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ABSTRACT

The expanding long-context capabilities of large language models are constrained
by a significant memory bottleneck: the key-value (KV) cache required for au-
toregressive generation. This bottleneck is substantial; for instance, a Llama-3.1-
8B model processing a 32K-token prompt at a batch size of 4 requires approx-
imately 16 GB for its KV cache, a size exceeding the model’s weights. While
KV-cache compression via low-rank projection is a promising direction, existing
methods’ rely on a static, offline-learned subspace that performs poorly under data
distribution shifts. To overcome these limitations, we introduce OjaKV, a novel
framework that integrates a strategic hybrid storage policy with online subspace
adaptation. First, OjaKV recognizes that not all tokens are equally important for
compression; it preserves the crucial first and most recent tokens in full-rank,
maintaining high-fidelity anchors for attention. Second, for the vast majority of
intermediate tokens, it applies low-rank compression by incrementally adapting
the projection basis using Oja’s algorithm for online principal component anal-
ysis. This adaptation involves a comprehensive update during prompt prefilling
and lightweight periodic updates during decoding, ensuring the subspace remains
aligned with the evolving context. Crucially, our framework is fully compatible
with modern attention modules like FlashAttention. Experiments demonstrate that
OjaKV maintains or even improves zero-shot accuracy at high compression ratios.
In particular, OjaKV achieves its strongest gains on very long-context benchmarks
that require complex reasoning, highlighting the importance of online subspace
adaptation in dynamically tracking context shifts. Furthermore, our approach is
compatible with token-selection methods, enabling compounded memory savings.
These results establish our hybrid framework as a practical, plug-and-play solution
for memory-efficient long-context inference without requiring model fine-tuning.
Code at https://anonymous.4open.science/r/OjaKV-9D76.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4o (OpenAI et al., 2024) and Deepseek-R1 (DeepSeek-
AI et al., 2025) have demonstrated remarkable performance across diverse domains, including cod-
ing (Nam et al., 2024), mathematics (Setlur et al., 2024), and open-ended text generation (Kumichev
et al., 2024). However, as model capabilities and context length expand, GPU memory emerges as a
critical bottleneck for inference. The memory footprint arises from two primary sources: (i) model
weights, with a model like Llama-3.1-8B requiring 16 GB alone; and (ii) the Key-Value (KV) cache
used during prompt prefilling and autoregressive decoding. For instance, processing a 32K-token
prompt with Llama-3.1-8B in float16 precision at a batch size of 4 consumes an additional 16 GB
for the KV cache, rivalling the size of the model weights themselves. This substantial memory con-
sumption makes long-context inference prohibitive on all but high-end hardware.

To mitigate this challenge, a variety of methods have been proposed to optimize KV-cache memory
usage (Shi et al., 2024). These approaches can be grouped into four categories: (1) Quantization,
which stores keys and values at a lower precision (e.g., 8-bit) (Hooper et al., 2024; Liu et al., 2024);
(2) Token Selection, which prunes or merges tokens deemed unimportant based on attention scores
or heuristic saliency measures (Xiao et al., 2023; Li et al., 2024; Zhang et al., 2023); (3) Offloading,
which transfers the KV cache to CPU memory and selectively streams it back during decoding (Tang
et al., 2024; Sun et al., 2024; Zhu et al., 2025); and (4) Low-rank Approximation, which projects keys
and values into a lower-dimensional subspace (Saxena et al., 2024; Lin et al., 2024).
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Our work focuses on this fourth direction. By compressing each key and value vector from di-
mension d (e.g., d = 128) to r (e.g., r = 96), low-rank methods can reduce cache memory by
((1− r/d)× 100)% while preserving model accuracy, yielding substantial savings for long-context
inference. While token selection has become a widely adopted strategy, we provide theoretical sup-
port showing that low-rank projection and token eviction are compatible, offering multiplicative
benefits that enable even greater memory reductions when combined.

Existing low-rank methods fall into two main categories. (1) Weight-decomposition techniques di-
rectly factorize the linear projection weights for query, key, and value (Wq , Wk, Wv) into low-rank
matrices, thereby caching already-compressed intermediate states (Chang et al., 2024). However,
this approach often incurs a noticeable degradation in accuracy. (2) Projection-based techniques
learn fixed orthonormal projeciton bases (Uq , Uk, Uv) from a calibration dataset. These bases are
then used to compress the KV cache, which is reconstructed during attention computation (Saxena
et al., 2024; Lin et al., 2024). While effective, these static bases implicitly assume that inference
prompts will follow the same distribution as the calibration data. In practice, distribution shifts (e.g.,
from dialogue to code generation) cause the approximation to deteriorate, harming generation qual-
ity.

To address these limitations, we propose OjaKV, a novel framework for KV-cache compression that
operates on two core principles. Our first key insight is that uniform compression across all tokens
is suboptimal. Motivated by the findings of attention sinks (Xiao et al., 2023), OjaKV employs
a hybrid storage policy that strategically excludes the crucial first and most recent tokens from
low-rank projection. This preserves their full-rank fidelity, creating stable anchors for the attention
mechanism and forming a significantly stronger performance baseline. Second, for the remaining
intermediate tokens, we incorporate online subspace adaptation using Oja’s incremental principle
component analysis (PCA) (Oja, 1997). This mechanism performs a comprehensive update during
the prefill stage on a selection of salient tokens, and subsequently executes periodic lightweight
updates during decoding. This ensures the low-rank basis continuously adapts to the evolving context
with negligible overhead. Our framework is fully compatible with modern attention modules such
as FlashAttention (Dao et al., 2022), ensuring practicality in real-world long-context inference.

We evaluate OjaKV on multiple-choice benchmarks from the lm-eval-harness (Biderman et al.,
2024), aligning with prior studies (Saxena et al., 2024; Lin et al., 2024). Additionally, for the first
time to the best of our knowledge, we evaluate projection-based low-rank KV cache compression
methods’ performance on generation-centric long-context tasks using LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024). Across all settings, OjaKV demonstrates superior performance
over static low-rank baselines at the equivalent compression ratios.

In summary, our contributions are fourfold. First, we introduce a hybrid low-rank KV-cache com-
pression framework, OjaKV, which combines a selective full-rank storage policy with a context-
aware online subspace adaptation. Second, our design is compatible with FlashAttention, ensuring
practicality for modern long-context inference pipelines. Third, we conduct the first comprehensive
evaluation of low-rank KV compression on challenging generation-centric benchmarks, moving be-
yond the simpler multiple-choice tasks. Finally, we provide a theoretical analysis demonstrating the
composability of OjaKV with token-eviction techniques, enabling compounded memory savings.

2 RELATED WORK

Recent work on reducing memory footprint of LLM inference has led to various strategies for com-
pressing the KV cache, a primary contributor to memory overhead during long-context generation.
These approaches span orthogonal directions, including quantization, token pruning, offloading, and
subspace compression. Our method builds on low-rank approximation, extending it with an online,
context-adaptive formulation. We review relevant methods below and highlight how OjaKV differs.

2.1 KV-CACHE COMPRESSION

The substantial memory overhead of the KV cache has motivated a range of compression strategies,
which can be grouped into four major categories (Shi et al., 2024). (1) Quantization: These methods
reduce memory by storing keys and values at lower precision, for example, using 4-bit integers in-
stead of the standard 16-bit floats. KVQuant (Hooper et al., 2024) proposes a suite of techniques to
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enable accurate KV cache quantization below 4-bit precision. KIVI (Liu et al., 2024) further intro-
duces a tuning-free 2-bit scheme that quantizes keys per-channel and values per-token, achieving up
to 2.6× memory reduction and 2.35-3.47× throughput gains with minimal quality loss. (2) Token
selection: These methods discard or merges tokens deemed less important. StreamingLLM (Xiao
et al., 2023) leverages the “attention sink” phenomenon, retaining the first and most recent tokens
while discarding others. SnapKV (Li et al., 2024) heuristically selects salient tokens based on com-
puted importance scores. (3) Offloading: These approaches move KV cache storage from GPU to
CPU memory and selectively reload parts as needed. Quest (Tang et al., 2024) is a query-aware
method that estimates the criticality of cache pages via query vectors and loads only the top-K
pages, thereby accelerating self-attention without accuracy loss. ShadowKV (Sun et al., 2024) of-
floads value caches to CPU memory and streams back only relevant chunks during decoding. (4)
Low-rank approximation: These methods project keys and values into a lower-dimensional sub-
space (Saxena et al., 2024; Lin et al., 2024), either by factorizing the projection weights or applying
a learned low-rank basis to construct a compressed KV cache. Our method falls into the last category
and is orthogonal to the first three, making it complementary and enabling additive memory savings
when combined.

2.2 LOW-RANK APPROXIMATION FOR ATTENTION

Low-rank structure in Transformer activations has long been leveraged to compress both weights and
activations. Palu (Chang et al., 2024) and ReCalKV (Yan et al., 2025) factorize the model weights
into low-rank matrices, cache compressed intermediate states, and reconstruct the full key and value
tensors during attention. However, these methods often incur noticeable accuracy degradation due
to lossy factorization. EigenAttention (Saxena et al., 2024) instead samples key/value activations
from a calibration dataset, performs singular value decomposition (SVD), and selects orthonormal
bases Uk and Uv that retain a target variance ratio. MatryoshkaKV (Lin et al., 2024) extends this
idea by fine-tuning the low-rank projection matrices, thereby aligning the subspace more closely
with downstream tasks. A key limitation of EigenAttention and MatryoshkaKV lies in their use of
a static basis: once computed, the projections remain fixed throughout inference. This assumption
breaks down when inference prompts diverge from the calibration distribution (e.g., shifting from
conversational text to code), leading to degraded approximation and reduced generation quality.
Our method address this gap by introducing online subspace adaptation. It continuously updates the
projection matrices, enabling adaptive and context-aware low-rank approximation during inference.

2.3 ONLINE PRINCIPAL COMPONENT ANALYSIS

When data arrives sequentially, as in the case of autoregressive decoding, rerunning SVD on the en-
tire history is computationally infeasible. Instead, online PCA algorithms incrementally update the
low-rank subspace as new samples arrive, without storing or recomputing the full covariance matrix.
Classical approaches include perturbation techniques, incremental PCA, and stochastic optimization
methods such as Oja’s rule. Perturbation techniques update the eigen decomposition of the sample
covariance by treating new observations as a low-rank perturbation (Gu & Eisenstat, 1994). These
approaches are numerically accurate but computationally and memory intensive, making them un-
suitable for high-dimensional or fast streaming data. Incremental SVD methods maintain a running
factorization and updates it with each new batch of samples (Brand, 2002). This strikes a balance
between efficiency and accuracy, and is often robust in practical settings, but can still be slower
than stochastic updates for extremely large-scale problems like real-time LLM inference. Stochastic
optimization methods, in contrast, directly optimize the expected variance using stochastic gradi-
ent updates, the most well-known being Oja’s rule (Oja, 1997). Due to their efficiency, stochastic
PCA methods are well suited to applications like KV cache compression during autoregressive de-
coding. Our proposed method, OjaKV, builds on this foundation. We apply Oja’s rule to update
the key and value subspaces during inference, enabling fast, adaptive, and context-aware low-rank
approximation needing access to calibration data or fine-tuning.

3 PRELIMINARIES: LOW-RANK ATTENTION

We begin by describing the standard attention mechanism and how it can be adapted for low-rank
KV cache compression. For simplicity, we focus on a single attention head. Let the head dimension

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

be dh and the input sequence be X ∈ Rn×d. Standard attention first projects the input into query,
key, and value representations using projection matrices Wq , Wk, Wv ∈ Rd×dh :

Q = XWq, K = XWk, V = XWv,

where Q,K,V ∈ Rn×dh . The KV cache stores K and V for future use during decoding. The
attention scores A are then computed as the scaled dot product between queries and keys, followed
by a softmax operation. The output of the attention head, O, is computed by applying these attention
scores to value matrix V : A = softmax

(
QKT /

√
dh

)
∈ Rn×n,O = AV ∈ Rn×dh .

3.1 LOW-RANK KV-CACHE APPROXIMATION

The core idea of low-rank approximation is to project K and V onto lower-dimensional subspaces.
We define two orthonormal bases: Uk ∈ Rdh×rk for keys and queries, and Uv ∈ Rdh×rv for values,
where rk, rv ≪ dh are the desired ranks for compression. The bases satisfy UT

k Uk = Irk and
UT

v Uv = Irv . The low-rank bases Uk and Uv are initialized from a small calibration dataset (see
Appendix A.2 for details).

Instead of caching the full-rank K and V , we store their compressed representations:

K̃ = KUk ∈ Rn×rk , Ṽ = V Uv ∈ Rn×rv .

This reduces per-token storage requirement for the KV cache from 2dh to rk + rv . If needed, the
full-rank matrices can be approximately reconstructed via K̂ = K̃UT

k and V̂ = Ṽ UT
v .

3.2 EFFICIENT ATTENTION COMPUTATION

This compressed representation allows for a more efficient attention calculation. Projecting queries
into the shared query-key subspace yields Q̃ = QUk. The attention scores can be computed directly
in the low-rank space, as the projection is mathematically equivalent to using the reconstructed
matrices:

Q̃K̃T = (QUk)(KUk)
T = QUkU

T
k K

T = QUk(KUk)
T = QUkK̃

T = QK̂T ∈ Rn×n.

Thus, attention computed in the low-rank space is equivalent to using the reconstructed keys. The
full attention operation is then performed in the low-rank space, and the final output is projected
back to the original dimension: Õ = softmax

(
Q̃K̃T/

√
dh

)
Ṽ ∈ Rn×rv , Ô = ÕUT

v ∈ Rn×dh .

We note that the final output computation in the above formulation is mathematically equivalent to
using the reconstructed keys and values, i.e., Ô = softmax

(
QK̂T/

√
dh

)
V̂ .

3.3 PRACTICAL IMPLEMENTATION: COMPATIBILITY WITH FLASHATTENTION

Optimized attention kernels like FlashAttention operate on full-dimensional tensors of shape
(n × dh) and cannot directly use the compressed features. To maintain compatibility, we store the
compressed KV cache (K̃, Ṽ ) and perform on-the-fly reconstruction before using FlashAttention.
Given queries Q ∈ Rn×dh , we reconstruct the keys and values in the original space from the com-
pressed cache:

K̂ = K̃UT
k ∈ Rn×dh , V̂ = Ṽ UT

v ∈ Rn×dh .

These reconstructed tensors are then passed to FlashAttention:

Oout = Ô = FlashAttention(Q, K̂, V̂ ).

This approach maintains the memory savings of a compressed cache while incurring only a modest
runtime overhead, as detailed in Appendix A.3.

4 MOTIVATION

Offline low-rank bases are fitted to the calibration distribution and can misalign under domain or task
shifts at inference, increasing projection error for keys and values. We therefore maintain an adaptive
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basis that periodically refreshing the basis with key and value features from current prompts and
generated content the model can track distributional shifts and maintain alignment between the low-
rank subspace and the evolving sequence. To validate this hypothesis, we conduct an experiment,
summarized in Table 1. We compute an initial basis, Ucal, from a general-domain corpus (WikiText-
2 (Guo et al., 2020)) and evaluate it on a long-context news summarization task from a different
domain (the MultiNews subset of LongBench (Bai et al., 2023)). We compare this against an adapted
basis, Uadapt, formed by updating Ucal online with Oja’s rule after processing a short prefix of the
MultiNews data. An oracle basis, Utest, computed via PCA on the full test set, serves as an upper
bound on performance.

Table 1: RER and SO on the MultiNews test set.
Adapting the basis online reduces the projection
error (RER) and improves alignment with the or-
acle test basis (Utest).

Basis RER (on Test) ↓ SO with Utest ↑
Ucal 0.255 0.597
Uadapt 0.097 0.653

We use two metrics: Residual-Energy Ratio
(RER) (Najafzadeh & Mahmoudi-Rad, 2024)
measures the projection error, and Subspace
Overlap (SO) (Knyazev & Zhu, 2012), which
we compute against the oracle basis (Utest) to
quantify alignment, defined as SO(U1,U2) =
Tr(UT

1 U2U
T
2 U1)/r. The in-domain RER of

Ucal on the calibration set is 0.035. As shown
in Table 1, the static calibration basis general-
izes poorly under distribution shift: its RER in-
creases to 0.255 on the new task. Applying a lightweight Oja update to form Uadapt mitigates this,
lowering the RER to 0.097. This adaptation also improves alignment with the oracle basis, raising
the SO from 0.597 to 0.653. These findings confirm that online updates can effectively counteract
distribution shift.

5 METHODOLOGY

Our method, OjaKV, introduces a hybrid strategy for memory-efficient inference that combines
selective full-rank retention, with the goal of preserving high-fidelity representations for critical
tokens, with online-adapted low-rank compression for remaining sequence. As illustrated in Figure
1, most key and value vectors are projected into a compact subspace via learned projection matrices,
which are continuously adapted during inference to remain aligned with the evolving context.

Our framework is built around three core components: (i) a hybrid KV cache storage policy that
exempts key contextual tokens from compression; (ii) a two-phase online update scheme using Oja’s
algorithm to adapt the low-rank subspace during both the prompt (prefill) and decoding stages; (iii)
a lightweight initialization procedure that seeds the projection matrices from a small calibration
corpus (see Appendix A.2 for details).

5.1 KV STORAGE POLICY WITH FULL-RANK EXEMPTIONS

In long-context generation, not all tokens contribute equally to downstream predictions. Motivated
by the findings of attention sinks (Xiao et al., 2023), we identify two token regions that play a critical
role in shaping model outputs: (i) the first nstart tokens of the prompt, which often contain crucial
context (e.g., instructions), and (ii) the last nrecent tokens of the prompt, which heavily influence local
generation. OjaKV exempts these tokens from compression, storing their full-rank key and value
vectors of dimension dh. All other tokens are compressed by projecting them onto the low-rank
space and stored: K̃ = KUk, Ṽ = V Uv , where Uk,Uv ∈ Rdh×r are the learned projection bases
(with r ≪ dh). This hybrid policy preserves the most influential early and recent context at full
fidelity while leveraging low-rank compression for the vast majority of the sequence.

5.2 TWO-PHASE ONLINE UPDATES WITH OJA’S ALGORITHM

While the hybrid storage policy preserves critical contextual anchors, the vast majority of tokens
in a long sequence are still subject to low-rank compression. To ensure this representation remains
accurate as the data distribution shifts during inference, we update the low-rank bases online using
Oja’s rule (Oja, 1982). The general form of the Oja update for a new input vector xt is:

yt = UTxt, U ← U + η (xt −Uyt)y
T
t ,

5
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Figure 1: Overview of the OjaKV workflow. The top-left panel shows standard attention using
full-rank KV caching. Our method, shown in the bottom panel, introduces a low-rank path where
keys and values are compressed using projection matrices (Uk,Uv) before caching. The top-right
inset illustrates the core mechanism: these projection matrices are dynamically updated during both
the prefill and decoding phases to adapt to the context.

where the input vector xt is either a key vector (when updating Uk) or a value vector (when updating
Uv), U is the corresponding projection basis, yt is its compressed representation, and η is the learn-
ing rate (see Algorithm 1 in Appendix A.1 for details). This strategy is tailored to the two distinct
phases of autoregressive generation: prompt processing (prefill) and token-by-token decoding.

Prefill Stage (Prompt Processing). During prefill, the model processes a long prompt of length
n ≫ 1. An update on every token would be counterproductive, as the inclusion of redundant infor-
mation could obscure the principal directions for subspace adaptation. Instead, we select a small sub-
set of the most salient tokens for the update using a token selection process inspired by SnapKV (Li
et al., 2024).

We compute importance scores by measuring the attention from the last several query tokens to all
key tokens in the prompt (Kall): A = softmax

(
QlastK

T
all/
√
dh

)
, and define token importance as

st =
∑

h,w Ah,w,t, Simp = TopK(st), where st measures how much attention token t receives
across all heads (h) and the final window of queries (q). Specifically, for each key token t, we
compute an aggregate importance score st by summing the attention it receives across all heads (h)
and all queries in the final window (w). Oja’s rule is then applied only to the selected set {xt | t ∈
Simp} with a prefill-specific learning rate ηpre. After processing all selected tokens, we perform a
single QR decomposition to re-orthonormalize the updated bases to maintain numerical stability.

Decoding Stage (Autoregressive Generation). During decoding, a single new key-value pair
(kt,vt) is generated at each step. These vectors are temporarily stored in full-rank buffers Bk and
Bv . The update is performed periodically: every T steps, we apply Oja’s rule to all vectors accu-
mulated in the buffers since the last update. This stage uses a smaller, more conservative learning
rate ηdec < ηpre to ensure stability. After each periodic update, the bases are re-orthonormalized, the
buffers are cleared, and the process repeats.

This two-phase update scheme allows OjaKV to maintain alignment between the compressed sub-
space and the evolving context, without incurring significant computational or memory overhead.
Pseudocode is provided in Appendix A.1, and a detailed case study comparing static and adaptive
projections is presented in Appendix A.6.
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Table 2: Retrieval accuracy (0–1; higher is better) on the RULER using LongChat-7b-v1.5-32k.
16K 32K

Method S1 S2 MK1 MQ MV QA Avg S1 S2 MK1 MQ MV QA Avg

FullKV 1.00 0.99 0.91 0.70 0.71 0.13 0.74 0.31 0.67 0.49 0.44 0.34 0.02 0.38

Eigen-N 0.8x OOM OOM OOM OOM OOM OOM N/A OOM OOM OOM OOM OOM OOM N/A
StaticPCA 0.8x 0.68 0.17 0.23 0.48 0.26 0.13 0.33 0.21 0.07 0.06 0.04 0.00 0.08 0.08
StaticPCA-H 0.8x 0.97 0.62 0.49 0.65 0.61 0.14 0.58 0.32 0.31 0.26 0.17 0.20 0.08 0.22
OjaKV 0.8x 0.99 0.84 0.57 0.65 0.65 0.18 0.65 0.40 0.40 0.32 0.22 0.24 0.08 0.28

Eigen-N 0.6x OOM OOM OOM OOM OOM OOM N/A OOM OOM OOM OOM OOM OOM N/A
StaticPCA 0.6x 0.59 0.05 0.20 0.31 0.31 0.15 0.27 0.06 0.04 0.04 0.04 0.00 0.03 0.04
StaticPCA-H 0.6x 0.97 0.39 0.29 0.41 0.33 0.14 0.42 0.11 0.26 0.25 0.08 0.15 0.08 0.15
OjaKV 0.6x 1.00 0.65 0.42 0.44 0.40 0.16 0.51 0.23 0.32 0.34 0.12 0.16 0.09 0.21

6 EXPERIMENTS

In this section, we present the experimental setup and evaluate our proposed method, OjaKV. Our
goal is to assess its performance against relevant baselines in realistic, long-context inference scenar-
ios. All experiments are conducted on NVIDIA H100 GPUs and evaluated on three diverse bench-
marks: RULER (Hsieh et al., 2024), LongBench (Bai et al., 2023), and lm-eval-harness (Agarwal
et al., 2024), using Llama-2-7B and Llama-3.1-8B (Grattafiori et al., 2024) models. For a com-
prehensive evaluation, we compare OjaKV against four key baselines. We use the uncompressed
Full KV Cache as a performance upper bound and include Eigen-N, a direct low-rank implementa-
tion of prior work (Saxena et al., 2024) that is impractical for long contexts due to its incompatibility
with FlashAttention. We also include StaticPCA, which uses the same fixed, offline-computed SVD
basis as Eigen-N but is adapted for modern inference by reconstructing full-rank tensors on-the-fly
before the attention computation. Our primary comparative baseline is StaticPCA-H, which extends
StaticPCA by including a token selection policy using attention sink and recent window similar to
the hybrid storage design in OjaKV. We measure model accuracy, memory usage (GB), and Time
to First Token (TTFT), with detailed experimental setups in Appendices A.4 and A.5.

6.1 RULER

Setup. We begin by benchmarking OjaKV on the RULER long-context retrieval suite. For our
experiments, we use LongChat-7b-v1.5-32k. We evaluate its performance on challenging input se-
quences of both 16K and 32K tokens, pushing the model to its long-context limits and creating
significant GPU memory pressure. We report results under three cache budgets: uncompressed
(Full), 20% savings (0.8×), and 40% savings (0.6×). For each compressed budget, we compare
the StaticPCA and StaticPCA-H baselines against our context-aware OjaKV, which dynamically
updates its projection bases during decoding.
Results. On the demanding long-context tasks of RULER, the limitations of native low-rank meth-
ods become apparent. The Eigen-N baseline is not feasible in this setting, as its incompatibility with
FlashAttention leads to OOM errors on sequences of this length. As reported in Table 2, OjaKV
achieves strong retrieval accuracy across the RULER subtasks for both sequence lengths. It con-
sistently outperforms the StaticPCA and StaticPCA-H baselines across all tasks and compression
ratios, further validating the effectiveness of our dynamic, context-adaptive framework in extreme
long-context scenarios. The other static low-rank methods perform worse since RULER tests the
model’s ability to perform retrieval on long, dynamic context, where there are distractors and im-
portant information constantly shifts. Here, OjaKV can better track the evolving state of the prompt,
leading to enhanced performance. In these challenging scenarios, OjaKV effectively mitigates the
performance loss from compression, while significantly using less KV cache memory.

6.2 LONGBENCH

We further evaluate OjaKV on LongBench, a benchmark designed to test long-context inference
across diverse tasks, including single and multi-document QA, few-shot learning, and code gener-
ation. The task input lengths vary from a few thousand to over 20K tokens. As shown in Table 3,
OjaKV outperforms StaticPCA-H and StaticPCA across both models and compression ratios on the
majority of tasks. The performance advantage is less pronounced compared to RULER, potentially
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Table 3: Accuracy (%) on LongBench tasks for Llama2-7B and Llama-3.1-8B.

LLMs

Single-Document QA Multi-Document QA Few-shot Learning Synthetic Code Avg

NrtvQA
MF-en

HotpotQA

2WikiMQA

Musique
TREC

SAMSum
PCount

PRe Lcc
RB-P Avg

L
la

m
a-

2-
7B

Full KV 18.79 34.41 25.3 28.33 8.52 0.0 6.22 1.55 9.0 15.08 17.35 14.96
Eigen-N 0.8x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.8x 16.95 32.8 21.31 24.73 6.28 0.0 5.34 2.25 2.61 14.06 16.78 13.01
StaticPCA-H 0.8x 17.22 34.28 21.8 27.17 7.84 0.0 2.93 1.14 4.5 13.59 20.25 13.7
OjaKV 0.8x 17.53 33.81 21.8 27.37 7.84 0.0 2.94 1.14 4.5 13.55 20.01 13.68
Eigen-N 0.6x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.6x 14.21 27.54 17.41 19.77 5.11 0.25 5.65 3.01 0.5 13.41 18.84 11.43
StaticPCA-H 0.6x 16.66 31.37 26.78 27.33 7.97 0 5.83 1.21 5 12.86 20.19 14.11
OjaKV 0.6x 16.77 31.83 26.81 27.45 7.97 0.0 5.85 1.21 5.0 12.6 20.48 14.18

L
la

m
a-

3.
1-

8B

Full KV 29.56 53.0 53.76 46.13 28.38 7.5 7.47 6.25 99.5 19.88 19.22 33.7
Eigen-N 0.8x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.8x 11.81 49.68 48.06 43.56 15.43 10.0 9.46 3.0 89.5 21.36 22.46 29.48
StaticPCA-H 0.8x 11.71 49.17 49.51 43.99 16.55 9.5 9.36 2.5 88 21.55 22.94 29.53
OjaKV 0.8x 11.68 49.38 49.51 44.49 16.48 9.5 9.54 2.5 88.0 21.69 22.69 29.59
Eigen-N 0.6x OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM NA
StaticPCA 0.6x 8.16 39.38 25.63 22.73 12.65 0.67 7.1 1.62 12.5 18.76 23.48 15.7
StaticPCA-H 0.6x 9.8 43.33 44.23 37.15 15.64 5 7.51 3.5 50.5 19.55 24.13 23.67
OjaKV 0.6x 9.96 43.13 44.23 36.96 16.15 5.0 7.46 3.5 50.5 20.01 23.94 23.71

because LongBench tasks test for comprehension of a long, stable context. For Llama-2-7B, even
at 0.6× compression, the performance is only marginally worse on average, comapred to using the
full KV cache, offering a flexible trade-off for memory savings with minimal performance drop.

6.3 LM-EVAL-HARNESS

To gauge the impact of KV cache compression on downstream utility, we follow the lm-eval-harness
protocol on five diverse zero-shot benchmarks: PiQA, WinoGrande, ARC-Easy, ARC-Challenge,
and HellaSwag. We evaluate all methods on the relatively short-context tasks within the lm-eval-
harness, where sequence lengths are typically limited to a few hundred tokens. As shown in Table 4,
we make two key observations in this setting. First, the Eigen-N and StaticPCA baselines yield iden-
tical results. This finding empirically validates our analysis in Appendix A.3, confirming the numer-
ical equivalence between the native low-rank kernel and our FlashAttention-compatible implemen-
tation. Second, while OjaKV achieves accuracy very close to the full-rank baseline, StaticPCA-H
also performs very well, suggesting that the impact of keeping a full rank attention sink and recent
window, has a significant impact for these short context-tasks, as these key values contribute to a
larger percentage of the total KV cache. Shorter contexts are also more robust to compression, as
there is minimal accuracy drop at 0.6× compression for both Llama-2-7B and Llama-3.1-8B.

Overall, our experiments on these three different benchmarks demonstrate the versatility of OjaKV,
and shows that it can perform best in scenarios with long, dynamic context like in RULER.

6.4 EFFICIENCY
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Figure 2: Efficiency comparison of Full KV
and OjaKV (60% compression).

We compare OjaKV against the Full KV cache on
Llama-3.1-8B-Instruct in terms of latency and GPU
memory (Figure 2). The Oja update introduces some
overhead to TTFT. At 32K tokens, TTFT increases
from 2102 ms (Full KV) to 2801 ms (OjaKV). In
contrast, memory usage, which is the limiting factor
for long-context inference, decreases from 16 GB to
11.6 GB at 32K tokens. This memory reduction enables longer inputs under the same budget.

7 COMPATIBILITY WITH SEQUENCE LENGTH COMPRESSION

Our OjaKV method compresses the feature dimension (d → r) of the key and value vectors. As a
result, it is orthogonal and compatible with sequence length compression techniques the sequence
length (n → m) such as token eviction or selection. This compatibility allows their benefits to
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Table 4: Accuracy (%) on lm-eval-harness tasks for Llama-2-7B and Llama-3.1-8B.
Model Compression Ratio Method Acc ↑

WinoG PiQA HellaS Arc-e Arc-c Avg-Acc

Llama-2-7B

Full Baseline 66.38 76.39 57.80 73.86 44.20 63.73

0.8x

Eigen-N 65.90 75.03 56.29 71.30 41.38 61.98
StaticPCA 65.90 75.03 56.29 71.30 41.38 61.98

StaticPCA-H 66.30 76.40 57.54 73.86 44.37 63.69
OjaKV 66.30 75.79 57.51 73.86 44.37 63.57

0.6x

Eigen-N 62.98 74.54 54.99 70.03 39.93 60.49
StaticPCA 62.98 74.54 54.99 70.03 39.93 60.49

StaticPCA-H 66.30 76.39 57.05 73.74 44.37 63.56
OjaKV 66.30 76.39 57.06 73.74 44.37 63.57

Llama-3.1-8B

Full Baseline 73.88 80.03 59.04 81.86 51.88 69.34

0.8x

Eigen-N 73.56 79.65 57.74 81.65 51.54 68.83
StaticPCA 73.56 79.65 57.74 81.65 51.54 68.83

StaticPCA-H 73.95 79.92 59.14 81.90 51.79 69.34
OjaKV 73.95 79.92 59.14 81.90 51.79 69.34

0.6x

Eigen-N 69.85 78.67 54.87 79.38 48.12 66.18
StaticPCA 69.85 78.67 54.87 79.38 48.12 66.18

StaticPCA-H 73.95 79.82 58.35 81.90 51.88 69.18
OjaKV 73.95 79.82 58.35 81.90 51.88 69.18

be compounded for multiplicative savings. We briefly analyze this property theoretically here and
validate it experimentally in Appendix A.7.

A token eviction policy can be represented by a selector matrix S ∈ Rn×m. For a fixed, linear
selector, our low-rank projection U⊤ associates perfectly with the selection operation:

U⊤
k (KS) = (U⊤

k K)S, U⊤
v (VS) = (U⊤

v V)S.

For advanced, context-dependent selectors where St = Sel(K,Q) is a function that selects the
most relevant tokens based on the current query Q, the commutation is not exact, but the additional
projection error is bounded by the error of the selection policy itself:∥∥UTK −UTKSt

∥∥
F
≤

∥∥K −KSt

∥∥
F
=

∥∥K− Sel(K,Q)
∥∥
F

because left-multiplication by UT is a contraction with respect to the Frobenius norm. This oper-
ational orthogonality means that combining a rank-r OjaKV with a policy retaining m of n tokens
yields a total compression ratio of CR = (d/r)× (n/m).

8 CONCLUSION

In this work, we addressed the critical KV cache memory bottleneck in long-context LLMs,
where static low-rank compression methods often degrade under distributional shifts. We introduced
OjaKV, a novel framework that integrates two complementary components: a hybrid storage pol-
icy, which preserves critical tokens in full rank, and a lightweight, Oja-based online update scheme
to adapt the low-rank subspace for all other tokens.

Our extensive experiments show that OjaKV consistently outperforms strong static baselines, pre-
serving or even improving model accuracy at aggressive compression ratios. Crucially, our evalu-
ation is one of the first to comprehensively assess low-rank methods on challenging, generation-
based long-context tasks. Prior work has often relied on perplexity-based metrics, which we find
can mask significant degradation in factual accuracy and coherence during generation. Our results
reveal that while naive, uniform low-rank compression can indeed harm generation quality, OjaKV’s
hybrid policy effectively mitigates this issue by strategically preserving only a few key tokens in full
rank. Notably, OjaKV demonstrates the largest gains on very challenging long-context benchmarks,
confirming the value of online subspace adaptation in dynamically aligning the compression basis
with evolving context. By ensuring full compatibility with modern inference kernels like FlashAtten-
tion and offering multiplicative savings with token-eviction methods, OjaKV establishes this hybrid
approach as a practical, parameter-free paradigm for efficient long-context LLM inference.

Future Work A promising avenue is to replace the fixed hyperparameters in our update mecha-
nism with dynamic schedules. Future work could explore adapting the learning rates (ηpre, ηdec) and
the update buffer size (T ) based on metrics like activation shift or generation perplexity, potentially
improving both responsiveness and stability.
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USE OF LARGE LANGUAGE MODELS

LLMs were used to aid and polish the writing of this paper. Specifically, their assistance was limited
to improving grammar, phrasing, and overall clarity. The authors reviewed, revised, and take full
responsibility for all content, ensuring the scientific integrity of this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete source
code is included in the anonymous repository https://anonymous.4open.science/r/
OjaKV-9D76. Our methodology is described in the main text, with full implementation details,
model configurations, and all hyperparameter settings provided in the Appendix.
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A APPENDIX

A.1 ALGORITHM

We consolidate the complete OjaKV online updating process into a formal procedure in Algorithm 1.
The algorithm outlines the two primary stages of our method: a comprehensive update during the
prefill phase and lightweight, periodic updates during the decoding phase.

The Prefilling Phase is designed to adapt the initial, general-purpose projection matrices (Uk and
Uv) to the specific content of the input prompt. This process begins by identifying a small subset of
the most salient tokens using an importance scoring mechanism inspired by SnapKV (Line 3). The
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key and value vectors corresponding to these tokens are then used to perform a single, comprehen-
sive batch update on the projection matrices via Oja’s rule, using a relatively high learning rate, ηpre
(Lines 4-5). After this significant adaptation, the matrices are re-orthonormalized to maintain their
geometric properties (Line 6). Finally, our hybrid storage policy is enacted by marking the critical
first and last tokens of the prompt as exempt from compression (Line 7).

The Decoding Phase handles the continuous adaptation of the subspace as new tokens are autore-
gressively generated. At each step, the newly generated key-value pair is temporarily stored in a
buffer (Line 11). To maintain efficiency, updates are performed periodically. Every T steps, all
vectors accumulated in the buffer are used for another batch Oja update, this time with a more
conservative learning rate, ηdec, to ensure stable learning (Lines 14-15). The bases are again re-
orthonormalized, and the buffers are cleared for the next cycle (Lines 16-17). This two-phase ap-
proach allows OjaKV to make a strong initial adaptation to the context while continuously refining
the subspace with minimal overhead during generation.

Algorithm 1 OjaKV

Require: Low rank projection matrices Uk,Uv; learning rates ηpre, ηdec; update buffer size T ; ex-
emption sizes nstart, nrecent; prefill importance window w; top-k kpre

1: Prefilling Phase:
2: Compute token-importance scores over the prompt using the last w queries; select Simp =

TopK(s)
3: Form matrices K = [kt]t∈Simp , V = [vt]t∈Simp

4: K̃ ← UT
k K; Uk ← Uk + ηpre

(
K −UkK̃

)
K̃T

5: Ṽ ← UT
v V ; Uv ← Uv + ηpre

(
V −UvṼ

)
Ṽ T

6: (Uk,Uv)← Orthonormalise(Uk,Uv)
7: Mark the first nstart prompt tokens and the last nrecent as full-rank exempt
8:
9: Decoding Phase:

10: for step t = 1, 2, . . . do
11: Generate new (kt, vt) and append to buffers Bk,Bv
12: if t mod T = 0 then
13: Form K = [ki]i∈Bk

, V = [vj ]j∈Bv

14: K̃ ← UT
kK; Uk ← Uk + ηdec

(
K −UkK̃

)
K̃T

15: Ṽ ← UT
v V ; Uv ← Uv + ηdec

(
V −UvṼ

)
Ṽ T

16: (Uk,Uv)← Orthonormalise(Uk,Uv)
17: Reset Bk,Bv
18: end if
19: end for

A.2 LOW RANK SUBSPACE INITIALIZATION

We describe here the detailed procedure for constructing the initial projection bases.

For attention head i, we gather per-token activations of queries, keys, and values from ns sampled
sequences of length n:

RQ
i =

[
(Q1

i )
⊤, . . . , (Qns

i )⊤
]
, RK

i =
[
(K1

i )
⊤, . . . , (Kns

i )⊤
]
, RV

i =
[
(V1

i )
⊤, . . . , (Vns

i )⊤
]
,

where each R
(·)
i ∈ R(ns·n)×dh and dh is the head dimension.

To encourage a shared representation, we concatenate the query and key matrices:

RKQ
i = [RQ

i ,R
K
i ] ∈ R(ns·n)×2dh .

Applying compact SVD gives
RKQ

i = UΣV ⊤,

with singular values σ1 ≥ · · · ≥ σdh
.
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We select the smallest rank r satisfying the energy criterion

∥(RKQ
i )r∥2F

∥RKQ
i ∥2F

≥ ϵth.

The top-r columns of U define the query–key basis Uk ∈ Rdh×rk .

For the values, we apply the same procedure directly to RV
i to obtain Uv ∈ Rdh×rv . Finally, to

maintain consistency across attention heads in a layer, we set the effective rank to the maximum r
observed in that layer.

A.3 EQUIVALENCE TO FULL-RANK FLASHATTENTION AND COST COMPARISON

Notation Let Q ∈ Rm×dh and K,V ∈ Rn×dh denote the per-head query, key, and value blocks,
where m is the number of current queries and n is the number of cached keys/values. At the prefilling
stage, m = n; at the decoding stage, m = 1. Let Uk ∈ Rdh×rk and Uv ∈ Rdh×rv be orthonormal
bases with UT

k Uk = Irk and UT
v Uv = Irv . Define compressed features

Q̃ = QUk ∈ Rm×rk , K̃ = KUk ∈ Rn×rk , Ṽ = V Uv ∈ Rn×rv .

A.3.1 EQUIVALENCE OF TWO COMPUTATION REGIMES

We compare (a) computing attention in the reduced space and expanding the output, versus (b)
reconstructing full-rank K,V and calling a standard FlashAttention kernel.

Low-rank kernel (compute-then-expand). Form reduced logits and outputs

Ã = softmax
(

Q̃ K̃T
√
dh

)
∈ Rm×n, Õ = Ã Ṽ ∈ Rm×rv ,

then expand Ô = Õ UT
v ∈ Rm×dh .

FlashAttention-compatible (reconstruct-then-compute). Reconstruct full-rank tensors

K̂ = K̃ UT
k ∈ Rn×dh , V̂ = Ṽ UT

v ∈ Rn×dh ,

and call FlashAttention with the original queries Q:

Ô = softmax
(

QK̂T
√
dh

)
V̂ ∈ Rm×dh .

Lemma (logit equivalence). With the above definitions,

QK̂T = Q̃ K̃T.

Proof. Since K̂T = (K̃ UT
k )

T = Uk K̃
T, we have QK̂T = Q (Uk K̃

T) = (QUk) K̃
T = Q̃ K̃T.

Corollary (output equivalence). The two computation regimes produce the same output Ô.
Proof. Starting from the FlashAttention-compatible definition of Ô:

Ô = softmax
(

QK̂T
√
dh

)
V̂ (FA-compatible definition)

= softmax
(

Q̃ K̃T
√
dh

)
V̂ (by logit equivalence)

= softmax
(

Q̃ K̃T
√
dh

)
(Ṽ UT

v ) (substituting definition of V̂ )

=
(
softmax

(
Q̃ K̃T
√
dh

)
Ṽ
)
UT

v (associativity)

= Õ UT
v (low-rank kernel definition)

Hence the FlashAttention-compatible path is numerically equivalent to computing in the reduced
space and then expanding, provided the same scaling 1/

√
dh is used. Using 1/

√
rk changes the

effective temperature and usually needs calibration.
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A.3.2 COMPLEXITY AND MEMORY COMPARISON

We summarize per-head costs for a single block with m queries against n cached keys/values. Big-O
ignores softmax and masking; General matrix multiply (GEMM) shapes are shown for clarity.

Regime Main computations KV memory per token
Full-rank baseline QKT: (m× dh)(dh × n) = O(mndh)

AV : (m× n)(n× dh) = O(mndh)
2dh elements

Low-rank kernel Q̃K̃T: (m× rk)(rk × n) = O(mnrk)

ÃṼ : (m× n)(n× rv) = O(mnrv)
Expand: (m× rv)(rv × dh) = O(mrvdh)

rk + rv elements

FA-compatible Reconstruct K: (n× rk)(rk × dh) = O(nrkdh)
Reconstruct V : (n× rv)(rv × dh) = O(nrvdh)
FA kernel: O(mndh)

rk + rv elements

Discussion. The low-rank kernel reduces the quadratic dot-product costs from O(mndh) to
O(mnrk) and O(mnrv), plus a linear expansion cost of O(mrvdh). The FA-compatible path keeps
the full-rank kernel complexity O(mndh) but preserves memory savings by storing only K̃, Ṽ ; the
reconstruction GEMMs are linear in n.

KV-cache memory in bytes. Let b be bytes per scalar (e.g., b=2 for float16). For L layers and
Hkv KV heads, the total KV memory for a sequence of length T and batch size B is

Full rank: Mfull = B T LHkv (2dh) b, Low rank: Mlow = B T LHkv (rk + rv) b,

with fractional saving

Saving = 1− rk + rv
2dh

.

When rk=rv=r, this simplifies to Saving = 1− r
dh

.

A.4 DETAILED EXPERIMENTAL SETUP

This section provides a detailed overview of the experimental environment, models, datasets, and
evaluation protocols used in this study to ensure full reproducibility of our results.

Hardware and Software Environment. All experiments were conducted on a single NVIDIA
H100 NVL GPU. The software stack was built upon PyTorch and Hugging Face Transformers. The
specific versions of the core libraries were as follows: PyTorch torch==2.6.0, Transformers
transformers==4.44.0, and FlashAttention flash attn==2.7.4.post1. All models
were run using their standard float16 precision implementation.

Models. We evaluated our method on several prominent open-source Large Lan-
guage Models. For clarity and reproducibility, the specific Hugging Face repository
identifiers for each model were: Llama-2-7B (meta-llama/Llama-2-7b-chat-hf),
Llama-3.1-8B (meta-llama/Llama-3.1-8B-Instruct), and LongChat-7B for RULER
(lmsys/longchat-7b-v1.5-32k).

Calibration Dataset. The initial low-rank projection bases, Uk and Uv , were derived from a small,
general-domain calibration dataset. For this purpose, we used the WikiText-2 dataset. The initial-
ization process followed the procedure outlined in Appendix A.2, where key and value activations
were collected from a number of sampled sequences and then decomposed via SVD to form the
initial subspaces.

Evaluation Benchmarks and Metrics. Our comprehensive evaluation was performed across three
diverse benchmarks: lm-eval-harness, LongBench, and RULER. Performance was assessed based
on the following metrics. Accuracy: We report the specific accuracy metrics as defined by each
benchmark’s protocol. For lm-eval-harness, this includes the zero-shot accuracy on tasks like PiQA,
WinoGrande, and HellaSwag. For LongBench and RULER, this corresponds to their respective
scoring mechanisms for long-context reasoning and retrieval tasks. GPU Memory: Memory con-
sumption is reported in Gigabytes (GB) and reflects the specific GPU memory allocated to KV
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cache during the inference process for a given context length. This provides a practical measure of
the hardware requirements. Latency: Latency is reported as Time To First Token (TTFT) in mil-
liseconds (ms), which primarily measures the overhead during the prompt processing (prefill) stage.
This is a critical metric for user-facing applications where initial response time is important.

A.5 DEFAULT HYPERPARAMETERS

Table 5: Default hyperparameters unless stated otherwise.

Symbol Default Description

ηpre 0.10 Oja update lr during prefill
ηdec 0.05 Oja update lr during decode
T 32 decode update period (steps)
n – prompt length
kpre 0.05n top-k salient tokens at prefill
w 32 importance window size (queries)
nstart 32 full-rank exemption at the beginning
nrecent 32 full-rank exemption at the end

A.6 QUALITATIVE ANALYSIS AND CASE STUDIES

To complement the quantitative results presented in the main paper, this section provides a qualita-
tive case study. Our goal is to illustrate the practical impact of OjaKV’s online subspace adaptation
on generation quality, particularly in long-context scenarios where the distribution of activations can
shift significantly. We use a long-document summarization task from the MultiNews subset of the
LongBench benchmark, comparing summaries generated by our full OjaKV framework against the
StaticPCA baseline at an aggressive 0.6x compression ratio.

Input Document Snippet (Conceptual Summary)

The input is a lengthy (over. 8k tokens) article. It is a multi-doc summarization that requires
summarizing over multiple news.

Reference Summary

The Occupy LA encampment got a stay of execution this morning—though a few arrests
have been reported beyond the boundaries of City Hall Park. Two hours after protesters
defied city hall’s order to vacate the park by 12:01am, lawyer and Occupy supporter Jim
Lafferty told Reuters he expected police to give the camp a two-day reprieve. At around
5am, police told protesters over a loudspeaker that they didn’t intend to clear the park, the
LA Times reports. Police do, however, intend to clear protesters out of the street, and several
people who refused to move out of an intersection have already been arrested. Ẅe definitely
need to get morning traffic in,ä police commander explained. Everything also seems calm
at Occupy Philadelphia, where protesters defied a 5pm Sunday deadline to disperse. But as
of last night, a police inspector said they didn’t intend to forcibly evict anyone. Ẅe look
forward to working with Occupy Philadelphia and a resolution of the problem,ḧe told the
Philadelphia Inquirer. Confrontation is never good.

Baseline: StaticPCA (0.6x Compression)

The Occupy Wall Street movement has been making headlines in various cities across the
United States. In Philadelphia, Occupy Philly protesters remained on site at City Hall into
the evening of November 28, despite a deadline set by Mayor Nutter for them to leave. The
protesters, who had set up camp on the City Hall lawn, were given a deadline to vacate the
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area, but they refused to leave. The police had no plans to evict anyone, and the protesters
were allowed to stay on the lawn.

Analysis of Baseline: The summary generated by StaticPCA exhibits a classic failure mode in
long-context summarization: topical fixation and critical information loss. The source document
clearly discusses events in two distinct locations, with a primary focus on the tense standoff in Los
Angeles and a secondary mention of the calm situation in Philadelphia. However, the StaticPCA
summary focuses exclusively on Philadelphia, completely omitting any mention of the events in Los
Angeles, which constituted the main subject of the report. This suggests that the static principal
components, established early, failed to represent the new, dominant information introduced later.
The model’s inability to adapt to this semantic shift resulted in a factually incomplete and highly
misleading summary.

OjaKV (0.6x Compression)

The Occupy Wall Street movement continues to gain momentum across the United States,
with protests taking place in various cities. In Los Angeles, the Occupy LA encampment at
City Hall Park was the site of a tense standoff between protesters and police, with comman-
ders later announcing they would not clear the encampment. In Philadelphia, the Occupy
Philadelphia campers also remained in place despite a 5 p.m. deadline to vacate the area.
The movement is a national one protesting economic inequality, and the response from law
enforcement has varied by city.

Analysis of OjaKV: In stark contrast, the summary from OjaKV successfully captures the multi-
faceted nature of the source document. It correctly identifies and synthesizes the key events from
both Los Angeles and Philadelphia, presenting a coherent and comprehensive overview. This
demonstrates the effectiveness of OjaKV’s online subspace adaptation. As the model processed the
document and encountered new information related to the LA protest, it dynamically updated its
KV cache’s principal components. This adaptation allowed it to preserve the crucial details from
different sections of the long-context input, avoiding the catastrophic information loss seen in the
StaticPCA baseline. The resulting summary is significantly more accurate and useful.

A.7 EXPERIMENTAL VALIDATION OF COMPATIBILITY WITH TOKEN SELECTION

In Section 7, we posited that OjaKV, which compresses the feature dimension (d → r), is orthogo-
nal to token eviction techniques that compress the sequence length (n → m). We argued that this
orthogonality allows for compounded, multiplicative memory savings. This section provides empir-
ical validation for this claim by combining OjaKV with SnapKV (Li et al., 2024), a representative
token selection method.

Table 6: Compounded KV cache compression by combining OjaKV with SnapKV. The total com-
pression ratio demonstrates multiplicative savings, offering a compelling trade-off between perfor-
mance and memory efficiency.

Method Rank Comp. Token Keep Rate Memory Usage (%) Accuracy

Full KV Cache (Baseline) 1.0x 100% 100% 53.0

SnapKV (Token Sel. only) 1.0x 50% 50% 52.66
OjaKV (Rank Comp. only) 1.67x (0.6x) 100% 60% 43.13
OjaKV + SnapKV 1.67x (0.6x) 50% 30% 43.33

Experimental Setup. We chose SnapKV as it is a strong baseline that uses importance scores to
identify and retain salient tokens. We evaluated four configurations on the LongBench benchmark
suite using the Llama-3.1-8B model. The configurations are: (1) the uncompressed baseline, (2)
SnapKV alone with a 50% token keep rate, (3) OjaKV alone with a 0.6x rank compression, and (4)
a combined approach applying both OjaKV’s rank compression and SnapKV’s token eviction. Per-
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formance is measured by the average accuracy across LongBench tasks, and efficiency is measured
by the total KV cache compression ratio.

Results and Analysis. The results, presented in Table 6, confirm our hypothesis. Our analysis
shows that OjaKV can be effectively combined with token eviction methods like SnapKV. This com-
pounded approach further reduces KV cache memory usage with only a minor, graceful degradation
in model accuracy. This result validates that our feature-dimension compression is complementary
to sequence-length compression, offering a practical path to even greater memory efficiency.
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