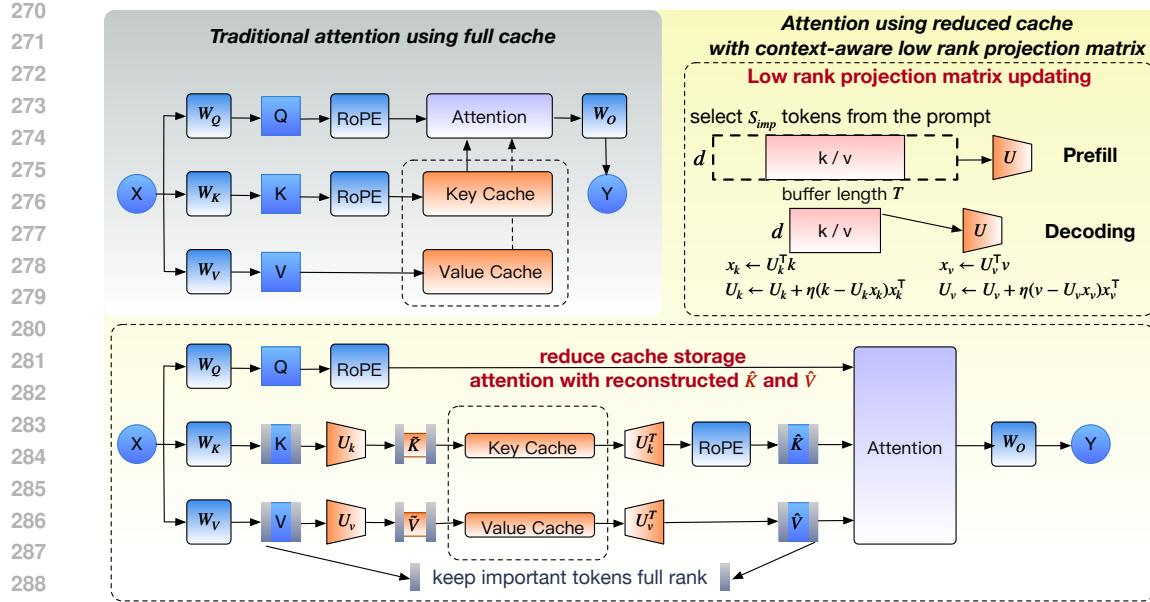


Figure 1: Overview of the OjaKV workflow. The **top-left panel** shows standard attention using full-rank KV caching. Our method, shown in the **bottom panel**, introduces a low-rank path where keys and values are compressed using projection matrices (U_k , U_v) before caching. The **top-right inset** illustrates the core mechanism: these projection matrices are dynamically updated during both the prefill and decoding phases to adapt to the context.

where the input vector x_t is either a key vector (when updating U_k) or a value vector (when updating U_v), U is the corresponding projection basis, y_t is its compressed representation, and η is the learning rate (see Algorithm 1 in Appendix A.1 for details). This strategy is tailored to the two distinct phases of autoregressive generation: prompt processing (prefill) and token-by-token decoding.

Prefill Stage (Prompt Processing). During prefill, the model processes a long prompt of length $n \gg 1$. An update on every token would be counterproductive, as the inclusion of redundant information could obscure the principal directions for subspace adaptation. Instead, we select a small subset of the most salient tokens for the update using a token selection process inspired by SnapKV (Li et al., 2024).

We compute importance scores by measuring the attention from the last several query tokens to all key tokens in the prompt (K_{all}): $A = \text{softmax}(\mathbf{Q}_{\text{last}} K_{\text{all}}^T / \sqrt{d_h})$, and define token importance as $s_t = \sum_{h,w} A_{h,w,t}$, $\mathcal{S}_{\text{imp}} = \text{TopK}(s_t)$, where s_t measures how much attention token t receives across all heads (h) and the final window of queries (q). Specifically, for each key token t , we compute an aggregate importance score s_t by summing the attention it receives across all heads (h) and all queries in the final window (w). Oja’s rule is then applied only to the selected set $\{x_t \mid t \in \mathcal{S}_{\text{imp}}\}$ with a prefill-specific learning rate η_{pre} . After processing all selected tokens, we perform a single QR decomposition to re-orthonormalize the updated bases to maintain numerical stability.

Decoding Stage (Autoregressive Generation). During decoding, a single new key-value pair (k_t, v_t) is generated at each step. These vectors are temporarily stored in full-rank buffers \mathcal{B}_k and \mathcal{B}_v . The update is performed periodically: every T steps, we apply Oja’s rule to all vectors accumulated in the buffers since the last update. This stage uses a smaller, more conservative learning rate $\eta_{\text{dec}} < \eta_{\text{pre}}$ to ensure stability. After each periodic update, the bases are re-orthonormalized, the buffers are cleared, and the process repeats.

This two-phase update scheme allows OjaKV to maintain alignment between the compressed subspace and the evolving context, without incurring significant computational or memory overhead. Pseudocode is provided in Appendix A.1, and a detailed case study comparing static and adaptive projections is presented in Appendix A.6.

324 **Table 2: Retrieval accuracy (0–1; higher is better) on the RULER using LongChat-7b-v1.5-32k.**

325 Method	326 16K							327 32K						
	S1	S2	MK1	MQ	MV	QA	Avg	S1	S2	MK1	MQ	MV	QA	Avg
328 FullKV	1.00	0.99	0.91	0.70	0.71	0.13	0.74	0.31	0.67	0.49	0.44	0.34	0.02	0.38
Eigen-N 0.8x	OOM	OOM	OOM	OOM	OOM	OOM	N/A	OOM	OOM	OOM	OOM	OOM	OOM	N/A
329 StaticPCA 0.8x	0.68	0.17	0.23	0.48	0.26	0.13	0.33	0.21	0.07	0.06	0.04	0.00	0.08	0.08
330 StaticPCA-H 0.8x	0.97	0.62	0.49	0.65	0.61	0.14	0.58	0.32	0.31	0.26	0.17	0.20	0.08	0.22
331 OjaKV 0.8x	0.99	0.84	0.57	0.65	0.65	0.18	0.65	0.40	0.40	0.32	0.22	0.24	0.08	0.28
Eigen-N 0.6x	OOM	OOM	OOM	OOM	OOM	OOM	N/A	OOM	OOM	OOM	OOM	OOM	OOM	N/A
332 StaticPCA 0.6x	0.59	0.05	0.20	0.31	0.31	0.15	0.27	0.06	0.04	0.04	0.04	0.00	0.03	0.04
333 StaticPCA-H 0.6x	0.97	0.39	0.29	0.41	0.33	0.14	0.42	0.11	0.26	0.25	0.08	0.15	0.08	0.15
334 OjaKV 0.6x	1.00	0.65	0.42	0.44	0.40	0.16	0.51	0.23	0.32	0.34	0.12	0.16	0.09	0.21

335

6 EXPERIMENTS

336 In this section, we present the experimental setup and evaluate our proposed method, **OjaKV**. Our
 337 goal is to assess its performance against relevant baselines in realistic, long-context inference scenarios.
 338 All experiments are conducted on NVIDIA H100 GPUs and evaluated on three diverse benchmarks:
 339 **RULER** (Hsieh et al., 2024), **LongBench** (Bai et al., 2023), and **Im-eval-harness** (Agarwal
 340 et al., 2024), using **Llama-2-7B** and **Llama-3.1-8B** (Grattafiori et al., 2024) models. For a comprehensive
 341 evaluation, we compare **OjaKV** against four key baselines. We use the uncompressed
 342 **Full KV Cache** as a performance upper bound and include **Eigen-N**, a direct low-rank implementa-
 343 tion of prior work (Saxena et al., 2024) that is impractical for long contexts due to its incompatibility
 344 with FlashAttention. We also include **StaticPCA**, which uses the same fixed, offline-computed SVD
 345 basis as Eigen-N but is adapted for modern inference by reconstructing full-rank tensors on-the-fly
 346 before the attention computation. Our primary comparative baseline is **StaticPCA-H**, which extends
 347 StaticPCA by including a token selection policy using attention sink and recent window similar to
 348 the hybrid storage design in OjaKV. We measure model accuracy, memory usage (GB), and Time
 349 to First Token (TTFT), with detailed experimental setups in Appendices A.4 and A.5.

352

6.1 RULER

354 **Setup.** We begin by benchmarking OjaKV on the RULER long-context retrieval suite. For our
 355 experiments, we use LongChat-7b-v1.5-32k. We evaluate its performance on challenging input
 356 sequences of both 16K and 32K tokens, pushing the model to its long-context limits and creating
 357 significant GPU memory pressure. We report results under three cache budgets: uncompressed
 358 (Full), 20% savings (0.8×), and 40% savings (0.6×). For each compressed budget, we compare
 359 the StaticPCA and StaticPCA-H baselines against our context-aware OjaKV, which dynamically
 360 updates its projection bases during decoding.

361 **Results.** On the demanding long-context tasks of RULER, the limitations of native low-rank meth-
 362 ods become apparent. The Eigen-N baseline is not feasible in this setting, as its incompatibility with
 363 FlashAttention leads to OOM errors on sequences of this length. As reported in Table 2, OjaKV
 364 achieves strong retrieval accuracy across the RULER subtasks for both sequence lengths. It con-
 365 sistently outperforms the StaticPCA and StaticPCA-H baselines across all tasks and compression
 366 ratios, further validating the effectiveness of our dynamic, context-adaptive framework in extreme
 367 long-context scenarios. The other static low-rank methods perform worse since RULER tests the
 368 model’s ability to perform retrieval on long, dynamic context, where there are distractors and im-
 369 portant information constantly shifts. Here, OjaKV can better track the evolving state of the prompt,
 370 leading to enhanced performance. In these challenging scenarios, **OjaKV** effectively mitigates the
 371 performance loss from compression, while significantly using less KV cache memory.

372

6.2 LONGBENCH

374 We further evaluate OjaKV on LongBench, a benchmark designed to test long-context inference
 375 across diverse tasks, including single and multi-document QA, few-shot learning, and code gener-
 376 ation. The task input lengths vary from a few thousand to over 20K tokens. As shown in Table 3,
 377 OjaKV outperforms StaticPCA-H and StaticPCA across both models and compression ratios on the
 378 majority of tasks. The performance advantage is less pronounced compared to RULER, potentially

378 Table 3: Accuracy (%) on LongBench tasks for Llama2-7B and Llama-3.1-8B.
379
380
381

382 LLMs	Single-Document QA			Multi-Document QA			Few-shot Learning		Synthetic		Code	Avg	
	383 NrrvQA	384 MF-en	385 HopQA	386 2WikiMQA	387 Musique	388 TREC	389 SAMSum		390 PCount	391 PRe	392 Lcc	393 RB-P	
							394	395					
396 Llama-2-7B	397 Full KV	398 18.79	399 34.41	400 25.3	401 28.33	402 8.52	403 0.0	404 6.22	405 1.55	406 9.0	407 15.08	408 17.35	409 14.96
	Eigen-N 0.8x	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	NA
	StaticPCA 0.8x	16.95	32.8	21.31	24.73	6.28	0.0	5.34	2.25	2.61	14.06	16.78	13.01
	StaticPCA-H 0.8x	17.22	34.28	21.8	27.17	7.84	0.0	2.93	1.14	4.5	13.59	20.25	13.7
	OjaKV 0.8x	17.53	33.81	21.8	27.37	7.84	0.0	2.94	1.14	4.5	13.55	20.01	13.68
	Eigen-N 0.6x	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	NA
	StaticPCA 0.6x	14.21	27.54	17.41	19.77	5.11	0.25	5.65	3.01	0.5	13.41	18.84	11.43
397 Llama-3.1-8B	398 StaticPCA-H 0.6x	16.66	31.37	26.78	27.33	7.97	0	5.83	1.21	5	12.86	20.19	14.11
	OjaKV 0.6x	16.77	31.83	26.81	27.45	7.97	0.0	5.85	1.21	5.0	12.6	20.48	14.18
	399 Full KV	29.56	53.0	53.76	46.13	28.38	7.5	7.47	6.25	99.5	19.88	19.22	33.7
	Eigen-N 0.8x	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	NA
	StaticPCA 0.8x	11.81	49.68	48.06	43.56	15.43	10.0	9.46	3.0	89.5	21.36	22.46	29.48
	StaticPCA-H 0.8x	11.71	49.17	49.51	43.99	16.55	9.5	9.36	2.5	88	21.55	22.94	29.53
	OjaKV 0.8x	11.68	49.38	49.51	44.49	16.48	9.5	9.54	2.5	88.0	21.69	22.69	29.59
400 Llama-3.1-8B	401 Eigen-N 0.6x	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	NA
	402 StaticPCA 0.6x	8.16	39.38	25.63	22.73	12.65	0.67	7.1	1.62	12.5	18.76	23.48	15.7
	403 StaticPCA-H 0.6x	9.8	43.33	44.23	37.15	15.64	5	7.51	3.5	50.5	19.55	24.13	23.67
	404 OjaKV 0.6x	9.96	43.13	44.23	36.96	16.15	5.0	7.46	3.5	50.5	20.01	23.94	23.71

398 because LongBench tasks test for comprehension of a long, stable context. For Llama-2-7B, even
399 at $0.6\times$ compression, the performance is only marginally worse on average, compared to using the
400 full KV cache, offering a flexible trade-off for memory savings with minimal performance drop.

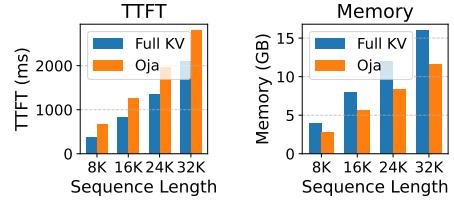
401 6.3 LM-EVAL-HARNESS

402 To gauge the impact of KV cache compression on downstream utility, we follow the lm-eval-harness
403 protocol on five diverse zero-shot benchmarks: *PiQA*, *WinoGrande*, *ARC-Easy*, *ARC-Challenge*,
404 and *HellaSwag*. We evaluate all methods on the relatively short-context tasks within the lm-eval-
405 harness, where sequence lengths are typically limited to a few hundred tokens. As shown in Table 4,
406 we make two key observations in this setting. First, the Eigen-N and StaticPCA baselines yield iden-
407 tical results. This finding empirically validates our analysis in Appendix A.3, confirming the num-
408 erical equivalence between the native low-rank kernel and our FlashAttention-compatible imple-
409 mentation. Second, while OjaKV achieves accuracy very close to the full-rank baseline, StaticPCA-H
410 also performs very well, suggesting that the impact of keeping a full rank attention sink and recent
411 window, has a significant impact for these short context-tasks, as these key values contribute to a
412 larger percentage of the total KV cache. Shorter contexts are also more robust to compression, as
413 there is minimal accuracy drop at $0.6\times$ compression for both Llama-2-7B and Llama-3.1-8B.

414 Overall, our experiments on these three different benchmarks demonstrate the versatility of OjaKV,
415 and shows that it can perform best in scenarios with long, dynamic context like in RULER.

416 6.4 EFFICIENCY

417 We compare OjaKV against the Full KV cache on
418 Llama-3.1-8B-Instruct in terms of latency and GPU
419 memory (Figure 2). The Oja update introduces some
420 overhead to TTFT. At 32K tokens, TTFT increases
421 from 2102 ms (Full KV) to 2801 ms (OjaKV). In
422 contrast, memory usage, which is the limiting factor
423 for long-context inference, decreases from 16 GB to
424 11.6 GB at 32K tokens. This memory reduction enables
425 longer inputs under the same budget.



426 Figure 2: Efficiency comparison of Full KV
427 and OjaKV (60% compression).

428 7 COMPATIBILITY WITH SEQUENCE LENGTH COMPRESSION

429 Our OjaKV method compresses the *feature dimension* ($d \rightarrow r$) of the key and value vectors. As a
430 result, it is orthogonal and compatible with sequence length compression techniques the *sequence*
431 *length* ($n \rightarrow m$) such as token eviction or selection. This compatibility allows their benefits to

432 Table 4: Accuracy (%) on Im-eval-harness tasks for Llama-2-7B and Llama-3.1-8B.
433

Model	Compression Ratio	Method	Acc ↑					
			WinoG	PiQA	HellaS	Arc-e	Arc-c	Avg-Acc
Llama-2-7B	0.8x	Full	66.38	76.39	57.80	73.86	44.20	63.73
		Eigen-N	65.90	75.03	56.29	71.30	41.38	61.98
		StaticPCA	65.90	75.03	56.29	71.30	41.38	61.98
		StaticPCA-H	66.30	76.40	57.54	73.86	44.37	63.69
		OjaKV	66.30	75.79	57.51	73.86	44.37	63.57
	0.6x	Eigen-N	62.98	74.54	54.99	70.03	39.93	60.49
		StaticPCA	62.98	74.54	54.99	70.03	39.93	60.49
		StaticPCA-H	66.30	76.39	57.05	73.74	44.37	63.56
		OjaKV	66.30	76.39	57.06	73.74	44.37	63.57
Llama-3.1-8B	0.8x	Full	73.88	80.03	59.04	81.86	51.88	69.34
		Eigen-N	73.56	79.65	57.74	81.65	51.54	68.83
		StaticPCA	73.56	79.65	57.74	81.65	51.54	68.83
		StaticPCA-H	73.95	79.92	59.14	81.90	51.79	69.34
		OjaKV	73.95	79.92	59.14	81.90	51.79	69.34
	0.6x	Eigen-N	69.85	78.67	54.87	79.38	48.12	66.18
		StaticPCA	69.85	78.67	54.87	79.38	48.12	66.18
		StaticPCA-H	73.95	79.82	58.35	81.90	51.88	69.18
		OjaKV	73.95	79.82	58.35	81.90	51.88	69.18

448
449 be compounded for multiplicative savings. We briefly analyze this property theoretically here and
450 validate it experimentally in Appendix A.7.

451 A token eviction policy can be represented by a selector matrix $\mathbf{S} \in \mathbb{R}^{n \times m}$. For a fixed, linear
452 selector, our low-rank projection \mathbf{U}^\top associates perfectly with the selection operation:

$$453 \mathbf{U}_k^\top (\mathbf{K}\mathbf{S}) = (\mathbf{U}_k^\top \mathbf{K})\mathbf{S}, \quad \mathbf{U}_v^\top (\mathbf{V}\mathbf{S}) = (\mathbf{U}_v^\top \mathbf{V})\mathbf{S}.$$

454 For advanced, context-dependent selectors where $\mathbf{S}_t = \text{Sel}(\mathbf{K}, \mathbf{Q})$ is a function that selects the
455 most relevant tokens based on the current query \mathbf{Q} , the commutation is not exact, but the additional
456 projection error is bounded by the error of the selection policy itself:

$$457 \|\mathbf{U}^\top \mathbf{K} - \mathbf{U}^\top \mathbf{K}\mathbf{S}_t\|_F \leq \|\mathbf{K} - \mathbf{K}\mathbf{S}_t\|_F = \|\mathbf{K} - \text{Sel}(\mathbf{K}, \mathbf{Q})\|_F$$

458 because left-multiplication by \mathbf{U}^\top is a contraction with respect to the Frobenius norm. This operational
459 orthogonality means that combining a rank- r OjaKV with a policy retaining m of n tokens
460 yields a total compression ratio of $\text{CR} = (d/r) \times (n/m)$.
461

462 8 CONCLUSION

463 In this work, we addressed the critical KV cache memory bottleneck in long-context LLMs,
464 where static low-rank compression methods often degrade under distributional shifts. We introduced
465 **OjaKV**, a novel framework that integrates two complementary components: a **hybrid storage policy**,
466 which preserves critical tokens in full rank, and a lightweight, Oja-based **online update scheme**
467 to adapt the low-rank subspace for all other tokens.
468

469 Our extensive experiments show that OjaKV consistently outperforms strong static baselines, pre-
470 serving or even improving model accuracy at aggressive compression ratios. Crucially, our evalua-
471 tion is one of the first to comprehensively assess low-rank methods on challenging, **generation-
472 based** long-context tasks. Prior work has often relied on perplexity-based metrics, which we find
473 can mask significant degradation in factual accuracy and coherence during generation. Our results
474 reveal that while naive, uniform low-rank compression can indeed harm generation quality, OjaKV’s
475 hybrid policy effectively mitigates this issue by strategically preserving only a few key tokens in full
476 rank. Notably, OjaKV demonstrates the largest gains on very challenging long-context benchmarks,
477 confirming the value of online subspace adaptation in dynamically aligning the compression basis
478 with evolving context. By ensuring full compatibility with modern inference kernels like FlashAtten-
479 tion and offering multiplicative savings with token-eviction methods, OjaKV establishes this hybrid
480 approach as a practical, parameter-free paradigm for efficient long-context LLM inference.
481

482 **Future Work** A promising avenue is to replace the fixed hyperparameters in our update mecha-
483 nism with dynamic schedules. Future work could explore adapting the learning rates ($\eta_{\text{pre}}, \eta_{\text{dec}}$) and
484 the update buffer size (T) based on metrics like activation shift or generation perplexity, potentially
485 improving both responsiveness and stability.
486

486 USE OF LARGE LANGUAGE MODELS
487488 LLMs were used to aid and polish the writing of this paper. Specifically, their assistance was limited
489 to improving grammar, phrasing, and overall clarity. The authors reviewed, revised, and take full
490 responsibility for all content, ensuring the scientific integrity of this work.491
492 REPRODUCIBILITY STATEMENT493 We are committed to ensuring the reproducibility of our research. The complete source
494 code is included in the anonymous repository [https://anonymous.4open.science/r/
495 OjaKV-9D76](https://anonymous.4open.science/r/OjaKV-9D76). Our methodology is described in the main text, with full implementation details,
496 model configurations, and all hyperparameter settings provided in the Appendix.
497498 REFERENCES
499500 Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller, Roshanak Zilouchian
501 Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and Michele Tufano. Copilot evaluation
502 harness: Evaluating llm-guided software programming, 2024. URL <https://arxiv.org/abs/2402.14261>.504 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
505 Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
506 context understanding. *arXiv preprint arXiv:2308.14508*, 2023.507 Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
508 ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
509 the trenches on reproducible evaluation of language models. *arXiv preprint arXiv:2405.14782*,
510 2024.512 Matthew Brand. Incremental singular value decomposition of uncertain data with missing values.
513 In *European Conference on Computer Vision*, pp. 707–720. Springer, 2002.514 Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
515 Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
516 kv-cache with low-rank projection, 2024. URL <https://arxiv.org/abs/2407.21118>.518 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
519 memory-efficient exact attention with io-awareness, 2022. URL <https://arxiv.org/abs/2205.14135>.521 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
522 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
523 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
524 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
525 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
526 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
527 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
528 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
529 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
530 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
531 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
532 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
533 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
534 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
535 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
536 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
537 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
538 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
539 aosh Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong

540 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 541 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 542 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 543 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 544 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 545 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 546 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 547 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

548 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 549 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 550 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 551 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 552 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 553 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 554 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 555 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 556 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 557 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 558 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 559 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 560 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 561 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 562 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 563 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 564 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 565 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 566 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 567 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 568 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 569 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 570 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 571 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 572 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 573 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 574 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 575 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 576 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 577 Silva, Rui Hou, Rui Wang, Saghaf Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 578 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 579 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 580 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 581 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 582 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 583 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 584 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 585 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 586 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 587 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 588 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 589 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 590 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 591 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 592 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 593 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo,
 Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia

594 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 595 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 596 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 597 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 598 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 599 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 600 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 601 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 602 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 603 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 604 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 605 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 606 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 607 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 608 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 609 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 610 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 611 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 612 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 613 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 614 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 615 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 616 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 617 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 618 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 619 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 620 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 621 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 622 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 623 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 624 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 625 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 626 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 627 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 628 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 629 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 630 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 631 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihaiescu, Vladimir Ivanov,
 632 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 633 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 634 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 635 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 636 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 637 <https://arxiv.org/abs/2407.21783>.

638 Ming Gu and Stanley C Eisenstat. A stable and efficient algorithm for the rank-one modification of
 639 the symmetric eigenproblem. *SIAM journal on Matrix Analysis and Applications*, 15(4):1266–
 640 1276, 1994.

641 Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. Wiki-40b: Multilingual language
 642 model dataset. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*,
 643 pp. 2440–2452, 2020.

644 Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
 645 Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
 646 cache quantization. *Advances in Neural Information Processing Systems*, 37:1270–1303, 2024.

647 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 648 Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
 649 models? *arXiv preprint arXiv:2404.06654*, 2024.

648 Andrew V Knyazev and Peizhen Zhu. Principal angles between subspaces and their tangents. *arXiv*
649 *preprint arXiv:1209.0523*, 2012.

650

651 Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily Goncharov, Galina Zubkova, Nikolai Zen-
652 ovkin, Aleksei Goncharov, and Andrey Savchenko. Medsyn: Llm-based synthetic medical text
653 generation framework. In *Joint European Conference on Machine Learning and Knowledge Dis-
654 covery in Databases*, pp. 215–230. Springer, 2024.

655 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
656 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
657 generation. *Advances in Neural Information Processing Systems*, 37:22947–22970, 2024.

658 Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhi-
659 jie Deng. Matryoshkav: Adaptive kv compression via trainable orthogonal projection. *arXiv*
660 *preprint arXiv:2410.14731*, 2024.

661

662 Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
663 Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. *arXiv preprint*
664 *arXiv:2402.02750*, 2024.

665 Mohammad Najafzadeh and Mohammad Mahmoudi-Rad. Residual energy evaluation in vortex
666 structures: On the application of machine learning models. *Results in Engineering*, 23:102792,
667 2024.

668

669 Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
670 an ILM to help with code understanding. In *Proceedings of the IEEE/ACM 46th International*
671 *Conference on Software Engineering*, pp. 1–13, 2024.

672 Erkki Oja. Simplified neuron model as a principal component analyzer. *Journal of Mathematical*
673 *Biology*, 15(3):267–273, 1982. doi: 10.1007/BF00275687.

674

675 Erkki Oja. The nonlinear pca learning rule in independent component analysis. *Neurocomputing*,
676 17(1):25–45, 1997.

677 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
678 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
679 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
680 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
681 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
682 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botaao Hao,
683 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
684 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcey, Chelsea Voss, Chen Shen, Chong Zhang,
685 Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
686 Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
687 Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
688 abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
689 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
690 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
691 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
692 drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
693 Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
694 Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
695 Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
696 Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
697 Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singh, Karina Nguyen, Karl
698 Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
699 Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
700 Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
701 draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles

702 Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
 703 Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
 704 Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
 705 Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
 706 Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
 707 Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
 708 wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
 709 Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
 710 Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
 711 lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
 712 Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
 713 Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
 714 Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
 715 Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
 716 Openai o1 system card, 2024. URL <https://arxiv.org/abs/2412.16720>.

717 Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
 718 low-rank space for kv cache compression. *arXiv preprint arXiv:2408.05646*, 2024.

719 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
 720 on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. *Advances in
 721 Neural Information Processing Systems*, 37:43000–43031, 2024.

722 Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
 723 methods to optimize llm’s kv-cache consumption. *arXiv preprint arXiv:2407.18003*, 2024.

725 Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
 726 Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
 727 inference. *arXiv preprint arXiv:2410.21465*, 2024.

728 Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
 729 Query-aware sparsity for efficient long-context llm inference. *arXiv preprint arXiv:2406.10774*,
 730 2024.

732 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 733 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

734 Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Re-
 735 calckv: Low-rank kv cache compression via head reordering and offline calibration. *arXiv preprint
 736 arXiv:2505.24357*, 2025.

738 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 739 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
 740 erative inference of large language models. *Advances in Neural Information Processing Systems*,
 741 36:34661–34710, 2023.

742 Yuxuan Zhu, Ali Falahati, David H Yang, and Mohammad Mohammadi Amiri. Sentencekv: Ef-
 743 ficient llm inference via sentence-level semantic kv caching. *arXiv preprint arXiv:2504.00970*,
 744 2025.

746

747 **A APPENDIX**

748

749 **A.1 ALGORITHM**

750 We consolidate the complete OjaKV online updating process into a formal procedure in Algorithm 1.
 751 The algorithm outlines the two primary stages of our method: a comprehensive update during the
 752 prefill phase and lightweight, periodic updates during the decoding phase.

754 The **Prefilling Phase** is designed to adapt the initial, general-purpose projection matrices (U_k and
 755 U_v) to the specific content of the input prompt. This process begins by identifying a small subset of
 the most salient tokens using an importance scoring mechanism inspired by SnapKV (Line 3). The

756 key and value vectors corresponding to these tokens are then used to perform a single, comprehensive
 757 batch update on the projection matrices via Oja’s rule, using a relatively high learning rate, η_{pre}
 758 (Lines 4-5). After this significant adaptation, the matrices are re-orthonormalized to maintain their
 759 geometric properties (Line 6). Finally, our hybrid storage policy is enacted by marking the critical
 760 first and last tokens of the prompt as exempt from compression (Line 7).

761 The **Decoding Phase** handles the continuous adaptation of the subspace as new tokens are autore-
 762 gressively generated. At each step, the newly generated key-value pair is temporarily stored in a
 763 buffer (Line 11). To maintain efficiency, updates are performed periodically. Every T steps, all
 764 vectors accumulated in the buffer are used for another batch Oja update, this time with a more
 765 conservative learning rate, η_{dec} , to ensure stable learning (Lines 14-15). The bases are again re-
 766 orthonormalized, and the buffers are cleared for the next cycle (Lines 16-17). This two-phase ap-
 767 proach allows OjaKV to make a strong initial adaptation to the context while continuously refining
 768 the subspace with minimal overhead during generation.

769 **Algorithm 1** OjaKV

770 **Require:** Low rank projection matrices $\mathbf{U}_k, \mathbf{U}_v$; learning rates $\eta_{\text{pre}}, \eta_{\text{dec}}$; update buffer size T ; ex-
 771 emption sizes $n_{\text{start}}, n_{\text{recent}}$; prefill importance window w ; top- k k_{pre}

772 1: **Prefilling Phase:**

773 2: Compute token-importance scores over the prompt using the last w queries; select $\mathcal{S}_{\text{imp}} =$
 774 TopK(s)

775 3: Form matrices $\mathbf{K} = [k_t]_{t \in \mathcal{S}_{\text{imp}}}$, $\mathbf{V} = [v_t]_{t \in \mathcal{S}_{\text{imp}}}$

776 4: $\tilde{\mathbf{K}} \leftarrow \mathbf{U}_k^T \mathbf{K}$; $\mathbf{U}_k \leftarrow \mathbf{U}_k + \eta_{\text{pre}}(\mathbf{K} - \mathbf{U}_k \tilde{\mathbf{K}}) \tilde{\mathbf{K}}^T$

777 5: $\tilde{\mathbf{V}} \leftarrow \mathbf{U}_v^T \mathbf{V}$; $\mathbf{U}_v \leftarrow \mathbf{U}_v + \eta_{\text{pre}}(\mathbf{V} - \mathbf{U}_v \tilde{\mathbf{V}}) \tilde{\mathbf{V}}^T$

778 6: $(\mathbf{U}_k, \mathbf{U}_v) \leftarrow \text{Orthonormalise}(\mathbf{U}_k, \mathbf{U}_v)$

779 7: Mark the first n_{start} prompt tokens and the last n_{recent} as full-rank exempt

780 8:

781 9: **Decoding Phase:**

782 10: **for** step $t = 1, 2, \dots$ **do**

783 11: Generate new (k_t, v_t) and append to buffers $\mathcal{B}_k, \mathcal{B}_v$

784 12: **if** $t \bmod T = 0$ **then**

785 13: Form $\mathbf{K} = [k_i]_{i \in \mathcal{B}_k}$, $\mathbf{V} = [v_j]_{j \in \mathcal{B}_v}$

786 14: $\tilde{\mathbf{K}} \leftarrow \mathbf{U}_k^T \mathbf{K}$; $\mathbf{U}_k \leftarrow \mathbf{U}_k + \eta_{\text{dec}}(\mathbf{K} - \mathbf{U}_k \tilde{\mathbf{K}}) \tilde{\mathbf{K}}^T$

787 15: $\tilde{\mathbf{V}} \leftarrow \mathbf{U}_v^T \mathbf{V}$; $\mathbf{U}_v \leftarrow \mathbf{U}_v + \eta_{\text{dec}}(\mathbf{V} - \mathbf{U}_v \tilde{\mathbf{V}}) \tilde{\mathbf{V}}^T$

788 16: $(\mathbf{U}_k, \mathbf{U}_v) \leftarrow \text{Orthonormalise}(\mathbf{U}_k, \mathbf{U}_v)$

789 17: Reset $\mathcal{B}_k, \mathcal{B}_v$

790 18: **end if**

791 19: **end for**

792

793

794 A.2 LOW RANK SUBSPACE INITIALIZATION

795

796 We describe here the detailed procedure for constructing the initial projection bases.

797 For attention head i , we gather per-token activations of queries, keys, and values from n_s sampled
 798 sequences of length n :

800 $\mathbf{R}_i^Q = [(\mathbf{Q}_i^1)^\top, \dots, (\mathbf{Q}_i^{n_s})^\top]$, $\mathbf{R}_i^K = [(\mathbf{K}_i^1)^\top, \dots, (\mathbf{K}_i^{n_s})^\top]$, $\mathbf{R}_i^V = [(\mathbf{V}_i^1)^\top, \dots, (\mathbf{V}_i^{n_s})^\top]$,

801

802 where each $\mathbf{R}_i^{(\cdot)} \in \mathbb{R}^{(n_s \cdot n) \times d_h}$ and d_h is the head dimension.

803 To encourage a shared representation, we concatenate the query and key matrices:

804

805 $\mathbf{R}_i^{KQ} = [\mathbf{R}_i^Q, \mathbf{R}_i^K] \in \mathbb{R}^{(n_s \cdot n) \times 2d_h}$.

806

807 Applying compact SVD gives

808 $\mathbf{R}_i^{KQ} = \mathbf{U} \Sigma \mathbf{V}^\top$,

809

with singular values $\sigma_1 \geq \dots \geq \sigma_{d_h}$.

810 We select the smallest rank r satisfying the energy criterion
 811

$$\frac{\|(\mathbf{R}_i^{KQ})_r\|_F^2}{\|\mathbf{R}_i^{KQ}\|_F^2} \geq \epsilon_{\text{th}}.$$

815 The top- r columns of \mathbf{U} define the query–key basis $\mathbf{U}_k \in \mathbb{R}^{d_h \times r_k}$.

816 For the values, we apply the same procedure directly to \mathbf{R}_i^V to obtain $\mathbf{U}_v \in \mathbb{R}^{d_h \times r_v}$. Finally, to
 817 maintain consistency across attention heads in a layer, we set the effective rank to the maximum r
 818 observed in that layer.

820 A.3 EQUIVALENCE TO FULL-RANK FLASHATTENTION AND COST COMPARISON

821 **Notation** Let $\mathbf{Q} \in \mathbb{R}^{m \times d_h}$ and $\mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d_h}$ denote the per-head query, key, and value blocks,
 822 where m is the number of current queries and n is the number of cached keys/values. At the prefilling
 823 stage, $m = n$; at the decoding stage, $m = 1$. Let $\mathbf{U}_k \in \mathbb{R}^{d_h \times r_k}$ and $\mathbf{U}_v \in \mathbb{R}^{d_h \times r_v}$ be orthonormal
 824 bases with $\mathbf{U}_k^\top \mathbf{U}_k = \mathbf{I}_{r_k}$ and $\mathbf{U}_v^\top \mathbf{U}_v = \mathbf{I}_{r_v}$. Define compressed features
 825

$$\tilde{\mathbf{Q}} = \mathbf{Q} \mathbf{U}_k \in \mathbb{R}^{m \times r_k}, \quad \tilde{\mathbf{K}} = \mathbf{K} \mathbf{U}_k \in \mathbb{R}^{n \times r_k}, \quad \tilde{\mathbf{V}} = \mathbf{V} \mathbf{U}_v \in \mathbb{R}^{n \times r_v}.$$

828 A.3.1 EQUIVALENCE OF TWO COMPUTATION REGIMES

829 We compare (a) computing attention in the reduced space and expanding the output, versus (b)
 830 reconstructing full-rank \mathbf{K}, \mathbf{V} and calling a standard FlashAttention kernel.

832 **Low-rank kernel (compute-then-expand).** Form reduced logits and outputs
 833

$$\tilde{\mathbf{A}} = \text{softmax}\left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top}{\sqrt{d_h}}\right) \in \mathbb{R}^{m \times n}, \quad \tilde{\mathbf{O}} = \tilde{\mathbf{A}} \tilde{\mathbf{V}} \in \mathbb{R}^{m \times r_v},$$

836 then expand $\hat{\mathbf{O}} = \tilde{\mathbf{O}} \mathbf{U}_v^\top \in \mathbb{R}^{m \times d_h}$.

838 **FlashAttention-compatible (reconstruct-then-compute).** Reconstruct full-rank tensors
 839

$$\hat{\mathbf{K}} = \tilde{\mathbf{K}} \mathbf{U}_k^\top \in \mathbb{R}^{n \times d_h}, \quad \hat{\mathbf{V}} = \tilde{\mathbf{V}} \mathbf{U}_v^\top \in \mathbb{R}^{n \times d_h},$$

841 and call FlashAttention with the original queries \mathbf{Q} :

$$\hat{\mathbf{O}} = \text{softmax}\left(\frac{\mathbf{Q} \hat{\mathbf{K}}^\top}{\sqrt{d_h}}\right) \hat{\mathbf{V}} \in \mathbb{R}^{m \times d_h}.$$

845 **Lemma (logit equivalence).** With the above definitions,

$$\mathbf{Q} \hat{\mathbf{K}}^\top = \tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top.$$

848 *Proof.* Since $\hat{\mathbf{K}}^\top = (\tilde{\mathbf{K}} \mathbf{U}_k^\top)^\top = \mathbf{U}_k \tilde{\mathbf{K}}^\top$, we have $\mathbf{Q} \hat{\mathbf{K}}^\top = \mathbf{Q} (\mathbf{U}_k \tilde{\mathbf{K}}^\top) = (\mathbf{Q} \mathbf{U}_k) \tilde{\mathbf{K}}^\top = \tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top$.

850 **Corollary (output equivalence).** The two computation regimes produce the same output $\hat{\mathbf{O}}$.

851 *Proof.* Starting from the FlashAttention-compatible definition of $\hat{\mathbf{O}}$:

$$\begin{aligned} \hat{\mathbf{O}} &= \text{softmax}\left(\frac{\mathbf{Q} \hat{\mathbf{K}}^\top}{\sqrt{d_h}}\right) \hat{\mathbf{V}} && \text{(FA-compatible definition)} \\ &= \text{softmax}\left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top}{\sqrt{d_h}}\right) \hat{\mathbf{V}} && \text{(by logit equivalence)} \\ &= \text{softmax}\left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top}{\sqrt{d_h}}\right) (\tilde{\mathbf{V}} \mathbf{U}_v^\top) && \text{(substituting definition of } \hat{\mathbf{V}}\text{)} \\ &= \left(\text{softmax}\left(\frac{\tilde{\mathbf{Q}} \tilde{\mathbf{K}}^\top}{\sqrt{d_h}}\right) \tilde{\mathbf{V}}\right) \mathbf{U}_v^\top && \text{(associativity)} \\ &= \tilde{\mathbf{O}} \mathbf{U}_v^\top && \text{(low-rank kernel definition)} \end{aligned}$$

862 Hence the FlashAttention-compatible path is numerically equivalent to computing in the reduced
 863 space and then expanding, provided the same scaling $1/\sqrt{d_h}$ is used. Using $1/\sqrt{r_k}$ changes the
 864 effective temperature and usually needs calibration.

864 A.3.2 COMPLEXITY AND MEMORY COMPARISON
865866 We summarize per-head costs for a single block with m queries against n cached keys/values. Big-O
867 ignores softmax and masking; General matrix multiply (GEMM) shapes are shown for clarity.
868

Regime	Main computations	KV memory per token
Full-rank baseline	$QK^\top: (m \times d_h)(d_h \times n) = O(mnd_h)$ $AV: (m \times n)(n \times d_h) = O(mnd_h)$	$2d_h$ elements
Low-rank kernel	$\tilde{Q}\tilde{K}^\top: (m \times r_k)(r_k \times n) = O(mnr_k)$ $\tilde{A}\tilde{V}: (m \times n)(n \times r_v) = O(mnr_v)$ Expand: $(m \times r_v)(r_v \times d_h) = O(mr_v d_h)$	$r_k + r_v$ elements
FA-compatible	Reconstruct $K: (n \times r_k)(r_k \times d_h) = O(nr_k d_h)$ Reconstruct $V: (n \times r_v)(r_v \times d_h) = O(nr_v d_h)$ FA kernel: $O(mnd_h)$	$r_k + r_v$ elements

879 **Discussion.** The low-rank kernel reduces the quadratic dot-product costs from $O(mnd_h)$ to
880 $O(mnr_k)$ and $O(mnr_v)$, plus a linear expansion cost of $O(mr_v d_h)$. The FA-compatible path keeps
881 the full-rank kernel complexity $O(mnd_h)$ but preserves memory savings by storing only \tilde{K}, \tilde{V} ; the
882 reconstruction GEMMs are linear in n .883 **KV-cache memory in bytes.** Let b be bytes per scalar (e.g., $b=2$ for float16). For L layers and
884 H_{kv} KV heads, the total KV memory for a sequence of length T and batch size B is
885

886 Full rank: $M_{\text{full}} = B T L H_{\text{kv}} (2d_h) b$, Low rank: $M_{\text{low}} = B T L H_{\text{kv}} (r_k + r_v) b$,
887

888 with fractional saving

889 $\text{Saving} = 1 - \frac{r_k + r_v}{2d_h}$.
890

891 When $r_k=r_v=r$, this simplifies to $\text{Saving} = 1 - \frac{r}{d_h}$.
892

893 A.4 DETAILED EXPERIMENTAL SETUP

894 This section provides a detailed overview of the experimental environment, models, datasets, and
895 evaluation protocols used in this study to ensure full reproducibility of our results.
896897 **Hardware and Software Environment.** All experiments were conducted on a single **NVIDIA**
898 **H100 NVL** GPU. The software stack was built upon PyTorch and Hugging Face Transformers. The
899 specific versions of the core libraries were as follows: **PyTorch** `torch==2.6.0`, **Transformers**
900 `transformers==4.44.0`, and **FlashAttention** `flash_attn==2.7.4.post1`. All models
901 were run using their standard float16 precision implementation.902 **Models.** We evaluated our method on several prominent open-source Large Lan-
903 guage Models. For clarity and reproducibility, the specific Hugging Face repository
904 identifiers for each model were: **Llama-2-7B** (meta-llama/Llama-2-7b-chat-hf),
905 **Llama-3.1-8B** (meta-llama/Llama-3.1-8B-Instruct), and **LongChat-7B for RULER**
906 (`lmsys/longchat-7b-v1.5-32k`).907 **Calibration Dataset.** The initial low-rank projection bases, U_k and U_v , were derived from a small,
908 general-domain calibration dataset. For this purpose, we used the **WikiText-2** dataset. The initial-
909 ization process followed the procedure outlined in Appendix A.2, where key and value activations
910 were collected from a number of sampled sequences and then decomposed via SVD to form the
911 initial subspaces.912 **Evaluation Benchmarks and Metrics.** Our comprehensive evaluation was performed across three
913 diverse benchmarks: **lm-eval-harness**, **LongBench**, and **RULER**. Performance was assessed based
914 on the following metrics. **Accuracy**: We report the specific accuracy metrics as defined by each
915 benchmark’s protocol. For lm-eval-harness, this includes the zero-shot accuracy on tasks like PiQA,
916 Winogrande, and HellaSwag. For LongBench and RULER, this corresponds to their respective
917 scoring mechanisms for long-context reasoning and retrieval tasks. **GPU Memory**: Memory con-
sumption is reported in Gigabytes (GB) and reflects the specific GPU memory allocated to KV

cache during the inference process for a given context length. This provides a practical measure of the hardware requirements. **Latency**: Latency is reported as Time To First Token (TTFT) in milliseconds (ms), which primarily measures the overhead during the prompt processing (prefill) stage. This is a critical metric for user-facing applications where initial response time is important.

A.5 DEFAULT HYPERPARAMETERS

Table 5: Default hyperparameters unless stated otherwise.

Symbol	Default	Description
η_{pre}	0.10	Oja update lr during prefill
η_{dec}	0.05	Oja update lr during decode
T	32	decode update period (steps)
n	—	prompt length
k_{pre}	$0.05n$	top- k salient tokens at prefill
w	32	importance window size (queries)
n_{start}	32	full-rank exemption at the beginning
n_{recent}	32	full-rank exemption at the end

A.6 QUALITATIVE ANALYSIS AND CASE STUDIES

To complement the quantitative results presented in the main paper, this section provides a qualitative case study. Our goal is to illustrate the practical impact of OjaKV’s online subspace adaptation on generation quality, particularly in long-context scenarios where the distribution of activations can shift significantly. We use a long-document summarization task from the MultiNews subset of the LongBench benchmark, comparing summaries generated by our full OjaKV framework against the StaticPCA baseline at an aggressive 0.6x compression ratio.

Input Document Snippet (Conceptual Summary)

The input is a lengthy (over. 8k tokens) article. It is a multi-doc summarization that requires summarizing over multiple news.

Reference Summary

The Occupy LA encampment got a stay of execution this morning—though a few arrests have been reported beyond the boundaries of City Hall Park. Two hours after protesters defied city hall’s order to vacate the park by 12:01am, lawyer and Occupy supporter Jim Lafferty told Reuters he expected police to give the camp a two-day reprieve. At around 5am, police told protesters over a loudspeaker that they didn’t intend to clear the park, the LA Times reports. Police do, however, intend to clear protesters out of the street, and several people who refused to move out of an intersection have already been arrested. We definitely need to get morning traffic in, a police commander explained. Everything also seems calm at Occupy Philadelphia, where protesters defied a 5pm Sunday deadline to disperse. But as of last night, a police inspector said they didn’t intend to forcibly evict anyone. We look forward to working with Occupy Philadelphia and a resolution of the problem, he told the Philadelphia Inquirer. Confrontation is never good.

Baseline: StaticPCA (0.6x Compression)

The Occupy Wall Street movement has been making headlines in various cities across the United States. In Philadelphia, Occupy Philly protesters remained on site at City Hall into the evening of November 28, despite a deadline set by Mayor Nutter for them to leave. The protesters, who had set up camp on the City Hall lawn, were given a deadline to vacate the

972 area, but they refused to leave. The police had no plans to evict anyone, and the protesters
 973 were allowed to stay on the lawn.
 974

975
 976 **Analysis of Baseline:** The summary generated by StaticPCA exhibits a classic failure mode in
 977 long-context summarization: **topical fixation and critical information loss**. The source document
 978 clearly discusses events in two distinct locations, with a primary focus on the tense standoff in Los
 979 Angeles and a secondary mention of the calm situation in Philadelphia. However, the StaticPCA
 980 summary focuses *exclusively* on Philadelphia, completely omitting any mention of the events in Los
 981 Angeles, which constituted the main subject of the report. This suggests that the static principal
 982 components, established early, failed to represent the new, dominant information introduced later.
 983 The model’s inability to adapt to this semantic shift resulted in a factually incomplete and highly
 984 misleading summary.
 985

986 OjaKV (0.6x Compression)

987 The Occupy Wall Street movement continues to gain momentum across the United States,
 988 with protests taking place in various cities. In Los Angeles, the Occupy LA encampment at
 989 City Hall Park was the site of a tense standoff between protesters and police, with coman-
 990 ders later announcing they would not clear the encampment. In Philadelphia, the Occupy
 991 Philadelphia campers also remained in place despite a 5 p.m. deadline to vacate the area.
 992 The movement is a national one protesting economic inequality, and the response from law
 993 enforcement has varied by city.
 994

995 **Analysis of OjaKV:** In stark contrast, the summary from OjaKV successfully captures the multi-
 996 faceted nature of the source document. It correctly identifies and synthesizes the key events from
 997 **both Los Angeles and Philadelphia**, presenting a coherent and comprehensive overview. This
 998 demonstrates the effectiveness of OjaKV’s online subspace adaptation. As the model processed the
 999 document and encountered new information related to the LA protest, it dynamically updated its
 1000 KV cache’s principal components. This adaptation allowed it to preserve the crucial details from
 1001 different sections of the long-context input, avoiding the catastrophic information loss seen in the
 1002 StaticPCA baseline. The resulting summary is significantly more accurate and useful.
 1003

1004 A.7 EXPERIMENTAL VALIDATION OF COMPATIBILITY WITH TOKEN SELECTION

1005
 1006 In Section 7, we posited that OjaKV, which compresses the feature dimension ($d \rightarrow r$), is orthogo-
 1007 nal to token eviction techniques that compress the sequence length ($n \rightarrow m$). We argued that this
 1008 orthogonality allows for compounded, multiplicative memory savings. This section provides em-
 1009 pirical validation for this claim by combining OjaKV with SnapKV (Li et al., 2024), a representative
 1010 token selection method.
 1011

1012 Table 6: Compounded KV cache compression by combining OjaKV with SnapKV. The total com-
 1013 pression ratio demonstrates multiplicative savings, offering a compelling trade-off between per-
 1014 formance and memory efficiency.
 1015

Method	Rank Comp.	Token Keep Rate	Memory Usage (%)	Accuracy
Full KV Cache (Baseline)	1.0x	100%	100%	53.0
SnapKV (Token Sel. only)	1.0x	50%	50%	52.66
OjaKV (Rank Comp. only)	1.67x (0.6x)	100%	60%	43.13
OjaKV + SnapKV	1.67x (0.6x)	50%	30%	43.33

1021
 1022 **Experimental Setup.** We chose SnapKV as it is a strong baseline that uses importance scores to
 1023 identify and retain salient tokens. We evaluated four configurations on the LongBench benchmark
 1024 suite using the Llama-3.1-8B model. The configurations are: (1) the uncompressed baseline, (2)
 1025 SnapKV alone with a 50% token keep rate, (3) OjaKV alone with a 0.6x rank compression, and (4)
 a combined approach applying both OjaKV’s rank compression and SnapKV’s token eviction. Per-

1026 formance is measured by the average accuracy across LongBench tasks, and efficiency is measured
1027 by the total KV cache compression ratio.
1028

Results and Analysis. The results, presented in Table 6, confirm our hypothesis. Our analysis
1029 shows that **OjaKV** can be effectively combined with token eviction methods like SnapKV. This com-
1030 pounded approach further reduces KV cache memory usage with only a minor, graceful degradation
1031 in model accuracy. This result validates that our feature-dimension compression is complementary
1032 to sequence-length compression, offering a practical path to even greater memory efficiency.
1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079