
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OJAKV: CONTEXT-AWARE ONLINE LOW-RANK
KV CACHE COMPRESSION WITH OJA’S RULE

Anonymous authors
Paper under double-blind review

ABSTRACT

The expanding long-context capabilities of large language models are constrained
by a significant memory bottleneck: the key-value (KV) cache required for au-
toregressive generation. This bottleneck is substantial; for instance, a Llama-3.1-
8B model processing a 32K-token prompt at a batch size of 4 requires approx-
imately 16 GB for its KV cache, a size exceeding the model’s weights. While
KV-cache compression via low-rank projection is a promising direction, existing
methods’ rely on a static, offline-learned subspace that performs poorly under data
distribution shifts. To overcome these limitations, we introduce OjaKV, a novel
framework that integrates a strategic hybrid storage policy with online subspace
adaptation. First, OjaKV recognizes that not all tokens are equally important for
compression; it preserves the crucial first and most recent tokens in full-rank,
maintaining high-fidelity anchors for attention. Second, for the vast majority of
intermediate tokens, it applies low-rank compression by incrementally adapting
the projection basis using Oja’s algorithm for online principal component anal-
ysis. This adaptation involves a comprehensive update during prompt prefilling
and lightweight periodic updates during decoding, ensuring the subspace remains
aligned with the evolving context. Crucially, our framework is fully compatible
with modern attention modules like FlashAttention. Experiments demonstrate that
OjaKV maintains or even improves zero-shot accuracy at high compression ratios.
In particular, OjaKV achieves its strongest gains on very long-context benchmarks
that require complex reasoning, highlighting the importance of online subspace
adaptation in dynamically tracking context shifts. Furthermore, our approach is
compatible with token-selection methods, enabling compounded memory savings.
These results establish our hybrid framework as a practical, plug-and-play solution
for memory-efficient long-context inference without requiring model fine-tuning.
Code at https://anonymous.4open.science/r/OjaKV-9D76.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4o (OpenAI et al., 2024) and Deepseek-R1 (DeepSeek-
AI et al., 2025) have demonstrated remarkable performance across diverse domains, including cod-
ing (Nam et al., 2024), mathematics (Setlur et al., 2024), and open-ended text generation (Kumichev
et al., 2024). However, as model capabilities and context length expand, GPU memory emerges as a
critical bottleneck for inference. The memory footprint arises from two primary sources: (i) model
weights, with a model like Llama-3.1-8B requiring 16 GB alone; and (ii) the Key-Value (KV) cache
used during prompt prefilling and autoregressive decoding. For instance, processing a 32K-token
prompt with Llama-3.1-8B in float16 precision at a batch size of 4 consumes an additional 16 GB
for the KV cache, rivalling the size of the model weights themselves. This substantial memory con-
sumption makes long-context inference prohibitive on all but high-end hardware.

To mitigate this challenge, a variety of methods have been proposed to optimize KV-cache memory
usage (Shi et al., 2024). These approaches can be grouped into four categories: (1) Quantization,
which stores keys and values at a lower precision (e.g., 8-bit) (Hooper et al., 2024; Liu et al., 2024);
(2) Token Selection, which prunes or merges tokens deemed unimportant based on attention scores
or heuristic saliency measures (Xiao et al., 2023; Li et al., 2024; Zhang et al., 2023); (3) Offloading,
which transfers the KV cache to CPU memory and selectively streams it back during decoding (Tang
et al., 2024; Sun et al., 2024; Zhu et al., 2025); and (4) Low-rank Approximation, which projects keys
and values into a lower-dimensional subspace (Saxena et al., 2024; Lin et al., 2024).

1

https://anonymous.4open.science/r/OjaKV-9D76

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our work focuses on this fourth direction. By compressing each key and value vector from di-
mension d (e.g., d = 128) to r (e.g., r = 96), low-rank methods can reduce cache memory by
((1− r/d)× 100)% while preserving model accuracy, yielding substantial savings for long-context
inference. While token selection has become a widely adopted strategy, we provide theoretical sup-
port showing that low-rank projection and token eviction are compatible, offering multiplicative
benefits that enable even greater memory reductions when combined.

Existing low-rank methods fall into two main categories. (1) Weight-decomposition techniques di-
rectly factorize the linear projection weights for query, key, and value (Wq , Wk, Wv) into low-rank
matrices, thereby caching already-compressed intermediate states (Chang et al., 2024). However,
this approach often incurs a noticeable degradation in accuracy. (2) Projection-based techniques
learn fixed orthonormal projeciton bases (Uq , Uk, Uv) from a calibration dataset. These bases are
then used to compress the KV cache, which is reconstructed during attention computation (Saxena
et al., 2024; Lin et al., 2024). While effective, these static bases implicitly assume that inference
prompts will follow the same distribution as the calibration data. In practice, distribution shifts (e.g.,
from dialogue to code generation) cause the approximation to deteriorate, harming generation qual-
ity.

To address these limitations, we propose OjaKV, a novel framework for KV-cache compression that
operates on two core principles. Our first key insight is that uniform compression across all tokens
is suboptimal. Motivated by the findings of attention sinks (Xiao et al., 2023), OjaKV employs
a hybrid storage policy that strategically excludes the crucial first and most recent tokens from
low-rank projection. This preserves their full-rank fidelity, creating stable anchors for the attention
mechanism and forming a significantly stronger performance baseline. Second, for the remaining
intermediate tokens, we incorporate online subspace adaptation using Oja’s incremental principle
component analysis (PCA) (Oja, 1997). This mechanism performs a comprehensive update during
the prefill stage on a selection of salient tokens, and subsequently executes periodic lightweight
updates during decoding. This ensures the low-rank basis continuously adapts to the evolving context
with negligible overhead. Our framework is fully compatible with modern attention modules such
as FlashAttention (Dao et al., 2022), ensuring practicality in real-world long-context inference.

We evaluate OjaKV on multiple-choice benchmarks from the lm-eval-harness (Biderman et al.,
2024), aligning with prior studies (Saxena et al., 2024; Lin et al., 2024). Additionally, for the first
time to the best of our knowledge, we evaluate projection-based low-rank KV cache compression
methods’ performance on generation-centric long-context tasks using LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024). Across all settings, OjaKV demonstrates superior performance
over static low-rank baselines at the equivalent compression ratios.

In summary, our contributions are fourfold. First, we introduce a hybrid low-rank KV-cache com-
pression framework, OjaKV, which combines a selective full-rank storage policy with a context-
aware online subspace adaptation. Second, our design is compatible with FlashAttention, ensuring
practicality for modern long-context inference pipelines. Third, we conduct the first comprehensive
evaluation of low-rank KV compression on challenging generation-centric benchmarks, moving be-
yond the simpler multiple-choice tasks. Finally, we provide a theoretical analysis demonstrating the
composability of OjaKV with token-eviction techniques, enabling compounded memory savings.

2 RELATED WORK

Recent work on reducing memory footprint of LLM inference has led to various strategies for com-
pressing the KV cache, a primary contributor to memory overhead during long-context generation.
These approaches span orthogonal directions, including quantization, token pruning, offloading, and
subspace compression. Our method builds on low-rank approximation, extending it with an online,
context-adaptive formulation. We review relevant methods below and highlight how OjaKV differs.

2.1 KV-CACHE COMPRESSION

The substantial memory overhead of the KV cache has motivated a range of compression strategies,
which can be grouped into four major categories (Shi et al., 2024). (1) Quantization: These methods
reduce memory by storing keys and values at lower precision, for example, using 4-bit integers in-
stead of the standard 16-bit floats. KVQuant (Hooper et al., 2024) proposes a suite of techniques to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

enable accurate KV cache quantization below 4-bit precision. KIVI (Liu et al., 2024) further intro-
duces a tuning-free 2-bit scheme that quantizes keys per-channel and values per-token, achieving up
to 2.6× memory reduction and 2.35-3.47× throughput gains with minimal quality loss. (2) Token
selection: These methods discard or merges tokens deemed less important. StreamingLLM (Xiao
et al., 2023) leverages the “attention sink” phenomenon, retaining the first and most recent tokens
while discarding others. SnapKV (Li et al., 2024) heuristically selects salient tokens based on com-
puted importance scores. (3) Offloading: These approaches move KV cache storage from GPU to
CPU memory and selectively reload parts as needed. Quest (Tang et al., 2024) is a query-aware
method that estimates the criticality of cache pages via query vectors and loads only the top-K
pages, thereby accelerating self-attention without accuracy loss. ShadowKV (Sun et al., 2024) of-
floads value caches to CPU memory and streams back only relevant chunks during decoding. (4)
Low-rank approximation: These methods project keys and values into a lower-dimensional sub-
space (Saxena et al., 2024; Lin et al., 2024), either by factorizing the projection weights or applying
a learned low-rank basis to construct a compressed KV cache. Our method falls into the last category
and is orthogonal to the first three, making it complementary and enabling additive memory savings
when combined.

2.2 LOW-RANK APPROXIMATION FOR ATTENTION

Low-rank structure in Transformer activations has long been leveraged to compress both weights and
activations. Palu (Chang et al., 2024) and ReCalKV (Yan et al., 2025) factorize the model weights
into low-rank matrices, cache compressed intermediate states, and reconstruct the full key and value
tensors during attention. However, these methods often incur noticeable accuracy degradation due
to lossy factorization. EigenAttention (Saxena et al., 2024) instead samples key/value activations
from a calibration dataset, performs singular value decomposition (SVD), and selects orthonormal
bases Uk and Uv that retain a target variance ratio. MatryoshkaKV (Lin et al., 2024) extends this
idea by fine-tuning the low-rank projection matrices, thereby aligning the subspace more closely
with downstream tasks. A key limitation of EigenAttention and MatryoshkaKV lies in their use of
a static basis: once computed, the projections remain fixed throughout inference. This assumption
breaks down when inference prompts diverge from the calibration distribution (e.g., shifting from
conversational text to code), leading to degraded approximation and reduced generation quality.
Our method address this gap by introducing online subspace adaptation. It continuously updates the
projection matrices, enabling adaptive and context-aware low-rank approximation during inference.

2.3 ONLINE PRINCIPAL COMPONENT ANALYSIS

When data arrives sequentially, as in the case of autoregressive decoding, rerunning SVD on the en-
tire history is computationally infeasible. Instead, online PCA algorithms incrementally update the
low-rank subspace as new samples arrive, without storing or recomputing the full covariance matrix.
Classical approaches include perturbation techniques, incremental PCA, and stochastic optimization
methods such as Oja’s rule. Perturbation techniques update the eigen decomposition of the sample
covariance by treating new observations as a low-rank perturbation (Gu & Eisenstat, 1994). These
approaches are numerically accurate but computationally and memory intensive, making them un-
suitable for high-dimensional or fast streaming data. Incremental SVD methods maintain a running
factorization and updates it with each new batch of samples (Brand, 2002). This strikes a balance
between efficiency and accuracy, and is often robust in practical settings, but can still be slower
than stochastic updates for extremely large-scale problems like real-time LLM inference. Stochastic
optimization methods, in contrast, directly optimize the expected variance using stochastic gradi-
ent updates, the most well-known being Oja’s rule (Oja, 1997). Due to their efficiency, stochastic
PCA methods are well suited to applications like KV cache compression during autoregressive de-
coding. Our proposed method, OjaKV, builds on this foundation. We apply Oja’s rule to update
the key and value subspaces during inference, enabling fast, adaptive, and context-aware low-rank
approximation needing access to calibration data or fine-tuning.

3 PRELIMINARIES: LOW-RANK ATTENTION

We begin by describing the standard attention mechanism and how it can be adapted for low-rank
KV cache compression. For simplicity, we focus on a single attention head. Let the head dimension

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

be dh and the input sequence be X ∈ Rn×d. Standard attention first projects the input into query,
key, and value representations using projection matrices Wq , Wk, Wv ∈ Rd×dh :

Q = XWq, K = XWk, V = XWv,

where Q,K,V ∈ Rn×dh . The KV cache stores K and V for future use during decoding. The
attention scores A are then computed as the scaled dot product between queries and keys, followed
by a softmax operation. The output of the attention head, O, is computed by applying these attention
scores to value matrix V : A = softmax

(
QKT /

√
dh

)
∈ Rn×n,O = AV ∈ Rn×dh .

3.1 LOW-RANK KV-CACHE APPROXIMATION

The core idea of low-rank approximation is to project K and V onto lower-dimensional subspaces.
We define two orthonormal bases: Uk ∈ Rdh×rk for keys and queries, and Uv ∈ Rdh×rv for values,
where rk, rv ≪ dh are the desired ranks for compression. The bases satisfy UT

k Uk = Irk and
UT

v Uv = Irv . The low-rank bases Uk and Uv are initialized from a small calibration dataset (see
Appendix A.2 for details).

Instead of caching the full-rank K and V , we store their compressed representations:

K̃ = KUk ∈ Rn×rk , Ṽ = V Uv ∈ Rn×rv .

This reduces per-token storage requirement for the KV cache from 2dh to rk + rv . If needed, the
full-rank matrices can be approximately reconstructed via K̂ = K̃UT

k and V̂ = Ṽ UT
v .

3.2 EFFICIENT ATTENTION COMPUTATION

This compressed representation allows for a more efficient attention calculation. Projecting queries
into the shared query-key subspace yields Q̃ = QUk. The attention scores can be computed directly
in the low-rank space, as the projection is mathematically equivalent to using the reconstructed
matrices:

Q̃K̃T = (QUk)(KUk)
T = QUkU

T
k K

T = QUk(KUk)
T = QUkK̃

T = QK̂T ∈ Rn×n.

Thus, attention computed in the low-rank space is equivalent to using the reconstructed keys. The
full attention operation is then performed in the low-rank space, and the final output is projected
back to the original dimension: Õ = softmax

(
Q̃K̃T/

√
dh

)
Ṽ ∈ Rn×rv , Ô = ÕUT

v ∈ Rn×dh .

We note that the final output computation in the above formulation is mathematically equivalent to
using the reconstructed keys and values, i.e., Ô = softmax

(
QK̂T/

√
dh

)
V̂ .

3.3 PRACTICAL IMPLEMENTATION: COMPATIBILITY WITH FLASHATTENTION

Optimized attention kernels like FlashAttention operate on full-dimensional tensors of shape
(n × dh) and cannot directly use the compressed features. To maintain compatibility, we store the
compressed KV cache (K̃, Ṽ) and perform on-the-fly reconstruction before using FlashAttention.
Given queries Q ∈ Rn×dh , we reconstruct the keys and values in the original space from the com-
pressed cache:

K̂ = K̃UT
k ∈ Rn×dh , V̂ = Ṽ UT

v ∈ Rn×dh .

These reconstructed tensors are then passed to FlashAttention:

Oout = Ô = FlashAttention(Q, K̂, V̂).

This approach maintains the memory savings of a compressed cache while incurring only a modest
runtime overhead, as detailed in Appendix A.3.

4 MOTIVATION

Offline low-rank bases are fitted to the calibration distribution and can misalign under domain or task
shifts at inference, increasing projection error for keys and values. We therefore maintain an adaptive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

basis that periodically refreshing the basis with key and value features from current prompts and
generated content the model can track distributional shifts and maintain alignment between the low-
rank subspace and the evolving sequence. To validate this hypothesis, we conduct an experiment,
summarized in Table 1. We compute an initial basis, Ucal, from a general-domain corpus (WikiText-
2 (Guo et al., 2020)) and evaluate it on a long-context news summarization task from a different
domain (the MultiNews subset of LongBench (Bai et al., 2023)). We compare this against an adapted
basis, Uadapt, formed by updating Ucal online with Oja’s rule after processing a short prefix of the
MultiNews data. An oracle basis, Utest, computed via PCA on the full test set, serves as an upper
bound on performance.

Table 1: RER and SO on the MultiNews test set.
Adapting the basis online reduces the projection
error (RER) and improves alignment with the or-
acle test basis (Utest).

Basis RER (on Test) ↓ SO with Utest ↑
Ucal 0.255 0.597
Uadapt 0.097 0.653

We use two metrics: Residual-Energy Ratio
(RER) (Najafzadeh & Mahmoudi-Rad, 2024)
measures the projection error, and Subspace
Overlap (SO) (Knyazev & Zhu, 2012), which
we compute against the oracle basis (Utest) to
quantify alignment, defined as SO(U1,U2) =
Tr(UT

1 U2U
T
2 U1)/r. The in-domain RER of

Ucal on the calibration set is 0.035. As shown
in Table 1, the static calibration basis general-
izes poorly under distribution shift: its RER in-
creases to 0.255 on the new task. Applying a lightweight Oja update to form Uadapt mitigates this,
lowering the RER to 0.097. This adaptation also improves alignment with the oracle basis, raising
the SO from 0.597 to 0.653. These findings confirm that online updates can effectively counteract
distribution shift.

5 METHODOLOGY

Our method, OjaKV, introduces a hybrid strategy for memory-efficient inference that combines
selective full-rank retention, with the goal of preserving high-fidelity representations for critical
tokens, with online-adapted low-rank compression for remaining sequence. As illustrated in Figure
1, most key and value vectors are projected into a compact subspace via learned projection matrices,
which are continuously adapted during inference to remain aligned with the evolving context.

Our framework is built around three core components: (i) a hybrid KV cache storage policy that
exempts key contextual tokens from compression; (ii) a two-phase online update scheme using Oja’s
algorithm to adapt the low-rank subspace during both the prompt (prefill) and decoding stages; (iii)
a lightweight initialization procedure that seeds the projection matrices from a small calibration
corpus (see Appendix A.2 for details).

5.1 KV STORAGE POLICY WITH FULL-RANK EXEMPTIONS

In long-context generation, not all tokens contribute equally to downstream predictions. Motivated
by the findings of attention sinks (Xiao et al., 2023), we identify two token regions that play a critical
role in shaping model outputs: (i) the first nstart tokens of the prompt, which often contain crucial
context (e.g., instructions), and (ii) the last nrecent tokens of the prompt, which heavily influence local
generation. OjaKV exempts these tokens from compression, storing their full-rank key and value
vectors of dimension dh. All other tokens are compressed by projecting them onto the low-rank
space and stored: K̃ = KUk, Ṽ = V Uv , where Uk,Uv ∈ Rdh×r are the learned projection bases
(with r ≪ dh). This hybrid policy preserves the most influential early and recent context at full
fidelity while leveraging low-rank compression for the vast majority of the sequence.

5.2 TWO-PHASE ONLINE UPDATES WITH OJA’S ALGORITHM

While the hybrid storage policy preserves critical contextual anchors, the vast majority of tokens
in a long sequence are still subject to low-rank compression. To ensure this representation remains
accurate as the data distribution shifts during inference, we update the low-rank bases online using
Oja’s rule (Oja, 1982). The general form of the Oja update for a new input vector xt is:

yt = UTxt, U ← U + η (xt −Uyt)y
T
t ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

 UkUk

 UvUv

 K̃̃K

 Ṽ̃V

 Key Cache

 Value Cache

 UT
kUT
k

 UT
vUT
v

RoPE Attention

X

 WQWQ

 WVWV

 WKWK

Q

K

V

RoPE

RoPE

Attention

 UUdd

 K̂̂K

 ̂V ̂V

xk ← U𝖳
k kxk ← U𝖳
k k

Uk ← Uk + η(k − Ukxk)x𝖳
kUk ← Uk + η(k − Ukxk)x𝖳
k

k / v UUdd

 buffer length TT

X

 WQWQ

 WVWV

 WKWK

Q

K

V

RoPE

 WOWO

Y

Y Key Cache

 Value Cache

Prefill

Decoding

Traditional attention using full cache

xv ← U𝖳
v vxv ← U𝖳
v v

Uv ← Uv + η(v − Uvxv)x𝖳
vUv ← Uv + η(v − Uvxv)x𝖳
v

Attention using reduced cache
with context-aware low rank projection matrix

Low rank projection matrix updating

reduce cache storage
attention with reconstructed K̂̂K and ̂V ̂V

 WOWO

keep important tokens full rank

k / v

select SimpSimp tokens from the prompt

Figure 1: Overview of the OjaKV workflow. The top-left panel shows standard attention using
full-rank KV caching. Our method, shown in the bottom panel, introduces a low-rank path where
keys and values are compressed using projection matrices (Uk,Uv) before caching. The top-right
inset illustrates the core mechanism: these projection matrices are dynamically updated during both
the prefill and decoding phases to adapt to the context.

where the input vector xt is either a key vector (when updating Uk) or a value vector (when updating
Uv), U is the corresponding projection basis, yt is its compressed representation, and η is the learn-
ing rate (see Algorithm 1 in Appendix A.1 for details). This strategy is tailored to the two distinct
phases of autoregressive generation: prompt processing (prefill) and token-by-token decoding.

Prefill Stage (Prompt Processing). During prefill, the model processes a long prompt of length
n ≫ 1. An update on every token would be counterproductive, as the inclusion of redundant infor-
mation could obscure the principal directions for subspace adaptation. Instead, we select a small sub-
set of the most salient tokens for the update using a token selection process inspired by SnapKV (Li
et al., 2024).

We compute importance scores by measuring the attention from the last several query tokens to all
key tokens in the prompt (Kall): A = softmax

(
QlastK

T
all/
√
dh

)
, and define token importance as

st =
∑

h,w Ah,w,t, Simp = TopK(st), where st measures how much attention token t receives
across all heads (h) and the final window of queries (q). Specifically, for each key token t, we
compute an aggregate importance score st by summing the attention it receives across all heads (h)
and all queries in the final window (w). Oja’s rule is then applied only to the selected set {xt | t ∈
Simp} with a prefill-specific learning rate ηpre. After processing all selected tokens, we perform a
single QR decomposition to re-orthonormalize the updated bases to maintain numerical stability.

Decoding Stage (Autoregressive Generation). During decoding, a single new key-value pair
(kt,vt) is generated at each step. These vectors are temporarily stored in full-rank buffers Bk and
Bv . The update is performed periodically: every T steps, we apply Oja’s rule to all vectors accu-
mulated in the buffers since the last update. This stage uses a smaller, more conservative learning
rate ηdec < ηpre to ensure stability. After each periodic update, the bases are re-orthonormalized, the
buffers are cleared, and the process repeats.

This two-phase update scheme allows OjaKV to maintain alignment between the compressed sub-
space and the evolving context, without incurring significant computational or memory overhead.
Pseudocode is provided in Appendix A.1, and a detailed case study comparing static and adaptive
projections is presented in Appendix A.6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Retrieval accuracy (0–1; higher is better) on the RULER using LongChat-7b-v1.5-32k.
16K 32K

Method S1 S2 MK1 MQ MV QA Avg S1 S2 MK1 MQ MV QA Avg

FullKV 1.00 0.99 0.91 0.70 0.71 0.13 0.74 0.31 0.67 0.49 0.44 0.34 0.02 0.38

Eigen-N 0.8x OOM OOM OOM OOM OOM OOM N/A OOM OOM OOM OOM OOM OOM N/A
StaticPCA 0.8x 0.68 0.17 0.23 0.48 0.26 0.13 0.33 0.21 0.07 0.06 0.04 0.00 0.08 0.08
StaticPCA-H 0.8x 0.97 0.62 0.49 0.65 0.61 0.14 0.58 0.32 0.31 0.26 0.17 0.20 0.08 0.22
OjaKV 0.8x 0.99 0.84 0.57 0.65 0.65 0.18 0.65 0.40 0.40 0.32 0.22 0.24 0.08 0.28

Eigen-N 0.6x OOM OOM OOM OOM OOM OOM N/A OOM OOM OOM OOM OOM OOM N/A
StaticPCA 0.6x 0.59 0.05 0.20 0.31 0.31 0.15 0.27 0.06 0.04 0.04 0.04 0.00 0.03 0.04
StaticPCA-H 0.6x 0.97 0.39 0.29 0.41 0.33 0.14 0.42 0.11 0.26 0.25 0.08 0.15 0.08 0.15
OjaKV 0.6x 1.00 0.65 0.42 0.44 0.40 0.16 0.51 0.23 0.32 0.34 0.12 0.16 0.09 0.21

6 EXPERIMENTS

In this section, we present the experimental setup and evaluate our proposed method, OjaKV. Our
goal is to assess its performance against relevant baselines in realistic, long-context inference scenar-
ios. All experiments are conducted on NVIDIA H100 GPUs and evaluated on three diverse bench-
marks: RULER (Hsieh et al., 2024), LongBench (Bai et al., 2023), and lm-eval-harness (Agarwal
et al., 2024), using Llama-2-7B and Llama-3.1-8B (Grattafiori et al., 2024) models. For a com-
prehensive evaluation, we compare OjaKV against four key baselines. We use the uncompressed
Full KV Cache as a performance upper bound and include Eigen-N, a direct low-rank implementa-
tion of prior work (Saxena et al., 2024) that is impractical for long contexts due to its incompatibility
with FlashAttention. We also include StaticPCA, which uses the same fixed, offline-computed SVD
basis as Eigen-N but is adapted for modern inference by reconstructing full-rank tensors on-the-fly
before the attention computation. Our primary comparative baseline is StaticPCA-H, which extends
StaticPCA by including a token selection policy using attention sink and recent window similar to
the hybrid storage design in OjaKV. We measure model accuracy, memory usage (GB), and Time
to First Token (TTFT), with detailed experimental setups in Appendices A.4 and A.5.

6.1 RULER

Setup. We begin by benchmarking OjaKV on the RULER long-context retrieval suite. For our
experiments, we use LongChat-7b-v1.5-32k. We evaluate its performance on challenging input se-
quences of both 16K and 32K tokens, pushing the model to its long-context limits and creating
significant GPU memory pressure. We report results under three cache budgets: uncompressed
(Full), 20% savings (0.8×), and 40% savings (0.6×). For each compressed budget, we compare
the StaticPCA and StaticPCA-H baselines against our context-aware OjaKV, which dynamically
updates its projection bases during decoding.
Results. On the demanding long-context tasks of RULER, the limitations of native low-rank meth-
ods become apparent. The Eigen-N baseline is not feasible in this setting, as its incompatibility with
FlashAttention leads to OOM errors on sequences of this length. As reported in Table 2, OjaKV
achieves strong retrieval accuracy across the RULER subtasks for both sequence lengths. It con-
sistently outperforms the StaticPCA and StaticPCA-H baselines across all tasks and compression
ratios, further validating the effectiveness of our dynamic, context-adaptive framework in extreme
long-context scenarios. The other static low-rank methods perform worse since RULER tests the
model’s ability to perform retrieval on long, dynamic context, where there are distractors and im-
portant information constantly shifts. Here, OjaKV can better track the evolving state of the prompt,
leading to enhanced performance. In these challenging scenarios, OjaKV effectively mitigates the
performance loss from compression, while significantly using less KV cache memory.

6.2 LONGBENCH

We further evaluate OjaKV on LongBench, a benchmark designed to test long-context inference
across diverse tasks, including single and multi-document QA, few-shot learning, and code gener-
ation. The task input lengths vary from a few thousand to over 20K tokens. As shown in Table 3,
OjaKV outperforms StaticPCA-H and StaticPCA across both models and compression ratios on the
majority of tasks. The performance advantage is less pronounced compared to RULER, potentially

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy (%) on LongBench tasks for Llama2-7B and Llama-3.1-8B.

LLMs

Single-Document QA Multi-Document QA Few-shot Learning Synthetic Code Avg

NrtvQA
MF-en

HotpotQA

2WikiMQA

Musique
TREC

SAMSum
PCount

PRe Lcc
RB-P Avg

L
la

m
a-

2-
7B

Full KV 18.79 34.41 25.3 28.33 8.52 0.0 6.22 1.55 9.0 15.08 17.35 14.96
Eigen-N 0.8x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.8x 16.95 32.8 21.31 24.73 6.28 0.0 5.34 2.25 2.61 14.06 16.78 13.01
StaticPCA-H 0.8x 17.22 34.28 21.8 27.17 7.84 0.0 2.93 1.14 4.5 13.59 20.25 13.7
OjaKV 0.8x 17.53 33.81 21.8 27.37 7.84 0.0 2.94 1.14 4.5 13.55 20.01 13.68
Eigen-N 0.6x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.6x 14.21 27.54 17.41 19.77 5.11 0.25 5.65 3.01 0.5 13.41 18.84 11.43
StaticPCA-H 0.6x 16.66 31.37 26.78 27.33 7.97 0 5.83 1.21 5 12.86 20.19 14.11
OjaKV 0.6x 16.77 31.83 26.81 27.45 7.97 0.0 5.85 1.21 5.0 12.6 20.48 14.18

L
la

m
a-

3.
1-

8B

Full KV 29.56 53.0 53.76 46.13 28.38 7.5 7.47 6.25 99.5 19.88 19.22 33.7
Eigen-N 0.8x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.8x 11.81 49.68 48.06 43.56 15.43 10.0 9.46 3.0 89.5 21.36 22.46 29.48
StaticPCA-H 0.8x 11.71 49.17 49.51 43.99 16.55 9.5 9.36 2.5 88 21.55 22.94 29.53
OjaKV 0.8x 11.68 49.38 49.51 44.49 16.48 9.5 9.54 2.5 88.0 21.69 22.69 29.59
Eigen-N 0.6x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.6x 8.16 39.38 25.63 22.73 12.65 0.67 7.1 1.62 12.5 18.76 23.48 15.7
StaticPCA-H 0.6x 9.8 43.33 44.23 37.15 15.64 5 7.51 3.5 50.5 19.55 24.13 23.67
OjaKV 0.6x 9.96 43.13 44.23 36.96 16.15 5.0 7.46 3.5 50.5 20.01 23.94 23.71

because LongBench tasks test for comprehension of a long, stable context. For Llama-2-7B, even
at 0.6× compression, the performance is only marginally worse on average, comapred to using the
full KV cache, offering a flexible trade-off for memory savings with minimal performance drop.

6.3 LM-EVAL-HARNESS

To gauge the impact of KV cache compression on downstream utility, we follow the lm-eval-harness
protocol on five diverse zero-shot benchmarks: PiQA, WinoGrande, ARC-Easy, ARC-Challenge,
and HellaSwag. We evaluate all methods on the relatively short-context tasks within the lm-eval-
harness, where sequence lengths are typically limited to a few hundred tokens. As shown in Table 4,
we make two key observations in this setting. First, the Eigen-N and StaticPCA baselines yield iden-
tical results. This finding empirically validates our analysis in Appendix A.3, confirming the numer-
ical equivalence between the native low-rank kernel and our FlashAttention-compatible implemen-
tation. Second, while OjaKV achieves accuracy very close to the full-rank baseline, StaticPCA-H
also performs very well, suggesting that the impact of keeping a full rank attention sink and recent
window, has a significant impact for these short context-tasks, as these key values contribute to a
larger percentage of the total KV cache. Shorter contexts are also more robust to compression, as
there is minimal accuracy drop at 0.6× compression for both Llama-2-7B and Llama-3.1-8B.

Overall, our experiments on these three different benchmarks demonstrate the versatility of OjaKV,
and shows that it can perform best in scenarios with long, dynamic context like in RULER.

6.4 EFFICIENCY

8K 16K 24K 32K
Sequence Length

0

1000

2000

TT
FT

 (m
s)

TTFT
Full KV
Oja

8K 16K 24K 32K
Sequence Length

0

5

10

15

M
em

or
y

(G
B)

Memory
Full KV
Oja

Figure 2: Efficiency comparison of Full KV
and OjaKV (60% compression).

We compare OjaKV against the Full KV cache on
Llama-3.1-8B-Instruct in terms of latency and GPU
memory (Figure 2). The Oja update introduces some
overhead to TTFT. At 32K tokens, TTFT increases
from 2102 ms (Full KV) to 2801 ms (OjaKV). In
contrast, memory usage, which is the limiting factor
for long-context inference, decreases from 16 GB to
11.6 GB at 32K tokens. This memory reduction enables longer inputs under the same budget.

7 COMPATIBILITY WITH SEQUENCE LENGTH COMPRESSION

Our OjaKV method compresses the feature dimension (d → r) of the key and value vectors. As a
result, it is orthogonal and compatible with sequence length compression techniques the sequence
length (n → m) such as token eviction or selection. This compatibility allows their benefits to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Accuracy (%) on lm-eval-harness tasks for Llama-2-7B and Llama-3.1-8B.
Model Compression Ratio Method Acc ↑

WinoG PiQA HellaS Arc-e Arc-c Avg-Acc

Llama-2-7B

Full Baseline 66.38 76.39 57.80 73.86 44.20 63.73

0.8x

Eigen-N 65.90 75.03 56.29 71.30 41.38 61.98
StaticPCA 65.90 75.03 56.29 71.30 41.38 61.98

StaticPCA-H 66.30 76.40 57.54 73.86 44.37 63.69
OjaKV 66.30 75.79 57.51 73.86 44.37 63.57

0.6x

Eigen-N 62.98 74.54 54.99 70.03 39.93 60.49
StaticPCA 62.98 74.54 54.99 70.03 39.93 60.49

StaticPCA-H 66.30 76.39 57.05 73.74 44.37 63.56
OjaKV 66.30 76.39 57.06 73.74 44.37 63.57

Llama-3.1-8B

Full Baseline 73.88 80.03 59.04 81.86 51.88 69.34

0.8x

Eigen-N 73.56 79.65 57.74 81.65 51.54 68.83
StaticPCA 73.56 79.65 57.74 81.65 51.54 68.83

StaticPCA-H 73.95 79.92 59.14 81.90 51.79 69.34
OjaKV 73.95 79.92 59.14 81.90 51.79 69.34

0.6x

Eigen-N 69.85 78.67 54.87 79.38 48.12 66.18
StaticPCA 69.85 78.67 54.87 79.38 48.12 66.18

StaticPCA-H 73.95 79.82 58.35 81.90 51.88 69.18
OjaKV 73.95 79.82 58.35 81.90 51.88 69.18

be compounded for multiplicative savings. We briefly analyze this property theoretically here and
validate it experimentally in Appendix A.7.

A token eviction policy can be represented by a selector matrix S ∈ Rn×m. For a fixed, linear
selector, our low-rank projection U⊤ associates perfectly with the selection operation:

U⊤
k (KS) = (U⊤

k K)S, U⊤
v (VS) = (U⊤

v V)S.

For advanced, context-dependent selectors where St = Sel(K,Q) is a function that selects the
most relevant tokens based on the current query Q, the commutation is not exact, but the additional
projection error is bounded by the error of the selection policy itself:∥∥UTK −UTKSt

∥∥
F
≤

∥∥K −KSt

∥∥
F
=

∥∥K− Sel(K,Q)
∥∥
F

because left-multiplication by UT is a contraction with respect to the Frobenius norm. This oper-
ational orthogonality means that combining a rank-r OjaKV with a policy retaining m of n tokens
yields a total compression ratio of CR = (d/r)× (n/m).

8 CONCLUSION

In this work, we addressed the critical KV cache memory bottleneck in long-context LLMs,
where static low-rank compression methods often degrade under distributional shifts. We introduced
OjaKV, a novel framework that integrates two complementary components: a hybrid storage pol-
icy, which preserves critical tokens in full rank, and a lightweight, Oja-based online update scheme
to adapt the low-rank subspace for all other tokens.

Our extensive experiments show that OjaKV consistently outperforms strong static baselines, pre-
serving or even improving model accuracy at aggressive compression ratios. Crucially, our evalu-
ation is one of the first to comprehensively assess low-rank methods on challenging, generation-
based long-context tasks. Prior work has often relied on perplexity-based metrics, which we find
can mask significant degradation in factual accuracy and coherence during generation. Our results
reveal that while naive, uniform low-rank compression can indeed harm generation quality, OjaKV’s
hybrid policy effectively mitigates this issue by strategically preserving only a few key tokens in full
rank. Notably, OjaKV demonstrates the largest gains on very challenging long-context benchmarks,
confirming the value of online subspace adaptation in dynamically aligning the compression basis
with evolving context. By ensuring full compatibility with modern inference kernels like FlashAtten-
tion and offering multiplicative savings with token-eviction methods, OjaKV establishes this hybrid
approach as a practical, parameter-free paradigm for efficient long-context LLM inference.

Future Work A promising avenue is to replace the fixed hyperparameters in our update mecha-
nism with dynamic schedules. Future work could explore adapting the learning rates (ηpre, ηdec) and
the update buffer size (T) based on metrics like activation shift or generation perplexity, potentially
improving both responsiveness and stability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

LLMs were used to aid and polish the writing of this paper. Specifically, their assistance was limited
to improving grammar, phrasing, and overall clarity. The authors reviewed, revised, and take full
responsibility for all content, ensuring the scientific integrity of this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete source
code is included in the anonymous repository https://anonymous.4open.science/r/
OjaKV-9D76. Our methodology is described in the main text, with full implementation details,
model configurations, and all hyperparameter settings provided in the Appendix.

REFERENCES

Anisha Agarwal, Aaron Chan, Shubham Chandel, Jinu Jang, Shaun Miller, Roshanak Zilouchian
Moghaddam, Yevhen Mohylevskyy, Neel Sundaresan, and Michele Tufano. Copilot evaluation
harness: Evaluating llm-guided software programming, 2024. URL https://arxiv.org/
abs/2402.14261.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
the trenches on reproducible evaluation of language models. arXiv preprint arXiv:2405.14782,
2024.

Matthew Brand. Incremental singular value decomposition of uncertain data with missing values.
In European Conference on Computer Vision, pp. 707–720. Springer, 2002.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection, 2024. URL https://arxiv.org/abs/2407.21118.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong

10

https://anonymous.4open.science/r/OjaKV-9D76
https://anonymous.4open.science/r/OjaKV-9D76
https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2402.14261
https://arxiv.org/abs/2407.21118
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia

11

https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Ming Gu and Stanley C Eisenstat. A stable and efficient algorithm for the rank-one modification of
the symmetric eigenproblem. SIAM journal on Matrix Analysis and Applications, 15(4):1266–
1276, 1994.

Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. Wiki-40b: Multilingual language
model dataset. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pp. 2440–2452, 2020.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

12

https://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew V Knyazev and Peizhen Zhu. Principal angles between subspaces and their tangents. arXiv
preprint arXiv:1209.0523, 2012.

Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily Goncharov, Galina Zubkova, Nikolai Zen-
ovkin, Aleksei Goncharov, and Andrey Savchenko. Medsyn: Llm-based synthetic medical text
generation framework. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pp. 215–230. Springer, 2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhi-
jie Deng. Matryoshkakv: Adaptive kv compression via trainable orthogonal projection. arXiv
preprint arXiv:2410.14731, 2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Mohammad Najafzadeh and Mohammad Mahmoudi-Rad. Residual energy evaluation in vortex
structures: On the application of machine learning models. Results in Engineering, 23:102792,
2024.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
an llm to help with code understanding. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1–13, 2024.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267–273, 1982. doi: 10.1007/BF00275687.

Erkki Oja. The nonlinear pca learning rule in independent component analysis. Neurocomputing,
17(1):25–45, 1997.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention in
low-rank space for kv cache compression. arXiv preprint arXiv:2408.05646, 2024.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. Advances in
Neural Information Processing Systems, 37:43000–43031, 2024.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Re-
calkv: Low-rank kv cache compression via head reordering and offline calibration. arXiv preprint
arXiv:2505.24357, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Yuxuan Zhu, Ali Falahati, David H Yang, and Mohammad Mohammadi Amiri. Sentencekv: Ef-
ficient llm inference via sentence-level semantic kv caching. arXiv preprint arXiv:2504.00970,
2025.

A APPENDIX

A.1 ALGORITHM

We consolidate the complete OjaKV online updating process into a formal procedure in Algorithm 1.
The algorithm outlines the two primary stages of our method: a comprehensive update during the
prefill phase and lightweight, periodic updates during the decoding phase.

The Prefilling Phase is designed to adapt the initial, general-purpose projection matrices (Uk and
Uv) to the specific content of the input prompt. This process begins by identifying a small subset of
the most salient tokens using an importance scoring mechanism inspired by SnapKV (Line 3). The

14

https://arxiv.org/abs/2412.16720

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

key and value vectors corresponding to these tokens are then used to perform a single, comprehen-
sive batch update on the projection matrices via Oja’s rule, using a relatively high learning rate, ηpre
(Lines 4-5). After this significant adaptation, the matrices are re-orthonormalized to maintain their
geometric properties (Line 6). Finally, our hybrid storage policy is enacted by marking the critical
first and last tokens of the prompt as exempt from compression (Line 7).

The Decoding Phase handles the continuous adaptation of the subspace as new tokens are autore-
gressively generated. At each step, the newly generated key-value pair is temporarily stored in a
buffer (Line 11). To maintain efficiency, updates are performed periodically. Every T steps, all
vectors accumulated in the buffer are used for another batch Oja update, this time with a more
conservative learning rate, ηdec, to ensure stable learning (Lines 14-15). The bases are again re-
orthonormalized, and the buffers are cleared for the next cycle (Lines 16-17). This two-phase ap-
proach allows OjaKV to make a strong initial adaptation to the context while continuously refining
the subspace with minimal overhead during generation.

Algorithm 1 OjaKV

Require: Low rank projection matrices Uk,Uv; learning rates ηpre, ηdec; update buffer size T ; ex-
emption sizes nstart, nrecent; prefill importance window w; top-k kpre

1: Prefilling Phase:
2: Compute token-importance scores over the prompt using the last w queries; select Simp =

TopK(s)
3: Form matrices K = [kt]t∈Simp , V = [vt]t∈Simp

4: K̃ ← UT
k K; Uk ← Uk + ηpre

(
K −UkK̃

)
K̃T

5: Ṽ ← UT
v V ; Uv ← Uv + ηpre

(
V −UvṼ

)
Ṽ T

6: (Uk,Uv)← Orthonormalise(Uk,Uv)
7: Mark the first nstart prompt tokens and the last nrecent as full-rank exempt
8:
9: Decoding Phase:

10: for step t = 1, 2, . . . do
11: Generate new (kt, vt) and append to buffers Bk,Bv
12: if t mod T = 0 then
13: Form K = [ki]i∈Bk

, V = [vj]j∈Bv

14: K̃ ← UT
kK; Uk ← Uk + ηdec

(
K −UkK̃

)
K̃T

15: Ṽ ← UT
v V ; Uv ← Uv + ηdec

(
V −UvṼ

)
Ṽ T

16: (Uk,Uv)← Orthonormalise(Uk,Uv)
17: Reset Bk,Bv
18: end if
19: end for

A.2 LOW RANK SUBSPACE INITIALIZATION

We describe here the detailed procedure for constructing the initial projection bases.

For attention head i, we gather per-token activations of queries, keys, and values from ns sampled
sequences of length n:

RQ
i =

[
(Q1

i)
⊤, . . . , (Qns

i)⊤
]
, RK

i =
[
(K1

i)
⊤, . . . , (Kns

i)⊤
]
, RV

i =
[
(V1

i)
⊤, . . . , (Vns

i)⊤
]
,

where each R
(·)
i ∈ R(ns·n)×dh and dh is the head dimension.

To encourage a shared representation, we concatenate the query and key matrices:

RKQ
i = [RQ

i ,R
K
i] ∈ R(ns·n)×2dh .

Applying compact SVD gives
RKQ

i = UΣV ⊤,

with singular values σ1 ≥ · · · ≥ σdh
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We select the smallest rank r satisfying the energy criterion

∥(RKQ
i)r∥2F

∥RKQ
i ∥2F

≥ ϵth.

The top-r columns of U define the query–key basis Uk ∈ Rdh×rk .

For the values, we apply the same procedure directly to RV
i to obtain Uv ∈ Rdh×rv . Finally, to

maintain consistency across attention heads in a layer, we set the effective rank to the maximum r
observed in that layer.

A.3 EQUIVALENCE TO FULL-RANK FLASHATTENTION AND COST COMPARISON

Notation Let Q ∈ Rm×dh and K,V ∈ Rn×dh denote the per-head query, key, and value blocks,
where m is the number of current queries and n is the number of cached keys/values. At the prefilling
stage, m = n; at the decoding stage, m = 1. Let Uk ∈ Rdh×rk and Uv ∈ Rdh×rv be orthonormal
bases with UT

k Uk = Irk and UT
v Uv = Irv . Define compressed features

Q̃ = QUk ∈ Rm×rk , K̃ = KUk ∈ Rn×rk , Ṽ = V Uv ∈ Rn×rv .

A.3.1 EQUIVALENCE OF TWO COMPUTATION REGIMES

We compare (a) computing attention in the reduced space and expanding the output, versus (b)
reconstructing full-rank K,V and calling a standard FlashAttention kernel.

Low-rank kernel (compute-then-expand). Form reduced logits and outputs

Ã = softmax
(

Q̃ K̃T
√
dh

)
∈ Rm×n, Õ = Ã Ṽ ∈ Rm×rv ,

then expand Ô = Õ UT
v ∈ Rm×dh .

FlashAttention-compatible (reconstruct-then-compute). Reconstruct full-rank tensors

K̂ = K̃ UT
k ∈ Rn×dh , V̂ = Ṽ UT

v ∈ Rn×dh ,

and call FlashAttention with the original queries Q:

Ô = softmax
(

QK̂T
√
dh

)
V̂ ∈ Rm×dh .

Lemma (logit equivalence). With the above definitions,

QK̂T = Q̃ K̃T.

Proof. Since K̂T = (K̃ UT
k)

T = Uk K̃
T, we have QK̂T = Q (Uk K̃

T) = (QUk) K̃
T = Q̃ K̃T.

Corollary (output equivalence). The two computation regimes produce the same output Ô.
Proof. Starting from the FlashAttention-compatible definition of Ô:

Ô = softmax
(

QK̂T
√
dh

)
V̂ (FA-compatible definition)

= softmax
(

Q̃ K̃T
√
dh

)
V̂ (by logit equivalence)

= softmax
(

Q̃ K̃T
√
dh

)
(Ṽ UT

v) (substituting definition of V̂)

=
(
softmax

(
Q̃ K̃T
√
dh

)
Ṽ
)
UT

v (associativity)

= Õ UT
v (low-rank kernel definition)

Hence the FlashAttention-compatible path is numerically equivalent to computing in the reduced
space and then expanding, provided the same scaling 1/

√
dh is used. Using 1/

√
rk changes the

effective temperature and usually needs calibration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3.2 COMPLEXITY AND MEMORY COMPARISON

We summarize per-head costs for a single block with m queries against n cached keys/values. Big-O
ignores softmax and masking; General matrix multiply (GEMM) shapes are shown for clarity.

Regime Main computations KV memory per token
Full-rank baseline QKT: (m× dh)(dh × n) = O(mndh)

AV : (m× n)(n× dh) = O(mndh)
2dh elements

Low-rank kernel Q̃K̃T: (m× rk)(rk × n) = O(mnrk)

ÃṼ : (m× n)(n× rv) = O(mnrv)
Expand: (m× rv)(rv × dh) = O(mrvdh)

rk + rv elements

FA-compatible Reconstruct K: (n× rk)(rk × dh) = O(nrkdh)
Reconstruct V : (n× rv)(rv × dh) = O(nrvdh)
FA kernel: O(mndh)

rk + rv elements

Discussion. The low-rank kernel reduces the quadratic dot-product costs from O(mndh) to
O(mnrk) and O(mnrv), plus a linear expansion cost of O(mrvdh). The FA-compatible path keeps
the full-rank kernel complexity O(mndh) but preserves memory savings by storing only K̃, Ṽ ; the
reconstruction GEMMs are linear in n.

KV-cache memory in bytes. Let b be bytes per scalar (e.g., b=2 for float16). For L layers and
Hkv KV heads, the total KV memory for a sequence of length T and batch size B is

Full rank: Mfull = B T LHkv (2dh) b, Low rank: Mlow = B T LHkv (rk + rv) b,

with fractional saving

Saving = 1− rk + rv
2dh

.

When rk=rv=r, this simplifies to Saving = 1− r
dh

.

A.4 DETAILED EXPERIMENTAL SETUP

This section provides a detailed overview of the experimental environment, models, datasets, and
evaluation protocols used in this study to ensure full reproducibility of our results.

Hardware and Software Environment. All experiments were conducted on a single NVIDIA
H100 NVL GPU. The software stack was built upon PyTorch and Hugging Face Transformers. The
specific versions of the core libraries were as follows: PyTorch torch==2.6.0, Transformers
transformers==4.44.0, and FlashAttention flash attn==2.7.4.post1. All models
were run using their standard float16 precision implementation.

Models. We evaluated our method on several prominent open-source Large Lan-
guage Models. For clarity and reproducibility, the specific Hugging Face repository
identifiers for each model were: Llama-2-7B (meta-llama/Llama-2-7b-chat-hf),
Llama-3.1-8B (meta-llama/Llama-3.1-8B-Instruct), and LongChat-7B for RULER
(lmsys/longchat-7b-v1.5-32k).

Calibration Dataset. The initial low-rank projection bases, Uk and Uv , were derived from a small,
general-domain calibration dataset. For this purpose, we used the WikiText-2 dataset. The initial-
ization process followed the procedure outlined in Appendix A.2, where key and value activations
were collected from a number of sampled sequences and then decomposed via SVD to form the
initial subspaces.

Evaluation Benchmarks and Metrics. Our comprehensive evaluation was performed across three
diverse benchmarks: lm-eval-harness, LongBench, and RULER. Performance was assessed based
on the following metrics. Accuracy: We report the specific accuracy metrics as defined by each
benchmark’s protocol. For lm-eval-harness, this includes the zero-shot accuracy on tasks like PiQA,
WinoGrande, and HellaSwag. For LongBench and RULER, this corresponds to their respective
scoring mechanisms for long-context reasoning and retrieval tasks. GPU Memory: Memory con-
sumption is reported in Gigabytes (GB) and reflects the specific GPU memory allocated to KV

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

cache during the inference process for a given context length. This provides a practical measure of
the hardware requirements. Latency: Latency is reported as Time To First Token (TTFT) in mil-
liseconds (ms), which primarily measures the overhead during the prompt processing (prefill) stage.
This is a critical metric for user-facing applications where initial response time is important.

A.5 DEFAULT HYPERPARAMETERS

Table 5: Default hyperparameters unless stated otherwise.

Symbol Default Description

ηpre 0.10 Oja update lr during prefill
ηdec 0.05 Oja update lr during decode
T 32 decode update period (steps)
n – prompt length
kpre 0.05n top-k salient tokens at prefill
w 32 importance window size (queries)
nstart 32 full-rank exemption at the beginning
nrecent 32 full-rank exemption at the end

A.6 QUALITATIVE ANALYSIS AND CASE STUDIES

To complement the quantitative results presented in the main paper, this section provides a qualita-
tive case study. Our goal is to illustrate the practical impact of OjaKV’s online subspace adaptation
on generation quality, particularly in long-context scenarios where the distribution of activations can
shift significantly. We use a long-document summarization task from the MultiNews subset of the
LongBench benchmark, comparing summaries generated by our full OjaKV framework against the
StaticPCA baseline at an aggressive 0.6x compression ratio.

Input Document Snippet (Conceptual Summary)

The input is a lengthy (over. 8k tokens) article. It is a multi-doc summarization that requires
summarizing over multiple news.

Reference Summary

The Occupy LA encampment got a stay of execution this morning—though a few arrests
have been reported beyond the boundaries of City Hall Park. Two hours after protesters
defied city hall’s order to vacate the park by 12:01am, lawyer and Occupy supporter Jim
Lafferty told Reuters he expected police to give the camp a two-day reprieve. At around
5am, police told protesters over a loudspeaker that they didn’t intend to clear the park, the
LA Times reports. Police do, however, intend to clear protesters out of the street, and several
people who refused to move out of an intersection have already been arrested. Ẅe definitely
need to get morning traffic in,ä police commander explained. Everything also seems calm
at Occupy Philadelphia, where protesters defied a 5pm Sunday deadline to disperse. But as
of last night, a police inspector said they didn’t intend to forcibly evict anyone. Ẅe look
forward to working with Occupy Philadelphia and a resolution of the problem,ḧe told the
Philadelphia Inquirer. Confrontation is never good.

Baseline: StaticPCA (0.6x Compression)

The Occupy Wall Street movement has been making headlines in various cities across the
United States. In Philadelphia, Occupy Philly protesters remained on site at City Hall into
the evening of November 28, despite a deadline set by Mayor Nutter for them to leave. The
protesters, who had set up camp on the City Hall lawn, were given a deadline to vacate the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

area, but they refused to leave. The police had no plans to evict anyone, and the protesters
were allowed to stay on the lawn.

Analysis of Baseline: The summary generated by StaticPCA exhibits a classic failure mode in
long-context summarization: topical fixation and critical information loss. The source document
clearly discusses events in two distinct locations, with a primary focus on the tense standoff in Los
Angeles and a secondary mention of the calm situation in Philadelphia. However, the StaticPCA
summary focuses exclusively on Philadelphia, completely omitting any mention of the events in Los
Angeles, which constituted the main subject of the report. This suggests that the static principal
components, established early, failed to represent the new, dominant information introduced later.
The model’s inability to adapt to this semantic shift resulted in a factually incomplete and highly
misleading summary.

OjaKV (0.6x Compression)

The Occupy Wall Street movement continues to gain momentum across the United States,
with protests taking place in various cities. In Los Angeles, the Occupy LA encampment at
City Hall Park was the site of a tense standoff between protesters and police, with comman-
ders later announcing they would not clear the encampment. In Philadelphia, the Occupy
Philadelphia campers also remained in place despite a 5 p.m. deadline to vacate the area.
The movement is a national one protesting economic inequality, and the response from law
enforcement has varied by city.

Analysis of OjaKV: In stark contrast, the summary from OjaKV successfully captures the multi-
faceted nature of the source document. It correctly identifies and synthesizes the key events from
both Los Angeles and Philadelphia, presenting a coherent and comprehensive overview. This
demonstrates the effectiveness of OjaKV’s online subspace adaptation. As the model processed the
document and encountered new information related to the LA protest, it dynamically updated its
KV cache’s principal components. This adaptation allowed it to preserve the crucial details from
different sections of the long-context input, avoiding the catastrophic information loss seen in the
StaticPCA baseline. The resulting summary is significantly more accurate and useful.

A.7 EXPERIMENTAL VALIDATION OF COMPATIBILITY WITH TOKEN SELECTION

In Section 7, we posited that OjaKV, which compresses the feature dimension (d → r), is orthogo-
nal to token eviction techniques that compress the sequence length (n → m). We argued that this
orthogonality allows for compounded, multiplicative memory savings. This section provides empir-
ical validation for this claim by combining OjaKV with SnapKV (Li et al., 2024), a representative
token selection method.

Table 6: Compounded KV cache compression by combining OjaKV with SnapKV. The total com-
pression ratio demonstrates multiplicative savings, offering a compelling trade-off between perfor-
mance and memory efficiency.

Method Rank Comp. Token Keep Rate Memory Usage (%) Accuracy

Full KV Cache (Baseline) 1.0x 100% 100% 53.0

SnapKV (Token Sel. only) 1.0x 50% 50% 52.66
OjaKV (Rank Comp. only) 1.67x (0.6x) 100% 60% 43.13
OjaKV + SnapKV 1.67x (0.6x) 50% 30% 43.33

Experimental Setup. We chose SnapKV as it is a strong baseline that uses importance scores to
identify and retain salient tokens. We evaluated four configurations on the LongBench benchmark
suite using the Llama-3.1-8B model. The configurations are: (1) the uncompressed baseline, (2)
SnapKV alone with a 50% token keep rate, (3) OjaKV alone with a 0.6x rank compression, and (4)
a combined approach applying both OjaKV’s rank compression and SnapKV’s token eviction. Per-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

formance is measured by the average accuracy across LongBench tasks, and efficiency is measured
by the total KV cache compression ratio.

Results and Analysis. The results, presented in Table 6, confirm our hypothesis. Our analysis
shows that OjaKV can be effectively combined with token eviction methods like SnapKV. This com-
pounded approach further reduces KV cache memory usage with only a minor, graceful degradation
in model accuracy. This result validates that our feature-dimension compression is complementary
to sequence-length compression, offering a practical path to even greater memory efficiency.

20

	Introduction
	Related Work
	KV-Cache Compression
	Low-Rank Approximation for Attention
	Online Principal Component Analysis

	Preliminaries: Low-Rank Attention
	Low-Rank KV-Cache Approximation
	Efficient Attention Computation
	Practical Implementation: Compatibility with FlashAttention

	Motivation
	Methodology
	KV Storage Policy with Full-Rank Exemptions
	Two-Phase Online Updates with Oja’s Algorithm

	Experiments
	RULER
	LongBench
	Lm-eval-harness
	Efficiency

	Compatibility with Sequence Length Compression
	Conclusion
	Appendix
	Algorithm
	Low rank subspace initialization
	Equivalence to Full-Rank FlashAttention and Cost Comparison
	Equivalence of two computation regimes
	Complexity and memory comparison

	Detailed Experimental Setup
	Default hyperparameters
	Qualitative Analysis and Case Studies
	Experimental Validation of Compatibility with Token Selection

